MATP6960 Stochastic Programming, Homework 7

Due: Thursday, December 5, 2002.


1.
Consider the three stage problem

\begin{displaymath}
\begin{array}{lrcl}
\min && Q^2(x^1) \\
\mbox{s.t.} & 1 \leq & x^1 & \leq 3 \\
\end{array}\end{displaymath}

with $Q^2(x^1)=E_{\xi}[Q^2(x^1,\xi)]$,

\begin{displaymath}
\begin{array}{rlrcl}
Q^2(x^1,\xi) = & \min & Q^3(x^2) \\
&\...
... = & \xi_1 - x^1 \\
&& x^{2,+}, x^{2,-} & \geq & 0
\end{array}\end{displaymath}

and $Q^3(x^2)=E_{\xi}[Q^3(x^2,\xi)]$,

\begin{displaymath}
\begin{array}{rlrcl}
Q^3(x^2,\xi) = & \min & x^{3,+} + x^{3,...
...- \xi_3 x^{2,-} \\
&& x^{3,+}, x^{3,-} & \geq & 0.
\end{array}\end{displaymath}

The random variable $\xi_1$ takes the value 0 or 4 each with probability 0.5. The random variable $\xi_2$ is equal to 2 if $\xi_1=0$; otherwise, it is equal to zero. The random variable $\xi_3$ is equal to 2 if $\xi_1=4$; otherwise, it is equal to zero.

Show that the optimal value of this problem is zero, achieved by any feasible x1. Show that setting each $\xi_i$ equal to its mean and solving the resulting problem does not give a lower bound on Q2(x1), unless x1=2.

2.
Consider the three stage problem

\begin{displaymath}
\begin{array}{lrcl}
\min && Q^2(x^1) \\
\mbox{s.t.} & 0 \leq & x^1 & \leq 4 \\
\end{array}\end{displaymath}

with $Q^2(x^1)=E_{\xi}[Q^2(x^1,\xi)]$,

\begin{displaymath}
\begin{array}{rlrcl}
Q^2(x^1,\xi) = & \min & x^{2,+} + x^{2,...
...i_1 - x^1 \\
&& 0 \leq x^{2,+}, x^{2,-} & \leq & 4
\end{array}\end{displaymath}

and $Q^3(x^2)=E_{\xi}[Q^3(x^2,\xi)]$,

\begin{displaymath}
\begin{array}{rlrcl}
Q^3(x^2,\xi) = & \min & x^{3,+} + x^{3,...
... x^{2,+} \\
&& 0 \leq x^{3,+}, x^{3,-} & \leq & 4.
\end{array}\end{displaymath}

The random variables $\xi_1$ and $\xi_2$ each take the value 1 or 3 with probability 0.5, independently.

By formulating the extensive form of the problem as a linear programming problem, or otherwise, confirm that the optimal value is 2.5. Show that if x1=0 then Q2(x1)=3.

Take x1=2 as the first stage solution in the nested L-shaped method for this problem. Find the first cut generated by the algorithm of the form $E^1_1x^1 + \theta^1 \geq e^1_1$. Show that E11x1 + Q2(x1) > e11 for all feasible x1.

John Mitchell Amos Eaton 325
x6915. mitchj@rpi.edu
Office hours: Tuesday: 2pm - 4pm.



 
John E Mitchell
2002-11-25