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ABSTRACT

Conic programming has been lately one of the most dynamic area of the optimiza-
tion field. Although a lot of attention was focused on designing and analyzing
interior-point algorithms for solving optimization problems, the class of analytic
center cutting plane methods was less investigated. These methods are designed
to solve feasibility problems by finding points which are interior to different sets of
interest. Although these methods can be used by themselves to solve optimization
problems, most of the time they are used as an initial step in a larger interior-point
scheme employed in solving optimization problems.

There are many advantages in using this class of algorithms. For these methods
to work there is no need to have before hand a complete description of the set of
interest. All we need is an oracle that describes the set. This feature is especially
useful when such a description is either missing or it is too large to be practical.

In this thesis we present a general analytic center cutting plane method for solv-
ing feasibility problems in the context of conic programming. The set of interest is
convex, bounded, fully dimensional. It is described by an oracle that either recog-
nizes that a point is interior to the set or returns a set of constraints violated by
the current point but verified by all the points of the set of interest. These violated
constraints are also known as cuts.

Our approach is an extension to the analytic center methods used in linear pro-
gramming, second order cone programming or semidefinite programming. We prove
that our algorithm can solve any feasibility problem with a convex, bounded, fully
dimensional set of interest. We derive an upper bound for the total number of iter-
ations the algorithm requires to get the solution. Also, we analyze how expensive
each iteration is.

The performance of the algorithm is analyzed by solving some feasibility problems
derived from the set of problems proposed in “The Seventh DIMACS Implemen-
tation Challenge Semidefinite and Related Optimization Problems”. We consider

feasibility problems with the sets described only by linear and second order conic

viil



constraints. We will also present an algorithm for solving optimization problems
that incorporates our analytic center cutting plane method. In the last part of this
thesis we analyze the linear programming version of this algorithm and prove that

it converges. Complexity results are also presented.
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CHAPTER 1

Introduction

1.1 Define the Problem

In this thesis we will analyze the problem:

“Given an m-dimensional Hilbert space (Y (-, )y ), find a point y in the convex

bounded set I' C Y.”

Feasibility problems can be as hard to solve as optimization problems. In fact,
once we have an algorithm for solving the feasibility problem, we can use it for
solving optimization problems by using binary search.

Because the set I' is convex, the problem we analyze is of interest in the larger
context of non-differentiable convex optimization.

The first assumption made in any feasibility problem is that the domain I" is
strictly included in a larger set {2y. This larger set can be described using a set of so
called “box-constraints”. These “box-constraints” have different forms, depending
on the nature of the Hilbert space (Y, (-,-)y). In the most general setting, the set
o is given by

Qo:={yeY:q <y<ec}

The inequality sign “<” used in describing {2 is a partial order defined on Y.
This partial order generates a cone of “positive” vectors K (hence the name of conic

programming),
K:={zeY x>0}

Note here that u > v < uw—wv > 0. This partial order is what distinguishes different
classes of feasibility problems.

The most basic class of such problems is linear programming. Linear program-
ming deals with problems that have a linear objective and linear constraints. One

of the multiple equivalent forms a linear programming problem can have is:



max bly,

subject to ATy <ec.

In this setting, the inequality between two vectors is to be understood compo-

nentwise,
w > v il u; > v; for all i.

This vector inequality “>" introduces a partial ordering on the vector space IR".
The first orthant is the corresponding cone of positive vectors.
More general than linear programming is second order cone programming. The

partial order involved in this case is given by

n—1
u>0,ue R" @unzwlzlu%.
1=

The induced cone is called the second order cone or the Lorentz cone or the ice-
cream cone. Linear programming can be considered a special case for second order
cone programming. To see this it is enough to observe that if n = 1 the second order
cone is IR,. Then the first orthant IR} can be represented as a cartesian product
of n lines IR, or of n one dimensional second order cones.

Even more general is semidefinite programming. In this case the cone K is the

cone of positive semidefinite matrices S,,. The partial order, denoted > is given by
A-B& A-BeS,.

To see that second order cone programming is a subcase of semidefinite program-
ming it is enough to notice that the second order cone can be embedded in the cone

of positive semidefinite matrices because

n—1 9 un] v
Uy > Z u; & . >0,
=1 ) Up,

where v is a n — 1 - dimensional vector with v; =u; fori=1,...,n— 1.
All these cases are part of the conic programming family of problems. In this

general case, the cone considered is a so called self-scaled cone (it will be defined



later). The second order cone, the cone of positive semidefinite matrices and their
cartesian products are examples of such cones.

This is the general context in which we intend to analyze the feasibility problem.

We assume that this problem has a solution. One way of insuring that is to
require that [' contains a small ball of radius e. This assumption insures that the
set is not too flat. This is a feasibility problem. Any point from the interior of I is
called feasible point.

The need for finding a point interior to a set arises in various optimization prob-
lems. As an example, interior-point algorithms need an interior point (as the name
suggests) in order to start. In general what they need is a point in the region
described by both equality and inequality constraints. Because of the equality con-

straints, usually of the form
Ax = b with z > 0,

the feasibility region is not fully dimensional so it cannot contain a ball of radius e.
There are different ways of handling this situation.

Every feasibility problem can be transformed into an optimization problem by
minimizing 0. As an example from linear programming, let’s consider the next

feasibility problem:

“Find a point in the domain described by ATy < ¢ and —¢y < y < & with A an

m X n matrix, y, ¢g m-dimensional vectors and ¢ an n-dimensional vector.”

The constraints —¢y < y < ¢y are the “box-constraints” for this problem.
This feasibility problem can be reformulated in a primal-dual linear optimality

problem. The dual problem is actually our feasibility problem:

max 0
subject to ATy + s =c, (D)
—Co <y < Co,
s> 0.

Any solution for (D) is also a solution for the feasibility problem. So these two

problems are equivalent. The corresponding primal problem is:



min ¢’z + cfw+ ez,
subject to Az +w — 2z =0, (P)

r,w,z > 0.

The opposite is also true. The linear problem:

min 'z

subject to Ax = b,
x> 0.

can be written as the feasibility problem:

“Find a feasible point for the set described by:

e — by =0,
Ax =b,

ATy +s=c,
x,s >0

Any feasible point for the previous problem is also the solution to the linear
problem because (x,y, s) is feasible in the primal-dual space with no duality gap.

Next we will describe the main idea of our approach (most of the terms encoun-
tered here will be defined later on, in the second chapter).

Going back to our problem we assume that

Qo :={y €Y :—& =z, y 2z, G with & € int(Ko)}

Here K is a full-dimensional self-scaled cone in the Hilbert space (Xo, (-, -)o) with
dim(Xy) = m. Also we assume that I' contains a ball of radius ¢ (so the set T is
not too flat). We assume the existence of an oracle which, given a point g either
recognizes that the point is in I" or returns a p-dimensional Hilbert space (X, (-, ) x)

together with an injective linear operator A : X — Y such that:



FC{yeY :A*(y—y) € K}.

Here K is a full-dimensional self-scaled cone in the Hilbert space (X, (-,-)x). We
will say that the operator A defines p central cuts.

In solving the problem we will generate a sequence of closed, bounded sets €);
such that I' C €; C ©;_; for any ¢ > 1. Each set €2; is obtained from the previous
set €;,_1 by introducing p; central cuts through a special point ;1 € ;_1:

The operator A; : (X, (-,+);) — Y is injective and linear, X; is a p;-dimensional
Hilbert space and Kj; is a full-dimensional self-scaled cone in X;.

The special chosen points g; are 6 - analytic centers of the corresponding domains
); with respect to an intrinsically self-conjugate functional f; : K; — IR.

We will prove that if the total number of cuts added is big enough then the 6 -
analytic center of the last generated set (); is guaranteed to be in I'. We will get
an estimate on the number of cuts that are added in order to solve the problem.
Also we will study the complexity of obtaining one 6 - analytic center y; from the
previous one ;_1.

We will prove that the algorithm will stop with a solution after no more than

O*(m;;i?s) (O* means that terms of low order are ignored) cuts are added. Here P

is the maximum number of cuts added at any of the iterations, © is a parameter
characterizing the self-concordant functionals and A is the minimum eigenvalue of
all A7A; (A; is the injective operator describing the cuts added at step 7). The
complexity result we obtain is comparable with the results obtained for less general

cases.

1.2 Previous Work

The notion of analytic center was introduced for the first time by Sonnevend in
[22]. Atkinson and Vaidya are the ones to introduce for the first time in [2] a complete
analysis of a cutting plane method using analytic centers. In their approach the cuts

are introduced one by one and “short-steps” are used. Dropping cuts is also allowed.



The set I is included in a cube of side 2X*1 and contains a ball of radius 27%. The
complexity obtained is O(mL?) iterations. Mitchell and Ramaswamy extended this
result in [8] to “long-steps”. The complexity was the same but the “long-steps”
method is more promising from the computational point of view.

The first analysis of the complexity of the analytic center cutting plane method
with multiple cuts was done by Ye in [25]. He proved that by adding multiple cuts,
the solution to the feasibility problem can be obtained in no more than O*(@)
iterations. The same complexity was obtained by Goffin and Vial in [5]. They
proved that the recovery of a new analytic center can be done in O(pln(p + 1))
damped Newton steps. This number of steps is the same regardless of the scaling
matrix that is used (primal, dual or primal-dual). In our approach we will use a
primal-dual approach.

The SOCP case is treated by Oskoorouchi and Goffin in [14]. They analyze the
case when one SOCP cut is added at each call of the oracle. They prove that the
analytic center of the new domain can be recovered in one Newton step and the
total number of analytic centers generated before getting a feasible point is fully
polynomial.

The semidefinite programming case is treated by Toh et. al. in [23]. They
consider the case of adding multiple central cuts. In this case the cuts are added
centrally through the analytic center Y. The form of these cuts is given by {Y €
ST AjeY < A,;of/,i =1,...,p}. If Pis the maximum of all p, the complexity they
obtain is O(m;ZP ). Oskoorouchi and Goffin proved in [13] that the analytic center

can be recovered in O(pln(p + 1)) damped Newton steps and the total number of

m3P2)

steps required to obtain the solution is O(™

O. Peton and J.-P. Vial extend the analytic center cutting plane method to the
general case of convex programming. In [17] they study the introduction of multiple
central cuts in a conic formulation of the analytic center cutting plane method. They
prove that the new analytic center can be recovered in O(pInwp) damped Newton
iterations, where w is a parameter depending of the data.

A general survey of non-differentiable optimization problems and methods with

a special focus on the analytic center cutting plane method is presented by J.-L.



Goffin and J.-Ph. Vial in [4]. This paper presents also the case of multiple cuts and
the case of deep cuts.

The analytic center cutting plane class of methods is a member of the larger class
of interior point cutting plane methods. Mitchell in [7] gives an overview of these
methods.

We conclude this section by presenting the outline of this thesis. All the notions
encountered here will be defined in the following sections.

We will start our presentation by introducing in Chapter 2 some general notions
and results about self-concordant functionals. These functionals are convex, Lips-
chitz continuous with their Hessians Lipschitz continuous too. The exact definition
will be presented in Section 1 of this chapter. The analytic center of a convex
bounded set is the minimizer of such a functional defined on the set. This point is
well defined (because the functional it minimizes is convex) and is strictly interior
to the domain. Because these functionals become infinitely large on the boundary
of their domain, the analytic center will be pushed away from the boundary of the
domain. Most of the theorems presented there are taken from [18] and are intro-
duced without proof. In Section 2.2 we introduce a special local norm and some
properties that will be used later on in our analysis. Here we will see that by fixing
an arbitrary element in the self-scaled cone, we can define a local inner product and
a special local norm. Using the properties of this new norm, we will prove that there
is a region around this arbitrary point where the Hessian of the self-conjugate func-
tional used in defining the analytic center has all eigenvalues greater than i. This
property will be used later in analyzing the number of steps the algorithm requires
to get to the solution. After setting up the theoretical structure we will define in
Section 2.3 the notion of analytic center. Because computationally it is impossible
to work with exact analytic centers, the notion of an approximate analytic center
will be introduced. We will analyze then some its properties. In moving from one
analytic center to the other we will need to make sure that feasibility is preserved all
the time. For this, Dikin’s ellipsoids are introduced. In Section 2.4 we will introduce
more carefully all the assumptions we make about the problem.

As the algorithm proceeds, we introduce more constraints (i.e. cuts). These con-



straints are generated by an oracle and are defined using self-scaled cones. In Section
2.5 we introduce a new operation: @ (which is somewhat similar to a cartesian prod-
uct) which describes this process of adding cuts. We will see that by introducing
these new cuts, the character of the problem doesn’t change. At each stage of the
algorithm the outer-approximation set of I has as analytic center the minimizer of
the sum all the previous functionals defined on the @-sum of all self-scaled cones
introduced so far.

The third chapter of this thesis is dedicated to the analysis of the algorithm.
After describing the algorithm in Section 3.1, we will analyze in Section 3.2 how
the feasibility can be recovered after the cuts are added centrally, right through the
analytic center. In order to keep track of changes in the potentials (another name
for the self-concordant functionals used in our thesis to define the analytic centers)
some scaled recovery steps need to be taken.

Section 3.3 is dedicated to analysis of potentials. The main result will characterize
how the potentials at two consecutive analytic centers are related.

The implications of the assumptions made about the problems are studied in
Section 3.4. In Section 3.5 we will derive an upper bound for the potentials evaluated
at the corresponding analytic centers. This upper bound will be the one that will
be used to prove that the algorithm eventually stops with a solution. As expected,
this bound depends on the radius € of the ball we assumed that I" contains, on the
characteristics of the potentials introduced and also on the condition number of the
operators describing the cuts.

In Section 3.6 we prove that the algorithm will arrive at a solution in a certain
number of steps. This complexity analysis is done in Section 11. We will use the
approach employed by Ye in [25] in deriving the bound for the total number of
constraints that can be introduced before the algorithm stops with a solution.

In Chapter 4 we will present some numerical results. The problems we are con-
sidering are modified versions of some of the problems proposed in “The Seventh
DIMACS Implementation Challenge Semidefinite and Related Optimization Prob-
lems”. We will consider feasibility problems that are based on a combination of

LP cones and Second Order Cones. We will study the behavior of the algorithm in



solving feasibility problems and we will interpret the results.

In the second part of this chapter we will introduce a new algorithm (based on our
analytic center cutting plane method) that can be used to solve optimality problems.
The analysis of this algorithm (in a simplified context) will be presented in Chapter
5. We will solve then some optimality problems (based on the ones proposed in
“The Seventh DIMACS Implementation Challenge”).

We conclude this chapter by solving some optimality problems that arise when
solving Partial Least Squares (PLS) problems and its kernel version (KPLS).

The last chapter of this thesis is dedicated to analyzing the algorithm proposed
in Chapter 4 for solving linear convex optimization problems. We will look at its LP
- only version. We will prove that this algorithm converges and we will also provide

an upper bound for the total number of iterations required to get the solution.



CHAPTER 2

Preliminaries

2.1 Preliminaries on Self-Concordant Functionals

Self-concordant functionals are of the utmost importance for the optimization
theory. In this section we will define this notion and will give some results regarding
them that are relevant for our analysis. Most of the definitions/theorems presented
in this section are taken from or inspired by [18] and [15].

Let (X, (-,-)x) be a finite dimensional Hilbert space and let f : X — IR be a
strictly convex functional with the following properties: Dy, the domain of f is open
and convex, f € C? and its Hessian H(z) is positive definite for all € D;. Using
the functional f we introduce for each x € Dy the local (intrinsic) inner product (at

x):
(U, ) = (U, V) ) = (u, H(z)v) x.

More generally, for any positive definite operator S we can define a new inner product

given by
(u,v)s = (u, Sv). (2.1)
Let B,(y,r) be the open ball of radius r centered at y given by:
By, r) ={z:[lz =yl <7} (2.2)

Definition 1 A functional f is said to be (strongly nondegenerate) self-concordant

if for all x € Dy we have By(x,1) C Dy, and if whenever y € B,(z,1) we have:

1 - Hy o xH:}c S HUHZ/ < 1

< , for all v # 0.
ol = 1=y =zl

Let SC' be the family of such functionals.

10
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Let g(y) be the gradient of the functional f defined using the original inner
product (-, ). In the local intrinsic inner product (-,-),, the corresponding gradient

9-(y) and Hessian H,(y) are given by:

Definition 2 A functional is said to be a (strongly nondegenerate self-concordant)

barrier functional if f € SC and

07 = sup gu(@)]|2 < oo. (2.5)
xEDf

Let SCB be the family of such functionals.

Definition 3 Let K be a closed conver cone and f € SCB, f : int(K) — IR. f is
logarithmically homogeneous if for all x € int(K) and t > 0:

f(tx) = f(x) — 05 In(t). (2.6)

Equivalently, f is logarithmically homogeneous if, for all x € int(K) and all t > 0:

0:(2) = 0:(0). 2.)

Theorem 1 If f is a self-concordant logarithmically homogeneous barrier functional

then:

H(tr) = 5 H(), g.(r) =~ and (o). = \foy

Proof:  This is Theorem 2.3.9 from [18].

The proof for the first part follows immediately by differentiating with respect
to t in the definition of logarithmic homogeneous functionals. The last part is a
consequence of De finition 2 and the fact that ||g.(z)||. = —(x, g(x)) (the gradient
of the right-hand side quantity is zero) . O
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In linear programming such a logarithmically homogeneous self-concordant bar-

rier functional is: f : IR} — IR with f(z) := — Enj In(z;). In this case 8y = n. For the
i=1
SOCP case, the functional is given by f(z) := —In(z? — 5 x?), with §; = 2. In the
i=2
case of semidefinite programming such a functional is given by f(X) := — Indet(X),

with X a positive semidefinite matrix, X €8,. The corresponding value for 0 is
0 f=n.
Most of the following results (taken from [18]) are technical in nature. They are

needed in our analysis of the algorithm.

Theorem 2 Let f € C* with its domain Dy open and convez. If x,y € Dy then

F) ~ 1) = [ gl +tly — )y — 2.

Theorem 3 If f € SC, v € Dy and y € B,(z,1), then

) = £0) = ey — ) — gl — ol < g T
If we take y = 2 + d with ||d||, < 1 then
AP
Flatd) = 1) < {ale). ) + 3l + 7B (2.9

Theorem 4 Assume f € SCB and x € Dy. Ify € Dy, then for all 0 <t <1,

fly+t(z—y)) < f(x) —0Oflnt. (2.9)

If the functional f is also logarithmically homogeneous, then a direct consequence

of Theorem 4 is the next lemma.

Lemma 1 Let f € SCB be a logarithmically homogeneous functional. If x € Dy,
Yy € Df and for all t > 0 then

fla +ty) < f(x). (2.10)
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If the domain of f is a cone K then the geometrical interpretation of Lemma 1

is that x maximizes f over the cone = + K.

Definition 4 Let K be a cone and z € int(K). The dual cone of K is

K ={se X :(x,s)x >0 forallz € K}. (2.11)
The dual cone of K with respect to the local inner product (-, ), is given by

K ={se X :(zx,s),>0, forallz € K}. (2.12)

The cone K is intrinsically self-dual if K¥ = K for all z € int (K).

Definition 5 The conjugate of f € SCB with respect to (-,-) is

fi(s):=— inf ((z,s)+ f(x)) with s € int(K}).
z€INH(K)

In particular, the conjugate of f € SCB with respect to (-,-), is

fi(s):=— inf ((z,s),+ f(x)) with s € int(K").
z€INH(K)

A final definition:

Definition 6 A functional f € SC'B is intrinsically self-conjugate if f is logarith-
mically homogeneous, if K is intrinsically self-dual, and for each z € int(K) there
exists a constant Cz such that fi(s) = f(s) + C, for all s € int(K).

A cone K is self-scaled or symmetric if int(K) is the domain of an intrinsically

self-conjugate barrier functional.

Lemma 2 Let K be a self-scaled cone. Then
K=K'=H(z)"'K'=H(2)"'K. (2.13)

Hence, for any z € K, H(2) is a linear automorphism of K.
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Lemma 3 If f : int(K) — IR is an intrinsically self-conjugate barrier functional,

then for all z € int(K),
f2(s) = f(s) = (0p + 2/(2)).
As a direct consequence:
g =gand H* = H.

Theorem 5 Assume f is self-concordant. Then f* € C*. Moreover, if x and s

satisfy s = —g(x), then
—g*(s) =2 and H*(s) = H(z) ™.

Starting now, all the functionals we will deal with will be intrinsically self-
conjugate barrier functionals.

For each cone K we will consider a fixed vector e € int(K') and we will take all
the inner products to be scaled by e.

Starting now, unless explicitly stated otherwise, each time we deal with an in-
trinsic self-conjugate functional f defined on a Hilbert space (X, (-, ) x), the inner
product will be thought to be the one induced by e (i.e. (u,v) = (u, H(e)v)x where
(-, -)x is the original inner-product on X). Accordingly, we will denote K* := K},
g(x) := ge(z) to be the gradient of f, H(z) := H.(z) to be the Hessian and so on.

Also if A* is the adjoint operator of A in the original inner product, then H(e) ™' A*

is the adjoint operator of A in the local inner product induced by e. We will denote
A* = H(e) 'A*. (2.14)

With this notation in mind, the vector e has some immediate and useful proper-

ties:

lel = /6s.9(c) = e, H(e) = 1. (2.15)
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Renegar proved in [18] the following result

Theorem 6 Let f be an intrinsically self-conjugate barrier functional. Then, for

any x € nt(K):
H(z)ze = —g(x). (2.16)

with H and g being the Hessian and gradient of f considered in the local inner

product induced by e.

2.2 On Scaled Inner Products

Let (X, (-,-)x) be a finite dimensional Hilbert space, with K a self-scaled cone
and f : X — IR the corresponding self-conjugate functional. Let e € int(K) be a
fixed point chosen arbitrarily.

Define the inner product (-,-) := (-,-)m(e) to be the local inner product induced

by e, i.e.:
(u,v) = (u, H(e)v) x.

For this point e define the set B := {v € X : e+ v € int(K)}. Using this set

define a new norm on X:
. 1
lv| :=inf{t >0: TUE B}.

Lemma 4 Assume K is self-scaled. If x € K satisfies |x — e| < 1, then for all

v#0:

1 [v]]
< (2.17)
L+]z—el = [[v
and
[ll-s@) < g 41y — . (2.18)

o]
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Note here that ||v||, = ||H (z)2v|| with H(z) and || - || being the ones induced by
This lemma gives a lower bound on the minimum eigenvalue for the Hessian of

f computed in the norm induced by e at any point = such that |z —e| < 1:

CH@RE e HEw) 21
Amin (H = inf = inf = inf Z >,
W)= o~ o e 7

(2.19)

Figure 2.1: The sets B, K and the level set |v] = 1.

Now let’s consider the domain described by |z — e| < 1. We claim that:
Lemma 5 K :=int(K)N (e — K) C {z € int(K) : |z —e|] < 1}.

Proof: Let y € int(K)N(e— K). Then y = e — z, with z € K. The point
y—e € Bbecause e +y—e=y € int(K) and e — (y —e) = z + e € int(K).

Let ¢’ be the point of intersection between 0K and the line that goes through e
and has the direction y —e. Then y' — e = t(y — e) for some ¢t > 1. The middle



point between y and 3 is clearly a point interior to K. Moreover,

6+M_€:y+y' € int(K)
2 2
and
_y—;y’+e:e+e;y+e—2y’ € int(K).
So
1—2i_t(6— )e—y—gy/ € B.
Then:
. 1 2
!Z/—efsz{tZO:;(e—y)eB}SH—l<1.
So ly —e| < 1.

As a direct consequence of the previous analysis:

17

Corollary 1 Let f € SCB be intrinsically self-conjugate. Then, for any x €

int(K) N (e — K):

)\min(H(.CE)) >

S

2.3 Analytic Centers

(2.20)

Let (X, (-,-)x) and (Y, (-, -)y) be two Hilbert spaces of finite dimensions: dim X =

n, dimY =m. In X consider a full-dimensional self-scaled cone K, pointed at zero

(iie. KN —K = {0}) with the corresponding intrinsically self-conjugate barrier

functional f: X — IR. Let A: X — Y be a surjective linear operator.

Using the convention from the previous section, we take an arbitrary element

e € int(K) and scale everything using the local inner product induced by e (hence

(-,)x := (-,")c and so on).
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The analytic center (the AC) of the domain Fp := {x € K : Az = 0} with

respect to f(z) + (c,x)x is the exact solution to the problem:

min  f(x) + (¢, z)x
subject to Az =0 (Py),
r € K.

Alternatively, the analytic center can be defined using the dual formulation of the
previous problem. The analytic center of Fp := {s € K : A*y+ s = ¢} with respect

to f*(s) is the solution to:

min  f7(s)
subject to A*y + s =¢, (D1)
se K.

One last thing to note here. The functional f is intrinsic self-conjugate. Then, by
definition, f¥(s)— f(s) is constant. So minimizing f7(s) is the same with minimizing
f(s). In what will follow we will keep using the notation f*(s) although we are
actually using f¥(s).

Now, let’s analyze the primal and dual problems. The K KT conditions for the
first problem are:

glx)+c+ AN = 0,
Az = 0,
r € K.

Because f is a self-concordant barrier functional, its gradient g(z) takes the cone K
into —K (as shown in [18]). So —g(z) € K for any z € K. With this observation,

the previous system can be written as:

glx)+s = 0,
Ar = 0,
A'y+s = ¢,

r,s € K.
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To get this formulation it is enough to take A = —y and s = ¢ — A*y € K.
For the dual problem, the K K'I' conditions are:

g (s)+r = 0,
AN = 0,
A'y+s = ¢,
As € K.

Using the fact that A = —g*(s) is equivalent to s = —g(\), it is easy to see that,
in either case the K K'T' conditions are the same, defining the same AC.

Hence, for any analytic center the next equalities hold:

glx)+s = 0,
g(s)+x = 0,

Az = 0, (2.21)
A'y+s = ¢,

r,s € K.

For simplicity we will say that x or y or s is an analytic center if they are the
components of an analytic center.

We can introduce the notion of 6 - analytic center by relaxing some of the previous
equalities. First we will define this notion then, the following lemma will give an

insight for this definition.

Definition 7 (z,vy,s) is a 6 - analytic center for Fp, Fp iff v € Fp, s € Fp and

=

3‘%
~

11 — H(z) 2 H(s)"%|| < ——. (2.22)

Lemma 6 Let (x,y,s) be a 6 - analytic center. Then:

[+ g(8)ll-g(s) <6,
Is + g(@)|| () < 0. (2.23)
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Proof:  We will prove only the first inequality. Note that the inner product (-, ) x
is the one induced by e. Using T'heorem 5 :

Iz +9() 2y = (@ +9(s), H(=g(s))(z + g(5)))x
= (w+g(s), H(s) " (z +g(s))x

Next we will use the fact that, as shown in Theorem 1 and Theorem 6 for any

e K:
g(x) = H(z)te and x = —g,(2) = —H(z) 'g(x).
Based on these:

o+ 9(s)12 ) = (—H (@) g(@) + g(s), H(s) "' (=H(2) () + 9(s)))x
—H(z) 'H(x)2e + H(s)2e, H(s) "' (~H(x) ' H(x)2e + H(s)%¢))x

1

(—H(

(—H(z)2e+ H(s)2e, H(s) ™ (—H(x)"Ze + H(s)%e))x

= (H(s)*(—H(s) 2 H(x) 2e +e), H(s) ' H(s)2(—H(s) 2 H(z) 2e + €))x
(—H(

So:

12+ ()l —g(s) < [I1 = H(s)"2H(x)"2|[le]| <.

The motivation for using this definition for a ¢ - analytic center should be clear if
we compare it with the usual definition used in linear programming for a - analytic

center:

lle — xs|| <6,



21

with e being the vector of all ones.
Using the fact that in the linear programming case the Hessian is given by H (z) =

diag(x~?) our definition reduces to:

|1 — H(x)"2H(s)"2|| = ||diag(e — x5)|| = ma

ax(1l — z;8;) < i

This is slightly different from the usual definition. Using Lemma 6 it is clear

that our definition is close to the one used in the linear programming case:

lz+ g(s)[I2 ) = (& = 571 diag(s*))(x — s71) = [le — ws]®

Next lemma is a simple exercise on the relationship between norms induced by

different matrices.

Lemma 7 Let A and B be two positive definite linear operators with B being Her-

matian. Then:

lylla =B "y|

B*AB-

Proof: |yl = (y, Ay) = (B~'y, B"AB(B~'y)) = | By

2
B*AB-* 1

Lemma 8 If(x,y,s) is the analytic center for the intrinsically self-conjugate barrier

functional f then H(s)H(x) = 1.

Proof:  Note that ¢* = g and H* = H because f is intrinsically self-conjugate
functional. Because (z,y, s) is an analytic center then s = —g(z) so, using Theorem 5

we get that H(s) = H*(s) = H(z)~'. Hence the conclusion. -

Note here that H(s)H(z) = I. In a linear programming formulation this trans-
lates in x;s; = 1 for all 2. This is the exact expression that defines the exact analytic

center in the linear programming case.
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In order to get a characterization for a # - analytic center we need the following

result.
Lemma 9 If ||[I — A|| <0 <1, A invertible, then

1—6<||A| <1+6.

and

1
1+6

1

<||A7H < ——.
<47 < 7=

Proof: The first inequalities are immediate. For the second set of inequalities:
AT = AT = T+ I < JJAT = I + )| < |ATHT = A) | + 1 < OJAT| + 1
and

L=l = A7 Al < [ATHII Al < (1 + 0)[| A7)

Lemma 10 Let (z,y,s) be a 0 - analytic center for an intrinsically self-conjugate

barrier functional f. Then:

9 o 9
\/7 <||H(x)2H(s)2|| < \/7 : (2.24)

Proof: The lemma is proved immediately using the previous lemma. O

Lemma 11 Let f be an intrinsically self-conjugate barrier functional defined on a

self-scaled cone K. Let x,s € K such that x = —g(s). Then:

f(x) + [ (s) = =0y (2.25)
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Proof:  Because f is self-conjugate we have: g*(s) = ¢g(s). Renegar proved in [18]

that regardless of the inner product, the conjugate functional satisfies:

So f*(s) = (g(s), 5) = f(x) = =b; — f(2). -

Suppose that x is a feasible point in Fp. If f is a self-concordant functional,
then, by definition, ||Az||, < 1 implies that = + Az is feasible.

This inequality describes an ellipsoid around the point x (also known as the
Dikin’s ellipsoid). This ellipsoid defines a region around the point = where z + Az is
feasible too. The following lemmas will give sufficient conditions on Az and As to

get r+ Az, s+ As feasible, given that x and s are feasible in Fp and Fp respectively.

Lemma 12 Let Ep = {Az € X : AAx = 0,||Ax||. < 1}. Let (z,y,8) be a 0 -

analytic center. Then:

(1+ i)‘15p C{Azr € X : AAz =0, ||Am||H(5)71 <1} C(1- i)‘1513.
NG NG
Proof:
Az g = [[H(s) 2Az|x = |H(s) 2 H(z)"2 H(x)2 Az x
1 1 1 0 1
< |[H(s)"2H(z) 2| H(x)2 Az x < (1 + F)HH(I)QMIIX
f
0
= (1+——=)|Az..
NG
Also:
Azl = ||H(z)?Az|x = ||H(z)2 H(s)2 H(s) 2 Az x
1 1 1
< ||H(x)2H(s)? ||| Az grs)1 < 1A sy

(-2
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A similar result holds for the Dikin’s ellipsoid around s.

Let &p = {As € X : As = —A*Ay, ||As||s < 1}.

Lemma 13 Let (z,y,s) be a 0 - analytic center. Then:

0 0
(1+—=)"6p C{As: As = —A*Ay, ||As| @ <1} C (1+ —)""&p.
Vor Vor
Because analytic centers are minimizers of convex functionals defined on closed,
bounded, convex sets, the method of choice for computing them is the Newton
method. This method is based on the second-order approximation of the functional

to be minimized. Let ¢, be the quadratic approximation for f. Then

0(y) = F() + (gl@),y — 2) + 3ly —x H()(y — ).

The minimizer for ¢,(y) is the point  where the gradient of ¢,(y) becomes zero.

From here we obtain immediately that:
T=ux— H(x) "g(z). (2.26)

The Newton step is defined to be the vector H(x) 'g(x). This vector is the same
with g,(z). Immediately we can see that, for logarithmically homogeneous barrier
functionals the Newton step has constant length if measured in the norm induced
by x: ||g(2)|. = \/97 . The advantage of using self concordant barrier functional is
that the Newton step doesn’t change when the local inner product changes. This
gives us more flexibility in the way we choose the local inner product.

When computing approximate analytic centers we need a way of estimating dis-
tances to the exact analytic center. When working with general functionals it is
impossible to achieve this without knowing the exact analytic center. This problem
is eliminated when using self-concordant functionals. This is because we can use
local inner products instead of the original one. We can compute the distance be-
tween two points z and y without knowing y. All we need to do is to use ||z — y||,

to measure the distance.
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All these properties will play an important role when we will analyze the com-

plexity of recovering the analytic center.

2.4 Assumptions and Notations

We assume that all the operators A; : X; — Y, ¢ > 1 defining the cuts are
injective, hence the adjoint operators A! are surjective. Also, wlog we assume that
|A;]| = 1. The fact that A; is injective gives also a bound on how many cuts we can
add at a certain moment: p; < m.

For each space (Xj, (-,-);) we will use the local norm induced by an arbitrary
element e; € int(K;). So whenever we use (-,-); we will actually mean (-,-),. If
there is no danger for confusion, we will also use (-, -) instead of (-, -),.

The following assumptions are not critical for our analysis. We use them just to
keep the analysis simpler and easier to understand. The analysis would be the same
without these assumptions but the notation would be more complicated.

We assume that || H;(e;) || = 1 for ¢ > 0, where H; are the Hessians correspond-
ing to the intrinsically self-conjugate functionals that are generated by the algo-
rithm. The Hessians are computed in the original inner products (not the scaled

one). To ensure this, it is enough to pick an arbitrary e, € int(K;). Then take

e = ||Hi_1(e;)||_%e;. Because f; is logarithmically homogeneous (hence H; *(tz) =
t2H; ! (x)) for e; we have ||[H; *(e;)|| = 1. We can scale ¢y in a similar way to get
[1Ho(eo) | = 1.

Let o; := \/%ei. The length of this vector, measured in the local inner product
induced by ¢; is ||o;|| = /p;. Without loss of generality, we can assume that f;(0;) =
0. We can do this easily. If f; evaluated at this point is different from zero, then we
can replace f;(z) by fi(z)— fi(0;). Note that we can do this because the sum between
a constant and an intrinsically self-conjugate barrier functional is an intrinsically

self-conjugate barrier functional.

2.5 Operations with Self~-Concordant Functionals

In our algorithm we start with an initial set {2y containing I'. As the algorithm

proceeds we generate a sequence of sets 2; containing I' such that €; C ;1. Each
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set €; is described by all the cuts that have been added so far. In a condensed form

we can represent €); as:
Qi ={yeY:Ay+s=gc with s € K;}.

In this section we will describe how A; and K; incorporate all the cuts added.
Note here that when the cuts are added, the dimensionality of the problem in-
creases (i.e. the dimension of the domain of A; increases).
Each time we add new cuts, we introduce new Hilbert spaces (Xj, (-, +);) with
dim(X;) = p; such that p; < m for all « > 1. In each X; we consider a full-

dimensional self-scaled cone K;. The cuts that are added are of the form
A; : X; — Y with A; injective linear operators.

Hence, the corresponding adjoint operators Af : Y — X; are surjective.
In the linear programming case this condition translates into asking that the
matrix A; describing the cuts be full-ranked. Together with the cone K; we introduce

an intrinsically self-conjugate barrier functional f;:

The domain of the functional is the interior of the cone K;. When the cuts are
added to the problem everything changes: the space X and its inner product, the
barrier functional, and the constraints describing the outer approximation domain
for I'. Next we will describe all these changes and how are they incorporated in the
structure of the algorithm. We should keep in mind that the inner products of X;
are scaled by elements e; € int(K;) fixed arbitrarily.

First let’s define a new operation @. This is similar to the cartesian product.

This operation will be defined for Hilbert spaces, functionals and operators.

Definition 8 Let (X, (-,-)x) and (Z,{-,-)z) be two Hilbert spaces of dimensions px
and py respectively. We define (X ®Z, (-, ) xaz) to be an Hilbert space of dimension
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px + pz defined by:

ueX @ Z ’Lﬁ (Ui)izl DX € X and (ui)i:px+l px+pz e 7. (227)

..........

We write u = ux ® uy.

The corresponding inner product is given by:
(u, V) xoz = (ux, vx)x + (Uz,vz7) 7. (2.28)

The & operation is just a concatenation, while the resulting inner product is the
sum of the inner products applied to the corresponding components.
The sum of two cones can be defined in a similar manner. The same idea of

concatenation applies for operators too:

Definition 9 Let Ax : X — Y and Az : Z — Y be two linear operators. The &

sum of these two operators is defined by:
AX ) AZ X @D Z — Y, with (AX @D Az>(u) = AXuX + Ay’u,y. (229)

Observe here that the @ sum of two linear operators is a linear operator too.

Finally, we define the @& sum of two functionals.

Definition 10 Let fx : X — IR and fz : Z — IR be two functionals. Then the &
of fx and fz is given by:

Ix@fz: X®Z— IR, with (fx ® fz)(u) = fx(ux) + fz(uz) (2.30)

forallu=ux Puyz € X B 7.

Lemma 14 Let f; : (X, (,-);) — IR, i = 1,2, be two functionals in C*, with g,
go their gradients and Hy, Ho their Hessians respectively. Then the gradient g of
f = fi® fo is such that:

(u, g(v)) x10x, = (U1, g1(v1))1 + (U2, ga(v2))2 (2.31)
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and the Hessian H of f is such that:

(u, H(v)2) x,0x, = (u1, Hi(v1)z1)1 + (u2, Ha(v2)29)2 (2.32)

for any u,v,z € X1 & Xy (with their components u;,v;, z; € X;, i =1,2).

Proof:  For the first part, the definition of the gradient of a functional gives:

filvi + Avy) = fi(vi) = (gi(vi), Avi);

| = 0. 2.33
HAUliI”l;l*O ||AU2||2 ( )
Then:
2
. ‘_l(fi(vi + Av;) = fi(vi) = (gi(vs), Avy);)
A0l s oy —0 |Av|| x,0x, B
_ - 1 [Avilli  filvi + Avi) — fi(vi) — (gi(vi), Avi)s
lavilli—o [|Av||x, @ x, | Av]|;

The limits inside the sum are both equal to zero because of the definition of the

gradient g; of f; and because:

Av;l]; Av;
| A _ v <1 for any ||Awv;||; # 0.
1AvIxiexs /| Av |2 + | A2

So we proved that:

Flo+ B0) = f(0) = X (gi(wi), A,

im
180 x, @, —0 | AV x,0x,

= 0. (2.34)

This equality is exactly the definition of the gradient, hence:

(u, g(v)) x10x, = (U1, g1(v1))1 + (ua, g2(v2))o-

The expression for the Hessian H(v) can be proved in a similar manner. It is
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easy to check that the inverse H!(v) is defined by:

(u, H(0)2) xyex, = (u1, Hy '(u1)z1)1 + (ua, Hy ' (02)22)2. (2.35)

Theorem 7 Let f; : X1 — IR and fy : Xo — IR be two intrinsically self-conjugate
barrier functionals. Then f := fi1 ® fo is also an intrinsically self-conjugate barrier

Junctional with 0y = 01 + 0.

Proof:  We will start by proving that f is self-concordant. The domain of f is
the @ - sum of the domains of f; and fo, Dy = Dy, @ Dy,.
First, we have to check that

YV € Df,Bx({L‘, 1) - Df.

Because x € Dy , it can be decomposed as z = x; © 29, with 1 € Dy, and

x9 € Dy,. Both f; and f5 are self-concordant functionals so

le($1,1> g Df17
Bmz(x%l) C sz'

For any arbitrary point y € B, (x, 1) (with y = 11 @ y2),

ly—=l? = (x—y, H(z)(z —y))
= (z1 =y, Hi(z1) (71 — y2))1 + (22 — yo, Ha(z2) (72 — Y2))2

=z —wllz, + 22 — wll7,-

This immediately implies that y; € B, (21,1) C Dy, and yo € By, (z2,1) € Dy,.
Then,

Yy=1®y2 € Dy, ® Dy, = Dy.
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Hence, we proved:
Vo € Df, Bm<£L‘, 1) - Df.

To complete the proof that f € SC, we need to show that for any vector y €

B, (z,1) (hence its components y; € B,,(x;,1)) and for all nonzero vectors v:

Py —ally <l o L
loll. =TTy —alh

Let v; and vy be the components of v, v = v; @ vy. Because v # 0, then at least
one of vy, vy is nonzero. Suppose both are nonzero (if one of them is zero, the proof

follows almost identically). For both f; and f; the previous inequality holds true:

||Ui Yi < 1

I Rl ([

1 - Hyi - I

T

||UZ' T T

with ¢ =1, 2.
Also,

1=y = 2lle = 1= /llys — 212, + g2 — 2212,

For simplicity, let A = [ly1 — 21[s,, B = [|y2 — 22|z, and C = [ly — z[[,. With

these notations:
1-C=1-VA2+ B2
So
[vlly _ lloally, + llvally, (1= A2z, + (1 = B)?|vl?,
ol llodll2, + o2l oI, + [[vall2,

(1= CPlloalz, + (1 = C)?|lvall3,

[or]IZ, + [lvzl13,

= (1-0C)%
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We proved the leftmost inequality. For the rightmost inequality the proof is
similar. So f € SC. Moreover, f € SCB with 0y < 0y, + 04, because:

g0 (@7 = l1ge1 (@0)I[7, + |92 (22) 15,

and by definition 6; = sup [|g.(z)|?.
xGDf
For the last part, for any ¢ > 0:

0= f(tr) — fi(tx1) — foltze) = f(z)— fi(z1) — fa(22) + (01 + 02 — 0;) Int
— (0, + 0, — 0;) Int.

So ef = 91 + 92. |
All the previous definitions are consistent even if we use local inner products scaled

by e; € K;.



CHAPTER 3
Analysis of the Algorithm

3.1 Preliminaries

In this chapter we will analyze the performance of the algorithm. First we will
analyze how new cuts are added to the problem and how the current point is moved
back in the feasible region. We will see that in order to recover feasibility we need
to use scaled steps. Once the point becomes feasible, we will prove that we can get
to a @ - analytic center by taking two types of Newton steps.

The progress is measured here using potential functionals. First we will use
Nesterov-Todd steps to move the current point closer to the exact analytic center.
We will see that each such step decreases the potential by a constant value. Once,
“close enough” (the exact meaning will be introduced later) we use a different type
of steps to get to a @ - analytic center. Using these new type of steps the convergence
towards a 6 - analytic center becomes exponential.

In the second part of this chapter we will obtain an upper bound for the total
number of # - analytic centers that need to be generated in order to get feasible in I'.
The analysis employed here will follow the approach used by Yu in [25] in analyzing
an analytic center cutting plane method for the LP case. Although the main steps
are the same, the general character of our problem will require a different use of the

initial assumptions we made about the problem.

mP3e3 )

We will prove that the algorithm stops with a solution in no more than O*("453

(here O* means that terms of low order are ignored) steps, where © and A are
parameters that characterize the problem and P is the largest number of cuts that
are added at a given time. This result is similar to the ones obtained in less general
cases.

The idea behind our study is quite simple. As the algorithm proceeds, a sequence
of sets €); is generated. We will use the exact analytic centers s{ of these sets. The

main steps are:

e Get an upper bound UB; for ff(s§), for any i

32
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e Compare two consecutive f; at the corresponding AC s{:

fia (i) > fi(s§) + LB

After k steps :

UBy > f5(s§) + > LB;

1=0

k—1
e We prove that UB, — oo slower than > LB; does
i=0

The algorithm stops as soon as

k-1
UBi < fi(s§) + X LB;
i=0

3.2 The Algorithm

In order to get a point in I' we generate a sequence of outer-approximations ;.
The algorithm stops as soon as the 6 - analytic center of one set §2; is in I'.

The algorithm starts with the initial set

Qo :={y €Y :—& =z, y 2z, G with & € int(Ko)}

as the first outer-approximation of I'. The cone Ky, is a self-scaled cone in (X, (-, -)o)
- an m - dimensional Hilbert space.

Let Xo:= Xo® Xo, Ko := Ko ® Ko and let fo be the intrinsically self-conjugate
barrier functional corresponding to Ky, fo : int(Ky) — IR. The set 0y can be
described by

Qo:={yeY:Ajy+s=cowith s € Ky}.

Here, Aj is a linear operator defined on X, Ay : Xg — Y such that, its adjoint

Al Y — X, describes Qq (i.e. Ag =1, ® (—1n)).
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Let &, € int(Kp) be an arbitrary point chosen such that the Hessian Hy of fo
has unit norm at é: ]\ﬁo(é0)|] = 1. Let’s take ey := €y @ €. Then ey € Ky and
|Ho(eo)|| = 1 too.

Now, we change the inner product to be the one induced by ey. Because of this
change, the adjoint of the operator Ay changes from A} to Hy(eo) ' A§. This is

because
<u7 A0U>Y = <A3U, U>X0 - <H0(60>_1A8u7 U>€0'

In order not to complicate the notation, we will define A to be the adjoint of
Ag in the new inner product. Also, we will use ¢y instead of the scaled vector
Ho(eo)_ICO.

Using this new notation, the set {2y has the same description as before:
Qo={yeY :Ajy+s=cy withse Ky}.

Let (zo, Yo, So) be the 6 - analytic center corresponding to fy. In order to obtain
this point, we can take a sequence of primal-dual Newton steps, starting at the
strictly feasible point (eg,0,¢o) € Ko X €y x Ky. Note that ¢y and ¢y are strictly
interior to K. Also, the origin is a point strictly feasible in €.

Once at 1, the oracle is called. If yg € I' the oracle returns yo and the algorithm
stops with the solution to our problem. If yy ¢ I", the oracle returns p; - central cuts.
That is, the oracle returns a p;-dimensional Hilbert space (X7, (-, -)1) together with a
self-scaled cone K7, the corresponding intrinsically self-conjugate barrier functional

f1: K1 — IR and a linear injective operator A; : X; — Y such that
C{yeY :Aly+s= Ajy, with s € K;}.

The equality Ajy + s = Ajy defines a central cut. It is called central because
the point (y, s) := (yo,0) lies on the cut with s being the vertex of the cone Kj.
We change the inner product on the space X; with a local one induced by a vector

e1 € int(K;) chosen arbitrarily such that the norm of the Hessian of f; computed
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in the original norm at ey is unitary. Also we change the functional f; by adding a

constant such that the modified functional:

(as already discussed in Section 2.4).

Now we build the new instance of the algorithm. First, let X; := X, ® X; be
an (2m + pp) - dimensional Hilbert space with the inner product induced by the
inner products of X, and X;. Let K; := K, @ K; be the new self-scaled cone with
the corresponding intrinsically self-conjugate barrier functional f; := fu @ fi. After

adding the new cuts €2y becomes
Ql = Qoﬂ{yEYAIy—i—S:ATyO with s € Kl}

For the new instance of the algorithm, the old 6 - analytic center (xo, %o, So)
becomes (zo @ 0p,, Yo, So @ 0p,) (with 0,, being the zero vector in X7).

The point g, lies on the boundary of the new set ;. First we will take a step to
recover strict feasibility for this point. After that we generate a sequence of Newton
steps that will take the point to (z1,y1, s1), the 6 - analytic center of the new domain
Q.

At this point we call the oracle again. If y; € T', we stop with the solution to
our problem. If y; ¢ I', the oracle returns py central cuts that are added to the old
instance of the algorithm, generating a new set {2,. Then the algorithm proceeds as
before.

We will prove that the algorithm must stop with a solution after a sufficiently
large number of cuts has been added.

After ¢ iterations, the ¢-th instance of the algorithm is described by a Hilbert
space X; = jE:ZéO X, together with a self-scaled cone K, = jE;éO K;, the domain of

an intrinsically self-conjugate barrier functional f; = éo fj- The current set €;
J:

is described by the linear operator A; : X; — Y, with A, = éo Aj. All linear
j=

operators A; : X; — Y, 7 > 1, are injective and the inner products considered
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in the p;-dimensional Hilbert spaces X; are the ones induced by fixed elements
e; € int(K;). These vectors e; are strictly interior to the respective cones K; and
| H;(e;) "t =1,¥j > 1 (here H; is the Hessian of f; computed in the original norm

of X, not in the local norm induced by e;).

3.3 The Recovery of Feasibility

In this section we will study the impact of the central cuts added through an 6 -
analytic center and how feasibility can be restored.

Consider an instance of the algorithm described by an intrinsically self-conjugate
functional f; defined on a Hilbert space (X7, (-,-);) with the corresponding full-
dimensional self-scaled cone K; pointed at zero (We consider here the case i = 1 for
notational convenience. This analysis applies to any stage i of the algorithm.). The

outer-approximation of the domain of interest I' in this instance is
O ={yeY Aly+s=ac,s € K},

with A; : X; — Y a linear operator. Let (z1,y1,$1) be the 6 - analytic center for

Fp, Fp. So its components must verify:

All’l == 0, (31)
Al + s1= ¢, (3.2)
21,81 € Ky and y; € Y. (3.3)

We add p central cuts at this point: Ajy + s = ¢ with A5y, = co. The operator
A, is defined on a p - dimensional Hilbert space (Xs, (-, -)2). We assume that Ay is
injective and linear.

The outer-approximation domain €2; becomes

Q= N{yeY : :Ay+s=cys€ Ky}

K is a self-scaled cone in X5 and let fy : X9 — IR be the corresponding intrinsi-

cally self-conjugate functional.
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After adding the cuts, the primal and dual feasible sets Fp and Fp are changed:

Fp={x®F: Aix+ Ay =0 with z € K3, € Ky}

and

Fp={s@y: Ajly+s=c,Aly+y=co withs € Ky,v € Ky,y € Y}.

Let f:= f1® fo, X := X7 ® X5. After adding the cuts the old point (x1, 41, $1)

becomes (g, ya, S2):

To=21D B, Y2 =y1,52 =51 D,

with yo on the boundary of the new domain €25. At this new point,  =0and v =0
hence both f and f* are infinitely large. One step to recover feasibility is needed.
Let this step be: Az & 3, Ay and As @ . The new point must be feasible in Fp

and Fp so:

Al(l’l + Al‘) -+ Agﬁ = 0, (34)
Al(yy + Ay) + 51+ As = ¢4, (3.5)
As(yi + Ay) + 79 = ¢, (3.6)

with z1,x1 +Ax, 51,81 +As € Ky and (3,7 € Ks. So, in order to get back feasibility

we need to have:

ATAy + As =0, (3.8)
ASAy+~v=0. (3.9)

Right after adding the central cuts, the current point ¥, is sitting on the boundary
of Qs ( both f =0 and 7 = 0). Because of this the values of both fy and f; were
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equal to infinity. So in moving away from the boundary of €25 we should try to
minimize as much as possible the contribution of 5 and v to the potential functions.

One way of doing this is to set-up the next problems:

min fz(ﬁ)
subject to A1Axz+ A5 =10

B e Ky

and
min  f3(7)
subject to ASAy+~vy =0
v € Ky

These two formulations do not describe completely our problem. What is needed is
a constraint that insures that x; + Az and s; + As stay feasible in K; too. Using
the analysis of the Dikin’s Ellipsoids we have already made, it is enough to add
|AZ| g, (s)-1 <1 — ﬁ and ||As||s; < 1 to keep 1 + Az and sy + As feasible in
K. Next we will analyze the problems using ||Az|| g, (s,)-1 < 1. We do this to keep

the analysis clear. Later we will scale the steps by a < 1 — —= so the feasibility

NG

will be preserved.

So a good choice is to take  and 7 to be the solutions to the following problems:

min  f5(0)
subject to A;Ax + A5 =0, (P»)
HAZEHH1(81)*1 <1,
pe K,
and
min  f3(y)
subject to AjAy+v =0, (D5)

[As]ls, <1,
v e KQ.

These two problems are well posed. The feasible regions are not empty because

Ay is surjective, A, is injective and the equality constraints are homogeneous. The
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objectives are strongly convex functionals so, if the minimum exists, it is unique. The
cone K is the domain for both f; and f;. These two functionals are self-concordant
so they are infinitely large on the boundary of their domains. The second constraint
in each problem ensure that the feasible sets don’t contain rays. So both problems
have an unique optimal value.

This approach is similar to the one proposed for the linear programming case by
Goffin and Vial in [5]. Tt is a generalization of the approach used by Mitchell and
Todd in [9] for the case p, = 1 (only one cut is added at each iteration).

Now, let’s analyze (P2). The K KT conditions are:

92(B) + A3A =0, (3.10)
AN+ vH (s)) 'Az =0, (3.11)
v(1 — (Ax, Hy(s1) 'Ax);) =0, (3.12)
If we take
Axr = —H1(81>A1((A1H1(81)AT)_1A257 (314)
v o= 0f2, (3.15)
A= efQ(AlHl(Sl)AT)ilAgﬁ (316)

both equations (3.11) and (3.13) are verified.
For (3 we use the approach used by Goffin and Vial in [5] and we will take it to

be the solution to the next problem:

6
min =25, V) + fo(5) (3.17)

The optimality condition for this minimization problem is given by:

07,V 3+ g2(B) = 0. (3.19)
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It is easy to verify that the equation (3.10) holds true for § solution for problem
(3.17). For equation (3.12) it is enough to note that

A7, (o)1 = (Az, Hi(s1) ' Az)y = (8, V )y = —%Wagz(ﬁ)h =1 (3.20)

Now, let’s consider the second problem (D;). The optimality conditions are:

G +u = 0, (3.21)
Asp+vA1Hi(s1)ATAy = 0, v >0, (3.22)
A Ay +v = 0, (3.23)
v(l — (Ay, A1Hy(s1)ATAy)y) = 0 (3.24)
The solution to this problem is given by:
Ay = —(AHi(s1)A]) " Asp, (3.25)
¥o= Vﬁ = A;(A1H1(81>A>{)71A2/6, (326)
no= 04,8, (3.27)
v = 49f2. (328)

Here 3 is the solution of problem (3.17). The equations (3.23) and (3.22) are
obviously satisfied. For equation (3.24):

(Ay, AiHy (1) ATAy)y = (8, A5(AiHi (1) A7) ™ AofB)2 = (B, V)2 = 1.

Finally, for equation (3.21) it is enough to notice that —go(—go(3)) is equal to
both 3 (because —g, is an involution, as can be seen from Theorem 5) and —g2(6,7)

(as given by equation (3.19)). Using the fact that fs is logarithmically homogeneous,



the conclusion follows immediately:

92(7) = efzgz(efﬂ) = 9f292(—92(5)) = —efgﬁ = — M.
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(3.29)

Instead of full steps Az, As, some scaled steps aAx, aAs are taken. The next

lemma gives a characterization of such scaled steps.

Lemma 15 Let Ax and As be the steps considered in the problems (Py) and (Ds).

For any a < (1 — ﬁ)( with 0 < ( < 1:
|oAz |, < ¢ and ||aAs|s, < (.

Proof: Here we will use Lemma 12.

1
— 1Az 1 < ¢

NG

loAz|le, = ol Azl < a

The second inequality is immediate:

lads]ls, = af|Asls, < a <

We have that ¢g2(8) = —0y,7, with 3,7 € K. So we can use Lemma 11:

fQ(ﬁ) + f2*<9f27) = _9f2'

The fact that f, and f; are logarithmically homogeneous implies:

faolaB) + fi(ay) = fo(B) + f5(7) — 20, Ina
= _9f2 - 20f2 Ina + f2*(’7) - f2*(0f27)'

(3.30)
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So we proved that:

falaB) + fi(ay) = =05, — 205, Ina + 0, Inby,. (3.33)

This equality provides a measure of the influence the added cut has over the

self-concordant barrier functional.

3.4 Potentials

In analyzing the complexity of the algorithm (for both local and global conver-
gence) we will make use of primal-dual potentials. The way potentials change from
one analytic center to the next one will give us a measure for the total number of
cuts that can be introduced before the algorithm stops with a solution. We will also
use potential functionals in finding the number of steps required to get to the 6 -

analytic center after new cuts are added in the problem.

Definition 11 For an instance of the algorithm described by the functional f, the

vector ¢ and the linear operator A, we define the primal-dual potential to be:
opp(x,s) = (c,x) + f(x) + f*(s) for any z,s € K.

It is customary to call (c,x)+ f(x) the primal potential and f*(s) the dual potential.

Let (x1,y1,51) be the current 6 - analytic center with the corresponding primal-

dual potential:

¢1 = (cr, 1)1 + fi(zr) + f(s1).

After adding the cuts described by fy, As and ¢y we take a scaled step to get

back into the feasible region. At this new point, the primal-dual potential is:

Pew = (c1, 71+ alAxz); + (c2,aB)2 + fi(z1 + aAx) + fo(af)
+ [fi(s1+ads) + f5(ay).
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Using equation (3.33) the new potential can be written as

¢new = (bl + 9f2 In % - efz + Oé(<cl7 AI’>1 + <027ﬁ>2) + F7 (334)
with
F = fi(x; +alz) — fi(xy) + fi(s1+ aAs) — f(s1). (3.35)

Because the cuts are central: Ajy; = ¢y, hence

<5702>2 = <A2ﬁay1>y = —<A1AI,U1>Y = —<A$7A>1kyl>1.

Therefore,

(c1, Ax)1 + (2, B)2 = (c1 — Alyr, Az)y = (s1, Ax)y.

So, finally:

0
Gnew = 1 + a(s1, Ax)y + 0, ln£ — 05, + L.

Now let’s evaluate F' + a(sy, Az);. Let’s start with a(sy, Ax), + fi(z1 + aAz) —
fi(z1). Note that the recovery step is scaled by o < (1 — %)C so we can use the
s
inequality (2.8):

alsy, Az); +  fi(z1 + alx) — fi(z)
loAx|3
(1 = [laAz|;)"

1
< a(sy, Ax)y + algi(z1), Az)y + §||OZA$||3 + 3
Now:

(s1+g1(z1),Az), = <31+g1(5€1),H1($1)_%H1(m1)%Ax>1
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_1
< ([ Hi(zr) 2 (s1 4 gi(zn)|[1 | Az,
= |Is1 + g1(@) | 5y @) | A,

= |ls1 + g1(x1)[|—gy @) | AT | 2
< ‘9||Ax||z1-

Here, we used Lemma 6 and the fact that H(z)™' = H(—g(z)) (see Theorem 5).
So:

afsi,Azx)y +  fi(z +alx) — fi(z)) <
laAz]3
(1= [laAz|,,)

1
< Oladzl., + Sllade] + 3

Next we use the fact that the function 6z + %xz + B(f—iz) is increasing on the open

interval (0,1) and the recovery step is scaled to satisfy ||aAzx|,, < ¢ < 1. This
implies that

¢3
3(1-¢)

alsn, Axh + fu(ey + alz) — fi(z1) < 0C + %g? + (3.36)

Now let’s consider the second part of F:: f(s; + aAs) — fi(s1).
Because ||aAs|ls, < ¢ <1 we can use again inequality (2.8). So:

laAs |,
(1= llads]ls,)

1
fi(s1+ als) — fi(s1) < (g1(s1), aAs); + §HozAs||§1 + 3

Aside:

Because x; is in the nullspace of A; and As is in the range of Aj,
<.Z'1, AS>1 = 0.
So

(91(s1),As)1 = (w1 +g1(s1),As)y
= (Hi(s1) % (21 + g1(51)), Hi(s1)2 As)y
< |[Hi(s1) "2 (21 + gi(s) |1 Ha(s1)2 As]|y
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= o1 + g1(50) | s1)-1 [1 A5,
|21+ g1(51) || =i s1) | A8]ls, < O[] As]]s, .

So, using Lemma 6 and the fact that ||aAs|ls, < ¢ <1,

laAs]5,
(1 = lads]ls,)

1
fi(s1+ads) = fi(s1) < 9||OzAS||sl+§||aAS||§1+3

<3
3(1-¢)

< 0C+ %CQ - (3.37)

Using inequalities (3.36) and (3.37) we get:

9f 2
< Op,In =2 — 0, + 20 .
¢new_¢1+ fznaz f2+ C+C+3(1_C)

Theorem 8 Let (x,y,s) be a 0 - analytic center corresponding to an instance of
the algorithm described by the functional f, the linear operator A and the vector c.
Then,

03 62

+ = (3.38)

¢pp(7,s) = (¢, x) + f(x) + [ (s) < 3(1—-6) 2

Proof:  Because (z,y, s) is a 0 - analytic center we can use Lemma 6 to get
1z + g(s)l|—g(s) < 0-

This inequality implies, using (2.2), that € B_;)(—g(s), ). Because § < 1 we

can use T"heorem 3 to get:

) = F(=g(6) + (=) + 9060} = 565 < P

where G(x,s) = ||z + 9(3)“—9(5)'

Because f is an intrinsically self-conjugate barrier functional we have:

[(s) = (9(s),8) = f(=g(s)) and —g(=g(s)) = s.
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Using these equalities together with the fact that (z,s) = (¢, x) we can write:

G(z,s)?

f@) + [*(s) + (e, ) < 3(1-Glx,9)

The functional G(z,s) is bounded above by 6. Using this together with the

fact that the function %932 + 3({"’;) is increasing for 0 < x < 1, we get the desired

conclusion:

03 62
_l’_

(c,z) + (@) + [*(s) < 30-0) 2

Now we are ready to compare the value of the dual - potential functionals f* at
two consecutive analytic centers.

Let’s consider Q and Q to be two consecutive outer-approximations of I'. These
two sets correspond to two instances of the algorithm described by (f, X, K, A, ¢)
and ( f X, K, A, ¢). The second instance is obtained from the first one by adding
central cuts through the 6 - analytic center of 2. Let these cuts be described by:
(f,X,K,A¢). Sof=faf, X =Xa&X and so on. Let (25,5, 55) be the 6 -
analytic center for f. After adding the cuts right through (z§, y5, s§) a scaled step is
taken to recover feasibility. Let (xz(a),y(«), s(«)) be the point right after this step

is taken so

r(a) = (z5+ alzx)d (af),
yla) = yp+aly,
s(a) = (s5+als)® (ay).

Using all these notations we are ready to prove the following theorem, which gives
a bound for the change in the barrier functional evaluated at two consecutive exact

analytic centers.

Theorem 9 Let (z¢,y, s¢) and (¢ 9, 5°) be two conseculive analytic centers for
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the domains @ and Q2. Then,

Fx [ ~cC %/ C ¢ 12 €3 83 12
Fr3) 2 f1(s°) = flaB) —6¢ = 5¢ “30-0 318 2 (3.39)

Proof:  Because (7€ 7° 5°) is an exact analytic center for f, ¢ minimizes the

value of f(z)+ (z,¢)
F(3) < flz(a) + (2(a), &) — (,8). (3.40)
Lemma 11 gives a connection between the values of (i) and f*(5¢):
F@) + f(3°) = 05
Now let’s analyze (i€, é):

(@€,¢) = (3¢, A'g° + &) = (1%, 5°) = (2%, —g(2)) = 0.

We can rewrite inequality (3.40) as:

F1(5) = — f(z§ + aAz) — f(af) — (z§ + alz,c) — (af3, é).

We can use now the bound on f(x§+ aAx) given by the inequality (3.36). Before
doing this let’s notice that:

(.0) = (Ay58) = (v, AB) = — (v, AAT) =
= — (A'yy, Ax) = (s, Az) — (¢, Ax) .

So
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In order to get the desired result we have to use Theorem 8 and use the fact that

f*(s§) > f*(s°) (this is because (z¢ 3¢, s°) is an exact analytic center). -

The step required to move the point back in the feasible region after the cuts are
added depends upon the vector . This vector is the solution to the minimization

problem (3.17). So, using the fact that (3,V ) = 1 (from equation (3.20)),

) . 0; 0; A
f(6) < f(8) + Efw', Vg — ?f for any 3 € K (3.41)

with V' given by:
V = A*(AH(s))A") A, (3.42)

Taking in account all these observations, the fact that f is logarithmically homo-

geneous and « < 1, the previous theorem can be restated as:

N . 0; 0;
FE) 2 () = F(0) = B V) + 5 +0lma—F(0.0)  (343)
with
3 03
f(9,6)29<+%<2+3(f_ 0" 309 +%02 (3.44)

for any 3 € K.

3.5 Complexity on Recovering the 6 - Analytic Center

After the current point is moved back in the feasible region obtained from the
old one by adding central cuts, a sequence of steps is required to get in the vicinity
of the analytic center of the new domain. One way of obtaining such a point is to
take some Newton steps. In this section we will prove that one way to achieve this
is to use two different sequences of steps. We will use potential functionals in this

analysis.
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At the beginning, when the point is still far away from the analytic center, the
directions used are the Nesterov-Todd directions. These directions where first used
in interior-point algorithms in linear programming. Nesterov and Todd generalized
them later for the general case of conic programming (see [6], [11] for more details).
These directions will ensure that the primal-dual potential decreases by a fixed
amount at each iteration. Once close enough to the analytic center, a different
sequence of steps will bring the point to an € - analytic center.

As before, let the primal-dual potential functional be:

P(x,s) = (z,s) + f(z) + f*(s).

Before defining the Nesterov-Todd direction we will introduce some notations. Let
L denote the null space of A (the surjective operator defining the feasible region) and
L+ the corresponding orthogonal space. Let Pr,(u) be the orthogonal projection of
u onto L in the local inner product induced by v.

Let (x,y,s) be the current point with w the corresponding scaling point for the
ordered pair (z,s) (i.e. H(w)x = s). Such a point is uniquely defined by x and
s. Similarly we take w* to be the scaling point for the ordered pair (s,z) (i.e.
H(w*)s = z).

With these notations, the primal and dual Nesterov-Todd directions are given

by:

d, = —Ppr,(r+ gu(x)), (3.45)
ds = —Ppi(s+ guw(5)). (3.46)

Note here that if we use the inner products induced by z and s instead of the
ones induced by w and w*, the Nesterov-Todd directions become the usual Newton
directions.

One important property of these directions is that they provide an orthogonal

decomposition w.r.t. (-,-), for —(x + g, (x)) ( see [18] ) :
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dy + H(w) 'd, = — (2 + gu(z)). (3.47)
Using the local inner product induced by w we define for all z, s € int(K):
O, (7,5) = (T,8)w + f(ZT) + [7(5). (3.48)

Our goal is to prove that by taking a scaled Nesterov-Todd step, the primal-dual

potential functional decreases by a constant value. We will use
o(t) == O(x + tdy, s + tds) (3.49)

to find the scaling parameter ¢ that minimizes the primal-dual potential.

Let’s define:

bu(t) = ®u(x+td,,z+ tHw) 'dy), (3.50)
o(t) = O(x +td,, x + td,) (3.51)

with Jx, cis, the scaled vectors:

v v 1
(dy,ds) :== T
[ Ho(@)|13]|2 + guw(@)|lw

(dz, ds) (3.52)

Using the fact that f*(s) = f(s) — (07 + 2f(e)) (as given in Lemma 3) we can

write:

@, (%, H(w) '8) = (&, H(w) '8), + f(Z) + f(H(w)'3) — 0 — 2f(e). (3.53)

Now for any z,w € K, f(H(w)z) = f(z)+ 2(f(w) — f(e)) (see [18], formula
(3.34)) so
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Combining all the previous expressions we conclude that:
D, (%, H(w)™'3) = ®(7,3) + 2f(e) — 2f (w). (3.54)
Now:

Oy (2 + tdy, x + tH(w) " 'd,)

= &, (x+ tdy, H(w) " (H(w)z + td,))
O, (z + tdy, H(w) (s + td,))

= D(x4tdy, s +tdy) + 2f(e) — 2f (w)

= 9(t) +2f(e) — 2f (w).

Using the approach from [18], let’s denote:

Ui(t) = (@t by, + tH (w) 7 dy)w, (3.55)
Pa(t) = flz+td,), (3.56)
Ps(t) = flz+tH(w) " d) — 0 — 2f(e). (3.57)
(3.58)
With these notations:
ng(t) = 1 (t) + Po(t) + Y3(t). (3.59)

V)

Because (d,, H(w) 'd,), = 0, the first functional 11 (¢) can be written as

Ui(t) = (0) +t(x, dy + H(w) 'dy)w
(2,7 + gu(T))w

. .
[ Ho(@)[|&][2 + g ()|

= 1(0) =t

Renegar proved in [18] that:

at) < 92(0) + Hgu (@), du)u + 7 (3.60)
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5(8) < 0(0) + Hlgule), Hw) o+ - (3.61)

Using all these relations we can relate ¢, (t) and ¢, (0):

. y w(@)|lw 2t

Bu(t) < du(0) — N7 0@ - 27 (3.62)
|Hy ()2 171

Then, immediately:
y y w(@)|lw 2t
[ Hy ()|
or
2t2

R TR

@(x—i—tcix,s—i-t(fs)g@x,s T
[ Ho ()|

Next we will introduce a theorem from [18]:
Theorem 10 Let K be a self-scaled cone. If x,w € int(K) then:

1 1 .1 4
|2+ guw(@) |l > max{||Hy(2) 2 [|w, [ Huw(®) "% ||} mm{ga ngU —wllu}.  (3.63)

We are ready now to prove the following theorem:

Theorem 11 If ||z — wl|, >  then:
1
(3.64)

(x4 tdy, s + tdy) < D(z, s) — 550"

The proof is based on the previous analysis and the fact that

Proof:
( 2t? t> _ 1
0cie1'1 — ¢ 5 " 250

We know that, if (x,y, s) is the exact analytic center, then x = w. Also, the exact

analytic center is the minimizer for the primal-dual potential functional ®(z, s).
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Theorem 11 says that, as long the point is sufficiently far away from the exact
analytic center, the primal-dual potential is guaranteed to decrease by a constant
quantity.

Because of the assumption made about the problem, the analytic center exists so,
the primal-dual potential functional has a strictly feasible minimizer. This implies
that, after a number of scaled Nesterov-Todd steps for the current point (z,y, s),
o — wll < 2.

As soon as this happens, we will switch from using Nesterov-Todd steps to a new

kind of step, suggested in [18]:

D, = 2Pp,(w—2x), (3.65)
Dy = 2Pp1 (W —s), (3.66)

where Py, is the orthogonal projection onto L (in the local product (-, -).,).

The key element here is the following theorem:

Theorem 12 If at the current point (x,y,s):

1
|z —w|o <a< =

4

then at the new point (v4,sy) = (x + Dy, s+ Dy):

1
I+ g(@4)l-gte < (L+ )7 < 7. (367

11—«

If wy is the scaling point for the ordered pair (x4, sy), then:

2(1 1
sor(lta) g0 1 (3.68)

_ v, < ——"
||l’+ w+|| + 4(1 . CY) 5

Proof:
The proof can be found in [18]. Here we will just sketch the main ideas. Similar

to the Nesterov-Todd directions, D,, D, give an orthogonal decomposition for w — x
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D, + H(w) 'D, = 2(w — ). (3.69)
This immediately implies that
[ =i flw = [lw =2l <o (3.70)
Renegar proved in [18] that
2 2
- 1
H(w)™ (@) < A=l o® 1 3.71
On the other hand, using Lemma 4 (we have to change the local norm from |- | to
- fw):
5
1ll-gu ey = @+ [lzg = wlw)l[olle < @+ a)olle < o]l (3.72)
Combining all these inequalities, we get:
s+ + 9@ )9y = IH (W) 51 + gu(@4)ll-gu o) (3.73)
2
< (1 < -. 3.74
(1+a) " < (374
For the second part of the theorem it is enough to use the inequality:
14
s + 9(@)ll-g(@) = min{z, lo —wllu} (3.75)
that holds for any z, s € int(K) (see [18]). O
It is easy to see, using Theorem 12 that, as soon
|z —wlly, <a< (3.76)

17

the sequence of points generated by using the new steps will converge exponentially
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to the exact analytic center.
To be more precise, if we take (zg, o, So) to be the first point where

1
T— Wy << — 3.77
4

holds, then after k steps, at the point (xy,yx, sx) with the corresponding scaling

point wy, we have:
|k — willw, < 321" (3.78)
This inequality together with Theorem 12 implies that:
2k + g(sk) | —gspy < 5-3% 2" (3.79)

In practical terms, if the parameter 6 defining the 6 - analytic center is of order

1071°, then we need only 6 such steps to get to a 6 - analytic center.

3.6 Implications of the Initial Assumptions

In this section we will derive an upper bound on the value of the dual potential
1 evaluated at the analytic center of the set {2;. This bound together with the
fact that the values of the potential functionals keep increasing as the algorithm
proceeds will help us prove that the algorithm will eventually stop with a solution.

Let (2%, 4%, s¥) be the exact analytic center of €, (the outer-approximation set of
" after k iterations). This analytic center corresponds to the self-concordant barrier
functional f:= fo® f1 D fo D ... D fr and the cone K .= Ko K S Ko ® ... D Ky,
that is in the space X = Xy ® X1 & ... d Xi. € is described by the operator
A=A P A & ... 5 A, and the vector ¢ := ¢g B¢y & ... D ¢,. Our initial

assumption that I' contains a closed ball of radius € implies that:
M:={yeY :yey, By(ye) Cu}t#0.

Because (zF, 3", s¥) is the analytic center of Q, s* = ¢ — A*y* is the minimizer
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of f* over the set of all feasible points. Then,
(") < f*(s),Vs € My :={s:5=c— A*y with y € M},

Lemma 16 Let s be an arbitrary point in the set M, with s; € K;, the correspond-
ing components. Then the distance (measured using the local inner product) from s;

to the boundary of the cone K;, fori > 1, satisfies:

d(SZ‘, 8K,) Z g/ )\mm(A;kAl) (380)

Here Auin(AFA;) is the minimum eigenvalue of AfA;.

For the initial case i = 0:
d(so, 0Ko) > V/2¢. (3.81)
Proof: Let s € M, with the corresponding y € M (s =c— A*y ). So:
y+eu € Qp,Yu e, |ully =1. (3.82)

The point s is strictly interior to the cone K. This implies that each of its compo-
nents s; is strictly interior to its corresponding cone K.

Then

ds. € K; such that A} (y + cu) + s = ¢;. (3.83)
At the same time:
si=c¢ — Ay € K,.
Using the last two relations we conclude that:

se = 8; — eAju is feasible ,Yu € Y, ||ul]y = 1.
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Our goal is to get an estimate for the distance between s; and the boundary of
K;. Two cases arise, one for i = 0 and one for ¢ > 1. The difference between this
two cases is that A; is injective only for ¢« > 1. However, for i = 0 the operator Ag
is the & - sum of two bijective operators I and —I. So, this case can be treated the
same way as the general case if we are using the components of Ay.

Now let’s consider the case i > 1. Let v be a vector parallel to the direction which
projects s; onto OK;. The operator A} is surjective so there exists a vector u € Y,
with ||u|ly = 1 such that Afu is parallel to v (for the case when dim(X;) = 1, this
means Afu # 0). We observe here that we can take u to be a vector in the range of
A; (because any component of u from Ker(A?) will have no contribution to Aju).
The size of Afu gives a lower bound for the distance from s; to 0K;.

A lower bound for the size of ||Aful| is given by the solution to the next problem:

min || A7 ul]
such that w € Range(A;),

[ully = 1.

We can reformulate this problem as:

min  [|JAfAv||
such that |[Av]ly =1,
v € Xz

The operator AfA; : X; — X; is positive definite (this is because of our assump-
tion that A is surjective which implies that A; is injective hence Ker(A4;) = {0}).
Let {vq,v9,...,vp, } be an orthogonal basis formed by eigenvectors of AfA; with

the corresponding eigenvalues \;. Any vector v € X; can be written as:

Di
v = Z O{j’l)j.
=1
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Using this decomposition:

| A3 = Zag)\ =1 (3.84)
and
| A7 Av||? = Zaw. (3.85)
1

Let Amin be the minimum eigenvalue of AfA;. Then, the equalities (3.84) and
(3.85) imply:

|A; Al* = ZaW > Amin ZaiAj = Amin-
=1

J+1

Now we can conclude that:

min{||Aful : ||u]ly =1 and v € Range(A;)} > \/Amin-

So, the distance from s; to the boundary of the cone K; is greater than or equal

to €4/ )\min:
d(Si, 8KZ) Z g/ )\mm(A;kAl)

Next we will analyze the implications of the assumption we made that f;(o;) =0
where o; is a vector of norm /p; described by o; = \/?ei, e; being the vector in X,

that induces the scaled inner product.

Lemma 17 Let 0; € 0B(0,/dim(X;)) N K; be the point where f;(c;) = 0. Then
fi(oi) = Oi(ln% — 1), for alli >0 (we take here py = 2m).

Proof: If we use Lemma 3 together with f;(o;) = 0:

fi(oi) = filoi) — 0; — 2fi(ei) = —0; — 2fi(es).
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The functional f; is logarithmically homogeneous and e; = \/gai. So

files) = fi(oi) — 5111]; =3 In o

The conclusion follows immediately. O

Lemma 18 At any instance k of the algorithm described by the Hilbert space X

with the corresponding cone K and barrier functional f there exists a point x €

0B(0,/dim(X)) N K such that f(x) = 0.

Proof: Let x € X be the vector with components x; = o;, for ¢ > 0. Clearly,
x € K. Also f(z) = foloo) + fi(o1) + ... + fr(ok). Then, immediately we can see
that f(x) = 0.

Because [|z]2 = z’“;o los|12 = io dim(X,), it follows that & € HB(0, /dim(X)).

Now we can prove the main result of this section:

Theorem 13 At any instance k of the algorithm described by the space X, the cone
K and the functional f (where X .= Xo® X1 ®... & Xy, K =Ko K1 D ... 5 Ky
k
and f*(s) = > fi(si),si € K;), for all s € M,
i=0

k
0

f(5) <> 0y 1ﬂg—ﬂ
i=0 i

where €; = e\/Amin(AfA;) for i > 1 and g9 = ev/2. In particular, if sac is the

analytic center,

7

k

0

f*(SAc> S Zﬁfz ln Efz.
=0

Proof: Let 5 be a point in K such that the distance from ¢ to the boundary of
) is greater than or equal to ¢ (i.e. By (y,e) C € ). We have:

FE=Y

k
=0

fi* (51)7



60

where §; are the components of s from K;, s; € K;.

Using Lemma 16 we get B;(s;,¢;) C K.

For each f; we know that there exists a point o; € K; N 9B;(0, \/E) such that
fi(o;) = 0. It is easy to see that the point <=0, € K; N B;(0,¢;). Using Lemma 1,

N
Lemma 17 and the fact that the functional f is logarithmically homogeneous we

have:

; ; 0. 0.
o o;) = fi(0;) — 05 1In glA =0 1In Ji — 05, <0pn fi |

VDi VPi €i/Di €

k

1=0 3

The last statement of the theorem is immediate because s4¢ is the analytic cen-

ter, hence it minimizes f* over M. O

Corollary 2 Let A := min /Anin(AFA;). Then:

i=1,....k

k 0y, 0y,
F(sac) <3 05 In 85{ +04,1n 8\%. (3.86)
=1

3.7 Complexity Analysis

In this section we will derive an upper bound for the number of cuts that may
be added to the problem before we are guaranteed to have a solution.

First we start by getting a lower bound for the minimum eigenvalue of the Hessian
of any potential functional evaluated at any feasible point.

Let § € int(K) be any strictly feasible point for the k-th iteration of the algorithm.
At this stage, the dual potential is given by

f(s) i= fo(so) + fi(s1) + fa(s2) + -+ fi(se)

where s = 590D 51 D So D ... D s, with s; € K;, 1 =0,...,k.
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H(53), the Hessian of the barrier functional f*, has a block diagonal matrix repre-
sentation, each block corresponding to a Hessian H;(s;). Because of this structure,
the minimum eigenvalue of H(S) is equal to the minimum of all eigenvalues of H;(s;),
1=0,...,k.

Now let’s consider the Hessian H,(S;), 5; € int(K;). The norm used is the one
induced by a vector e; € K;. In this norm ||e;|| = /8y, (see (2.15)). Moreover, the
distance (measured in the norm induced by e;) from e; to the boundary of the cone

K; is greater than or equal to 1. Let
d=max{||z| : z € 0K; N (5; — K;)},

5; is strictly interior to K; so d # 0. We define §; := %Ei.

The next lemma will give a description for the position of 5, in the cone Kj.
Lemma 19 54 € K := {int(K;) N (e; — K;)}.

Proof:  Suppose 5, ¢ K. Then, because the origin is on the boundary of the
convex set IC, the line containing both s; and the origin intersects the boundary of
e; — K; in a unique point s., with ||s.|| < ||S4||. Let P be the plane determined by e;
and S, together with the origin. Then P N K;={OA, OB}, with OA and OB being
two rays of the cone K; (see Fig. 3.1). Take OA and OB such that e; is in the angle
determined by OA and Os,. Next:

C1 = 0AN (54— K,
Cy = 0B N5, — K)),
Dy = OANd(e; — K;),
Dy = OB N(e; — K;).

With these notations we have:

1> [|OG|| > [|ODsf| = | Dres|| = d(ei, AO) > 1. (3.87)

So we arrived at a contradiction. This means that 55, € I — 0K;.
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Note here that
[54]* = [JOC1]]? + |OCa|” 4+ 2(OCy, 0Cy) > | OCH|1*. (3.88)

This inequality holds for any point C; € K; N 9(5, — K;). Hence ||54/| > 1. This
implies that ||5;|| > d.

Now, as already proved in Lemma 5, any point z € K has the property that
|z — e;| < 1. For such a point Corollary 1 shows that the minimum eigenvalue of

H;(z) is greater than 5. So:

1
Amin (H;(54)) > 7 (3.89)
Next:
_ 1 _ ) _ 1
Amin(H;(84)) = )\min(Hi(gSi)) = d" Amin(H;(5;)) > 1
So:
Aoin(Hi(55)) > — > (3.90)
min (A SZ 4d2 - 4H§ZH2' .

In order to get a lower bound for the minimum eigenvalue of H;(S;) we need to find

an upper bound for ||s;]|.

Because § is feasible, we have that A*y + § = ¢, for some §y € (). Here A =
AP A D AD ... BArandc=coB i P ® ... P c,. So, componentwise, for each
1=0,...,k 5 =c¢—Ay.

Two different cases arise: one corresponding to ¢ = 0 (this is right at the begin-
ning, before adding any cuts to the initial set €y) and one corresponding to i > 0.

Let’s consider the second case. In this case there exists at least one previous 6 -
analytic center. Let’s denote it (z,,yp, sp). The cuts added through this point have

the property: Afy, = ¢;. We mention here one more time that the inner product
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5,- K,

1

Figure 3.1: Position of 5, relative to K.

used is the local one induced by e; € K; for which ||H;(e;)"!|| = 1. The norm of A;

in the original inner product is one so

I5ille, = 1429 — AL wpllz, < 1Hi(e) M MNATINT — woll* = 117 — wall”

In the above sequence of inequalities, the index e; is for the norms induced by the
local inner product. If the index e; is missing, then the inner product used is the

original one.
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This implies:

I5ille; < 115 = wpll- (3.91)

Now, both y, and ¥ are in {; which is a subset of the initial set €2y. The next

lemma will give a bound for the size of any point y € €.

Lemma 20 Let Qo := {y € Y : y+ 81 = ¢y, —y + S2 = ¢y with Gy, $1,89 € f(o}.
Then |ly|| < ||Gol| for any y € Q.

Proof:  The proof is rather immediate. If we take the square of the equalities

defining €,

120l = [lylI* + llsall* + 2{y. 51),

120]1* = 1lylI* + [Is2* = 2{y, s2).
This implies
2[1coll* = 2llylI* + [Isall* + llsall* + 2y, 51— s2). (3.92)
Because Ky is a self-scaled cone, and sq, sy € Kj, their inner product is positive:
(s1,89) > 0.

Using this observation together with the fact that s; + so = 2¢y, we get a bound on

the sum of norms of s; and ss:
[[s1]1* + [[s2[* < 4l1c0]1*.

Using this inequality and the fact that s; — s = —2y the conclusion follows imme-

diately:

Iyl < llll-
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Using the previous lemma and (3.91) we finally get:
II15:]] < 2||éo]| for any ¢ > 0.

For the case « = 0 we have that 59 € K := I~(0 & f(o. So we can decompose Sy in

two parts: s; and so, both elements in f(o. For 5y there exists y € €y such that:

Yy + 51 = o,

—Y+ S92 = 50.

We know that sy, s, ¢ € Ko, with K a self-conjugate cone. Using this and the
fact that s; + s9 = 26, it follows that

150l = [[s1]” + [[s2]” < 4/lcoll>- (3.93)
Hence,
150 < 2||co]-

It follows from inequality (3.90) that the smallest eigenvalue of the Hessian can

be bounded away from zero.

Lemma 21 For any strictly feasible point s € K :

1
16| col[*

Amin(H (5)) = (3.94)

Now we are ready to get an estimate for the number of cuts required to be added
in order to find an interior point in I'.

Before this we will reintroduce some notations.

Let (X, (-,+):), Ki, A; and f;, i = 0,...,k, be the elements that describe the
initial instance of the algorithm and the cuts that are added during the first k -
iterations of the algorithm. Let X, = jéléo X;, K; = jéléo K;, A, = jé(] Ay, fi = jéo fi
be the elements that describe the instance of the algorithm after adding the i-th cut.
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Let 5; and s? be the exact analytic center and a 6 - analytic center of the domain
Q); respectively.
After i iterations of the algorithm, using formula (3.43) we get:

_ _ O,
fi(5) > [l (i) — i B) — g (B, ViB)i — 1) + 0y, Ina — F(0,¢),  (3.95)

where V; = Af(A;_1H;_1(5,_1)Ar_|)"'A;, B/ is any point in the interior of K; and
F(0,¢) is given in (3.44).

One of the assumptions we made about the functionals f; was that, for each of
them, there exists a point 0; € K; (0; := \/gjjei)with norm equal to /p; such that
fi(o;) = 0.

Pi
o =Y ¢, (3.96)
j=1

)

pi
To do this it is enough to pick an orthonormal basis and then rotate it until 3 €;

overlaps with o;. It is clear that ||o;||; = \/p;, for any i > 0. -

Notice here that unlike f3; (the exact solution for problem (3.17)) for which both
B; and V;f3; have to be in K, the only requirement for (! is to be an element from
K;. This gives us more choices for picking a suitable vector.

Now we can choose 3] to be:

€

R N— 3.97
B; R (3.97)

Clearly (3., Vi3!); —1 = 0. Moreover, using the fact that f; is logarithmically

homogeneous:

fi(B7) = filos) + 0; In{o;, Vioi)i = H; In{o;, Vioi)i. (3.98)

The inequality (3.95) can be further simplified to:
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fi ) = fioaGion) = %m(% Vioi)i + 05, Ina — F (0, Q). (3.99)

Let’s consider now (o, V;0;);:

Pi  DPi Pi  DPi Pi  Pi

O'Z,VO'Z i ZZ ]7vel ZZ 6]7€l Vi < ZZHe ||‘/1||6l||‘/z (3100)

j=1l=1 j=11=1 j=11=1

Using the mean inequality:

Pi  DPi +H€lHVl Di .
Uza i z i < ZZ _pzz ”ej V; (3101)
Jj=11=1 j=1
So:
¥ (= % = efz o 7|2
£ 2 FaGio) = L S 6B + 6 na— F6,0). (3102
2 ML

This inequality gives a relationship between the dual potential functionals eval-
uated at two consecutive exact analytic centers. A direct relationship between the
potential at the initial analytic center 5, and the potential at the k-th analytic cen-
ter 5, can be easily obtained by taking the sum of the previous inequalities from

1=1toi=k:

HESESHENE Z(@lnmme )+ o> 0, — kFO.0. (3103

i=1 i=1

Let P = max p; (i.e. at each stage we do not add more than P cuts). Then:

i=1,...,

Fils) = i)~ SnP o)y 6y 3 ﬂanHe 12) - KF(6,0)(3.104)

=1

We can simplify this inequality by using the concavity of the logarithm function
together with the fact that 6, > 1:
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: o Se 508k
fi(s0) = Ji(0) = S (P —Tna®) Y- 6y, — = = ~ kF(6,0).
= > 6,
t=1

k k
For any i: 0, > 1. So Y p; < P Y 0. Let © := max Gf Then:
i=1 i=1

-----

. 3 6y <z ledliz,)
fiGr) > g(so)—glnP In a?) Zeﬂ IPG%—M:(G,C).
> Dt
t=1
So:
) ) zeﬁ o <z le13,)
2 (5k) > fo(5) = E (21nP+an—+l k—)—k:f(e,g). (3.105)
tglpt

By taking arbitrarily ¢ < 0.9 and ¢ < 0.9, the value of F(6,() can be made
k
smaller than 6.5. Then, for this choice of 8 and ¢, kF(0,() < Tk <7 Y 0y,
=1
So:

k
B _ l;efl @ iz 1(]_ )
((5) > fi(50) - EL—(@mP 4+ 14+ In = 4 n k—). (3.106)
Er

k  pi .
Now we have to get an estimate for: Y (3 [[€4[|f,). We will take the same
i=1 j=1
approach used by Ye in [25]. Because of the specifics of our problem, we will present
here the entire scheme.

Let Cy := 16|G||>. Each term |[[¢}||7, can be bounded from above if we use
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Lemma 21:
51, < Colel, A (Aimr A7)  Asel)s.

Let A; be the matrix representation of the operator A; with respect to the basis
{ei}, 5 =1,...,pi for i = 1,..., k. Let Ay be the matrix representation for Ag

with respect to an orthonormal basis {eg}, 7=1,...,2m of Xy. The corresponding

_ k _
matrix representation for A; is given by the m x (2m + > p;) block matrix A; =
i=1
[Ao, Ay, ..., Ai]. Let @ be the j-th column of A;. Using this notation we have:

k  pi

kE_ pi i—1 A
2 Z le5ll3) < Cod o> (aj ZA;AZT)_la}).
1=0

=1 j i=1j5=1

Let By := Ao A} and By = B; + A AL, for i > 0.
With this notation:

k pz k  pi )
i:l = i=1j= 1
Lemma 22 Let CB = W)”BJIH Then
400 (BO) + Z Di

(2m In — In(det By)). (3.108)

k Pi
NEE -

Proof: Notice that: A; AT Z a . If we denote:

T Pit+1 T
i+l z—l—l H—l —1 _1+1
w? =a™ (B + E aj

then, as shown by Ye in [25],

Pi+1 Pi+1
det Biyy = det(B; + > aita ZHT) (1+w?)det(B; + Y ait'a Z“T)
Jj=1 7j=2
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We know from the initial assumptions that ||A;|| = 1 for all i > 0 so:
@] < | Aigall = [[Aia || = 1.

We can rewrite w? as:

Pi+1

-

1

w—a’lﬂ [+ZB§ 1z'+1TB 2)1B gt
Next, for any y with [|y|| = 1:
Pi+1 1 T Pi+1 1
I+ZB 2ai Mttt B )y = 1+ > (y"B; 2ai™)?
7j=2
Pi+1 1
< 1+2H32 s
Pi+1 1 1 1
— 1+Z 1+ B 1+
7j=2
Pi+1
S 1+Za1+1B11+1
- 1 Pit+1 .
< 1B llai i
j=2
< 1+ (i — D||By ]
< 1+ (P+3)|Byt.

1
So the maximum eigenvalue of I + E B, *
7j=2

1+ (P +3)||By*"|. This allows us to write:

T -1
; 1a3~+1 B, ? is less than or equal to

1
2 1+1 B 1 1+1' 3109
ST E" (3.109)
Hence:
H—l B 1 H—l Pi+1 +1 +1T
det By, > (1 det(B; ata 3.110
i 2 4 ) B et e

Repeating this process inductively, we finally get
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Pit1 a1 gttt
Indet Bi+1 2 ln(l + z - 2 —
2 L+ (P+3)[By

)+ Indet(B;).

j=1
or, using Cp:
Pit1 . T .
Indet Biyq > Y In(1+ CBCL;--H Bi_la;-ﬂ) + Indet(B;). (3.111)
j=1

We know that B; — By is a positive semidefinite matrix for any 7 > 1. So:
;™ By tait < aft Bytai™t < |IBy a2 < 1Bl

Based on this, it is clear that, for any P > 0:

‘ ‘ Byl
A B VR
Now, the inequality In(1 + z) > = — 2(%;) holds true for any x € [0,1). Using it
and the fact that the function 1— 2(%@ is decreasing, we get, forany ¢ =0,..., k—1

. . : . 1/3
In(1+ C’Ba;HTB;la;H) > C’Ba;-HTB[la;H(l ~3 /

21— 1/3)

or

. . 3 . .
In(1 + Cpaj™ B'aj) = TCpaf™ B'a.

So, forany ¢ =0,...,k—1

3 Pi+1 ] )
Indet B;y1 > Indet(B;) + ZOB Z G}HTBZ»_la}H.

=1
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After we add the inequalities corresponding to ¢ = 0 to i = k — 1, we get:

k D
Indet By, > Indet(By) + 4CBZZCL B! 1a
i=1j5=1
Now:

k k i . k
tr(By) = .Zotr(Ai‘AiT) =tr(By) + zl fjl |a!||* <tr(Bo) + lei.
1= 1=197= 1=

Using the mean inequality (for the sum and the product of eigenvalues of By):

k

In(det By) < 2mIn Sy

The conclusion follows immediately.
Note that In(det By) is well defined since B, is positive definite being the sum of

the positive definite matrix AgAl and positive semidefinite matrices A; A7 O

Using Lemma 22 and inequality (3.106) we get:

k
k t )
Fw/— Z:gfl 4C,© P2 (lenw—ln(detBo))
fk( ) 5(30) - 1712 (1 3((} + 14 +In ka )
> pi
i=1

Corollary 2 gives an upper bound for f;(5;):

Theorem 14 The algorithm stops with a solution as soon as:

k
i (2m1nﬁ(t7’(30)+z pi)—In(det Bo)) - )
(X 0p)n H =l < 2f3(50) — 2605, In 2.

with H = %. The number of cuts added is at most O*(m;;j\(;)?’) (here O*

means that terms of low order are ignored). Here we assumed that ||G|| has the size

of order \/m. Also we used the fact that | By || has order O(1).



73

Proof:  This result follows directly from the previous analysis. Note here that

Cp = " has a contribution in the complexity result.

1
(P+3)[By

This result is similar with the ones for linear or semidefinite programming. ©
and A are the only extra terms. The reason for this is straightforward. In the
linear or semidefinite case the potential functions are separable. In general this is
not necessarily the case. This explains the presence of © which characterizes the
barrier functional as a whole. The only assumption we made on the cuts that are
added was that the operators describing them have unit norms. This assumption is
not critical. We use it only to keep the analysis simple. In the linear programming
approach a similar assumption often made is that the matrices describing the cuts
are assumed to have columns of norm one. This gives more structure to the cuts.
In our general case we cannot work at “column” level. So we had to use an overall
characterization of the cuts. The parameter A characterizes the quality of the cuts
that are generated by the oracle.

In the next chapter we will present some numerical results and will try to inter-
pret them. The analytic center cutting planes method can be used not only to solve
feasibility problems but also to solve optimization problems. In the last chapter of
our thesis we will propose an algorithm for solving linear programming problems us-
ing a mixture of an interior-point method and analytic center cutting plane method.
We will determine an upper-bound for the total number of cuts that are added in
order to get a solution. Also we will determine an upper-bound for the total number

of iterations (i.e. the total number of analytic centers) needed to get the solution.



CHAPTER 4

Numerical Results

4.1 Preliminaries

In this chapter we will analyze the performance of the algorithm we propose.
Although the method suggested by us in the previous chapters can be used for
solving any type of feasibility conic programming problem, we will consider only
feasibility convex problems that are based on a mixture of linear and second order
cones. A similar analysis was done by Oskoorouchi in [12] for the cone of positive
semidefinite matrices.

At the beginning we will take a look at some issues that arise when combining
these two types of cones. Then we will present some numerical results obtained by
solving a set of feasibility problems derived from the library of problems proposed in
“The Seventh DIMACS Implementation Challenge Semidefinite and Related Opti-
mization Problems”. The results we obtain are in concordance with the theoretical
analysis. The efficiency of the algorithm depends, as expected, on the “thickness”
of the set of interest. We conclude this chapter by looking at how our algorithm
might be used in solving optimality problems. Our results will show that we can
use an analytic center cutting plane method approach to solve optimality problems

but, in this case the performance is not very good compared to other algorithms.

4.2 LP - SOCP Feasibility Problem

In implementing the algorithm we followed all the steps described in the previous
chapters. Here we will just point out the places where the specifics of the analyzed
problem can be used to simplify the implementation.

The self-concordant barrier functionals corresponding to the “LP-SOCP” case

have a part f;, corresponding to the linear part of the problem and a part fg corre-

74
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sponding to the quadratic part. f7 has the form:
nr
fu(s) == Ins;. (4.1)
i=1

The quadratic part is in fact a sum of self-concordant barrier functionals. Each
term of this sum corresponds to a second order cone used in defining the current

outer-approximation set. Each term has the form:

go(s) == —In(si — ;si), (4.2)

where ng is the dimension of the cone.

For these functionals, the gradient, the Hessian and the inverse of the Hessian
are easy to compute. We need all these quantities for computing the Newton steps,
the recovery of feasibility direction and to measure the distance to the 6 - analytic
centers of the outer-approximation sets 2;.

For a feasible (in the current approximation set) point (z,y, s), the scaling point
w is defined as the unique point such that: H(w)x = s. This point is important for
our implementation of the algorithm because ||z — wl|,, will be used to measure the
distance to the 0 - analytic center (as proven in Theorem 12 ).

For f1, the gradient and the Hessians are immediate to obtain. The scaling point

w is given by:
w; = -, izl,...,nL. (43)

Unlike the linear part, for the SOCP part, the Hessian of the barrier functional
is no more a diagonal matrix. If the dimension of the second order cone is large, the

Hessians will be fully dense causing a potential bottleneck for the algorithm. Still,
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once we compute the Hessian Hg(z), its inverse H,'(2) is easy to obtain:

ng
F423Y 27 222 —2z23 -+ —2212,
i=2
5 22z F 4223 22z - 222,
Ho(z) = 72 —2232% 22329 F+222 .- 2232n,, , (4.4)
—22,21 22nn2e 22ngzs - F A inQ
ng
F+2% 22 222 22123 00 2217,
i=2
22921 F+ 22% 22023 1+ 2292p,
1
HQ (2) = 22321 22320  F + 2z§ e 223%n (4.5)
22,21 22np22 22ngzz - F A 22%@

with F' = 22 — % 22,

As mentionezg 2since the beginning, we use in our approach local-inner products
instead of the original ones. This helps us in the theoretical analysis. The local-
inner product is induced by an arbitrary fixed vector e strictly interior to the cone.
This vector must be chosen such that, for its linear and second order conic parts ey,
and eq, ||[Hp(er) || =1 and |[Hg(eg) || = 1. We can choose the e;, component to
be the nz-dimensional vector of all ones. For eg one option is to take eg, = V2 and
e, = 0fori=2,...,ng. Forsuch a vector e it is easy to see that Hy(er,) = I,,, and
Hg(eq) = I, With this choice the Hessian matrices don’t change when the inner
product changes and the equalities |[Hy(er) || = 1 and ||Hg(eg) || = 1 hold.

Once the scaling issue is solved we can start to analyze the specifics of the “LP-
SOCP” problem. In this case the feasible set considered is described by both LP
and SOCP inequalities. One way of defining such a set is:

F={yeR™: ATy+s=c,sc R"® K, & ...® K,, K; € IR" -SOCP cones }.
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The algorithm starts by setting up the first outer-approximation set {:

The size of I' is unknown so we don’t know before-hand what value to assign to
M. One way of dealing with this issue is to choose a rather arbitrary value for M,
say 1000 and to increase it if needed. We know we have to increase M if the size of
the slack variables at the current 6 - analytic center corresponding to €2y becomes
close to zero. This is a sign that the set I' is not fully contained in €2y. In this case
our strategy was to increase M by a factor of 10.

The most expensive part of the algorithm is to compute the Newton steps required
to get close to a 6 - analytic center. We used two types of Newton steps to prove
that the algorithm converges: first we take a sequence of Nesterov-Todd steps to
bring the current point closer to the € - analytic center (i.e. ||x — w|, < «). Then
we proved that a different type of steps need to be taken to move the point even
closer. In practice it was enough for us to use only the Nesterov-Todd directions.

The Nesterov-Todd directions are given by:

dy = —Pp,(z+ gu(x)), (4.7)
ds = —Ppi(s+ guw(5)). (4.8)

For the “LP-SOCP” case these directions become:

dy = —(I— H(w) "AT(AH (w)" A7) A)(w — ), (4.9)
d, = —AT(AH(w)"AT) " "A(w — z). (4.10)

Here A is the matrix that describes the current feasible region . It is in fact
the @ sum of the matrix that describes 2y and the matrices describing the cuts
added during the evolution of the algorithm. The Hessian H(w) is a block diagonal
matrix, each block corresponding to a different cone used in describing the set
Q. So, the inverse H(w) ! is also a block diagonal matrix. Then, if we assume

that €2 is described by ny, linear inequalities and ng conic ones these matrices are:
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A=A,64... 0 A, and Hw) ' = diag(Hy(w)™ ', Hy(w)™ ', ..., Hyp(w) ™).
Computing the inverse matrix AH (w)'AT is the most numerically intensive part

of the whole algorithm. Using the previous notations:

nQ
AH(w) 'AT = ApHp(w) AT + > A Hy(w) AT (4.11)
i=1
One way of computing this inverse is to solve the corresponding “augmented
form” system as described in [24]. This means that computing u := (AH (w) 1AT)"lv

is equivalent to solving the system:

0 A u —v
= (4.12)

AT H(w) u 0
The system is well-defined because H(w) is positive definite (as the Hessian of a
strictly convex functional) and the matrix A has full rank. In solving this system
we use UMFPACK 4.1 (a set of routines for solving equations of form Az = b,
with A sparse). It is based on a LU decomposition that combines a column pre-
ordering strategy with a right-looking unsymmetric-pattern multifrontal numeric
factorization (see [3] for details). The “augmented system” method is best to be used
when the problem we are considering has a sparse A and the dimensionality of the
quadratic cones is low (so the block-diagonal Hessian has small blocks). This method
might become unstable if the diagonal of H has both small and large elements. This
usually happens in the final stages of the algorithm, when we are close to a solution

and when the domain of interest I' is very flat.

After taking a sequence of Nesterov-Todd steps, the current point (x,y, s) is at
a 6 - analytic center for the outer-approximation domain €2. The primal and dual

feasible sets are described by a matrix A; and the vectors b and c¢y:

Fp:={x: Ajx = b with x >, 0}
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and
Fp:={s: ATy + s = ¢; with s > 0}.

Now we call the oracle. If the point is not yet strictly interior to I', the oracle
returns a p - dimensional cut described by a matrix A, and a vector cs.

After adding the cuts centrally, the point becomes (z & 3,y,s ® 7), with v =0
and # = 0. Now a feasibility step (Az @& 3, Ay, As@ ) is required. We have already

shown that:

AjAz + Ay =0, (4.13)
AT Ay + As =0, (4.14)
AT Ay +v = 0. (4.15)

Theoretically, the best way is to choose 3 and v to move the point as far as
possible from the boundary. From a practical point a view, any § and v that will
bring the point inside the feasible region might be considered. Our goal is to get
feasible so we could start by taking v = 3. If we consider the linear and SOCP

components of 3:

B =P ® P @... Baq.,

then one way of choosing 3 would be:

(Br)i = 1, foralli=1,... ,ng

Bo, = ei1 the vector of all zeros with the first component equal to one.

Before adding the cuts, the point (z,y, s) was strictly feasible. So we can choose
any direction for Az and As as long as we scale their size to keep the point feasible.
The only issue right now is to find Ay.

The cuts to be added are described by a matrix Ay that is fully ranked and is
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injective. So the system Al Ay+~ = 0 is under-determined. If A, is an m xn matrix
then m > n and rank(Ay) = n. After choosing 7, the vector Ay is readily available
from the previous system (we just need to pick n linearly independent columns of
AT fix to zero the components of Ay corresponding to the other columns of AZ
and then solve the well-defined remaining system). Once we have Ay, we take
As = —ATAy.

The matrix A; contains all the constraints used by the algorithm in defining the
outer-approximation sets. So, the first columns of A; correspond to the initial set €2.
This means that the left-most block of A; is an identity matrix. The requirement
that AjAz + Ay8 = 0 can be written as: [[...]Az + Ay = 0. Then one choice
for Ax would be to take its first components to be equal to “ — A5(” and fix the
remaining ones to zero.

Now, the last thing to do is to scale all these vectors to make sure that the new
point is feasible for the new set of primal-dual problems.

The cuts returned by the oracle are central. This means that, after adding the cuts
y is on the boundary of the new dual feasible set. If the cuts are linear constraints,

then
ALy = c.

After adding the cut this way all the slack corresponding to A, are equal to zero so
y is on the boundary of the new dual feasible set.

There are two ways of adding an “SOCP” cut centrally. One is to do it as before.
Because all the slack variables corresponding to Ay are zero, the point is now at the
vertex of the second order cone corresponding to A;. Sometimes this might be too

aggressive. Another way of adding the cut might be

AJy+s=co with s7 =) s7.
i>2
This way the cut is central but, after adding it the point is on a ray of the second
order cone instead of being its vertex.

The second way of adding SOCP cuts is more useful when solving optimality
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problems. This is because we want the vector ¢ (used in defining the dual set) to
be as close as possible to the original one, used in describing the objective function
of the optimality problem. This aspect is irrelevant for the feasibility problems so,

in this case we can use the first, more aggressive type of SOCP cuts.

4.3 Numerical Results

We tested our algorithm using Matlab v6.0 on a Windows XP, 1.8GHz Pentium
4 Pc with 512M RAM. For the most expensive parts of the algorithm we used mex
files compiled with lcc 2.4, the Matlab’s own C compiler. We used “UMFPACK 4.1”
developed by Timothy A. Davis (see [3]) to compute the inverses of the matrices
used by the Nesterov-Todd directions.

The test problems we solved are modified versions of the ones proposed in the
“Seventh DIMACS Implementation Challenge - Semidefinite and Related Optimiza-
tion Problems”. This is a collection of conic programming optimization problems.
We modified these problems into feasibility problems. The problems are organized

in families.

Table 4.1: Details for the problems from the Seventh DIMACS Imple-
mentation Challenge

[ NAME | ROWS | QUADR [ LIN |
nql30 | 3680 [900; 900x3] 3602
ngl60 | 14560 [3600;3600x3] 14402
nglI80 | 130080 | [32400; 32400x3] | 129602
nql30old | 3601 [000;900x3] 5560
nql60old | 14401 [3600; 3600x3] 21920

nql180old | 120601 |  [32400; 32400x3] | 195360
nb-L1 915 [793; 793x3] 797
nb-L2 123 | [839; 1x1667, 838x3] | 4

nb 123 [793; 793x3] 4

The first column in this table contains the name of the problem. The second

one indicates the number of rows used in describing the problem. The third column
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gives the number of quadratic cones together with the dimension of the cones. The
last column gives the number of linear constraints.

The only problems we couldn’t solve were from the “qssp” and “scheduling”
families of problems. This is because for our algorithm to work we need the matrices
describing the cuts to have full rank. The “qssp” problems have linear dependency
for the constraints corresponding to the quadratic cones. The “scheduling” problems
have only one or two quadratic cones of high dimensions. Their corresponding
matrices are rank deficient.

None of the problems we consider has a fully dimensional dual-feasible set. This
is because all these problems contain linear constraints of the form a’y = 0. This is
forcing the dual feasible domain to be flat. In order to overcome this we increased
all the values of ¢ by a constant to eliminate all the zeros. This constant is in this
case an upper-bound for the “thickness” of the domain. We tried different values
for the constant. As expected, for bigger constants (i.e. the less flat the domain)
the number of iterations required by the algorithm was smaller.

In order to improve the performance of the algorithm we are using weights for
the constraints that are generated by the oracle. Usually we took the weight for
a cut to be proportional to the size of the violation of that particular cut and the
frequency the cut is returned by the oracle.

We are interested in the number of analytic centers generated in order to get a
feasible point (the “AC’s” column) and the total number of Newton steps gener-
ated (in “Newton” column). We will explore how the convergence of the algorithm
depends on the number of cuts to be added, the size of the initial set {2y and the
thickness of the set of interest I' (we are using the constant we used to change ¢ as an
upper bound for the thickness). Although time is important we should mention here
that our code is inherently slow. This is because we are using Matlab that is much
slower than the corresponding “C” or FORTRAN code. The biggest bottleneck is
computing the inverse matrices for the Nesterov-Todd steps (this could take up to
90% of all running time).

We will consider three different cases for the thickness of the set I'. The min ||

will be set to 10 (relatively “thick” set), 1 and .01 (relatively flat set). For each of
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these cases we will use either a small (the size 10) starting set €y or a large one
(the size 5000). Also for the number of cuts to be added at a point (in “No Cuts
(%)” column) we will consider three different scenarios. We will add few cuts (the
number of columns describing the cuts is no more than 5% of the number of rows
of the problem), a moderate number of cuts (10% of the number of rows) and lots
of cuts (50% of the total number of rows). Also we will register the total number of
different cuts that are added in order to solve the problem and the highest frequency
with which a cut is chosen by the oracle (in “Used (Freq)” column). We also register
the percentage of the number of cuts used from the total number of constraints (in
“Per.” column).

As expected, the performance of the algorithm depends on the size of the first
outer-approximation set €)g. The number of iterations is directly proportional to
size of the ratio between the size of €}y and the thickness of I'. If this ratio is small,
then the number of cuts added is significantly smaller than the total number of
constraints.

The number of violated cuts to be added at each iteration influences the number
of iterations too. It is better to add as many violated cuts as possible at a time
instead of just a few ones. The quality of the oracle is really important here. If the
oracle is fast in getting violated cuts then the strategy is to add many of them at
each iteration, otherwise it is better to add a moderate number of them. In general,
the total number of cuts used by the algorithm is the same, regardless of how many
of them are added at each iteration.

The strategy of adding many cuts may backfire if the number of violated cuts is
large but most of them are linearly dependent (as in the “nb” problem). In this case
the oracle spends more time searching for independent cuts. So the oracle plays an
important role here. That’s why the structure of the problem (i.e the matrix A and
vector ¢) should be considered when solving a particular type of problems.

As an example, all the SOCP constraints from the “nql” family of problems are
linearly independent. Using this information in designing the oracle can decrease
the overall running time by more than 75%.

So the best strategy to use is to start with a small initial set €y (which might be
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Table 4.2: Numerical results for feasibility problems (min |c| = 10)
Name || Size Qo | No Cuts (%) | AC’s | Newton | Used (Freq) | Per. [ Time |

184 5%) | 25 87 744 (2) [0.16] 29.37
10 368 (10%) | 14 48 744 (2) | 0.16 | 16.84
nql30 1840 (50%) | 4 15 744 (2) | 0.16| 6.78
184(5%) 16 74 900 (1) |0.19| 21.14
5000 | 368 (10%) | 9 50 900 (1) |0.19 | 14.70
1840(50%) | 3 17 900 (1) |0.19| 643
728 (5%) | 29 114 3284 (2) |0.18 | 158.31
10 [ 1456 (10%) | 15 59 3284 (2) |0.18| 95.78
nql60 7280 (50%) | 4 16 3284 (2) | 0.18 | 107.48
728 (5%) | 16 02 3600 (1) |0.20 | 89.68
5000 | 1456 (10%) | 9 51 3600 (1) |0.20 | 54.96
7280 (50%) | 3 18 3600 (1) |0.20 | 30.78
6504 (5%) | 16 79 32400 (1) | 0.20 | 1654.62
10 [ 13008 (10%) | 9 44 32400 (1) | 0.20 | 1076.68
nql180 65040 (50%) | 3 14 32400 (1) |0.20 | 810.10
6504 (5%) | 16 154 | 32400 (1) |0.20 | 1764.11
5000 | 13008 (10%) | 9 02 32400 (1) | 0.20 | 124357
65040 (50%) | 3 26 32400 (1) | 0.20 | 859.43
16 (5%) 12 44 156 (1) | 0.09 | 298.75
10 92 (10%) 7 22 161 (1) | 0.10 | 130.94
nb-L1 458 (50%) | 5 18 238 (1) | 0.15| 53.62
46 (5%) | 295 | 893 | 1448 (38) | 0.91 | 1628.58
5000 | 02 (10%) | 49 | 498 | 1448 (38) | 0.1 | 915.47
458 (50%) | 53 158 1448 (38) | 0.01 | 542.81
7 (5%) 6 22 5 (1) 0.04 | 3.59
10 13 (10%) 6 22 5 (1) 0.04| 3.18
nb 62 (50%) 6 22 5 (1) 0.04| 357
7 (5%) 2 8 1(1) 0.01 | 1.98
5000 | 13 (10%) 2 8 1(1) 0.01| 1.85
62 (50%) 2 8 1 (1) 0.01| 181

expanded if needed) and to use an oracle that exploits the structure of the problem
in order to generate as many linearly independent violated cuts as possible in the

shortest amount of time.
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Table 4.3: Numerical results for feasibility problems (min|c| = 1)
| Name | Size Qy | No Cuts (%) | AC’s | Newton | Used (Freq) | Per. | Time |

184 5%) | 13 39 744 (1) [0.16] 11.09
10 368 (10%) | 8 23 744 (1) | 0.16| 7.86
nql30 1840 (50%) | 3 9 744 (1) | 0.16| 4.09
184(5%) 16 83 900 (1) | 0.19 | 21.79
5000 | 368 (10%) | 9 50 900 (1) | 0.19 | 14.70
1840(50%) | 3 18 900 (1) |0.19| 6.78
728 (5%) | 15 46 3284 (1) |0.18| 55.22
10 [ 1456 (10%) | 8 25 3284 (1) |0.18| 3215
nql60 7280 (50%) | 3 10 3284 (1) |0.18| 21.56
728 (5%) | 16 106 3600 (1) | 0.19 | 96.23
5000 | 1456 (10%) | 9 57 3600 (1) |0.19 | 57.97
7280 (50%) | 3 19 3600 (1) |0.19 | 33.50
6504 (5%) | 16 64 32400 (1) |0.19 | 1259.18
10 [ 13008 (10%) | 9 36 32400 (1) | 0.19 | 876.36
nql180 65040 (50%) | 3 12 32400 (1) |0.19 | 743.62
6504 (5%) | 16 99 32400 (1) |0.19 | 1186.26
5000 | 13008 (10%) | 9 82 32400 (1) | 0.19 | 1096.10
65040 (50%) | 3 26 32400 (1) | 0.19 | 983.17
46 (5%) 8 26 112 (1) |0.07 | 131.42
10 92 (10%) 6 19 133 (1) | 0.08| 84.22
nb-L1 158 (50%) | 4 13 155 (1) | 0.10 | 34.95
46 (5%) | 428 | 1154 | 1556 (51) | 0.98 | 2106.90
5000 | 92 (10%) | 216 | 635 | 1556 (1) | 0.98 | 1185.04
458 (50%) | 66 | 200 | 1556 (51) | 0.98 | 625.34
7 (5%) 2 6 1 (1) 0.0l 1.84
10 13 (10%) 2 6 1(1) 0.01| 181
nb 62 (50%) 2 6 1(1) 001 1.71
7 (5%) 2 8 1(1) 0.01| 181
5000 | 13 (10%) 2 8 1(1) 0.01 | 1.89
62 (50%) 2 8 1 (1) 0.01| L71

4.4 Solving Optimization Problems

The analytic center cutting plane method can be used not only for solving feasi-
bility problems but also for solving optimality problems. To do this, the algorithm
has to be incorporated in a larger interior-point scheme. Because we are going to
use our analytic center cutting plane scheme, the problems we will consider must

have a fully dimensional dual feasible set.
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Table 4.4: Numerical results for feasibility problems (min|c| = 0.01)

| Name | Size Qy | No Cuts (%) | AC’s [ Newton | Used (Freq) | Per. | Time |

184 (5%) 97 235 1344 (84) | 0.29 | 116.21

10 368 (10%) 92 210 1344 (84) | 0.29 | 110.14

nql30 1840 (50%) 87 185 1344 (84) | 0.29 | 104.36
184(5%) 127 419 4502 (10) 1 336.12

5000 368 (10%) 69 272 4502 (10) 1 245.21
1840(50%) 39 194 4502 (10) 1 222.79

728 (5%) 94 179 3639 (93) | 0.20 | 394.84

10 1456 (10%) 95 159 3639 (94) | 0.20 | 370.73

nql60 7280 (50%) 95 144 3639 (94) | 0.20 | 392.74
728 (5%) 126 579 18002 (9) 1 2429.08
5000 1456 (10%) 81 595 18002 (9) 1 2592.14
7280 (50%) 76 544 18002 (10) 1 2511.97
6504 (5%) 20 90 32402 (3) | 0.20 | 2199.56
10 13008 (10%) | 13 55 32402 (3) | 0.20 | 1532.60
nql180 65040 (50%) 7 27 32402 (3) | 0.20 | 1366.12
6504 (5%) > 10000
5000 | 13008 (10%) > 10000
65040 (50%) > 10000

46 (5%) 92 346 1576 (4) 0.99 | 675.67

10 92 (10%) 47 176 1576 (4) 0.99 | 362.04

nb-L1 458 (50%) 22 74 1578 (4) 0.99 | 296.56
46 (5%) 604 1644 1590 (66) 1 2988.47
5000 92 (10%) 312 936 1590 (65) 1 1723.00

458 (50%) 87 294 1590 (66) 1 858.29

7 (5%) 18 41 6 (10) 0.05 6.57

10 13 (10%) 18 41 6 (10) 0.05 7.68

nb 62 (50%) 18 41 6 (10) 0.05 5.84

7 (5%) 23 68 6 (20) 0.05 5.29

5000 13 (10%) 23 68 6 (20) 0.05 | 10.09

62 (50%) 23 68 6 (20) 0.05 6.40

The problem we are considering is given by:
min
subject to Az = b, (P)

together with its dual:
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max bly
subject to ATy +s = ¢, (D)
S ZK 0

Here > refers to the fact that the cones used are @& sums of second order cones
and IR". In this case the feasible set of the dual problem will be the equivalent of
the I' set from a pure feasibility problem.

In our approach sometimes the current-point will be outside of I'. We say we have
a solution to the primal-dual optimization problem if the duality gap is smaller than
a given tolerance 74, and the point is feasible in I'.

As long as the current point is outside I' we proceed with an analytic center
cutting plane scheme, generating a sequence of outer-approximations sets of I' by
adding central cuts through the 6 - analytic centers of those sets. Once the point
becomes feasible in I' we start an interior-point scheme. This means that we scale
the logarithmic part of the barrier functional by a positive parameter p. At the
beginning the barrier functionals weren’t scaled so, in this case, 1 = 1. As soon as

the point becomes feasible in I' we decrease pu:

p=(1-0)u,

with 0 < © < 1 a given fixed constant. After decreasing u we compute the 6 -
analytic center for the same set but with a different scaled barrier functional. We
keep decreasing v until either the duality gap becomes smaller than 7,4, or the current
point gets out of I'. In the later case we start the new iteration with a step from
the analytic center cutting plane scheme.

If T" is not fully dimensional then the scheme will never get to decrease i to zero,
driving the point towards the solution. In this case we can start decreasing p as
soon as the distance to I" becomes smaller than a preset value 7.qs.

In the final chapter we will consider the LP-only version of this algorithm (so
there are no second order cones involved in describing the primal-dual optimization

problem). There we will prove that this algorithm converges and we will give an
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estimate for the total number of 0 - analytic centers required to be generated before
obtaining a solution.

For a point (z,y,s) generated by the algorithm we define the total violation to
be absolute value of the sum of all negative slacks for the current point. Before

presenting the results, let’s introduce the algorithm.

The Algorithm

Input
setup the initial set
initialize the point (z,y, s)
get the 6 - analytic center for 2y
compute the duality gap
get the total violation
while |duality gap| > 74, or total violation > Tfe,s
call the oracle at (z,y, s)
if the point is feasible in "
decrease p (= (1 —O)u)
get the new # - analytic center
compute the duality gap and total violation
else the point is outside I'
add the cuts, generate a new, smaller outer-approximation set for I'
get the new # - analytic center
compute the duality gap and total violation
return
STOP
The performance of the algorithm depends on the “thickness” of the dual feasible
set, the size of the first outer-approximation set €}y and the quality of the oracle. It
is better to start with a rather small initial outer-approximation set (and expand it
later if needed) instead of starting with a large one. This observations are similar

to the ones for the case of pure feasibility problems.
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We will attempt to solve some of the problems from the “Seventh DIMACS
Implementation Challenge”. This time we will consider only some of the cases we
analyzed in the previous section.

As we said before, the dual-feasible sets for these problems are not fully dimen-
sional. So we had to change the vector ¢ to transform those sets in fully-dimensional

ones.

Table 4.5: Numerical results for some modified problems suggested in the

“Seventh DIMACS Implementation Challenge”

Name || Size €y | No AC’s | Newton sts | Cuts (Freq.) | Used/Total | Time (s)
nql30 10 326 858 2791 (20) 0.61 494.81
nql30 5000 149 275 3975 (20) 0.88 262.05
nql60 10 424 889 16830 (57) 0.93 3150.48
nql60 5000 318 654 16454 (22) 0.91 2904.20
nb 10 561 646 252 (11) 0.31 248.07
nb 500 604 1063 258 (12) 0.32 376.86
nb-L1 10 217 271 794 (20) 0.49 1331.42
nb-L1 500 322 639 1557 (51) 0.97 2562.84

There is no clear strategy on how to decrease p. In our tests we decrease p by 50%.
The duality gap cannot become too small (less than 1076 - 10~7) without running in
numerical problems. This happens because, when the algorithm is getting close to
the optimal solution, some of the slacks become really small (at optimality they are
in fact zero) and some might be quite large. This creates difficulties for the analytic
center cutting plane scheme when computing the Hessian of the barrier functional
and its inverse.

The number of cuts added by the algorithm is sometimes more than 80% from
the total number of constraints. If the initial outer-approximation set )y is chosen
carefully enough, this number can be dropped below 65%. This can save memory
and space usage.

The algorithm proposed here works better when dealing with problems where the
dual-feasible set is not known before hand and the oracle generates violated cuts as
needed. If the dual-feasible set is completely described from the beginning, then our
algorithm will systematically perform worse than some other interior-point solvers.

For really big/difficult problems it is possible for the other solvers to fail while our
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algorithm might be able to generate at least some strictly feasible points.

We conclude this chapter by considering different instances of a problem that
appears when solving sparse Partial Least Squares (PLS) problems and its kernel
version (KPLS) (see [10], [20] and [21] for more details).

The problem we are considering is given by:

minw,s,f,a ﬁ > & +e
subject to  g|z; — s —ww|| — & <, (P)
5120,221,,771

Here, x;, s, w are points in IR".

Each of the constraints involved in describing the feasible region is equivalent to:

T, —S — uw

€ Ky, (4.16)

with K, 11 an n + 1 dimensional second order cone.

Using this observation we can write the problem in a primal-dual formulation:

max bly
subject to ATy + oy = ¢, (P)
BTy <0,
0, € Kpy1,i=1,....,m.
min 3 ' X;
i=1
subject to > A; X; + BX = b, (D)
i=1

XeRMX,€Kyyryi=1,...,m.

Here:

y - [67 517 st Jé-m? ST7 wT]T E B2n+m+17

Xi EKn+17i:17"'7m?
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1
b=[-1,——e" 01x9,]" € R
rm

¢ =10, x;r]T e R™,

BT - [Omxl - Imomxnomxn]7

- -
O(ma1)xn
—2e;
A= o . € Rontm+1)x(n+1)s
I,
0251
I uily,

with e the vector of all ones, e; the vector of all zeros with the i-th component equal
to 1 and [,, the identity matrix.

This problem has the dual feasible region fully dimensional so we can start solving
the problem directly, without modifying the vector ¢ (as in previous cases).

We can use our algorithm to solve the initial problem written in the above form.
The performance of the algorithm when solving this type of problem depends on
both, the size of m (the number of points z;) and n ( the dimensionality of the
second order cones involved).

In our analysis we will look at how the size of m and n influence the performance
of the algorithm.

We generate a set of problems of different sizes. The points x; for all these
problems have the coordinates between 0 and 1. The weights u; are random numbers
between 1 and 6. Also we took v = 0.5.

In solving these problems, we took the set €2y to be a cube centered at 0 and
with the side length equal to 10. The number of violated cuts to be added is no
more than 85% of the total number of rows of the matrix A describing the problem.
Also the parameter p is decreased each time by 75%. The algorithm stops with an
approximate solution when the duality gap is smaller than 107°.

For each problem we registered the number of points and their dimensionality in

the “Size” column (i.e. [100 x 3] describes a problem with 100 points, each point
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Table 4.6: Numerical results for PLS subproblems

Size No AC’s | Newton sts | Cuts (Freq.) | Used/Total | Time (s)
[100 x 3] 132 203 171 (3) 0.85 29.43
[100 x 5] 165 563 166 (12) 0.83 51.31
[100 x 25] 183 204 158 (10) 0.79 185.17
500 x 3] 190 587 799 (13) 0.79 165.92
(500 x 5] 185 438 871 (11) 0.87 22771
[500 x 25] 195 615 746 (9) 0.74 1396.12
[1000 x 3] 159 395 1296 (9) 0.64 218.26
[1000 x 5] 170 142 1381 (9) 0.60 352.26
[1000 x 25] 226 746 1489 (13) 0.74 4039.45
5000 x 3] 176 162 6576 (9) 0.65 048.70
5000 % 5| 195 582 6936 (9) 0.69 1379.07
(10000 x 3] 203 462 13005 (9) 0.65 2653.94
(10000 x 5] 200 582 13746 (9) 0.68 3807.11

having dimension 3). The number of analytic centers generated in order to solve
the problem are given in the second column. We also registered the number of
Newton steps, the total number of different cuts added (together with the highest
frequency a cut was used) and the time for each problem. We also registered in the
“Used/Total” column the percentage of the number of cuts used by the algorithm
from the total number of constraints.

As expected, the number of iterations and the number of Newton steps is pro-
portional to the size of the problem and the dimension of the SOCP cones. The
percentage of the number of cuts used from the total number of cuts used in describ-
ing a problem is slightly decreasing while the size of the problem increases. This
makes the algorithm more efficient for bigger problems.

The performance of the algorithm depends on the size of the SOCP cones. This
is because the Hessian associated to each cone is fully dense and its size is equal to

the dimension of the cone.



CHAPTER 5
An Interior-Point Method Approach to Solving Linear

Programming Problems

5.1 Introduction

In this chapter we propose an algorithm for solving linear programming problems
that involves both an interior-point approach and the analytic center cutting planes
method studied in the previous chapters. This algorithm is an extension of the
algorithms proposed by Andersen et al. [1] and Terlaky et al. [16], [19]. The

problem studied here is:

min ¢’z
subject to Az = b (P)
z > 0
together with its dual:
max by
subject to ATy+s = & (D)

Y
o

S

with A € R™" full-rank matrix, z, s, ¢ € IR" and b,y € IR™.

Our goal is to solve the dual problem (D).
Let I' = {y € IR™; ATy < &} be the feasible region for the dual problem. As in
the general case, we will assume that I' contains a small ball of radius 27% and it is

bounded and contained in an m dimensional cube

C={yeR™" —e<y<e}
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We also assume, without loss of generality that ¢ and the rows of A have the 2-norm
equal to one.
The existence of an oracle is assumed. For each point § € C' the oracle either

recognize that 5 €l" or returns a set of p central cuts:
By < B'y, Be R™? (5.1)

with TC C'N{y € R™; BTy < BTy}. We assume the rows of B have norm equal to
one.

In solving (P) — (D) we will find the p - analytic centers (they will be defined
later) for a sequence of polytopes P; containing I' (I' C P, C P,_1). We start with
Py being the m-dimensional cube C. We find its u - analytic center (p - AC) and
call the oracle. If AC' ¢ I' add the cuts returned by the oracle to P, and find the AC
for the new domain P;. We keep doing this until, at the k-th iteration, the analytic
center of P, is in the interior of I'. At this stage, we will take some primal-dual
steps (with the parameter u) along the central-path of P, until the point gets out of
I'. We then call the oracle at the current point and use analytic centers to generate
tighter outer-approximations P; for I' until again the analytic center of one P; is in
the interior of I'. We will keep decreasing p as the algorithm progresses. We stop
with infeasibility if the number of cuts added exceeds a certain value or when the
polytope P; becomes too flat.

We have a solution when the current point is in I' and (n + 2m)7u is smaller
than a small parameter . Here n is the total number of cuts that get added. ~ is a

constant between 0 and 0.5. The reason for choosing this stopping criteria instead of

the classical one ((n + 2m)p < €) will be explained towards the end of the chapter.

5.2 Notations and Conventions

n
Throughout this chapter the vector norm used is the usual one: ||u|| = u?,
\i=1

for any vector u € IR™.

For a vector u € IR™ we define the n-dimensional vectors u*, /u and % by:
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1 1
(u*); = uf, (Vu); = \/u; and (ﬂ)i:_ fori=1,...,n.

U;

Because we use a mixture of an interior-point method and an analytic center
cutting planes method we will need to have a means to estimate the distance from
the current point to the analytic center of a domain or its central path. We will use
two different proximity measures: d,; that describes the distance of the point to the

analytic center and 07 describing the distance to the central path:
s
on (7, 8, 1) = H; — el

and

1, |zs o
or(z, s, p1) = 5”“; - VE”

where z,s € IR and 1 € IRy. Here, xs is the Hadamard product of x and s (i.e.
xs € IR™ with (xs); = x;8;, i = 1...n). Notice that s = X Se with e € IR" being
the vector of all ones and X and S the diagonal matrices corresponding to x and s.
We will use d7 as an overall proximity measure.

We will call a feasible point (x,s,u) approximately centered if it satisfies the

inequality dr(z, s, ) < 7 for some constant 7.

5.3 Dikin’s Ellipsoids

In order for the analytic center cutting planes scheme to work we need to make
sure that, after adding the cuts the direction we choose to recover feasibility will
move the point inside the feasible region. Before the oracle is called the current
point is feasible in the outer approximation set P;. Adding the cuts does not impact
the feasibility with respect to the constraints defining P;. The point is still feasible
with respect to the old constraints. The infeasibility is related only to the new added

cuts.
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So, when choosing the direction that brings the point inside the new outer ap-
proximation set, we need to make sure that the point remains feasible with respect
to the old cuts.

It is easy to see that if we start with a feasible point z > 0, then x + Az > 0 if
||z~ Ax|| < 1. This inequality defines the Dikin ellipsoid. So if we move along any
vector from a Dikin’s ellipsoid centered at a feasible point x we stay feasible.

In this section we will introduce some results regarding these ellipsoids circum-
scribing or contained in the feasible region Fp. All results are similar to the ones
from Goffin and Vial [5] (section 3.2), the difference being that we deal with p -
analytic centers instead of pure analytic centers. The presence of p is the only
difference.

For a point x €intFp we define an ellipsoid containing x and inscribed in Fp by:
Ep ={Ax: AAx =0, || X 'Az| < 1}. (5.2)

Similarly we define the Dikin ellipsoid corresponding to a point s €intl’, inscribed

in I':
Ep ={As: As=—ATAy, ||ST'As| < 1} (5.3)

Lemma 23 Let (z,s) be a p-center and D = X2S~2. Then:

11 =0)Ep € {Az: AAz =0, || D' Az < 1} € /u(1 + 0)Ep,

2. \/p(1—0)Ep C {As: As = —AT Ay, ||[DAs|| <1} € /(1 + 0)Ep.

Proof:  Follows from Goffin and Vial [5]. -



97

5.4 Adding Cuts in a Primal-Dual Interior-Point Scheme
with Long Step Updates

In solving (P)— (D) using the algorithm we propose we will have to take sequences
of interior primal-dual steps. Each time the current AC' is in the interior of I" we

set up a problem (P) — (D):

T

min c'x
subject to Az = b (P)
r > 0
together with its dual:
max bly
subject to ATy +s = ¢ (D)
s > 0

with A and ¢ containing the constraints corresponding to the initial cube C' and the
cuts added as the algorithm progressed. Instead of solving (P) — (D) to optimality
we stop as soon as the current point gets out of I'.

The interior-point scheme used is the one suggested by Peng et al. in [16] (a long
step primal-dual scheme). Solving (P) and (D) is equivalent to solving the next

system:

Ar = b, >0
ATy+s =

c
s = 0.

In an interior-point algorithm, the last equation is replaced by: xs = pe, with
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1> 0. Next, a sequence of systems of equations is generated:

Ar = b, x>0
ATy+s = ¢, >0

xS = Le.

The solution (x(u),y(u), s(p)) for this system of equations describes the central
path of (P) and (D) towards the solution for the original problem. As p — 0 the
solution (z(u),y(p), s(u)) moves along the central path, and at the limit, xs = 0,
giving the optimal solution for (P) and (D).

For each p, a sequence of damped Newton steps are taken moving the point
close to the central path (i.e. dr(z,s,u) < 7). The Newton steps are taken along
the directions Az, Ay, As given by the solution to the modified Newton equation
system (5.4) as given by Peng et al. in [16]:

AAxr = 0,
ATAy +As = 0, (5.4)
sAz +xAs = p't? ‘ - —xs,m > 0.
(zs)2

The step is scaled by a damping parameter a > 0 (the step length). In a regular
interior-point scheme, the damped Newton steps are taken until dr(z, s, 1) becomes
smaller than a given parameter 7. Then, p is reduced by a factor of (1 — ©) (with
0 < © < 1) and the procedure is repeated until either the point becomes infeasible
in I" or (n+42m)7u < & when the algorithm stops with the approximate solution for
the problem.

In the approach we propose, right before p is decreased, the oracle is called to
check for the feasibility (with respect to I') of the current point. If the point is not
feasible the oracle returns a set of p (p < m) violated cuts. These cuts are added
right through the current iterate, increasing the dimensionality of the problem and
changing the feasibility for the current point. Also we keep track of y. When we
will set up a new problem (P) — (D), u takes the last value it had when we took
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primal-dual steps.

Next we will analyze how the feasibility can be recovered in an efficient way, and
the impact the new cuts have on the proximity measure o (z, s, i1).

Let (Z,7,3) be the point (z(u),y(r), s(p)) right before the cuts are added. This

point is strictly feasible and is close to the central path of the relaxation problem:

Az = b,

ATy+s = ¢

5T<f7§7:u) = H\/%_\/% ST,
z,s > 0.

For this point the oracle returns p-central cuts of the form:

apy U< ab iy, j=1,....pVy- feasible.
Let B = (@m41, Gm+2s - - - Amep) be the matrix corresponding to the new added

cuts. After adding the cuts, the current point becomes (&, 7, §) with

, with 2,5 € IR"*? and § € IR™.

=>
Il
SN
Il
<
>
Il

The new primal and dual feasible regions are described by:

Aly+s = ¢
B'y+~ = B'y,
Ax+ B3 = b,
x,s,B,v > 0.

After introducing the cuts, (z, 9, $) is lying on the boundary of the new feasible
region. First a step to recover strict feasibility must be taken. For more flexibility,

a scaled step is taken instead of a full step.
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d, ds
Let , d,, and be the directions used for getting back into the feasible

Y
region with d,, ds € R"*?™, d, € R™ and 3, € IRF. Let ap and ap be the scaling

factors. The point is moved from (z, 7, §) to:

T+ apd, S+ apd,
Y + apdy,
apf3 ap?y
The vectors d,, d, and d, are the Dikin’s directions used by Goffin and Vial
in [5] which are based on the directions introduced by Mitchell and Todd (for one
additional constraint case). Also § and 7 are similar to the ones used in the paper
mentioned above. So, by using a similar approach, it can be proven that the AC' of
the new region can be reached in pO(p(In(p+ 1)) steps (for details see Section 5.6).
Next, let’s analyze the recovery of feasibility step. Before taking the step, the
point (Z,7,$) is on the boundary of the feasible region. By taking this step the
point is moved back, inside the feasible region. So, for the new point, the following

set of equalities must hold:

AT + apd,) +apBB = b,
AT(G+ apd,) +35+apd, = ¢, (5.5)
B"(y+ apd,) +apy = B'y.

Using the fact that (7,7,5) was feasible for the problem before adding the cuts
and that the scaling factors ap and ap are strictly positive these equations can be

simplified to:

Ad, + BB = 0,
Atd, +d, = 0, (5.6)
B'd,+~ = 0.
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Using the arguments of from Goffin and Vial [5] (Theorem 4.2) we can choose

the feasibility directions:

d, = —D2AT(AD?AT)"'Bg,
d, = —(AD?AT)7'Bp,
d, — AT(AD?AT)"'Bg,
v = BT(AD2AT)"'Bg.

with D = Y%S

=

and [ being defined as the unique solution to:

p
max {—gfﬂ’m +> log @} with V = BT (AD*AT)"'B.
=1

In fact it turns out that g and ~ are solutions for:

p

ma { =Y tog 5> 0.4d, + B =0, |D 0 < 1.
=1
p

i=1
These problems are well posed and have unique solutions. Among the KKT

conditions these solutions verify are:

1D~ .|| = 1, (5.7)
| Ddy|| = 1.

Once back in the feasible region we take a sequence of Newton steps towards the
central-path. Once close to the central-path, we call the oracle again. If the point
is not in I' then we add the p - central cuts, take the directions described before to
get back strictly interior, and then get the analytic center of the new region. This
procedure is repeated until the p - analytic center gets back in I' when we will start
a new sequence of primal-dual interior steps (this time the p - analytic center is

already on the central path so we don’t need to re-initialize it).
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5.5 The Algorithm

The algorithm contains two main parts: one part corresponding to the Primal-

Dual step, and one in which the cuts are added and feasibility is recovered.

The Algorithm

Input
a proximity parameter 7 = V2m
an accuracy parameter € > 0
a scaling parameter « for the primal-dual step
scaling parameters ap and ap for the ‘recovery of feasibility’ step
a fixed barrier update parameter ©, 0 < © < 1
a constant v, 0 < v < 0.5
w=1,n=0,y =0 (the initial analytic center)
A=l , —1IL,], " =", €]

begin
while (n +2m)'uy >cand y ¢ T’

get p -analytic center (x,y,s)

call oracle at y

ifyel
p=(1-0)u
else

add p - central cuts
n=n-+p
take feasibility step
get p - analytic center
end if
end while
STOP with the solution

end



103

5.6 The Recovery of Feasibility Step

We encounter the problem of recovery of feasibility in two circumstances. One is
after a sequence of primal-dual interior steps and the current point just got out of
the feasible region. The other case is right after p - central cuts are added through a
1 - analytic center. Both these circumstances are similar, so we will not differentiate
between these two cases in the next analysis.

Now we are ready to analyze what the adding of cuts changes in the problem.
There are two things we should worry about when choosing the directions, and the
scaling factors: one is to ensure that we are getting a feasible point, and the other
is to keep track of the change in the proximity measure.

It is easy to check that the directions proposed verify the system (5.6). Also,
both 3 and ~ are strictly positive (see Theorem 4.2 and formulas (11) and (12) from
[5]). The only thing to ensure is:

T+ apd, > 0 and 5§+ apd, > 0.

The next two lemmas will provide us with bounds for ap and ap that will keep

the above inequalities true.

_ o P
Lemma 24 Let 3 be the mazimizer for F(3) = —gﬁTVﬁ + 1; Ing3;. Then

VB =1 and B(VE) = %e.

Proof:  The function F(f3) is concave and it is maximized over the convex set
R. At B we have that: VF(B) = 0. But VF(3) = —pV 3 + 5. So, for 3 we have
pV 3 = % or, equivalently, V3 = p‘l%. The result follows immediately. O

So far we did not use the fact that prior to adding the cuts
0 :=6r(T,5,pn) <7

Let’s analyze how this bound affects the size of the component-wise products
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7,;5;. We have

”::iﬁi(xﬁ@ —2>. (5.8)

i=1 Z;Si
Each term of the sum is positive and § < 7 implies that

T;S; 1z

+ L —2<47ti=1,...,n. (5.9)
2 TiS;
We can rewrite this as:
(T:5:)* —p(2+ 4775+ <0,i=1,...,n. (5.10)

These inequalities hold if and only if:
p(1+272 = 27Vr2 + 1) <75 < p(1 + 21 +27V72 + 1) fori = 1,...,n (5.11)
or:
p(VrP+ 1 =7 <zs < p(Vrr 41472 fori=1,... n. (5.12)
Using these inequalities we can prove the following lemma.

Lemma 25 1. If0 <ap < /u(V7?>+1—7) then T+ apd, > 0.

2. If0<ozD<\/_(\/ +1—7) then s+ apds > 0.

Proof:  Let’s notice that if ||v]| = a then all the components of v satisfy —a <
v; <.
- 11
1. T+ apd, = Xe — apD?AT(AD?AT)"'B3. If we substitute D = X2S 2 and
factorize then:
T+ apd, = D(X?S%e — apDAT(AD?AT) ' BY). (5.13)

Now
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[DAT(AD*AT) ' BRI [DAT(AD?AT) "' Bf]
— BTBT((AD2AT) YT AD2AT(AD?AT) BB = fTV B = 1.

So | DAT(AD?*AT)~'Bg3|| = 1. This implies that:
—e < DAT(AD?*ATY'BB < e.
Finally
T+apd, > (Vu(VT2+1—71) —ap)De > 0 (5.14)

if 0 <ap < u(vVr2+1—-r1).

2. Similarly,

S+apd, = Se+apAT(AD?*AT)'BS
— D '(X*S%+ apDAT(AD2AT) " BY)
> (Ve +1—-7)—ap)D'e>0

if 0 <ap < /p(vV72+1-71).

Now that the feasibility is insured we have to worry about the change in .
The next lemma will be of help for our analysis. It gives us a way to compare
the proximity measures before and after adding the cuts (i.e. after changing the
dimensionality of the problem).

2

—1
Lemma 26 Let 6 = L|jv —v Y| and 64 = 3 {U ] — { ! ] . Then

2
, for any v, u. (5.15)

=4 fu—u]

Proof:  The proof is almost trivial.



106

Let 0 be the proximity measure right before adding in the cuts and §,. the proxim-
ity value after the cuts have been added in and the step for the recovery of feasibility
has been taken. We want to find an upper bound for 6, knowing that before adding
the cuts 6 < 7.

If we take:

5125

\/(E+apdx)(§+a]3ds) _\/ m
1 (T 4+ apd,) (5 + apds)

then, using the previous lemma:

1
452:452+H A gy —
+ ! M bV apap BV 3

Using Lemma 24, we get that:

1
45i:45%+HHQPQ/D—€—1/ & pe
w - p apap

Let 2+ =T + apd, and s™ =5+ apd,. Then d; can be written as:

1] [ztst 1L
0 == — 4/
2 1 rtst

We already know that d, = —D?AT(AD?AT)"'Bj3, d, = AT(AD?AT)~"1 B3 with
D = X5 %, If take v = DAT(AD?AT)'BS then |[v| = 1, d, = —Dv and

dy = D~'v. Using these notations:

2

2
aplx
—g2 4 2 B2 o,
2 apap

xtst = 73

+ apZ(D ') — aps(Dv) — apap(Dv)(D ')
— 11 11 1111
= TS+ apT(X 25%0) — aps(X2S 2v) —apap(X2S 20)(X 25%0)
Componentwise:
x5y =75 + (ap — ap)VT5,0; — apapv; fori=1,...,n. (5.16)
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Substituting back in d;:

(st

o Z T;5;+(ap—ap)VTisivi— ocPOchZ.2 + w _9

=1 Iz Zi5i+(ap—ap)VTisvi—apapv?

o 45 + i apfap)\/iﬁivifapapvf + 1 o
H Z;5i+(ap—ap)VIT;isivi—apapv? T;5;

47 = X

n
n

~.
—_

.

To simplify the analysis, let’s take ap = ap := «a. The expression for ¢, is

significantly simplified:

—a*vy 1 I
! — . 5.17
+ €Xr;S; — 062111-2 figi) ( )

462 = 45 +Z
i=1

Using (5.12), the fact that ||v]] =1 and o > 0 we get:

a? 1 1
462 = 46— = —
1 I +#; TS — v} T,-Ei)
2 n 2,2
o« v

= 4 — —
1 +/Li:1 7:5;(Ti8; — a?v?)
2

< -y r

- W /L(\/T2+1—7')2—052‘

Now we can relate the measures of proximity before adding the cuts and after
they are added and one step is taken inside the feasible region:
o2 O 1 1oy
407 <46 — — + _|_7+ 2p—2p.

poo op(Vrri+1l—=1)2—a2  p

with 0 < a < (V72 +1—7).

We should choose the scalar a such that the step is as deep as possible and the
bound for ¢, is as tight as possible. Possible choices for a might be \/g (VT2 +1-71)
or \/g (VT2+1-1).

As i decreases from one iteration to another, it seems that smaller values for «
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give a good upper-bound for .. We can get a bound for 9, :
02 <8 +3(2r + 1) (5.18)

if we take o = /2(v/72 + 1 — 7) and use the fact that s < VT2 +1—7 < 5 for
any positive 7.

This inequality holds for any 7 > 0. Actually, because we use the long step
primal-dual algorithm proposed by Terlaky et al. in [16], in order to get a better
complexity, 7 should be of order of v/n + 2m.

In fact choosing 7 = v/n + 2m is useful in one more way (as we will see shortly).
In the next section we will prove that if a u - analytic center is feasible in I' then, it

is also approximately centered. Hence, we can start the sequence of long primal-dual

steps by directly decreasing p (because we are already close to the central path).

5.7 Potential Functions and Analytic Centers
Let m be the dimension of the dual-space and n the total number of cuts that
have been added so far by the algorithm. In analyzing the algorithm, potential

functions are used. The functions used here are: the primal potential

2m+4n
op(z)=—c'z+p > Inmz, (5.19)
i=1
the dual potential
2m+n
ep(s)=b"y+p > Ins; (5.20)
i=1
and the primal-dual potential
ppp(T,5) = op(x) + ©p(s). (5.21)

Here € (0,1).
We define the ezact - analytic center of Fp = {s > 0: ATy + s = ¢} to be the

unique point maximizing pp over Fp.
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If we consider the problem
max{pp(s) : ATy +s=rc,s> 0}

then the first-order optimality conditions are:

rs = ue,
Aly+s = ¢,5>0, (5.22)
Ar = b,z > 0.

Equivalently, the exact p - analytic center may be defined as the optimal solution

to
max{pp(z) : Ax = b,z > 0}.
A p - analytic center is a point (z,y, s) for which the next relations hold:

||%—€H <f0<1,
ATy + 5 = c, s> 0,
Ax = b, x>0.

Now we can prove:

Lemma 27 If0 < %, each p - analytic center feasible in Fp, is also approximately

centered (i.e. op(x,s,y) <17 =+/n+2m).

Proof: If a p - analytic center is approximately centered then dy/(z, s, 1) < 0.

So,l—@ﬁ%ﬁl#—@. Then

20 — 62
1-46

<A\/n+2m

or(x,s,pu) < \/(n +2m)

for any 0 < %. O
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This lemma allows us to call the oracle as soon as the p - analytic center becomes
infeasible. So no extra centering steps are required.

We now introduce a result that relates the potential functions evaluated at an
exact p - analytic center with the values of the same potentials at an p - analytic
center (similar to the Corollary 3.2 from [5]). Let’s start by noticing that the
primal-dual potential value at any feasible point (x,y, s) is bounded and the bound

depends only on the dimensionality of the space and the parameter pu.

Lemma 28 Let x € intFp and s € intFp. Then

wpp(T,s) < —p(2m +n)

with equality if and only if p =1 and xs = e.

Proof: We will use the following inequality:
In(t) <t —1,Vt >0,

with equality if and only if ¢ = 1. Using this inequality and the fact that x € intFp

and s € intFp (which implies that 27s = ¢’z — bTy) we get:

2m+n

wpp(r,8) = pp(@)+op(s) =p Y Inas;+b'y —c'a < (u—1)z"s — p2m +n).
i=1

Because 0 < 4 < 1 and z,s > 0 the conclusion follows. O

Lemma 29 Let (2, s) be the exact p - analytic center and (z,s) be a u - analytic

center. Let % = pp(2©) and o = pp(s©). Then:

2

—u(2m+n) = ppp(z,s) > —p(2m +n) — 102

w4 pw(2m+n)lnp

and

> — .
pr(t) 2 vp — 1y —ps
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Proof:  The first inequality is already proved.

For the second one we will minimize ¢pp(z,s) over the set of all p - analytic
centers. We can get a lower bound for ¢pp(z,s) by minimizing it over the set
{(z,s);[|% —ell < 60}. By taking u; := ;s; and using the fact that 2Ts = clo—bly

we can rewrite the problem as:

. 2m—+n 2m+n
min — > w;+p > Inw,
i=1 i=1

2m-+n )
s.t. S —1)2 <62
i=-1

The objective function is concave and the feasible region is convex and compact
(it is a sphere). So the solution of this problem is among the K KT points. It turns
out that the K K'T' point that minimizes the objective function is the vector u with

one component equal to p (1 — ) and all other 2m + n — 1 components equal to p.

So

wpp > (@ +1In(1 —0)) — 2m+n)pu+ (2m +n)uln(w).
Using the inequality
2

t
t+In(l—1t) > ———,Vt 1
+ In( ) > 1_t2,v € (0,1),

we get the first result.

At the u - analytic center (z¢,s%) we have: 25 =, Vi=1,...,2m +n. So
2m+n

5+ 05 = —(@O)TsC b Y n(aCsC) = —pu(2m + ) + p(2m -+ n) n(p)
i=1

If we substitute in the first result we get:

2
ep(z) +¢p(s) = prp(r,5) 2 0§ + 65 — pr—ps.



Because <pc > ¢p(s) we conclude that:
D

Another useful result from [5] is

Lemma 30 Let h be any point in IR™ such that |h|| < 1. Then,
> In(1+hy) > e"h+||A]| 4+ In(1 — ||A]).
i=1

5.8 Algorithm Analysis

112

Let (z,y, s) be a p - analytic center corresponding to an outer-approximation set

P,. Let’s assume that this point is infeasible so we call the oracle and add the cuts

centrally. Let d,, d,, ds, 3 and «y be the vectors describing the feasibility step. As

already proven in Section 5.4, d, and dy inherently verify (5.7):

D~ |l =1,
|1 Dds| =1

with D = X~1/281/2,

For this point and these directions the following lemma holds.

Lemma 31 For any a with o < (1 —0), the next inequalities hold:

|aXd,| <

w(1—6) u(1—0)

Proof: Using Lemma 23 and p < 1 we get:

<1 and |aS7'd,|| < ——— < 1.

aX | = al| X, || < ay/u(1 +6) < @
/ 1_
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Similarly:
a
S~ || = a|| S d,|| < < 1.
\/u1+0 \/ul—ﬁ ul—&)
]
Lemma 32 The following inequalities hold:
T T Ty —1 4
lctd, +y" BB — pe” X~ d]<1 7
and
T T g—1 4
((d,)"b+ pe’ S71d,| < ——.
1—-0
Proof:  Similar to Lemma 5.2 from [5]. -

Using these results, we can relate the values of the potential functions right before
adding the cuts through the u - analytic center, and after the feasibility is recovered
(by taking the feasibility step scaled by a factor « ).

Lemma 33 The following inequalities hold:

gp(zt()) > ¢p(r) +pplna+a+pln (1 - L) + sz:hlﬂia
(1l —0) i=1

Pols™(@) = wo(s) +mina+atum (1= o) G

i=1

~ «
opp(xt(a),sT(a)) > ¢pp(r,s)+2uplna+2a +2uln <1 — m) — pplnp.

Here % (o) = x + ad, and s™(a) = s+ ads correspond to the new point after the

scaled feasibility step was taken.

Proof:  Let’s define u; to be equal to either ax; 'd,; or as;'d,;. In either case,

using Lemma 31, it turns out that ||ul| < s < 1. Note that ¢ + In(l1 —t)isa
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decreasing function of ¢. Then using Lemma 30:

S In(l+w) > eu+ |jul +In(l — [jul]) > e"u+

i=1

«

+1In(1 — =0

(1 —0) )

The first relation is proved immediately.

Fp(rt(a)) = =z () + 1 i_”;l Inat(a) + é Inaf;

= —cle —acld, — ay’ Bj +_p §:1 Inzf(a) +_,u é In af;

= —cl'y —acld, — ay" BB + 1 g:l Inz; + p 21 ln_(l + ax;tdy;) + p -Zi In af;
— op(e) — add, — 0y BS + S nod+p S (1t ar )

p
> op(z) —acld, — ay" BB+ pu Y Inaf; + pae? X—1d, + % T uin(l — ﬁ)
i=1

Now we just have to use Lemma 32.
The second statement follows similarly. The last inequality follows by adding the

other two inequalities and using Sy = %e (from Lemma 24). .

Once feasible a sequence of Newton steps is taken toward the p - analytic center
of the new outer approximation set. A standard result in linear optimization (see
[26] or [19]) gives a description of the change in the primal-dual potential after a

scaled Newton step.

Theorem 15 Let (z,y,s) be a feasible point with [|53 —e| = 6 > 0. Let Z(a) =
r + alAx and §(a) = s + aAs with Ax and As being the primal-dual Newton

directions. Then there exists a step size a > 0 and a constant o such that:
¢pp(T(), 5(a)) > wpp(z,s) + 0. (5.23)

So for each scaled Newton step the primal-dual potential changes by a constant
o. This helps us in estimating the number of steps required to get to an p - analytic

center.

Lemma 34 The number of Newton steps required to compute the updated
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W - analytic center s bounded by:

Proof: Let’s consider the potential function gap A@pp:
Agpp = Pp + @p — pro(a™(a), s%(a)).

Here $% and ¢ are the potential functions evaluated at the exact u - analytic
center of the region obtained after adding p - cuts. We know (see (5.22)) that, at

an exact p - analytic center:
XiS; = [
Substituting this in the definition for potential functions it turns out that:
P5+¢p = (2m+n+p)(—p + pln(p)). (5.26)

Using the bounds for ¢pp(z7(a), s™(«)) (from Lemma 33) and for ppp(x,s) (from

Lemma 29) we get:

2

).

Agpp < —p(p — pin(p)) + %u —2pplna — 20+ pulnp — 2pln(1 — ﬁ
By taking:
62 Q@
p=—1 ph ppln g+ 2plna + 200 — pplnp + 2pIn (1 — m)
we obtain the result. O

Notice that the number of Newton steps required to move from one analytic
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center to the next one decreases as the algorithm proceeds (because p decreases
geometrically).

Now that we know the number of Newton steps required to move from one analytic
center to another, the only thing we need is an estimate for the total number of
- analytic centers generated by the algorithm before we are guaranteed to get the
solution of the problem.

The key observation here is that for each p -analytic center generated by the
algorithm, there exists a unique exact p - analytic center corresponding to the same
outer-approximation set. So the total number of i - analytic centers is equal to the
total number of exact u - analytic centers.

Following the approach in Goffin and Vial [5], the analysis of the dual potential
will be used in estimating the total number of exact p - analytic centers.

First we will establish how the dual potential changes from one exact i - analytic
center to the next one.

Two different situations arise. One is when the exact p - analytic centers corre-
spond to different outer-approximation sets (so for in this case these AC' correspond
to the same p but different sets). This case is similar to the analysis from [5] and
we will just cite it for the results we need.

The second case, carefully analyzed here, is when these two exact p - analytic
centers correspond to the same set but the p parameter is different (i.e. they are
arising in a sequence of Primal-Dual steps).

For the first case we have:

Lemma 35 Let s¢ and 3¢ be two consecutive exact i - analytic centers correspond-
ing to two different outer-approzimation sets. Let ©% and ¢S, be the values of the

dual potentials at these points. For all0 < a<1—0

p
G5 < o5+ ud InT + k6, o, p)
=1
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where

k(0 Ozp)—plnp—p(l—ln,u)—plnoz—gjt8—2—ln(l—L
Y p (1 —0)

)

1 — 62

and 7; are the components of the vector T given by 72 = diagV . That is:

Ti = \/@%H(AXQAT)*lamH = Mil\/a%H(AS*QAT)*lamHJ =1....p

Proof:  Similar to Theorem 5.5 from [5]. The only difference is the presence of
the parameter u. Although this difference might seem to be a small, it has a big

impact in analyzing the complexity of the algorithm. O

For ;1 = 1 the exact formulation of Theorem 5.5 from [5] is obtained. If we choose

« and 6 carefully enough then, it turns out that

K0, a,p) < ppln (p+1)

(see Theorem 5.5 from [5]) . So:

p
P25 < b +ud T+ ppln (p+ 1). (5.27)

i=1
We now need some upper bound for 7;. Ye in [25] (see Theorem 10) gives a global
bound when all n added cuts are taken into account (not only the last p cuts added
at the last call of the oracle). Using a similar approach, the following inequality can

be proved:

" 24m? n
Yot < S In (1 + ). (5.28)
=1

5 8m?2

Here the p parameter corresponds to the smallest value it had at the end of the last

sequence of Primal-Dual interior point steps. Using the concavity of the logarithm
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function:

24m?
Su’n

n n 2
zZ;lnﬂ- = %Z I

i=1

< %m( In (14 2)). (5.29)

Let’s consider now the case when the current p - analytic center is obtained after
a sequence of interior-point steps followed by a feasibility step.

Using the same notation as before, let s and 5 be the two consecutive exact
p - AC and ¢% and @ be the values of the dual potentials. In this case the

outer-approximation set doesn’t change but i = (1 — ©)u. So:

2m—+n
C T
¢p = bly+p D s,
i=1
2m—+n 2m—+n

¢5 = bg+a > E=bg+(1-0)u Y 3.
i=1

=1

Because these p - analytic centers are exact, they maximize the dual potential

functions (with parameters p and (1 — ©)u). This observation leads to:

2m+n 2m+n

Z Ins; > Z In 3;.
i=1 i=1

So:

N}

~C C bT bT
b ¥$p 28 29 (5.30)
pTop o

Let (z;,y;,s;) be an y1; - analytic center. Let us introduce the following notation:

wi(s;) = n3¥;(s5), (5.31)
I, = by, (5.32)

Here, ¢; is the dual potential function at the j - th iteration.

Using this notation, the relationship between the dual-potential functions at two
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consecutive exact p - analytic centers (x;,y;,s;) and (2,41, Yj4+1, Sj4+1) become:

p
\I/j—&-l(sj—i-l) < \I/j(Sj) + Z In T+ Ii(e, a,p) (533)

i=1

for the first case and

l; l;
Uy (s551) < Uy(sy) + 2= — =L (5.34)
Hj+1
Now, before analyzing the complexity let’s review the algorithm, introducing

some useful notations at the same time.

5.9 Algorithm Overview

We are interested in finding an upper bound for the total number of cuts that
are added before we get the solution. This means that we should keep track only of
the number of calls of the oracle. We start with the big cube C' as the first outer
approximation for I'. Let’s call it P;. Let u; = 1 and AC| be its p = p; - analytic
center. Call the oracle. Assuming AC} is not in I, the oracle returns p; central
cuts. Introduce the cuts; P, becomes P, with the p; - analytic center AC5. Call
the oracle, get po central cuts, add them and obtain the new region P3. Keep doing
this until, at the (k; — 1)-th iteration, the u; - analytic center ACY, of Py, is strictly
interior to I'. Now take a sequence of primal-dual steps. Initialize p with ;. Take
Newton steps until the point gets close to the central path (i.e. or(x,s,u) < T,
for some 7). Change u into pu(1 — ©) (with 0 < © < 1). Keep taking primal-dual
interior steps until at the end of the %, 4 1-th iteration (when p = puy(1 — ©)*) the
point gets out of I'. Take uy = (1 — @)El. Call the oracle that returns py, central
cuts. Add them to P, that becomes P, 1 with the s - analytic center ACY, 1.
Call the oracle at ACj, ;1 and find the next ps - analytic center. Do this until after
ko — 1 outside steps the o - analytic center ACY, 1k, is again inside I'. Initialize
the sequence of interior primal-dual steps with u = py. Take the steps until, the
point gets out of I’ (with a corresponding p = pio(1 — ©)*2). Call the oracle, add py,

cuts and get the new domain Py, 4,41. Take now ps = pi(1 — ©)%2. Now generate
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a sequence of 3 - analytic centers until, after k3 — 1 iterations, the AC' gets back
into I'. " We keep doing this until (n + 2m)"u < € (n being the total number of
constraints) while the current point is in T" that is the solution.

We assumed that I' contains a ball of radius 27%. In the following section we will
prove that the number of i - analytic centers generated by the algorithm is finite.
So, sooner or later the p - analytic center will end-up in I'. Hence at least one
sequence of interior primal-dual steps will be generated. In a limit case we might

get feasibility at the same time with the solution.

5.10 Complexity

Using the notations we just introduced and the relations between dual potentials
at different p - analytic centers we get, after the algorithm just finished the s-th

sequence of Primal-Dual sequence of steps:

Ng k1+...+ks—1
Uttt < Ur+> In(m)+ > (piln(p +1)) —

i=1 =1

Iy lp, o1 — 1 l —1

1 1+1 k1+ko k1+ko+1 k1+ko+ks

- =y - -

251 K2 M3

i —1 {
1+...+ks—1+1 ki1+...+k ki+...+ks+1

+ L _|_ s s + s ’
Hs Hs+1

with U; = W(s;), p; - the number of cuts returned by the oracle at AC; and nj
the total number of cuts generated by the algorithm until ACy, . ..
Let p be the maximum number of cuts that the oracle generated at any call. All

the p - analytic centers generated by the algorithm are in the initial cube

C={ye R";—e<y<e}

This helps provides us with bounds for /; and l; — ;:

IN

vm|[b],
L—1 < 2ymlb|.
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So:
Ns ki+...+ks—1
L 21 In(7;) + '21 (piIn(p; + 1))+
1 1 1
N e e pp——

Because the algorithm did not stop at the last sequence of primal-dual interior
steps, (ns +2m)7 sy > €. On the other hand p, = (1 — ©)* for some integer ¢, so

we can write:

11 1 ¢ 1 1 1 (ns +2m)?
— 4.+ < - < < < :
e T SR ey S (-0/e e = <6
Thus:

s ng + 2m)7
Uhototbor1 < U1+ > In(r) + (ns + 2m)In(1 + p) + 2||b||\/m%.

i=1

The first ;1 - analytic center generated by the algorithm is the one corresponding
to the fixed, given cube C'. So W; can be considered a constant (its value does not
depend on the problem).

At the beginning we made the assumption that the domain I' contains a ball of
radius 277, Let 4 be the center of this ball with the corresponding slack vector

5. So 5 > 271, The last exact u - analytic center considered in our analysis is

($k1+‘..+ks+1,Z/k1+...+ks+1a 5k1+...+ks+1)- So:

p(Ss ng 2m+ns
Vi botbt1 = #p(5541) > + Z In 5;
Ms+1 Hs+1 i=1

Upy b1 > —2 (ns +2m)” + (ns +2m)In 2%,

[1blv/m
9

Finally, using the concavity of the logarithm function, (5.29) and the above in-

equalities:

¥y

1 1
—2l|b — 4= o2m)" P +1n2 % —In(1 - <
V(g + 2)(ms +2m) ™ + 278 —In(l+p) = ——2 <
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24m? In(1+ N
n
5e2(ng + 2m)1=27 8m?

< > 1In( ). (5.35)

!
2

Now it is clear why we need to have (n+2m)7u < €, v < 0.5, as a stopping criteria
for the primal-dual part of the algorithm (instead of the usual one: (n+2m)u < ¢).
Using this last inequality it is clear that the algorithm converges. This is because, in
time ng - the total number of cuts that are added increases. At the limit, as ng goes
to infinity, the left hand side of the inequality converges to a constant number while
the right-hand side converges to negative infinity making the inequality untrue. So
the algorithm converges.

By ignoring the lower order terms the total number of cuts that are added during

the evolution of the algorithm is of order:

pm .\ 2
1)) (5.36)

o((

2

yo is about 2.3. In implementing this algorithm we need

By taking v = %6 then
to choose v such that to get a small number of analytic centers without being too
aggressive in the primal-dual interior point scheme.

Our results compare favorably with results obtained in different instances.

In a pure analytic center cutting planes method scheme applied to a linear fea-
sibility problem (see [5]), the number of cuts added before the algorithm generates

an strictly feasible point is of order
O((5=5)7). (5.37)

For a pure analytic center cutting plane method applied to a semidefinite feasi-

bility problem (see [12]) the result is

(5.38)



CHAPTER 6

Conclusions and Future Work

In this thesis we proposed and analyzed an algorithm for solving feasibility problems
that arise in conic programming. The approach is based on an analytic center cutting
plane method. We generalized here the particular cases of linear programming,
second order cone programming and semidefinite programming. Our algorithm can
be easily adjusted to these particular cases.

The assumptions we made about the problem are usual ones. Although we are
dealing with a general case we didn’t need to impose any extra conditions on the
problems. The feasibility problems have convex, closed, bounded, fully dimensional
sets of interest. These sets are described by an oracle that either recognizes that a
point is strictly interior to the set or returns a set of violated constraints. Multiple
cuts are added centrally when the current point is infeasible. These cuts can be
linear, quadratic, semidefinite or any combination of these types.

The complexity results are similar to the ones obtained for less general cases. We

mP3©3

proved that our algorithm generates no more than O* (™53

) analytic centers before

a solution is obtained. This result compares favorably with O*(mizp ®) (obtained for

m3P?
2

the linear case) and O(™

) (for the semidefinite case). The extra terms we have
are © and A, which characterize the self-concordant functionals and the cuts that
are introduced, respectively.

The numerical results we obtained are encouraging and are in line with the the-
oretical ones.

We also proposed a new algorithm for solving optimality problems. This algo-
rithm incorporates the analytic center cutting plane method we proposed for fea-
sibility problems. We completely analyzed the complexity of this algorithm in the
linear case.

Open questions remain to be addressed in future work. It would be interesting to

analyze how the algorithm changes if deep cuts are used (instead of central ones) or

if some of them are dropped. In our analysis the operators describing the cuts had

123
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to be injective. This requirement limits the size of second order cones that can be
added by the oracle. Also we didn’t analyze here the complexity of the algorithm
we proposed for solving optimality problems.

Finally, from a practical perspective, a better implementation of the algorithm
is required to make possible a fair comparison (from the time point of view) with
other existing solvers.

All these issues remain to be addressed in our future work.
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