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ABSTRACT

Conic programming has been lately one of the most dynamic area of the optimiza-

tion field. Although a lot of attention was focused on designing and analyzing

interior-point algorithms for solving optimization problems, the class of analytic

center cutting plane methods was less investigated. These methods are designed

to solve feasibility problems by finding points which are interior to different sets of

interest. Although these methods can be used by themselves to solve optimization

problems, most of the time they are used as an initial step in a larger interior-point

scheme employed in solving optimization problems.

There are many advantages in using this class of algorithms. For these methods

to work there is no need to have before hand a complete description of the set of

interest. All we need is an oracle that describes the set. This feature is especially

useful when such a description is either missing or it is too large to be practical.

In this thesis we present a general analytic center cutting plane method for solv-

ing feasibility problems in the context of conic programming. The set of interest is

convex, bounded, fully dimensional. It is described by an oracle that either recog-

nizes that a point is interior to the set or returns a set of constraints violated by

the current point but verified by all the points of the set of interest. These violated

constraints are also known as cuts.

Our approach is an extension to the analytic center methods used in linear pro-

gramming, second order cone programming or semidefinite programming. We prove

that our algorithm can solve any feasibility problem with a convex, bounded, fully

dimensional set of interest. We derive an upper bound for the total number of iter-

ations the algorithm requires to get the solution. Also, we analyze how expensive

each iteration is.

The performance of the algorithm is analyzed by solving some feasibility problems

derived from the set of problems proposed in “The Seventh DIMACS Implemen-

tation Challenge Semidefinite and Related Optimization Problems”. We consider

feasibility problems with the sets described only by linear and second order conic

viii



constraints. We will also present an algorithm for solving optimization problems

that incorporates our analytic center cutting plane method. In the last part of this

thesis we analyze the linear programming version of this algorithm and prove that

it converges. Complexity results are also presented.

ix



CHAPTER 1

Introduction

1.1 Define the Problem

In this thesis we will analyze the problem:

“Given an m-dimensional Hilbert space (Y, 〈·, ·〉Y ), find a point y in the convex

bounded set Γ ⊂ Y .”

Feasibility problems can be as hard to solve as optimization problems. In fact,

once we have an algorithm for solving the feasibility problem, we can use it for

solving optimization problems by using binary search.

Because the set Γ is convex, the problem we analyze is of interest in the larger

context of non-differentiable convex optimization.

The first assumption made in any feasibility problem is that the domain Γ is

strictly included in a larger set Ω0. This larger set can be described using a set of so

called “box-constraints”. These “box-constraints” have different forms, depending

on the nature of the Hilbert space (Y, 〈·, ·〉Y ). In the most general setting, the set

Ω0 is given by

Ω0 := {y ∈ Y : c1 ≤ y ≤ c2}.

The inequality sign “≤” used in describing Ω0 is a partial order defined on Y .

This partial order generates a cone of “positive” vectors K (hence the name of conic

programming),

K := {x ∈ Y : x ≥ 0}.

Note here that u ≥ v ⇔ u−v ≥ 0. This partial order is what distinguishes different

classes of feasibility problems.

The most basic class of such problems is linear programming. Linear program-

ming deals with problems that have a linear objective and linear constraints. One

of the multiple equivalent forms a linear programming problem can have is:

1
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max bTy,

subject to ATy ≤ c.

In this setting, the inequality between two vectors is to be understood compo-

nentwise,

u ≥ v iff ui ≥ vi for all i.

This vector inequality “≥” introduces a partial ordering on the vector space IRn.

The first orthant is the corresponding cone of positive vectors.

More general than linear programming is second order cone programming. The

partial order involved in this case is given by

u ≥ 0, u ∈ IRn ⇔ un ≥
√

n−1∑
i=1

u2
i .

The induced cone is called the second order cone or the Lorentz cone or the ice-

cream cone. Linear programming can be considered a special case for second order

cone programming. To see this it is enough to observe that if n = 1 the second order

cone is IR+. Then the first orthant IRn
+ can be represented as a cartesian product

of n lines IR+ or of n one dimensional second order cones.

Even more general is semidefinite programming. In this case the cone K is the

cone of positive semidefinite matrices Sn. The partial order, denoted 	 is given by

A 	 B ⇔ A−B ∈ Sn.

To see that second order cone programming is a subcase of semidefinite program-

ming it is enough to notice that the second order cone can be embedded in the cone

of positive semidefinite matrices because

un ≥
√

n−1∑
i=1

u2
i ⇔


 unI v

vT un


 	 0,

where v is a n− 1 - dimensional vector with vi = ui for i = 1, . . . , n− 1.

All these cases are part of the conic programming family of problems. In this

general case, the cone considered is a so called self-scaled cone (it will be defined
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later). The second order cone, the cone of positive semidefinite matrices and their

cartesian products are examples of such cones.

This is the general context in which we intend to analyze the feasibility problem.

We assume that this problem has a solution. One way of insuring that is to

require that Γ contains a small ball of radius ε. This assumption insures that the

set is not too flat. This is a feasibility problem. Any point from the interior of Γ is

called feasible point.

The need for finding a point interior to a set arises in various optimization prob-

lems. As an example, interior-point algorithms need an interior point (as the name

suggests) in order to start. In general what they need is a point in the region

described by both equality and inequality constraints. Because of the equality con-

straints, usually of the form

Ax = b with x ≥ 0,

the feasibility region is not fully dimensional so it cannot contain a ball of radius ε.

There are different ways of handling this situation.

Every feasibility problem can be transformed into an optimization problem by

minimizing 0. As an example from linear programming, let’s consider the next

feasibility problem:

“Find a point in the domain described by ATy ≤ c and −c̃0 ≤ y ≤ c̃0 with A an

m× n matrix, y, c̃0 m-dimensional vectors and c an n-dimensional vector.”

The constraints −c̃0 ≤ y ≤ c̃0 are the “box-constraints” for this problem.

This feasibility problem can be reformulated in a primal-dual linear optimality

problem. The dual problem is actually our feasibility problem:

max 0

subject to ATy + s = c, (D)

−c̃0 ≤ y ≤ c̃0,

s ≥ 0.

Any solution for (D) is also a solution for the feasibility problem. So these two

problems are equivalent. The corresponding primal problem is:
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min cTx+ c̃T0w + c̃T0 z,

subject to Ax+ w − z = 0, (P )

x,w, z ≥ 0.

The opposite is also true. The linear problem:

min cTx

subject to Ax = b,

x ≥ 0.

can be written as the feasibility problem:

“Find a feasible point for the set described by:

cTx− bTy = 0,

Ax = b,

ATy + s = c,

x, s ≥ 0.”

Any feasible point for the previous problem is also the solution to the linear

problem because (x, y, s) is feasible in the primal-dual space with no duality gap.

Next we will describe the main idea of our approach (most of the terms encoun-

tered here will be defined later on, in the second chapter).

Going back to our problem we assume that

Ω0 := {y ∈ Y : −c̃0 
K̃0
y 
K̃0

c̃0 with c̃0 ∈ int(K̃0)}

Here K̃0 is a full-dimensional self-scaled cone in the Hilbert space (X̃0, 〈·, ·〉0) with

dim(X̃0) = m. Also we assume that Γ contains a ball of radius ε (so the set Γ is

not too flat). We assume the existence of an oracle which, given a point ŷ either

recognizes that the point is in Γ or returns a p-dimensional Hilbert space (X, 〈·, ·〉X)

together with an injective linear operator A : X → Y such that:
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Γ ⊆ {y ∈ Y : A∗(ŷ − y) ∈ K}.

Here K is a full-dimensional self-scaled cone in the Hilbert space (X, 〈·, ·〉X). We

will say that the operator A defines p central cuts.

In solving the problem we will generate a sequence of closed, bounded sets Ωi

such that Γ ⊆ Ωi ⊂ Ωi−1 for any i ≥ 1. Each set Ωi is obtained from the previous

set Ωi−1 by introducing pi central cuts through a special point ŷi−1 ∈ Ωi−1:

Ωi := Ωi−1 ∩ {y ∈ Y : A∗
i (ŷi−1 − y) ∈ Ki}. (1.1)

The operator Ai : (Xi, 〈·, ·〉i) → Y is injective and linear, Xi is a pi-dimensional

Hilbert space and Ki is a full-dimensional self-scaled cone in Xi.

The special chosen points ŷi are θ - analytic centers of the corresponding domains

Ωi with respect to an intrinsically self-conjugate functional fi : Ki → IR.

We will prove that if the total number of cuts added is big enough then the θ -

analytic center of the last generated set Ωi is guaranteed to be in Γ. We will get

an estimate on the number of cuts that are added in order to solve the problem.

Also we will study the complexity of obtaining one θ - analytic center ŷi from the

previous one ŷi−1.

We will prove that the algorithm will stop with a solution after no more than

O∗(mP 3Θ3

ε2Λ2 ) (O∗ means that terms of low order are ignored) cuts are added. Here P

is the maximum number of cuts added at any of the iterations, Θ is a parameter

characterizing the self-concordant functionals and Λ is the minimum eigenvalue of

all A∗
iAi (Ai is the injective operator describing the cuts added at step i). The

complexity result we obtain is comparable with the results obtained for less general

cases.

1.2 Previous Work

The notion of analytic center was introduced for the first time by Sonnevend in

[22]. Atkinson and Vaidya are the ones to introduce for the first time in [2] a complete

analysis of a cutting plane method using analytic centers. In their approach the cuts

are introduced one by one and “short-steps” are used. Dropping cuts is also allowed.
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The set Γ is included in a cube of side 2L+1 and contains a ball of radius 2−L. The

complexity obtained is O(mL2) iterations. Mitchell and Ramaswamy extended this

result in [8] to “long-steps”. The complexity was the same but the “long-steps”

method is more promising from the computational point of view.

The first analysis of the complexity of the analytic center cutting plane method

with multiple cuts was done by Ye in [25]. He proved that by adding multiple cuts,

the solution to the feasibility problem can be obtained in no more than O∗(m2P 2

ε2 )

iterations. The same complexity was obtained by Goffin and Vial in [5]. They

proved that the recovery of a new analytic center can be done in O(p ln(p + 1))

damped Newton steps. This number of steps is the same regardless of the scaling

matrix that is used (primal, dual or primal-dual). In our approach we will use a

primal-dual approach.

The SOCP case is treated by Oskoorouchi and Goffin in [14]. They analyze the

case when one SOCP cut is added at each call of the oracle. They prove that the

analytic center of the new domain can be recovered in one Newton step and the

total number of analytic centers generated before getting a feasible point is fully

polynomial.

The semidefinite programming case is treated by Toh et. al. in [23]. They

consider the case of adding multiple central cuts. In this case the cuts are added

centrally through the analytic center Ŷ . The form of these cuts is given by {Y ∈
Sm

+ : Ai•Y ≤ Ai•Ŷ , i = 1, . . . , p}. If P is the maximum of all p, the complexity they

obtain is O(m3P
ε2 ). Oskoorouchi and Goffin proved in [13] that the analytic center

can be recovered in O(p ln(p + 1)) damped Newton steps and the total number of

steps required to obtain the solution is O(m3P 2

ε2 ).

O. Peton and J.-P. Vial extend the analytic center cutting plane method to the

general case of convex programming. In [17] they study the introduction of multiple

central cuts in a conic formulation of the analytic center cutting plane method. They

prove that the new analytic center can be recovered in O(p lnwp) damped Newton

iterations, where w is a parameter depending of the data.

A general survey of non-differentiable optimization problems and methods with

a special focus on the analytic center cutting plane method is presented by J.-L.
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Goffin and J.-Ph. Vial in [4]. This paper presents also the case of multiple cuts and

the case of deep cuts.

The analytic center cutting plane class of methods is a member of the larger class

of interior point cutting plane methods. Mitchell in [7] gives an overview of these

methods.

We conclude this section by presenting the outline of this thesis. All the notions

encountered here will be defined in the following sections.

We will start our presentation by introducing in Chapter 2 some general notions

and results about self-concordant functionals. These functionals are convex, Lips-

chitz continuous with their Hessians Lipschitz continuous too. The exact definition

will be presented in Section 1 of this chapter. The analytic center of a convex

bounded set is the minimizer of such a functional defined on the set. This point is

well defined (because the functional it minimizes is convex) and is strictly interior

to the domain. Because these functionals become infinitely large on the boundary

of their domain, the analytic center will be pushed away from the boundary of the

domain. Most of the theorems presented there are taken from [18] and are intro-

duced without proof. In Section 2.2 we introduce a special local norm and some

properties that will be used later on in our analysis. Here we will see that by fixing

an arbitrary element in the self-scaled cone, we can define a local inner product and

a special local norm. Using the properties of this new norm, we will prove that there

is a region around this arbitrary point where the Hessian of the self-conjugate func-

tional used in defining the analytic center has all eigenvalues greater than 1
4
. This

property will be used later in analyzing the number of steps the algorithm requires

to get to the solution. After setting up the theoretical structure we will define in

Section 2.3 the notion of analytic center. Because computationally it is impossible

to work with exact analytic centers, the notion of an approximate analytic center

will be introduced. We will analyze then some its properties. In moving from one

analytic center to the other we will need to make sure that feasibility is preserved all

the time. For this, Dikin’s ellipsoids are introduced. In Section 2.4 we will introduce

more carefully all the assumptions we make about the problem.

As the algorithm proceeds, we introduce more constraints (i.e. cuts). These con-
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straints are generated by an oracle and are defined using self-scaled cones. In Section

2.5 we introduce a new operation: ⊕ (which is somewhat similar to a cartesian prod-

uct) which describes this process of adding cuts. We will see that by introducing

these new cuts, the character of the problem doesn’t change. At each stage of the

algorithm the outer-approximation set of Γ has as analytic center the minimizer of

the sum all the previous functionals defined on the ⊕-sum of all self-scaled cones

introduced so far.

The third chapter of this thesis is dedicated to the analysis of the algorithm.

After describing the algorithm in Section 3.1, we will analyze in Section 3.2 how

the feasibility can be recovered after the cuts are added centrally, right through the

analytic center. In order to keep track of changes in the potentials (another name

for the self-concordant functionals used in our thesis to define the analytic centers)

some scaled recovery steps need to be taken.

Section 3.3 is dedicated to analysis of potentials. The main result will characterize

how the potentials at two consecutive analytic centers are related.

The implications of the assumptions made about the problems are studied in

Section 3.4. In Section 3.5 we will derive an upper bound for the potentials evaluated

at the corresponding analytic centers. This upper bound will be the one that will

be used to prove that the algorithm eventually stops with a solution. As expected,

this bound depends on the radius ε of the ball we assumed that Γ contains, on the

characteristics of the potentials introduced and also on the condition number of the

operators describing the cuts.

In Section 3.6 we prove that the algorithm will arrive at a solution in a certain

number of steps. This complexity analysis is done in Section 11. We will use the

approach employed by Ye in [25] in deriving the bound for the total number of

constraints that can be introduced before the algorithm stops with a solution.

In Chapter 4 we will present some numerical results. The problems we are con-

sidering are modified versions of some of the problems proposed in “The Seventh

DIMACS Implementation Challenge Semidefinite and Related Optimization Prob-

lems”. We will consider feasibility problems that are based on a combination of

LP cones and Second Order Cones. We will study the behavior of the algorithm in
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solving feasibility problems and we will interpret the results.

In the second part of this chapter we will introduce a new algorithm (based on our

analytic center cutting plane method) that can be used to solve optimality problems.

The analysis of this algorithm (in a simplified context) will be presented in Chapter

5. We will solve then some optimality problems (based on the ones proposed in

“The Seventh DIMACS Implementation Challenge”).

We conclude this chapter by solving some optimality problems that arise when

solving Partial Least Squares (PLS) problems and its kernel version (KPLS).

The last chapter of this thesis is dedicated to analyzing the algorithm proposed

in Chapter 4 for solving linear convex optimization problems. We will look at its LP

- only version. We will prove that this algorithm converges and we will also provide

an upper bound for the total number of iterations required to get the solution.



CHAPTER 2

Preliminaries

2.1 Preliminaries on Self-Concordant Functionals

Self-concordant functionals are of the utmost importance for the optimization

theory. In this section we will define this notion and will give some results regarding

them that are relevant for our analysis. Most of the definitions/theorems presented

in this section are taken from or inspired by [18] and [15].

Let (X, 〈·, ·〉X) be a finite dimensional Hilbert space and let f : X → IR be a

strictly convex functional with the following properties: Df , the domain of f is open

and convex, f ∈ C2 and its Hessian H(x) is positive definite for all x ∈ Df . Using

the functional f we introduce for each x ∈ Df the local (intrinsic) inner product (at

x):

〈u, v〉x := 〈u, v〉H(x) = 〈u,H(x)v〉X .

More generally, for any positive definite operator S we can define a new inner product

given by

〈u, v〉S = 〈u, Sv〉. (2.1)

Let Bx(y, r) be the open ball of radius r centered at y given by:

Bx(y, r) = {z : ‖z − y‖x ≤ r}. (2.2)

Definition 1 A functional f is said to be (strongly nondegenerate) self-concordant

if for all x ∈ Df we have Bx(x, 1) ⊆ Df , and if whenever y ∈ Bx(x, 1) we have:

1 − ‖y − x‖x ≤ ‖v‖y

‖v‖x

≤ 1

1 − ‖y − x‖x

, for all v �= 0.

Let SC be the family of such functionals.

10
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Let g(y) be the gradient of the functional f defined using the original inner

product 〈·, ·〉. In the local intrinsic inner product 〈·, ·〉x, the corresponding gradient

gx(y) and Hessian Hx(y) are given by:

gx(y) := H(x)−1g(y), (2.3)

Hx(y) := H(x)−1H(y). (2.4)

Definition 2 A functional is said to be a (strongly nondegenerate self-concordant)

barrier functional if f ∈ SC and

θf := sup
x∈Df

‖gx(x)‖2
x <∞. (2.5)

Let SCB be the family of such functionals.

Definition 3 Let K be a closed convex cone and f ∈ SCB, f : int(K) → IR. f is

logarithmically homogeneous if for all x ∈ int(K) and t > 0:

f(tx) = f(x) − θf ln(t). (2.6)

Equivalently, f is logarithmically homogeneous if, for all x ∈ int(K) and all t > 0:

gx(tx) =
1

t
gx(x). (2.7)

Theorem 1 If f is a self-concordant logarithmically homogeneous barrier functional

then:

H(tx) =
1

t2
H(x), gx(x) = −x and ‖gx(x)‖x =

√
θf .

Proof: This is Theorem 2.3.9 from [18].

The proof for the first part follows immediately by differentiating with respect

to t in the definition of logarithmic homogeneous functionals. The last part is a

consequence of Definition 2 and the fact that ‖gx(x)‖x = −〈x, g(x)〉 (the gradient

of the right-hand side quantity is zero) .
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In linear programming such a logarithmically homogeneous self-concordant bar-

rier functional is: f : IRn
+ → IR with f(x) := − n∑

i=1
ln(xi). In this case θf = n. For the

SOCP case, the functional is given by f(x) := − ln(x2
1 −

n∑
i=2

x2
i ), with θf = 2. In the

case of semidefinite programming such a functional is given by f(X) := − ln det(X),

with X a positive semidefinite matrix, X ∈Sn. The corresponding value for θf is

θf = n.

Most of the following results (taken from [18]) are technical in nature. They are

needed in our analysis of the algorithm.

Theorem 2 Let f ∈ C2 with its domain Df open and convex. If x, y ∈ Df then

f(y) − f(x) =
∫ 1

0
〈g(x+ t(y − x)), y − x〉dt.

Theorem 3 If f ∈ SC, x ∈ Df and y ∈ Bx(x, 1), then

|f(y) − f(x) − 〈g(x), y − x〉X − 1

2
‖y − x‖2

x| ≤
‖y − x‖3

x

3(1 − ‖y − x‖x)
.

If we take y = x+ d with ‖d‖x < 1 then

f(x+ d) − f(x) ≤ 〈g(x), d〉X +
1

2
‖d‖2

x +
‖d‖3

x

3(1 − ‖d‖x)
. (2.8)

Theorem 4 Assume f ∈ SCB and x ∈ Df . If y ∈ D̄f , then for all 0 < t ≤ 1,

f(y + t(x− y)) ≤ f(x) − θf ln t. (2.9)

If the functional f is also logarithmically homogeneous, then a direct consequence

of Theorem 4 is the next lemma.

Lemma 1 Let f ∈ SCB be a logarithmically homogeneous functional. If x ∈ Df ,

y ∈ D̄f and for all t ≥ 0 then

f(x+ ty) ≤ f(x). (2.10)
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If the domain of f is a cone K then the geometrical interpretation of Lemma 1

is that x maximizes f over the cone x+K.

Definition 4 Let K be a cone and z ∈ int(K). The dual cone of K is

K∗ = {s ∈ X : 〈x, s〉X ≥ 0 for all x ∈ K}. (2.11)

The dual cone of K with respect to the local inner product 〈·, ·〉z is given by

K∗
z := {s ∈ X : 〈x, s〉z ≥ 0, for all x ∈ K}. (2.12)

The cone K is intrinsically self-dual if K∗
z = K for all z ∈ int (K).

Definition 5 The conjugate of f ∈ SCB with respect to 〈·, ·〉 is

f ∗(s) := − inf
x∈int(K)

(〈x, s〉 + f(x)) with s ∈ int(K∗
z ).

In particular, the conjugate of f ∈ SCB with respect to 〈·, ·〉z is

f ∗
z (s) := − inf

x∈int(K)
(〈x, s〉z + f(x)) with s ∈ int(K∗).

A final definition:

Definition 6 A functional f ∈ SCB is intrinsically self-conjugate if f is logarith-

mically homogeneous, if K is intrinsically self-dual, and for each z ∈ int(K) there

exists a constant CZ such that f ∗
z (s) = f(s) + Cz for all s ∈ int(K).

A cone K is self-scaled or symmetric if int(K) is the domain of an intrinsically

self-conjugate barrier functional.

Lemma 2 Let K be a self-scaled cone. Then

K = K∗
z = H(z)−1K∗ = H(z)−1K. (2.13)

Hence, for any z ∈ K, H(z) is a linear automorphism of K.
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Lemma 3 If f : int(K) → IR is an intrinsically self-conjugate barrier functional,

then for all z ∈ int(K),

f ∗
z (s) = f(s) − (θf + 2f(z)).

As a direct consequence:

g∗ ≡ g and H∗ ≡ H.

Theorem 5 Assume f is self-concordant. Then f ∗ ∈ C2. Moreover, if x and s

satisfy s = −g(x), then

−g∗(s) = x and H∗(s) = H(x)−1.

Starting now, all the functionals we will deal with will be intrinsically self-

conjugate barrier functionals.

For each cone K we will consider a fixed vector e ∈ int(K) and we will take all

the inner products to be scaled by e.

Starting now, unless explicitly stated otherwise, each time we deal with an in-

trinsic self-conjugate functional f defined on a Hilbert space (X, 〈·, ·〉X), the inner

product will be thought to be the one induced by e (i.e. 〈u, v〉 = 〈u,H(e)v〉X where

〈·, ·〉X is the original inner-product on X). Accordingly, we will denote K∗ := K∗
e ,

g(x) := ge(x) to be the gradient of f , H(x) := He(x) to be the Hessian and so on.

Also if A∗ is the adjoint operator ofA in the original inner product, thenH(e)−1A∗

is the adjoint operator of A in the local inner product induced by e. We will denote

A∗ := H(e)−1A∗. (2.14)

With this notation in mind, the vector e has some immediate and useful proper-

ties:

‖e‖ =
√
θf , g(e) = −e,H(e) = I. (2.15)
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Renegar proved in [18] the following result

Theorem 6 Let f be an intrinsically self-conjugate barrier functional. Then, for

any x ∈ int(K):

H(x)
1
2 e = −g(x). (2.16)

with H and g being the Hessian and gradient of f considered in the local inner

product induced by e.

2.2 On Scaled Inner Products

Let (X, 〈·, ·〉X) be a finite dimensional Hilbert space, with K a self-scaled cone

and f : X → IR the corresponding self-conjugate functional. Let e ∈ int(K) be a

fixed point chosen arbitrarily.

Define the inner product 〈·, ·〉 := 〈·, ·〉H(e) to be the local inner product induced

by e, i.e.:

〈u, v〉 = 〈u,H(e)v〉X .

For this point e define the set B := {v ∈ X : e ± v ∈ int(K)}. Using this set

define a new norm on X:

|v| := inf{t ≥ 0 :
1

t
v ∈ B}.

Lemma 4 Assume K is self-scaled. If x ∈ K satisfies |x − e| < 1, then for all

v �= 0:

1

1 + |x− e| ≤
‖v‖x

‖v‖ (2.17)

and

‖v‖−g(x)

‖v‖ ≤ 1 + |x− e|. (2.18)
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Note here that ‖v‖x = ‖H(x)
1
2v‖ with H(x) and ‖ · ‖ being the ones induced by

e.

This lemma gives a lower bound on the minimum eigenvalue for the Hessian of

f computed in the norm induced by e at any point x such that |x− e| < 1:

λmin(H(x)) = inf
v �=0

‖H(x)
1
2v‖2

‖v‖2
= inf

v �=0

〈v,H(x)v〉
‖v‖2

= inf
v �=0

‖v‖2
x

‖v‖2
>

1

4
. (2.19)

e

B

1
v

2
=

K

O

K

e - K

Figure 2.1: The sets B, K and the level set |v| = 1
2
.

Now let’s consider the domain described by |x− e| < 1. We claim that:

Lemma 5 K :=int(K) ∩ (e−K) ⊆ {x ∈ int(K) : |x− e| < 1}.

Proof: Let y ∈ int(K) ∩ (e − K). Then y = e − z, with z ∈ K. The point

y − e ∈ B because e+ y − e = y ∈ int(K) and e− (y − e) = z + e ∈ int(K).

Let y′ be the point of intersection between ∂K and the line that goes through e

and has the direction y − e. Then y′ − e = t(y − e) for some t > 1. The middle
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point between y and y′ is clearly a point interior to K. Moreover,

e+
y + y′

2
− e =

y + y′

2
∈ int(K)

and

e− y + y′

2
+ e = e+

e− y

2
+
e− y′

2
∈ int(K).

So

1 + t

2
(e− y) = e− y + y′

2
∈ B.

Then:

|y − e| = inf{t ≥ 0 :
1

t
(e− y) ∈ B} ≤ 2

t+ 1
< 1.

So |y − e| < 1.

As a direct consequence of the previous analysis:

Corollary 1 Let f ∈ SCB be intrinsically self-conjugate. Then, for any x ∈
int(K) ∩ (e−K):

λmin(H(x)) >
1

4
. (2.20)

2.3 Analytic Centers

Let (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y ) be two Hilbert spaces of finite dimensions: dimX =

n, dimY = m. In X consider a full-dimensional self-scaled cone K, pointed at zero

(i.e. K ∩ −K = {0}) with the corresponding intrinsically self-conjugate barrier

functional f : X → IR. Let A : X → Y be a surjective linear operator.

Using the convention from the previous section, we take an arbitrary element

e ∈ int(K) and scale everything using the local inner product induced by e (hence

〈·, ·〉X := 〈·, ·〉e and so on).
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The analytic center (the AC) of the domain FP := {x ∈ K : Ax = 0} with

respect to f(x) + 〈c, x〉X is the exact solution to the problem:

min f(x) + 〈c, x〉X
subject to Ax = 0 (P1),

x ∈ K.

Alternatively, the analytic center can be defined using the dual formulation of the

previous problem. The analytic center of FD := {s ∈ K : A∗y+ s = c} with respect

to f ∗
e (s) is the solution to:

min f ∗
e (s)

subject to A∗y + s = c, (D1)

s ∈ K.

One last thing to note here. The functional f is intrinsic self-conjugate. Then, by

definition, f ∗
e (s)−f(s) is constant. So minimizing f ∗

e (s) is the same with minimizing

f(s). In what will follow we will keep using the notation f ∗(s) although we are

actually using f ∗
e (s).

Now, let’s analyze the primal and dual problems. The KKT conditions for the

first problem are:

g(x) + c+ A∗λ = 0,

Ax = 0,

x ∈ K.

Because f is a self-concordant barrier functional, its gradient g(x) takes the cone K

into −K (as shown in [18]). So −g(x) ∈ K for any x ∈ K. With this observation,

the previous system can be written as:

g(x) + s = 0,

Ax = 0,

A∗y + s = c,

x, s ∈ K.
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To get this formulation it is enough to take λ = −y and s = c− A∗y ∈ K.

For the dual problem, the KKT conditions are:

g∗(s) + λ = 0,

Aλ = 0,

A∗y + s = c,

λ, s ∈ K.

Using the fact that λ = −g∗(s) is equivalent to s = −g(λ), it is easy to see that,

in either case the KKT conditions are the same, defining the same AC.

Hence, for any analytic center the next equalities hold:

g(x) + s = 0,

g(s) + x = 0,

Ax = 0, (2.21)

A∗y + s = c,

x, s ∈ K.

For simplicity we will say that x or y or s is an analytic center if they are the

components of an analytic center.

We can introduce the notion of θ - analytic center by relaxing some of the previous

equalities. First we will define this notion then, the following lemma will give an

insight for this definition.

Definition 7 (x, y, s) is a θ - analytic center for FP , FD iff x ∈ FP , s ∈ FD and

‖I −H(x)−
1
2H(s)−

1
2‖ ≤ θ√

θf

. (2.22)

Lemma 6 Let (x, y, s) be a θ - analytic center. Then:

‖x+ g(s)‖−g(s) ≤ θ,

‖s+ g(x)‖−g(x) ≤ θ. (2.23)
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Proof: We will prove only the first inequality. Note that the inner product 〈·, ·〉X
is the one induced by e. Using Theorem 5 :

‖x+ g(s)‖2
−g(s) = 〈x+ g(s), H(−g(s))(x+ g(s))〉X

= 〈x+ g(s), H(s)−1(x+ g(s))〉X .

Next we will use the fact that, as shown in Theorem 1 and Theorem 6 for any

x ∈ K:

g(x) = H(x)
1
2 e and x = −gx(x) = −H(x)−1g(x).

Based on these:

‖x+ g(s)‖2
−g(s) = 〈−H(x)−1g(x) + g(s), H(s)−1(−H(x)−1g(x) + g(s))〉X

= 〈−H(x)−1H(x)
1
2 e+H(s)

1
2 e,H(s)−1(−H(x)−1H(x)

1
2 e+H(s)

1
2 e)〉X

= 〈−H(x)−
1
2 e+H(s)

1
2 e,H(s)−1(−H(x)−

1
2 e+H(s)

1
2 e)〉X

= 〈H(s)
1
2 (−H(s)−

1
2H(x)−

1
2 e+ e), H(s)−1H(s)

1
2 (−H(s)−

1
2H(x)−

1
2 e+ e)〉X

= 〈−H(s)−
1
2H(x)−

1
2 e+ e,−H(s)−

1
2H(x)−

1
2 e+ e〉X .

So:

‖x+ g(s)‖−g(s) ≤ ‖I −H(s)−
1
2H(x)−

1
2‖‖e‖ ≤ θ.

The motivation for using this definition for a θ - analytic center should be clear if

we compare it with the usual definition used in linear programming for a θ - analytic

center:

‖e− xs‖ ≤ θ,
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with e being the vector of all ones.

Using the fact that in the linear programming case the Hessian is given byH(x) =

diag(x−2) our definition reduces to:

‖I −H(x)−
1
2H(s)−

1
2‖ = ‖diag(e− xs)‖ = max

i
(1 − xisi) ≤ θ√

θf

.

This is slightly different from the usual definition. Using Lemma 6 it is clear

that our definition is close to the one used in the linear programming case:

‖x+ g(s)‖2
−g(s) = (x− s−1)Tdiag(s2))(x− s−1) = ‖e− xs‖2

Next lemma is a simple exercise on the relationship between norms induced by

different matrices.

Lemma 7 Let A and B be two positive definite linear operators with B being Her-

mitian. Then:

‖y‖A = ‖B−1y‖B∗AB.

Proof: ‖y‖2
A = 〈y,Ay〉 = 〈B−1y,B∗AB(B−1y)〉 = ‖B−1y‖2

B∗AB.

Lemma 8 If (x, y, s) is the analytic center for the intrinsically self-conjugate barrier

functional f then H(s)H(x) = I.

Proof: Note that g∗ ≡ g and H∗ ≡ H because f is intrinsically self-conjugate

functional. Because (x, y, s) is an analytic center then s = −g(x) so, using Theorem 5

we get that H(s) = H∗(s) = H(x)−1. Hence the conclusion.

Note here that H(s)H(x) = I. In a linear programming formulation this trans-

lates in xisi = 1 for all i. This is the exact expression that defines the exact analytic

center in the linear programming case.
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In order to get a characterization for a θ - analytic center we need the following

result.

Lemma 9 If ‖I − A‖ ≤ θ < 1, A invertible, then

1 − θ ≤ ‖A‖ ≤ 1 + θ.

and

1

1 + θ
≤ ‖A−1‖ ≤ 1

1 − θ
.

Proof: The first inequalities are immediate. For the second set of inequalities:

‖A−1‖ = ‖A−1 − I + I‖ ≤ ‖A−1 − I‖ + ‖I‖ ≤ ‖A−1(I − A)‖ + 1 ≤ θ‖A−1‖ + 1

and

1 = ‖I‖ = ‖A−1A‖ ≤ ‖A−1‖‖A‖ ≤ (1 + θ)‖A−1‖.

Lemma 10 Let (x, y, s) be a θ - analytic center for an intrinsically self-conjugate

barrier functional f . Then:

√
θf√

θf + θ
≤ ‖H(x)

1
2H(s)

1
2‖ ≤

√
θf√

θf − θ
. (2.24)

Proof: The lemma is proved immediately using the previous lemma.

Lemma 11 Let f be an intrinsically self-conjugate barrier functional defined on a

self-scaled cone K. Let x, s ∈ K such that x = −g(s). Then:

f(x) + f ∗(s) = −θf . (2.25)
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Proof: Because f is self-conjugate we have: g∗(s) = g(s). Renegar proved in [18]

that regardless of the inner product, the conjugate functional satisfies:

f ∗(s) = 〈g∗(s), s〉 − f(−g∗(s)).

So f ∗(s) = 〈g(s), s〉 − f(x) = −θf − f(x).

Suppose that x is a feasible point in FP . If f is a self-concordant functional,

then, by definition, ‖∆x‖x ≤ 1 implies that x+ ∆x is feasible.

This inequality describes an ellipsoid around the point x (also known as the

Dikin’s ellipsoid). This ellipsoid defines a region around the point x where x+∆x is

feasible too. The following lemmas will give sufficient conditions on ∆x and ∆s to

get x+∆x, s+∆s feasible, given that x and s are feasible in FP and FD respectively.

Lemma 12 Let EP = {∆x ∈ X : A∆x = 0, ‖∆x‖x ≤ 1}. Let (x, y, s) be a θ -

analytic center. Then:

(1 +
θ√
θf

)−1EP ⊆ {∆x ∈ X : A∆x = 0, ‖∆x‖H(s)−1 ≤ 1} ⊆ (1 − θ√
θf

)−1EP .

Proof:

‖∆x‖H(s)−1 = ‖H(s)−
1
2 ∆x‖X = ‖H(s)−

1
2H(x)−

1
2H(x)

1
2 ∆x‖X

≤ ‖H(s)−
1
2H(x)−

1
2‖‖H(x)

1
2 ∆x‖X ≤ (1 +

θ√
θf

)‖H(x)
1
2 ∆x‖X

= (1 +
θ√
θf

)‖∆x‖x.

Also:

‖∆x‖x = ‖H(x)
1
2 ∆x‖X = ‖H(x)

1
2H(s)

1
2H(s)−

1
2 ∆x‖X

≤ ‖H(x)
1
2H(s)

1
2‖‖∆x‖H(s)−1 ≤ 1

(1 − θ√
θf

)
‖∆x‖H(s)−1 .
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A similar result holds for the Dikin’s ellipsoid around s.

Let ED = {∆s ∈ X : ∆s = −A∗∆y, ‖∆s‖s ≤ 1}.

Lemma 13 Let (x, y, s) be a θ - analytic center. Then:

(1 +
θ√
θf

)−1ED ⊆ {∆s : ∆s = −A∗∆y, ‖∆s‖H(x)−1 ≤ 1} ⊆ (1 +
θ√
θf

)−1ED.

Because analytic centers are minimizers of convex functionals defined on closed,

bounded, convex sets, the method of choice for computing them is the Newton

method. This method is based on the second-order approximation of the functional

to be minimized. Let qx be the quadratic approximation for f . Then

qx(y) = f(x) + 〈g(x), y − x〉 +
1

2
〈y − x,H(x)(y − x)〉.

The minimizer for qx(y) is the point x̄ where the gradient of qx(y) becomes zero.

From here we obtain immediately that:

x̄ = x−H(x)−1g(x). (2.26)

The Newton step is defined to be the vector H(x)−1g(x). This vector is the same

with gx(x). Immediately we can see that, for logarithmically homogeneous barrier

functionals the Newton step has constant length if measured in the norm induced

by x: ‖gx(x)‖x =
√
θf . The advantage of using self concordant barrier functional is

that the Newton step doesn’t change when the local inner product changes. This

gives us more flexibility in the way we choose the local inner product.

When computing approximate analytic centers we need a way of estimating dis-

tances to the exact analytic center. When working with general functionals it is

impossible to achieve this without knowing the exact analytic center. This problem

is eliminated when using self-concordant functionals. This is because we can use

local inner products instead of the original one. We can compute the distance be-

tween two points x and y without knowing y. All we need to do is to use ‖x− y‖y

to measure the distance.
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All these properties will play an important role when we will analyze the com-

plexity of recovering the analytic center.

2.4 Assumptions and Notations

We assume that all the operators Ai : Xi → Y , i ≥ 1 defining the cuts are

injective, hence the adjoint operators A∗
i are surjective. Also, wlog we assume that

‖Ai‖ = 1. The fact that Ai is injective gives also a bound on how many cuts we can

add at a certain moment: pi ≤ m.

For each space (Xi, 〈·, ·〉i) we will use the local norm induced by an arbitrary

element ei ∈ int(Ki). So whenever we use 〈·, ·〉i we will actually mean 〈·, ·〉ei
. If

there is no danger for confusion, we will also use 〈·, ·〉 instead of 〈·, ·〉ei
.

The following assumptions are not critical for our analysis. We use them just to

keep the analysis simpler and easier to understand. The analysis would be the same

without these assumptions but the notation would be more complicated.

We assume that ‖Hi(ei)
−1‖ = 1 for i ≥ 0, where Hi are the Hessians correspond-

ing to the intrinsically self-conjugate functionals that are generated by the algo-

rithm. The Hessians are computed in the original inner products (not the scaled

one). To ensure this, it is enough to pick an arbitrary e′i ∈ int(Ki). Then take

ei := ‖H−1
i (e′i)‖−

1
2 e′i. Because fi is logarithmically homogeneous (hence H−1

i (tx) =

t2H−1
i (x)) for ei we have ‖H−1

i (ei)‖ = 1. We can scale e0 in a similar way to get

‖H0(e0)‖ = 1.

Let σi :=
√

pi

θi
ei. The length of this vector, measured in the local inner product

induced by ei is ‖σi‖ =
√
pi. Without loss of generality, we can assume that fi(σi) =

0. We can do this easily. If fi evaluated at this point is different from zero, then we

can replace fi(x) by fi(x)−fi(σi). Note that we can do this because the sum between

a constant and an intrinsically self-conjugate barrier functional is an intrinsically

self-conjugate barrier functional.

2.5 Operations with Self-Concordant Functionals

In our algorithm we start with an initial set Ω0 containing Γ. As the algorithm

proceeds we generate a sequence of sets Ωi containing Γ such that Ωi ⊂ Ωi−1. Each
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set Ωi is described by all the cuts that have been added so far. In a condensed form

we can represent Ωi as:

Ωi = {y ∈ Y : Ā∗
i y + s = c̄i with s ∈ K̄i}.

In this section we will describe how Āi and K̄i incorporate all the cuts added.

Note here that when the cuts are added, the dimensionality of the problem in-

creases (i.e. the dimension of the domain of Āi increases).

Each time we add new cuts, we introduce new Hilbert spaces (Xi, 〈·, ·〉i) with

dim(Xi) = pi such that pi < m for all i ≥ 1. In each Xi we consider a full-

dimensional self-scaled cone Ki. The cuts that are added are of the form

Ai : Xi → Y with Ai injective linear operators.

Hence, the corresponding adjoint operators A∗
i : Y → Xi are surjective.

In the linear programming case this condition translates into asking that the

matrix Ai describing the cuts be full-ranked. Together with the coneKi we introduce

an intrinsically self-conjugate barrier functional fi:

fi : Ki → IR.

The domain of the functional is the interior of the cone Ki. When the cuts are

added to the problem everything changes: the space X and its inner product, the

barrier functional, and the constraints describing the outer approximation domain

for Γ. Next we will describe all these changes and how are they incorporated in the

structure of the algorithm. We should keep in mind that the inner products of Xi

are scaled by elements ei ∈ int(Ki) fixed arbitrarily.

First let’s define a new operation ⊕. This is similar to the cartesian product.

This operation will be defined for Hilbert spaces, functionals and operators.

Definition 8 Let (X, 〈·, ·〉X) and (Z, 〈·, ·〉Z) be two Hilbert spaces of dimensions pX

and pZ respectively. We define (X⊕Z, 〈·, ·〉X⊕Z) to be an Hilbert space of dimension
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pX + pZ defined by:

u ∈ X ⊕ Z iff (ui)i=1,...,pX
∈ X and (ui)i=pX+1,...,pX+pZ

∈ Z. (2.27)

We write u = uX ⊕ uZ.

The corresponding inner product is given by:

〈u, v〉X⊕Z = 〈uX , vX〉X + 〈uZ , vZ〉Z . (2.28)

The ⊕ operation is just a concatenation, while the resulting inner product is the

sum of the inner products applied to the corresponding components.

The sum of two cones can be defined in a similar manner. The same idea of

concatenation applies for operators too:

Definition 9 Let AX : X → Y and AZ : Z → Y be two linear operators. The ⊕
sum of these two operators is defined by:

AX ⊕ AZ : X ⊕ Z → Y , with (AX ⊕ AZ)(u) = AXuX + AY uY . (2.29)

Observe here that the ⊕ sum of two linear operators is a linear operator too.

Finally, we define the ⊕ sum of two functionals.

Definition 10 Let fX : X → IR and fZ : Z → IR be two functionals. Then the ⊕
of fX and fZ is given by:

fX ⊕ fZ : X ⊕ Z → IR, with (fX ⊕ fZ)(u) = fX(uX) + fZ(uZ) (2.30)

for all u = uX ⊕ uZ ∈ X ⊕ Z.

Lemma 14 Let fi : (Xi, 〈·, ·〉i) → IR, i = 1, 2, be two functionals in C2, with g1,

g2 their gradients and H1, H2 their Hessians respectively. Then the gradient g of

f := f1 ⊕ f2 is such that:

〈u, g(v)〉X1⊕X2 = 〈u1, g1(v1)〉1 + 〈u2, g2(v2)〉2 (2.31)
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and the Hessian H of f is such that:

〈u,H(v)z〉X1⊕X2 = 〈u1, H1(v1)z1〉1 + 〈u2, H2(v2)z2〉2 (2.32)

for any u, v, z ∈ X1 ⊕X2 (with their components ui, vi, zi ∈ Xi, i = 1, 2).

Proof: For the first part, the definition of the gradient of a functional gives:

lim
‖∆vi‖i→0

fi(vi + ∆vi) − fi(vi) − 〈gi(vi),∆vi〉i
‖∆vi‖i

= 0. (2.33)

Then:

lim
‖∆v‖X1⊕X2

→0

2∑
i=1

(fi(vi + ∆vi) − fi(vi) − 〈gi(vi),∆vi〉i)
‖∆v‖X1⊕X2

=

=
2∑

i=1

lim
‖∆vi‖i→0

‖∆vi‖i

‖∆v‖X1⊕X2

fi(vi + ∆vi) − fi(vi) − 〈gi(vi),∆vi〉i
‖∆vi‖i

.

The limits inside the sum are both equal to zero because of the definition of the

gradient gi of fi and because:

‖∆vi‖i

‖∆v‖X1⊕X2

=
∆vi√

‖∆v1‖2 + ‖∆v2‖2
≤ 1 for any ‖∆vi‖i �= 0.

So we proved that:

lim
‖∆v‖X1⊕X2

→0

f(v + ∆v) − f(v) − 2∑
i=1

〈gi(vi),∆vi〉i
‖∆v‖X1⊕X2

= 0. (2.34)

This equality is exactly the definition of the gradient, hence:

〈u, g(v)〉X1⊕X2 = 〈u1, g1(v1)〉1 + 〈u2, g2(v2)〉2.

The expression for the Hessian H(v) can be proved in a similar manner. It is
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easy to check that the inverse H−1(v) is defined by:

〈u,H−1(v)z〉X1⊕X2 = 〈u1, H
−1
1 (u1)z1〉1 + 〈u2, H

−1
2 (v2)z2〉2. (2.35)

Theorem 7 Let f1 : X1 → IR and f2 : X2 → IR be two intrinsically self-conjugate

barrier functionals. Then f := f1 ⊕ f2 is also an intrinsically self-conjugate barrier

functional with θf = θ1 + θ2.

Proof: We will start by proving that f is self-concordant. The domain of f is

the ⊕ - sum of the domains of f1 and f2, Df = Df1 ⊕Df2 .

First, we have to check that

∀x ∈ Df , Bx(x, 1) ⊆ Df .

Because x ∈ Df , it can be decomposed as x = x1 ⊕ x2, with x1 ∈ Df1 and

x2 ∈ Df2 . Both f1 and f2 are self-concordant functionals so

Bx1(x1, 1) ⊆ Df1 ,

Bx2(x2, 1) ⊆ Df2 .

For any arbitrary point y ∈ Bx(x, 1) (with y = y1 ⊕ y2),

‖y − x‖2
x = 〈x− y,H(x)(x− y)〉

= 〈x1 − y1, H1(x1)(x1 − y1)〉1 + 〈x2 − y2, H2(x2)(x2 − y2)〉2
= ‖x1 − y1‖2

x1
+ ‖x2 − y2‖2

x2
.

This immediately implies that y1 ∈ Bx1(x1, 1) ⊆ Df1 and y2 ∈ Bx2(x2, 1) ⊆ Df2 .

Then,

y = y1 ⊕ y2 ∈ Df1 ⊕Df2 = Df .
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Hence, we proved:

∀x ∈ Df , Bx(x, 1) ⊆ Df .

To complete the proof that f ∈ SC, we need to show that for any vector y ∈
Bx(x, 1) (hence its components yi ∈ Bxi

(xi, 1)) and for all nonzero vectors v:

1 − ‖y − x‖x ≤ ‖v‖y

‖v‖x

≤ 1

1 − ‖y − x‖x

.

Let v1 and v2 be the components of v, v = v1 ⊕ v2. Because v �= 0, then at least

one of v1, v2 is nonzero. Suppose both are nonzero (if one of them is zero, the proof

follows almost identically). For both f1 and f2 the previous inequality holds true:

1 − ‖yi − xi‖xi
≤ ‖vi‖yi

‖vi‖xi

≤ 1

1 − ‖yi − xi‖xi

.

with i = 1, 2.

Also,

1 − ‖y − x‖x = 1 −
√
‖y1 − x1‖2

x1
+ ‖y2 − x2‖2

x2
.

For simplicity, let A = ‖y1 − x1‖x1 , B = ‖y2 − x2‖x2 and C = ‖y − x‖x. With

these notations:

1 − C = 1 −
√
A2 +B2.

So

‖v‖2
y

‖v‖2
x

=
‖v1‖2

y1
+ ‖v2‖2

y2

‖v1‖2
x1

+ ‖v2‖2
y2

≥ (1 − A)2‖v1‖2
x1

+ (1 −B)2‖v2‖2
x2

‖v1‖2
x1

+ ‖v2‖2
y2

≥ (1 − C)2‖v1‖2
x1

+ (1 − C)2‖v2‖2
x2

‖v1‖2
x1

+ ‖v2‖2
y2

= (1 − C)2.
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We proved the leftmost inequality. For the rightmost inequality the proof is

similar. So f ∈ SC. Moreover, f ∈ SCB with θf ≤ θf1 + θf2 because:

‖gx(x)‖2
x = ‖gx1(x1)‖2

x1
+ ‖gx2(x2)‖2

x2

and by definition θf = sup
x∈Df

‖gx(x)‖2
x.

For the last part, for any t > 0:

0 = f(tx) − f1(tx1) − f2(tx2) = f(x) − f1(x1) − f2(x2) + (θ1 + θ2 − θf ) ln t

= (θ1 + θ2 − θf ) ln t.

So θf = θ1 + θ2.

All the previous definitions are consistent even if we use local inner products scaled

by ei ∈ Ki.



CHAPTER 3

Analysis of the Algorithm

3.1 Preliminaries

In this chapter we will analyze the performance of the algorithm. First we will

analyze how new cuts are added to the problem and how the current point is moved

back in the feasible region. We will see that in order to recover feasibility we need

to use scaled steps. Once the point becomes feasible, we will prove that we can get

to a θ - analytic center by taking two types of Newton steps.

The progress is measured here using potential functionals. First we will use

Nesterov-Todd steps to move the current point closer to the exact analytic center.

We will see that each such step decreases the potential by a constant value. Once,

“close enough” (the exact meaning will be introduced later) we use a different type

of steps to get to a θ - analytic center. Using these new type of steps the convergence

towards a θ - analytic center becomes exponential.

In the second part of this chapter we will obtain an upper bound for the total

number of θ - analytic centers that need to be generated in order to get feasible in Γ.

The analysis employed here will follow the approach used by Yu in [25] in analyzing

an analytic center cutting plane method for the LP case. Although the main steps

are the same, the general character of our problem will require a different use of the

initial assumptions we made about the problem.

We will prove that the algorithm stops with a solution in no more than O∗(mP 3Θ3

ε2Λ2 )

(here O∗ means that terms of low order are ignored) steps, where Θ and Λ are

parameters that characterize the problem and P is the largest number of cuts that

are added at a given time. This result is similar to the ones obtained in less general

cases.

The idea behind our study is quite simple. As the algorithm proceeds, a sequence

of sets Ωi is generated. We will use the exact analytic centers sc
i of these sets. The

main steps are:

• Get an upper bound UBi for f ∗
i (sc

i), for any i

32



33

• Compare two consecutive f ∗
i at the corresponding AC sc

i :

f ∗
i+1(s

c
i+1) ≥ f ∗

i (sc
i) + LBi

• After k steps :

UBk ≥ f ∗
0 (sc

0) +
k−1∑
i=0

LBi

• We prove that UBk → ∞ slower than
k−1∑
i=0

LBi does

• The algorithm stops as soon as

UBk < f∗
0 (sc

0) +
k−1∑
i=0

LBi

3.2 The Algorithm

In order to get a point in Γ we generate a sequence of outer-approximations Ωi.

The algorithm stops as soon as the θ - analytic center of one set Ωi is in Γ.

The algorithm starts with the initial set

Ω0 := {y ∈ Y : −c̃0 
K̃0
y 
K̃0

c̃0 with c̃0 ∈ int(K̃0)}

as the first outer-approximation of Γ. The cone K̃0 is a self-scaled cone in (X̃0, 〈·, ·〉0)
- an m - dimensional Hilbert space.

Let X0 := X̃0 ⊕ X̃0, K0 := K̃0 ⊕ K̃0 and let f0 be the intrinsically self-conjugate

barrier functional corresponding to K0, f0 : int(K0) → IR. The set Ω0 can be

described by

Ω0 := {y ∈ Y : A∗
0y + s = c0 with s ∈ K0}.

Here, A0 is a linear operator defined on X0, A0 : X0 → Y such that, its adjoint

A∗
0 : Y → X0 describes Ω0 (i.e. A0 := Im ⊕ (−Im)).
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Let ẽ0 ∈ int(K̃0) be an arbitrary point chosen such that the Hessian H̃0 of f̃0

has unit norm at ẽ0: ‖H̃0(ẽ0)‖ = 1. Let’s take e0 := ẽ0 ⊕ ẽ0. Then e0 ∈ K0 and

‖H0(e0)‖ = 1 too.

Now, we change the inner product to be the one induced by e0. Because of this

change, the adjoint of the operator A0 changes from A∗
0 to H0(e0)

−1A∗
0. This is

because

〈u,A0v〉Y = 〈A∗
0u, v〉X0 = 〈H0(e0)

−1A∗
0u, v〉e0 .

In order not to complicate the notation, we will define A∗
0 to be the adjoint of

A0 in the new inner product. Also, we will use c0 instead of the scaled vector

H0(e0)
−1c0.

Using this new notation, the set Ω0 has the same description as before:

Ω0 = {y ∈ Y : A∗
0y + s = c0, with s ∈ K0}.

Let (x0, y0, s0) be the θ - analytic center corresponding to f0. In order to obtain

this point, we can take a sequence of primal-dual Newton steps, starting at the

strictly feasible point (e0, 0, c0) ∈ K0 × Ω0 × K0. Note that e0 and c0 are strictly

interior to K0. Also, the origin is a point strictly feasible in Ω0.

Once at y0, the oracle is called. If y0 ∈ Γ the oracle returns y0 and the algorithm

stops with the solution to our problem. If y0 /∈ Γ, the oracle returns p1 - central cuts.

That is, the oracle returns a p1-dimensional Hilbert space (X1, 〈·, ·〉1) together with a

self-scaled cone K1, the corresponding intrinsically self-conjugate barrier functional

f1 : K1 → IR and a linear injective operator A1 : X1 → Y such that

Γ ⊆ {y ∈ Y : A∗
1y + s = A∗

1y0 with s ∈ K1}.

The equality A∗
1y + s = A∗

1y0 defines a central cut. It is called central because

the point (y, s) := (y0, 0) lies on the cut with s being the vertex of the cone K1.

We change the inner product on the space X1 with a local one induced by a vector

e1 ∈ int(K1) chosen arbitrarily such that the norm of the Hessian of f1 computed



35

in the original norm at e1 is unitary. Also we change the functional f1 by adding a

constant such that the modified functional:

f1(

√
p1

θ1

e1) = 0.

( as already discussed in Section 2.4).

Now we build the new instance of the algorithm. First, let X̄1 := X0 ⊕ X1 be

an (2m + p1) - dimensional Hilbert space with the inner product induced by the

inner products of X0 and X1. Let K̄1 := K0 ⊕K1 be the new self-scaled cone with

the corresponding intrinsically self-conjugate barrier functional f̄1 := f0 ⊕ f1. After

adding the new cuts Ω0 becomes

Ω1 := Ω0 ∩ {y ∈ Y : A∗
1y + s = A∗

1y0 with s ∈ K1}.

For the new instance of the algorithm, the old θ - analytic center (x0, y0, s0)

becomes (x0 ⊕ 0p1 , y0, s0 ⊕ 0p1) (with 0p1 being the zero vector in X1).

The point y0 lies on the boundary of the new set Ω1. First we will take a step to

recover strict feasibility for this point. After that we generate a sequence of Newton

steps that will take the point to (x1, y1, s1), the θ - analytic center of the new domain

Ω1.

At this point we call the oracle again. If y1 ∈ Γ, we stop with the solution to

our problem. If y1 /∈ Γ, the oracle returns p2 central cuts that are added to the old

instance of the algorithm, generating a new set Ω2. Then the algorithm proceeds as

before.

We will prove that the algorithm must stop with a solution after a sufficiently

large number of cuts has been added.

After i iterations, the i-th instance of the algorithm is described by a Hilbert

space X̄i =
i⊕

j=0
Xj together with a self-scaled cone K̄i =

i⊕
j=0

Kj, the domain of

an intrinsically self-conjugate barrier functional f̄i =
i⊕

j=0
fj. The current set Ωi

is described by the linear operator Āi : X̄i → Y , with Āi =
i⊕

j=0
Aj. All linear

operators Aj : Xj → Y , j ≥ 1, are injective and the inner products considered
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in the pj-dimensional Hilbert spaces Xj are the ones induced by fixed elements

ej ∈ int(Kj). These vectors ej are strictly interior to the respective cones Kj and

‖Hj(ej)
−1‖ = 1,∀j ≥ 1 (here Hj is the Hessian of fj computed in the original norm

of Xj, not in the local norm induced by ej).

3.3 The Recovery of Feasibility

In this section we will study the impact of the central cuts added through an θ -

analytic center and how feasibility can be restored.

Consider an instance of the algorithm described by an intrinsically self-conjugate

functional f1 defined on a Hilbert space (X1, 〈·, ·〉1) with the corresponding full-

dimensional self-scaled cone K1 pointed at zero (We consider here the case i = 1 for

notational convenience. This analysis applies to any stage i of the algorithm.). The

outer-approximation of the domain of interest Γ in this instance is

Ω1 = {y ∈ Y : A∗
1y + s = c1, s ∈ K1},

with A1 : X1 → Y a linear operator. Let (x1, y1, s1) be the θ - analytic center for

FP , FD. So its components must verify:

A1x1 = 0, (3.1)

A∗
1y1 + s1 = c1, (3.2)

x1, s1 ∈ K1 and y1 ∈ Y. (3.3)

We add p central cuts at this point: A∗
2y + s = c2 with A∗

2y1 = c2. The operator

A2 is defined on a p - dimensional Hilbert space (X2, 〈·, ·〉2). We assume that A2 is

injective and linear.

The outer-approximation domain Ω1 becomes

Ω2 := Ω1 ∩ {y ∈ Y : A∗
2y + s = c2, s ∈ K2}.

K2 is a self-scaled cone in X2 and let f2 : X2 → IR be the corresponding intrinsi-

cally self-conjugate functional.



37

After adding the cuts, the primal and dual feasible sets FP and FD are changed:

FP := {x⊕ β : A1x+ A2β = 0 with x ∈ K1, β ∈ K2}

and

FD := {s⊕ γ : A∗
1y + s = c1, A

∗
2y + γ = c2 with s ∈ K1, γ ∈ K2, y ∈ Y }.

Let f := f1 ⊕ f2, X := X1 ⊕X2. After adding the cuts the old point (x1, y1, s1)

becomes (x2, y2, s2):

x2 = x1 ⊕ β, y2 = y1, s2 = s1 ⊕ γ,

with y2 on the boundary of the new domain Ω2. At this new point, β = 0 and γ = 0

hence both f and f ∗ are infinitely large. One step to recover feasibility is needed.

Let this step be: ∆x ⊕ β, ∆y and ∆s ⊕ γ. The new point must be feasible in FP

and FD so:

A1(x1 + ∆x) + A2β = 0, (3.4)

A∗
1(y1 + ∆y) + s1 + ∆s = c1, (3.5)

A∗
2(y1 + ∆y) + γ = c2, (3.6)

with x1, x1 +∆x, s1, s1 +∆s ∈ K1 and β, γ ∈ K2. So, in order to get back feasibility

we need to have:

A1∆x+ A2β = 0, (3.7)

A∗
1∆y + ∆s = 0, (3.8)

A∗
2∆y + γ = 0. (3.9)

Right after adding the central cuts, the current point y2 is sitting on the boundary

of Ω2 ( both β = 0 and γ = 0). Because of this the values of both f2 and f ∗
2 were
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equal to infinity. So in moving away from the boundary of Ω2 we should try to

minimize as much as possible the contribution of β and γ to the potential functions.

One way of doing this is to set-up the next problems:

min f2(β)

subject to A1∆x+ A2β = 0

β ∈ K2

and

min f ∗
2 (γ)

subject to A∗
2∆y + γ = 0

γ ∈ K2

These two formulations do not describe completely our problem. What is needed is

a constraint that insures that x1 + ∆x and s1 + ∆s stay feasible in K1 too. Using

the analysis of the Dikin’s Ellipsoids we have already made, it is enough to add

‖∆x‖H1(s1)−1 ≤ 1 − θ√
θf

and ‖∆s‖s1 ≤ 1 to keep x1 + ∆x and s1 + ∆s feasible in

K1. Next we will analyze the problems using ‖∆x‖H1(s1)−1 ≤ 1. We do this to keep

the analysis clear. Later we will scale the steps by α < 1 − θ√
θf

so the feasibility

will be preserved.

So a good choice is to take β and γ to be the solutions to the following problems:

min f2(β)

subject to A1∆x+ A2β = 0, (P2)

‖∆x‖H1(s1)−1 ≤ 1,

β ∈ K2

and

min f ∗
2 (γ)

subject to A∗
2∆y + γ = 0, (D2)

‖∆s‖s1 ≤ 1,

γ ∈ K2.

These two problems are well posed. The feasible regions are not empty because

A1 is surjective, A2 is injective and the equality constraints are homogeneous. The
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objectives are strongly convex functionals so, if the minimum exists, it is unique. The

cone K2 is the domain for both f2 and f ∗
2 . These two functionals are self-concordant

so they are infinitely large on the boundary of their domains. The second constraint

in each problem ensure that the feasible sets don’t contain rays. So both problems

have an unique optimal value.

This approach is similar to the one proposed for the linear programming case by

Goffin and Vial in [5]. It is a generalization of the approach used by Mitchell and

Todd in [9] for the case p2 = 1 (only one cut is added at each iteration).

Now, let’s analyze (P2). The KKT conditions are:

g2(β) + A∗
2λ = 0, (3.10)

A∗
1λ+ νH1(s1)

−1∆x = 0, (3.11)

ν(1 − 〈∆x,H1(s1)
−1∆x〉1) = 0, (3.12)

A1∆x+ A2β = 0. (3.13)

If we take

∆x = −H1(s1)A
∗
1(A1H1(s1)A

∗
1)

−1A2β, (3.14)

ν = θf2 , (3.15)

λ = θf2(A1H1(s1)A
∗
1)

−1A2β (3.16)

both equations (3.11) and (3.13) are verified.

For β we use the approach used by Goffin and Vial in [5] and we will take it to

be the solution to the next problem:

min
β∈K2

θf2

2
〈β, V β〉2 + f2(β) (3.17)

with V = A∗
2(A1H1(s1)A

∗
1)

−1A2. (3.18)

The optimality condition for this minimization problem is given by:

θf2V β + g2(β) = 0. (3.19)
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It is easy to verify that the equation (3.10) holds true for β solution for problem

(3.17). For equation (3.12) it is enough to note that

‖∆x‖2
H1(s1)−1 = 〈∆x,H1(s1)

−1∆x〉1 = 〈β, V β〉2 = − 1

θf2

〈β, g2(β)〉2 = 1. (3.20)

Now, let’s consider the second problem (D2). The optimality conditions are:

g∗2(γ) + µ = 0, (3.21)

A2µ+ νA1H1(s1)A
∗
1∆y = 0, ν ≥ 0, (3.22)

A∗
2∆y + γ = 0, (3.23)

ν(1 − 〈∆y,A1H1(s1)A
∗
1∆y〉Y ) = 0. (3.24)

The solution to this problem is given by:

∆y = −(A1H1(s1)A
∗
1)

−1A2β, (3.25)

γ = V β = A∗
2(A1H1(s1)A

∗
1)

−1A2β, (3.26)

µ = θf2β, (3.27)

ν = θf2 . (3.28)

Here β is the solution of problem (3.17). The equations (3.23) and (3.22) are

obviously satisfied. For equation (3.24):

〈∆y,A1H1(s1)A
∗
1∆y〉Y = 〈β,A∗

2(A1H1(s1)A
∗
1)

−1A2β〉2 = 〈β, V β〉2 = 1.

Finally, for equation (3.21) it is enough to notice that −g2(−g2(β)) is equal to

both β (because −g2 is an involution, as can be seen from Theorem 5) and −g2(θf2γ)

(as given by equation (3.19)). Using the fact that f2 is logarithmically homogeneous,
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the conclusion follows immediately:

g2(γ) = θf2g2(θf2γ) = θf2g2(−g2(β)) = −θf2β = −µ. (3.29)

Instead of full steps ∆x, ∆s, some scaled steps α∆x, α∆s are taken. The next

lemma gives a characterization of such scaled steps.

Lemma 15 Let ∆x and ∆s be the steps considered in the problems (P2) and (D2).

For any α < (1 − θ√
θf

)ζ with 0 < ζ < 1:

‖α∆x‖x1 < ζ and ‖α∆s‖s1 < ζ.

Proof: Here we will use Lemma 12.

‖α∆x‖x1 = α‖∆x‖x1 ≤ α
1

1 − θ√
θf

‖∆x‖H(s1)−1 < ζ.

The second inequality is immediate:

‖α∆s‖s1 = α‖∆s‖s1 ≤ α < ζ.

We have that g2(β) = −θf2γ, with β, γ ∈ K2. So we can use Lemma 11:

f2(β) + f ∗
2 (θf2γ) = −θf2 . (3.30)

The fact that f2 and f ∗
2 are logarithmically homogeneous implies:

f2(αβ) + f ∗
2 (αγ) = f2(β) + f ∗

2 (γ) − 2θf2 lnα (3.31)

= −θf2 − 2θf2 lnα+ f ∗
2 (γ) − f ∗

2 (θf2γ). (3.32)
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So we proved that:

f2(αβ) + f ∗
2 (αγ) = −θf2 − 2θf2 lnα+ θf2 ln θf2 . (3.33)

This equality provides a measure of the influence the added cut has over the

self-concordant barrier functional.

3.4 Potentials

In analyzing the complexity of the algorithm (for both local and global conver-

gence) we will make use of primal-dual potentials. The way potentials change from

one analytic center to the next one will give us a measure for the total number of

cuts that can be introduced before the algorithm stops with a solution. We will also

use potential functionals in finding the number of steps required to get to the θ -

analytic center after new cuts are added in the problem.

Definition 11 For an instance of the algorithm described by the functional f , the

vector c and the linear operator A, we define the primal-dual potential to be:

φPD(x, s) = 〈c, x〉 + f(x) + f ∗(s) for any x, s ∈ K.

It is customary to call 〈c, x〉+f(x) the primal potential and f ∗(s) the dual potential.

Let (x1, y1, s1) be the current θ - analytic center with the corresponding primal-

dual potential:

φ1 := 〈c1, x1〉1 + f1(x1) + f ∗
1 (s1).

After adding the cuts described by f2, A2 and c2 we take a scaled step to get

back into the feasible region. At this new point, the primal-dual potential is:

φnew := 〈c1, x1 + α∆x〉1 + 〈c2, αβ〉2 + f1(x1 + α∆x) + f2(αβ)

+ f ∗
1 (s1 + α∆s) + f ∗

2 (αγ).
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Using equation (3.33) the new potential can be written as

φnew = φ1 + θf2 ln
θf2

α2
− θf2 + α(〈c1,∆x〉1 + 〈c2, β〉2) + F, (3.34)

with

F = f1(x1 + α∆x) − f1(x1) + f ∗
1 (s1 + α∆s) − f ∗

1 (s1). (3.35)

Because the cuts are central: A∗
2y1 = c2, hence

〈β, c2〉2 = 〈A2β, y1〉Y = −〈A1∆x, y1〉Y = −〈∆x,A∗
1y1〉1.

Therefore,

〈c1,∆x〉1 + 〈c2, β〉2 = 〈c1 − A∗
1y1,∆x〉1 = 〈s1,∆x〉1.

So, finally:

φnew = φ1 + α〈s1,∆x〉1 + θf2 ln
θf2

α2
− θf2 + F.

Now let’s evaluate F +α〈s1,∆x〉1. Let’s start with α〈s1,∆x〉1 + f1(x1 +α∆x)−
f1(x1). Note that the recovery step is scaled by α < (1 − θ√

θf
)ζ so we can use the

inequality (2.8):

α〈s1,∆x〉1 + f1(x1 + α∆x) − f1(x1)

≤ α〈s1,∆x〉1 + α〈g1(x1),∆x〉1 +
1

2
‖α∆x‖2

x +
‖α∆x‖3

x

3(1 − ‖α∆x‖x)
.

Now:

〈s1 + g1(x1),∆x〉1 = 〈s1 + g1(x1), H1(x1)
− 1

2H1(x1)
1
2 ∆x〉1
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≤ ‖H1(x1)
− 1

2 (s1 + g1(x1))‖1‖∆x‖x1

= ‖s1 + g1(x1)‖H1(x1)−1‖∆x‖x1

= ‖s1 + g1(x1)‖−g1(x1)‖∆x‖x1

≤ θ‖∆x‖x1 .

Here, we used Lemma 6 and the fact that H(x)−1 = H(−g(x)) (see Theorem 5).

So:

α〈s1,∆x〉1 + f1(x1 + α∆x) − f1(x1) ≤
≤ θ‖α∆x‖x1 +

1

2
‖α∆x‖2

x1
+

‖α∆x‖3
x1

3(1 − ‖α∆x‖x1)
.

Next we use the fact that the function θx+ 1
2
x2 + x3

3(1−x)
is increasing on the open

interval (0, 1) and the recovery step is scaled to satisfy ‖α∆x‖x1 ≤ ζ < 1. This

implies that

α〈s1,∆x〉1 + f1(x1 + α∆x) − f1(x1) ≤ θζ +
1

2
ζ2 +

ζ3

3(1 − ζ)
. (3.36)

Now let’s consider the second part of F : f ∗
1 (s1 + α∆s) − f ∗

1 (s1).

Because ‖α∆s‖s1 < ζ < 1 we can use again inequality (2.8). So:

f ∗
1 (s1 + α∆s) − f ∗

1 (s1) ≤ 〈g1(s1), α∆s〉1 +
1

2
‖α∆s‖2

s1
+

‖α∆s‖3
s1

3(1 − ‖α∆s‖s1)
.

Aside:

Because x1 is in the nullspace of A1 and ∆s is in the range of A∗
1,

〈x1,∆s〉1 = 0.

So

〈g1(s1),∆s〉1 = 〈x1 + g1(s1),∆s〉1
= 〈H1(s1)

− 1
2 (x1 + g1(s1)), H1(s1)

1
2 ∆s〉1

≤ ‖H1(s1)
− 1

2 (x1 + g1(s1))‖1‖H1(s1)
1
2 ∆s‖1
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= ‖x1 + g1(s1)‖H1(s1)−1‖∆s‖s1

= ‖x1 + g1(s1)‖−g1(s1)‖∆s‖s1 ≤ θ‖∆s‖s1 .

So, using Lemma 6 and the fact that ‖α∆s‖s1 ≤ ζ < 1,

f ∗
1 (s1 + α∆s) − f ∗

1 (s1) ≤ θ‖α∆s‖s1 +
1

2
‖α∆s‖2

s1
+

‖α∆s‖3
s1

3(1 − ‖α∆s‖s1)

≤ θζ +
1

2
ζ2 +

ζ3

3(1 − ζ)
. (3.37)

Using inequalities (3.36) and (3.37) we get:

φnew ≤ φ1 + θf2 ln
θf2

α2
− θf2 + 2θζ + ζ2 +

2ζ3

3(1 − ζ)
.

Theorem 8 Let (x, y, s) be a θ - analytic center corresponding to an instance of

the algorithm described by the functional f , the linear operator A and the vector c.

Then,

φPD(x, s) := 〈c, x〉 + f(x) + f ∗(s) ≤ θ3

3(1 − θ)
+
θ2

2
. (3.38)

Proof: Because (x, y, s) is a θ - analytic center we can use Lemma 6 to get

‖x+ g(s)‖−g(s) ≤ θ.

This inequality implies, using (2.2), that x ∈ B−g(s)(−g(s), θ). Because θ < 1 we

can use Theorem 3 to get:

∣∣∣∣f(x) − f(−g(s)) + 〈−g(−g(s)), x+ g(s)〉 − 1

2
G(x, s)2

∣∣∣∣ ≤ G(x, s)3

3 (1 −G(x, s))
.

where G(x, s) = ‖x+ g(s)‖−g(s).

Because f is an intrinsically self-conjugate barrier functional we have:

f ∗(s) = 〈g(s), s〉 − f(−g(s)) and − g(−g(s)) = s.
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Using these equalities together with the fact that 〈x, s〉 = 〈c, x〉 we can write:

f(x) + f ∗(s) + 〈c, x〉 ≤ 1

2
G(x, s)2 +

G(x, s)3

3(1 −G(x, s))
.

The functional G(x, s) is bounded above by θ. Using this together with the

fact that the function 1
2
x2 + x3

3(1−x)
is increasing for 0 < x < 1, we get the desired

conclusion:

〈c, x〉 + f(x) + f ∗(s) ≤ θ3

3(1 − θ)
+
θ2

2
.

Now we are ready to compare the value of the dual - potential functionals f ∗ at

two consecutive analytic centers.

Let’s consider Ω and Ω̃ to be two consecutive outer-approximations of Γ. These

two sets correspond to two instances of the algorithm described by (f,X,K,A, c)

and (f̃ , X̃, K̃, Ã, c̃). The second instance is obtained from the first one by adding

central cuts through the θ - analytic center of Ω. Let these cuts be described by:

(f̂ , X̂, K̂, Â, ĉ). So f̃ = f ⊕ f̂ , X̃ = X ⊕ X̂ and so on. Let (xc
θ, y

c
θ, s

c
θ) be the θ -

analytic center for f . After adding the cuts right through (xc
θ, y

c
θ, s

c
θ) a scaled step is

taken to recover feasibility. Let (x(α), y(α), s(α)) be the point right after this step

is taken so

x(α) = (xc
θ + α∆x) ⊕ (αβ),

y(α) = yc
θ + α∆y,

s(α) = (sc
θ + α∆s) ⊕ (αγ).

Using all these notations we are ready to prove the following theorem, which gives

a bound for the change in the barrier functional evaluated at two consecutive exact

analytic centers.

Theorem 9 Let (xc, yc, sc) and (x̃c, ỹc, s̃c) be two consecutive analytic centers for



47

the domains Ω and Ω̃. Then,

f̃ ∗(s̃c) ≥ f ∗(sc) − f̂(αβ) − θζ − 1

2
ζ2 − ζ3

3(1 − ζ)
− θ3

3(1 − θ)
− 1

2
θ2. (3.39)

Proof: Because (x̃c, ỹc, s̃c) is an exact analytic center for f̃ , x̃c minimizes the

value of f̃(x) + 〈x, c̃〉

f̃(x̃c) ≤ f̃(x(α)) + 〈x(α), c̃〉 − 〈x̃c, c̃〉. (3.40)

Lemma 11 gives a connection between the values of f̃(x̃c) and f̃ ∗(s̃c):

f̃(x̃c) + f̃ ∗(s̃c) = −θf̃ .

Now let’s analyze 〈x̃c, c̃〉:

〈x̃c, c̃〉 = 〈x̃c, Ã∗ỹc + s̃c〉 = 〈x̃c, s̃c〉 = 〈x̃c,−g̃(x̃c)〉 = θf̃ .

We can rewrite inequality (3.40) as:

f̃ ∗(s̃c) ≥ −f(xc
θ + α∆x) − f̂(αβ) − 〈xc

θ + α∆x, c〉 − 〈αβ, ĉ〉.

We can use now the bound on f(xc
θ +α∆x) given by the inequality (3.36). Before

doing this let’s notice that:

〈ĉ, β〉 =
〈
Â∗yc

θ, β
〉

=
〈
yc

θ, Âβ
〉

= −〈yc
θ, A∆x〉 =

= −〈A∗yc
θ,∆x〉 = 〈sc

θ,∆x〉 − 〈c,∆x〉 .

So

f̃ ∗(s̃c) ≥ −f(xc
θ) − f̂(αβ) − 〈xc

θ, c〉 − θζ − 1

2
ζ2 − ζ3

3(1 − ζ)
.
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In order to get the desired result we have to use Theorem 8 and use the fact that

f ∗(sc
θ) ≥ f ∗(sc) (this is because (xc, yc, sc) is an exact analytic center).

The step required to move the point back in the feasible region after the cuts are

added depends upon the vector β. This vector is the solution to the minimization

problem (3.17). So, using the fact that 〈β, V β〉 = 1 (from equation (3.20)),

f̂(β) ≤ f̂(β′) +
θf̂

2
〈β′, V β′〉 − θf̂

2
, for any β′ ∈ K̂ (3.41)

with V given by:

V = Â∗(AH(s1)A
∗)−1Â. (3.42)

Taking in account all these observations, the fact that f̂ is logarithmically homo-

geneous and α < 1, the previous theorem can be restated as:

f̃ ∗(s̃c) ≥ f ∗(sc) − f̂(β′) − θf̂

2
〈β′, V β′〉 +

θf̂

2
+ θf̂ lnα−F(θ, ζ) (3.43)

with

F(θ, ζ) = θζ +
1

2
ζ2 +

ζ3

3(1 − ζ)
+

θ3

3(1 − θ)
+

1

2
θ2 (3.44)

for any β′ ∈ K̂.

3.5 Complexity on Recovering the θ - Analytic Center

After the current point is moved back in the feasible region obtained from the

old one by adding central cuts, a sequence of steps is required to get in the vicinity

of the analytic center of the new domain. One way of obtaining such a point is to

take some Newton steps. In this section we will prove that one way to achieve this

is to use two different sequences of steps. We will use potential functionals in this

analysis.
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At the beginning, when the point is still far away from the analytic center, the

directions used are the Nesterov-Todd directions. These directions where first used

in interior-point algorithms in linear programming. Nesterov and Todd generalized

them later for the general case of conic programming (see [6], [11] for more details).

These directions will ensure that the primal-dual potential decreases by a fixed

amount at each iteration. Once close enough to the analytic center, a different

sequence of steps will bring the point to an θ - analytic center.

As before, let the primal-dual potential functional be:

Φ(x, s) := 〈x, s〉 + f(x) + f ∗(s).

Before defining the Nesterov-Todd direction we will introduce some notations. Let

L denote the null space of A (the surjective operator defining the feasible region) and

L⊥ the corresponding orthogonal space. Let PL,v(u) be the orthogonal projection of

u onto L in the local inner product induced by v.

Let (x, y, s) be the current point with w the corresponding scaling point for the

ordered pair (x, s) (i.e. H(w)x = s). Such a point is uniquely defined by x and

s. Similarly we take w∗ to be the scaling point for the ordered pair (s, x) (i.e.

H(w∗)s = x).

With these notations, the primal and dual Nesterov-Todd directions are given

by:

dx := −PL,w(x+ gw(x)), (3.45)

ds := −PL⊥,w∗(s+ gw∗(s)). (3.46)

Note here that if we use the inner products induced by x and s instead of the

ones induced by w and w∗, the Nesterov-Todd directions become the usual Newton

directions.

One important property of these directions is that they provide an orthogonal

decomposition w.r.t. 〈·, ·〉w for −(x+ gw(x)) ( see [18] ) :
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dx +H(w)−1ds = −(x+ gw(x)). (3.47)

Using the local inner product induced by w we define for all x̃, s̃ ∈ int(K):

Φw(x̃, s̃) = 〈x̃, s̃〉w + f(x̃) + f ∗(s̃). (3.48)

Our goal is to prove that by taking a scaled Nesterov-Todd step, the primal-dual

potential functional decreases by a constant value. We will use

φ(t) := Φ(x+ tdx, s+ tds) (3.49)

to find the scaling parameter t that minimizes the primal-dual potential.

Let’s define:

φ̆w(t) := Φw(x+ td̆x, x+ tH(w)−1d̆s), (3.50)

φ̆(t) := Φ(x+ td̆x, x+ td̆s) (3.51)

with d̆x, d̆s, the scaled vectors:

(d̆x, d̆s) :=
1

‖Hw(x)‖
1
2
w‖x+ gw(x)‖w

(dx, ds) (3.52)

Using the fact that f ∗(s) = f(s) − (θf + 2f(e)) (as given in Lemma 3) we can

write:

Φw(x̃, H(w)−1s̃) = 〈x̃, H(w)−1s̃〉w + f(x̃) + f(H(w)−1s̃) − θf − 2f(e). (3.53)

Now for any x,w ∈ K, f(H(w)x) = f(x) + 2(f(w) − f(e)) (see [18], formula

(3.34)) so

f(s̃) = f(H(w)(H(w)−1s̃)) = f(H(w)−1s̃) + 2f(w) − 2f(e).
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Combining all the previous expressions we conclude that:

Φw(x̃, H(w)−1s̃) = Φ(x̃, s̃) + 2f(e) − 2f(w). (3.54)

Now:

φ̆w(t) := Φw(x+ td̆x, x+ tH(w)−1d̆s)

= Φw(x+ td̆x, H(w)−1(H(w)x+ td̆s))

= Φw(x+ td̆x, H(w)−1(s+ td̆s))

= Φ(x+ td̆x, s+ td̆s) + 2f(e) − 2f(w)

= φ̆(t) + 2f(e) − 2f(w).

Using the approach from [18], let’s denote:

ψ1(t) := 〈x+ td̆x, x+ tH(w)−1d̆s〉w, (3.55)

ψ2(t) := f(x+ td̆x), (3.56)

ψ3(t) := f(x+ tH(w)−1d̆s) − θf − 2f(e). (3.57)

(3.58)

With these notations:

φ̆w(t) = ψ1(t) + ψ2(t) + ψ3(t). (3.59)

Because 〈d̆x, H(w)−1d̆s〉w = 0, the first functional ψ1(t) can be written as

ψ1(t) = ψ1(0) + t〈x, d̆x +H(w)−1d̆s〉w
= ψ1(0) − t

〈x, x+ gw(x)〉w
‖Hw(x)‖

1
2
w‖x+ gw(x)‖w

.

Renegar proved in [18] that:

ψ2(t) ≤ ψ2(0) + t〈gw(x), d̆x〉w +
t2

1 − t
, (3.60)
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ψ3(t) ≤ ψ3(0) + t〈gw(x), H(w)−1d̆s〉w +
t2

1 − t
. (3.61)

Using all these relations we can relate φ̆w(t) and φ̆w(0):

φ̆w(t) ≤ φ̆w(0) − t
‖x+ gw(x)‖w

‖Hw(x)‖
1
2
w

+
2t2

1 − t
. (3.62)

Then, immediately:

φ̆(t) ≤ φ̆(0) − t
‖x+ gw(x)‖w

‖Hw(x)‖
1
2
w

+
2t2

1 − t
.

or

Φ(x+ td̆x, s+ td̆s) ≤ Φ(x, s) − t
‖x+ gw(x)‖w

‖Hw(x)‖
1
2
w

+
2t2

1 − t
.

Next we will introduce a theorem from [18]:

Theorem 10 Let K be a self-scaled cone. If x,w ∈ int(K) then:

‖x+ gw(x)‖w ≥ max{‖Hw(x)
1
2‖w, ‖Hw(x)−

1
2‖w}min{1

5
,
4

5
‖x− w‖w}. (3.63)

We are ready now to prove the following theorem:

Theorem 11 If ‖x− w‖w ≥ 1
4

then:

Φ(x+ td̆x, s+ td̆s) ≤ Φ(x, s) − 1

250
. (3.64)

Proof: The proof is based on the previous analysis and the fact that

min
0<t<1

(
2t2

1 − t
− t

5
) <

1

250
.

We know that, if (x, y, s) is the exact analytic center, then x = w. Also, the exact

analytic center is the minimizer for the primal-dual potential functional Φ(x, s).
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Theorem 11 says that, as long the point is sufficiently far away from the exact

analytic center, the primal-dual potential is guaranteed to decrease by a constant

quantity.

Because of the assumption made about the problem, the analytic center exists so,

the primal-dual potential functional has a strictly feasible minimizer. This implies

that, after a number of scaled Nesterov-Todd steps for the current point (x, y, s),

‖x− w‖w <
1
4
.

As soon as this happens, we will switch from using Nesterov-Todd steps to a new

kind of step, suggested in [18]:

Dx := 2PL,w(w − x), (3.65)

Ds := 2PL⊥,w∗(w∗ − s), (3.66)

where PL,w is the orthogonal projection onto L (in the local product 〈·, ·〉w).

The key element here is the following theorem:

Theorem 12 If at the current point (x, y, s):

‖x− w‖w < α <
1

4

then at the new point (x+, s+) := (x+Dx, s+Ds):

‖s+ + g(x+)‖−g(x+) < (1 + α)
α2

1 − α
<

1

5
. (3.67)

If w+ is the scaling point for the ordered pair (x+, s+), then:

‖x+ − w+‖w+ <
5α2(1 + α)

4(1 − α)
< 3α2 <

1

5
. (3.68)

Proof:

The proof can be found in [18]. Here we will just sketch the main ideas. Similar

to the Nesterov-Todd directions, Dx, Ds give an orthogonal decomposition for w−x
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(in 〈·, ·〉w):

Dx +H(w)−1Ds = 2(w − x). (3.69)

This immediately implies that

‖w − x+‖w = ‖w − x‖w < α. (3.70)

Renegar proved in [18] that

‖H(w)−1s+ + gw(x+)‖w ≤ ‖x+ − w‖2
w

1 − ‖x+ − w‖w

≤ α2

1 − α
<

1

12
. (3.71)

On the other hand, using Lemma 4 (we have to change the local norm from | · | to

‖ · ‖w):

‖v‖−gw(x+) ≤ (1 + ‖x+ − w‖w)‖v‖w ≤ (1 + α)‖v‖w <
5

4
‖v‖w. (3.72)

Combining all these inequalities, we get:

‖s+ + g(x+)‖−g(x+) = ‖H(w)−1s+ + gw(x+)‖−gw(x+) (3.73)

< (1 + α)
α2

1 − α
<

1

5
. (3.74)

For the second part of the theorem it is enough to use the inequality:

‖s+ g(x)‖−g(x) ≥ min{1

5
,
4

5
‖x− w‖w} (3.75)

that holds for any x, s ∈ int(K) (see [18]).

It is easy to see, using Theorem 12 that, as soon

‖x− w‖w < α <
1

4
, (3.76)

the sequence of points generated by using the new steps will converge exponentially
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to the exact analytic center.

To be more precise, if we take (x0, y0, s0) to be the first point where

‖x− w‖w < α <
1

4
(3.77)

holds, then after k steps, at the point (xk, yk, sk) with the corresponding scaling

point wk, we have:

‖xk − wk‖wk
< 32k−1α2k

. (3.78)

This inequality together with Theorem 12 implies that:

‖xk + g(sk)‖−g(sk) < 5 · 32k+1−3 · α2k+1

. (3.79)

In practical terms, if the parameter θ defining the θ - analytic center is of order

10−10, then we need only 6 such steps to get to a θ - analytic center.

3.6 Implications of the Initial Assumptions

In this section we will derive an upper bound on the value of the dual potential

f ∗
i evaluated at the analytic center of the set Ωi. This bound together with the

fact that the values of the potential functionals keep increasing as the algorithm

proceeds will help us prove that the algorithm will eventually stop with a solution.

Let (xk, yk, sk) be the exact analytic center of Ωk (the outer-approximation set of

Γ after k iterations). This analytic center corresponds to the self-concordant barrier

functional f := f0 ⊕ f1 ⊕ f2 ⊕ . . .⊕ fk and the cone K := K0 ⊕K1 ⊕K2 ⊕ . . .⊕Kk

that is in the space X = X0 ⊕ X1 ⊕ . . . ⊕ Xk. Ωk is described by the operator

A := A0 ⊕ A1 ⊕ . . . ⊕ Ak, and the vector c := c0 ⊕ c1 ⊕ . . . ⊕ ck. Our initial

assumption that Γ contains a closed ball of radius ε implies that:

M := {y ∈ Y : y ∈ Ωk, BY (y, ε) ⊂ Ωk} �= ∅.

Because (xk, yk, sk) is the analytic center of Ωk, s
k = c − A∗yk is the minimizer
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of f ∗ over the set of all feasible points. Then,

f ∗(sk) ≤ f ∗(s),∀s ∈ Ms := {s : s = c− A∗y with y ∈ M}.

Lemma 16 Let s be an arbitrary point in the set Ms, with si ∈ Ki, the correspond-

ing components. Then the distance (measured using the local inner product) from si

to the boundary of the cone Ki, for i ≥ 1, satisfies:

d(si, ∂Ki) ≥ ε
√
λmin(A∗

iAi). (3.80)

Here λmin(A
∗
iAi) is the minimum eigenvalue of A∗

iAi.

For the initial case i = 0:

d(s0, ∂K0) ≥
√

2ε. (3.81)

Proof: Let s ∈ Ms with the corresponding y ∈ M (s = c− A∗y ). So:

y + εu ∈ Ωk,∀u ∈ Y, ‖u‖Y = 1. (3.82)

The point s is strictly interior to the cone K. This implies that each of its compo-

nents si is strictly interior to its corresponding cone Ki.

Then

∃sε ∈ Ki such that A∗
i (y + εu) + sε = ci. (3.83)

At the same time:

si := ci − A∗
i y ∈ Ki.

Using the last two relations we conclude that:

sε = si − εA∗
iu is feasible ,∀u ∈ Y, ||u||Y = 1.
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Our goal is to get an estimate for the distance between si and the boundary of

Ki. Two cases arise, one for i = 0 and one for i ≥ 1. The difference between this

two cases is that Ai is injective only for i ≥ 1. However, for i = 0 the operator A0

is the ⊕ - sum of two bijective operators I and −I. So, this case can be treated the

same way as the general case if we are using the components of A0.

Now let’s consider the case i ≥ 1. Let v be a vector parallel to the direction which

projects si onto ∂Ki. The operator A∗
i is surjective so there exists a vector u ∈ Y ,

with ‖u‖Y = 1 such that A∗
iu is parallel to v (for the case when dim(Xi) = 1, this

means A∗
iu �= 0). We observe here that we can take u to be a vector in the range of

Ai (because any component of u from Ker(A∗
i ) will have no contribution to A∗

iu).

The size of A∗
iu gives a lower bound for the distance from si to ∂Ki.

A lower bound for the size of ‖A∗
iu‖ is given by the solution to the next problem:

min ‖A∗
iu||

such that u ∈ Range(Ai),

‖u‖Y = 1.

We can reformulate this problem as:

min ‖A∗
iAiv||

such that ‖Aiv‖Y = 1,

v ∈ Xi.

The operator A∗
iAi : Xi → Xi is positive definite (this is because of our assump-

tion that A∗
i is surjective which implies that Ai is injective hence Ker(Ai) = {0}).

Let {v1, v2, . . . , vpi
} be an orthogonal basis formed by eigenvectors of A∗

iAi with

the corresponding eigenvalues λi. Any vector v ∈ Xi can be written as:

v =
pi∑

j=1

αjvj.
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Using this decomposition:

‖Aiv‖2
Y =

pi∑
j=1

α2
jλj = 1 (3.84)

and

‖A∗
iAiv‖2 =

pi∑
j+1

α2
jλ

2
j . (3.85)

Let λmin be the minimum eigenvalue of A∗
iAi. Then, the equalities (3.84) and

(3.85) imply:

‖A∗
iAiv‖2 =

pi∑
j+1

α2
jλ

2
j ≥ λmin

pi∑
j=1

α2
jλj = λmin.

Now we can conclude that:

min{‖A∗
iu‖ : ‖u‖Y = 1 and u ∈ Range(Ai)} ≥

√
λmin.

So, the distance from si to the boundary of the cone Ki is greater than or equal

to ε
√
λmin:

d(si, ∂Ki) ≥ ε
√
λmin(A∗

iAi).

Next we will analyze the implications of the assumption we made that fi(σi) = 0

where σi is a vector of norm
√
pi described by σi =

√
pi

θi
ei, ei being the vector in Xi

that induces the scaled inner product.

Lemma 17 Let σi ∈ ∂B(0,
√

dim(Xi)) ∩ Ki be the point where fi(σi) = 0. Then

f ∗
i (σi) = θi(ln

θi

pi
− 1), for all i ≥ 0 (we take here p0 = 2m).

Proof: If we use Lemma 3 together with fi(σi) = 0:

f ∗
i (σi) = fi(σi) − θi − 2fi(ei) = −θi − 2fi(ei).
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The functional fi is logarithmically homogeneous and ei =
√

θi

pi
σi. So

fi(ei) = fi(σi) − θi

2
ln
θi

pi

= −θi

2
ln
θi

pi

.

The conclusion follows immediately.

Lemma 18 At any instance k of the algorithm described by the Hilbert space X

with the corresponding cone K and barrier functional f there exists a point x ∈
∂B(0,

√
dim(X)) ∩K such that f(x) = 0.

Proof: Let x ∈ X be the vector with components xi = σi, for i ≥ 0. Clearly,

x ∈ K. Also f(x) = f0(σ0) + f1(σ1) + . . . + fk(σk). Then, immediately we can see

that f(x) = 0.

Because ‖x‖2 =
k∑

i=0
‖σi‖2

i =
k∑

i=0
dim(Xi), it follows that x ∈ ∂B(0,

√
dim(X)).

Now we can prove the main result of this section:

Theorem 13 At any instance k of the algorithm described by the space X, the cone

K and the functional f (where X := X0 ⊕X1 ⊕ . . .⊕Xk, K := K0 ⊕K1 ⊕ . . .⊕Kk

and f ∗(s) =
k∑

i=0
f ∗

i (si), si ∈ Ki), for all s̄ ∈ Ms,

f ∗(s̄) ≤
k∑

i=0

θfi
ln
θfi

εi

where εi = ε
√
λmin(A∗

iAi) for i ≥ 1 and ε0 = ε
√

2. In particular, if sAC is the

analytic center,

f ∗(sAC) ≤
k∑

i=0

θfi
ln
θfi

εi

.

Proof: Let s̄ be a point in K such that the distance from ȳ to the boundary of

Ωk is greater than or equal to ε (i.e. BY (ȳ, ε) ⊂ Ωk ). We have:

f ∗(s̄) =
k∑

i=0

f ∗
i (s̄i),
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where s̄i are the components of s̄ from Ki, s̄i ∈ Ki.

Using Lemma 16 we get Bi(s̄i, εi) ⊂ Ki.

For each fi we know that there exists a point σi ∈ Ki ∩ ∂Bi(0,
√
pi) such that

fi(σi) = 0. It is easy to see that the point εi√
pi
σi ∈ Ki ∩ Bi(0, εi). Using Lemma 1,

Lemma 17 and the fact that the functional f ∗
i is logarithmically homogeneous we

have:

f ∗
i (s̄i) ≤ f ∗

i (
εi√
pi

σi) = f ∗
i (σi) − θfi

ln
εi√
pi

= θfi
ln

θfi

εi
√
pi

− θfi
≤ θfi

ln
θfi

εi

.

So

f ∗(s̄) ≤
k∑

i=0

θfi
ln
θfi

εi

.

The last statement of the theorem is immediate because sAC is the analytic cen-

ter, hence it minimizes f ∗ over Ms.

Corollary 2 Let Λ := min
i=1,...,k

√
λmin(A∗

iAi). Then:

f ∗(sAC) ≤
k∑

i=1

θfi
ln
θfi

εΛ
+ θf0 ln

θf0

ε
√

2
. (3.86)

3.7 Complexity Analysis

In this section we will derive an upper bound for the number of cuts that may

be added to the problem before we are guaranteed to have a solution.

First we start by getting a lower bound for the minimum eigenvalue of the Hessian

of any potential functional evaluated at any feasible point.

Let s̄ ∈ int(K) be any strictly feasible point for the k-th iteration of the algorithm.

At this stage, the dual potential is given by

f ∗(s) := f ∗
0 (s0) + f ∗

1 (s1) + f ∗
2 (s2) + . . .+ f ∗

k (sk)

where s = s0 ⊕ s1 ⊕ s2 ⊕ . . .⊕ sk, with si ∈ Ki, i = 0, . . . , k.
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H(s̄), the Hessian of the barrier functional f ∗, has a block diagonal matrix repre-

sentation, each block corresponding to a Hessian Hi(s̄i). Because of this structure,

the minimum eigenvalue of H(s̄) is equal to the minimum of all eigenvalues of Hi(s̄i),

i = 0, . . . , k.

Now let’s consider the Hessian Hi(s̄i), s̄i ∈ int(Ki). The norm used is the one

induced by a vector ei ∈ Ki. In this norm ‖ei‖ =
√
θfi

(see (2.15)). Moreover, the

distance (measured in the norm induced by ei) from ei to the boundary of the cone

Ki is greater than or equal to 1. Let

d = max{‖z‖ : z ∈ ∂Ki ∩ (s̄i −Ki)},

s̄i is strictly interior to Ki so d �= 0. We define s̄d := 1
d
s̄i.

The next lemma will give a description for the position of s̄d in the cone Ki.

Lemma 19 s̄d ∈ K := {int(Ki) ∩ (ei −Ki)}.

Proof: Suppose s̄d /∈ K. Then, because the origin is on the boundary of the

convex set K, the line containing both s̄d and the origin intersects the boundary of

ei −Ki in a unique point se, with ‖se‖ < ‖s̄d‖. Let P be the plane determined by ei

and s̄d together with the origin. Then P ∩Ki={OA,OB}, with OA and OB being

two rays of the cone Ki (see Fig. 3.1). Take OA and OB such that ei is in the angle

determined by OA and Os̄d. Next:

C1 = OA ∩ ∂(s̄d −Ki),

C2 = OB ∩ ∂(s̄d −Ki),

D1 = OA ∩ ∂(ei −Ki),

D2 = OB ∩ ∂(ei −Ki).

With these notations we have:

1 ≥ ‖OC2‖ > ‖OD2‖ = ‖D1ei‖ ≥ d(ei, AO) ≥ 1. (3.87)

So we arrived at a contradiction. This means that s̄d ∈ K − ∂Ki.



62

Note here that

‖s̄d‖2 = ‖OC1‖2 + ‖OC2‖2 + 2〈OC1, OC2〉 ≥ ‖OC1‖2. (3.88)

This inequality holds for any point C1 ∈ Ki ∩ ∂(s̄d − Ki). Hence ‖s̄d‖ ≥ 1. This

implies that ‖s̄i‖ ≥ d.

Now, as already proved in Lemma 5, any point z ∈ K has the property that

|z − ei| < 1. For such a point Corollary 1 shows that the minimum eigenvalue of

Hi(z) is greater than 1
4
. So:

λmin(Hi(s̄d)) >
1

4
. (3.89)

Next:

λmin(Hi(s̄d)) = λmin(Hi(
1

d
s̄i)) = d2λmin(Hi(s̄i)) >

1

4
.

So:

λmin(Hi(s̄i)) >
1

4d2
≥ 1

4‖s̄i‖2
. (3.90)

In order to get a lower bound for the minimum eigenvalue of Hi(s̄i) we need to find

an upper bound for ‖s̄i‖.

Because s̄ is feasible, we have that A∗ȳ + s̄ = c, for some ȳ ∈ Ωk. Here A =

A0 ⊕A1 ⊕A2 ⊕ . . .⊕Ak and c = c0 ⊕ c1 ⊕ c2 ⊕ . . .⊕ ck. So, componentwise, for each

i = 0, . . . , k, s̄i = ci − A∗
i ȳ.

Two different cases arise: one corresponding to i = 0 (this is right at the begin-

ning, before adding any cuts to the initial set Ω0) and one corresponding to i > 0.

Let’s consider the second case. In this case there exists at least one previous θ -

analytic center. Let’s denote it (xp, yp, sp). The cuts added through this point have

the property: A∗
i yp = ci. We mention here one more time that the inner product
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Figure 3.1: Position of s̄d relative to K.

used is the local one induced by ei ∈ Ki for which ‖Hi(ei)
−1‖ = 1. The norm of Ai

in the original inner product is one so

‖s̄i‖2
ei

= ‖A∗
ei
ȳ − A∗

ei
yp‖2

ei
≤ ‖Hi(ei)

−1‖‖A∗
i ‖2‖ȳ − yp‖2 = ‖ȳ − yp‖2.

In the above sequence of inequalities, the index ei is for the norms induced by the

local inner product. If the index ei is missing, then the inner product used is the

original one.
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This implies:

‖s̄i‖ei
≤ ‖ȳ − yp‖. (3.91)

Now, both yp and ȳ are in Ωi which is a subset of the initial set Ω0. The next

lemma will give a bound for the size of any point y ∈ Ω0.

Lemma 20 Let Ω0 := {y ∈ Y : y + s1 = c̃0,−y + s2 = c̃0 with c̃0, s1, s2 ∈ K̃0}.
Then ‖y‖ ≤ ‖c̃0‖ for any y ∈ Ω0.

Proof: The proof is rather immediate. If we take the square of the equalities

defining Ω0,

‖c̃0‖2 = ‖y‖2 + ‖s1‖2 + 2〈y, s1〉,
‖c̃0‖2 = ‖y‖2 + ‖s2‖2 − 2〈y, s2〉.

This implies

2‖c̃0‖2 = 2‖y‖2 + ‖s1‖2 + ‖s2‖2 + 2〈y, s1 − s2〉. (3.92)

Because K̃0 is a self-scaled cone, and s1, s2 ∈ K̃0, their inner product is positive:

〈s1, s2〉 ≥ 0.

Using this observation together with the fact that s1 + s2 = 2c̃0, we get a bound on

the sum of norms of s1 and s2:

‖s1‖2 + ‖s2‖2 ≤ 4‖c̃0‖2.

Using this inequality and the fact that s1 − s2 = −2y the conclusion follows imme-

diately:

‖y‖ ≤ ‖c̃0‖.
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Using the previous lemma and (3.91) we finally get:

‖s̄i‖ ≤ 2‖c̃0‖ for any i > 0.

For the case i = 0 we have that s̄0 ∈ K0 := K̃0 ⊕ K̃0. So we can decompose s̄0 in

two parts: s1 and s2, both elements in K̃0. For s̄0 there exists y ∈ Ω0 such that:

y + s1 = c̃0,

−y + s2 = c̃0.

We know that s1, s2, c̃0 ∈ K̃0, with K̃0 a self-conjugate cone. Using this and the

fact that s1 + s2 = 2c̃0 it follows that

‖s̄0‖2 = ‖s1‖2 + ‖s2‖2 ≤ 4‖c̃0‖2. (3.93)

Hence,

‖s̄0‖ ≤ 2‖c̃0‖.

It follows from inequality (3.90) that the smallest eigenvalue of the Hessian can

be bounded away from zero.

Lemma 21 For any strictly feasible point s̄ ∈ K:

λmin(H(s̄)) ≥ 1

16‖c̃0‖2
. (3.94)

Now we are ready to get an estimate for the number of cuts required to be added

in order to find an interior point in Γ.

Before this we will reintroduce some notations.

Let (Xi, 〈·, ·〉i), Ki, Ai and fi, i = 0, . . . , k, be the elements that describe the

initial instance of the algorithm and the cuts that are added during the first k -

iterations of the algorithm. Let X̄i =
i⊕

j=0
Xj, K̄i =

i⊕
j=0

Kj, Āi =
i⊕

j=0
Aj, f̄i =

i⊕
j=0

fj

be the elements that describe the instance of the algorithm after adding the i-th cut.
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Let s̄i and sθ
i be the exact analytic center and a θ - analytic center of the domain

Ωi respectively.

After i iterations of the algorithm, using formula (3.43) we get:

f̄ ∗
i (s̄i) ≥ f̄ ∗

i−1(s̄i−1) − fi(β
′
i) −

θfi

2
(〈β′

i, Viβ
′
i〉i − 1) + θfi

lnα−F(θ, ζ), (3.95)

where Vi = A∗
i (Āi−1H̄i−1(s̄i−1)Ā

∗
i−1)

−1Ai, β
′
i is any point in the interior of Ki and

F(θ, ζ) is given in (3.44).

One of the assumptions we made about the functionals fi was that, for each of

them, there exists a point σi ∈ Ki (σi :=
√

pi

θi
ei)with norm equal to

√
pi such that

fi(σi) = 0.

Now, in each space Xi we can choose an orthonormal basis {ei
j}j=1,...,pi

such that

σi =
pi∑

j=1

ei
j, (3.96)

To do this it is enough to pick an orthonormal basis and then rotate it until
pi∑

j=1
ei

j

overlaps with σi. It is clear that ‖σi‖i =
√
pi, for any i ≥ 0.

Notice here that unlike βi (the exact solution for problem (3.17)) for which both

βi and Viβi have to be in Ki, the only requirement for β′
i is to be an element from

Ki. This gives us more choices for picking a suitable vector.

Now we can choose β′
i to be:

β′
i =

ei√
〈ei, Viei〉i

. (3.97)

Clearly 〈β′
i, Viβ

′
i〉i − 1 = 0. Moreover, using the fact that fi is logarithmically

homogeneous:

fi(β
′
i) = fi(σi) +

θfi

2
ln〈σi, Viσi〉i =

θfi

2
ln〈σi, Viσi〉i. (3.98)

The inequality (3.95) can be further simplified to:
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f̄ ∗
i (s̄i) ≥ f̄ ∗

i−1(s̄i−1) − θfi

2
ln〈σi, Viσi〉i + θfi

lnα−F(θ, ζ). (3.99)

Let’s consider now 〈σi, Viσi〉i:

〈σi, Viσi〉i =
pi∑

j=1

pi∑
l=1

〈ei
j, Vie

i
l〉i =

pi∑
j=1

pi∑
l=1

〈ei
j, e

i
l〉Vi

≤
pi∑

j=1

pi∑
l=1

‖ei
j‖Vi

‖ei
l‖Vi

. (3.100)

Using the mean inequality:

〈σi, Viσi〉i ≤
pi∑

j=1

pi∑
l=1

‖ei
j‖2

Vi
+ ‖ei

l‖2
Vi

2
= pi

pi∑
j=1

‖ei
j‖2

Vi
. (3.101)

So:

f̄ ∗
i (s̄i) ≥ f̄ ∗

i−1(s̄i−1) − θfi

2
ln(pi

pi∑
j=1

‖ei
j‖2

Vi
) + θfi

lnα−F(θ, ζ). (3.102)

This inequality gives a relationship between the dual potential functionals eval-

uated at two consecutive exact analytic centers. A direct relationship between the

potential at the initial analytic center s̄0 and the potential at the k-th analytic cen-

ter s̄k can be easily obtained by taking the sum of the previous inequalities from

i = 1 to i = k:

f̄ ∗
k (s̄k) ≥ f̄ ∗

0 (s̄0) −
k∑

i=1

(
θfi

2
ln(pi

pi∑
j=1

‖ei
j‖2

Vi
)) + lnα

k∑
i=1

θfi
− kF(θ, ζ). (3.103)

Let P = max
i=1,...,k

pi (i.e. at each stage we do not add more than P cuts). Then:

f̄ ∗
k (s̄k) ≥ f̄ ∗

0 (s̄0) − 1

2
(lnP − lnα2)

k∑
i=1

θfi
−

k∑
i=1

(
θfi

2
ln

pi∑
j=1

‖ei
j‖2

Vi
) − kF(θ, ζ).(3.104)

We can simplify this inequality by using the concavity of the logarithm function

together with the fact that θfi
≥ 1:
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f̄ ∗
k (s̄k) ≥ f̄ ∗

0 (s̄0) − 1

2
(lnP − lnα2)

k∑
i=1

θfi
−

k∑
l=1

θfl

2
ln

k∑
i=1

(θfi

pi∑
j=1

‖ei
j‖2

Vi
)

k∑
t=1

θft

− kF(θ, ζ).

For any i: θfi
≥ 1. So

k∑
i=1

pi ≤ P
k∑

i=1
θfi
. Let Θ := max

i=1,...,k
θfi

. Then:

f̄ ∗
k (s̄k) ≥ f̄ ∗

0 (s̄0) − 1

2
(lnP − lnα2)

k∑
i=1

θfi
−

k∑
l=1

θfl

2
lnPΘ

k∑
i=1

(
pi∑

j=1
‖ei

j‖2
Vi

)

k∑
t=1

pt

− kF(θ, ζ).

So:

f̄∗
k (s̄k) ≥ f̄ ∗

0 (s̄0) −
k∑

l=1
θfl

2
(2 lnP + ln

Θ

α2
+ ln

k∑
i=1

(
pi∑

j=1
‖ei

j‖2
Vi

)

k∑
t=1

pt

) − kF(θ, ζ). (3.105)

By taking arbitrarily θ ≤ 0.9 and ζ ≤ 0.9, the value of F(θ, ζ) can be made

smaller than 6.5. Then, for this choice of θ and ζ, kF(θ, ζ) ≤ 7k ≤ 7
k∑

l=1
θfl

.

So:

f̄ ∗
k (s̄k) ≥ f̄ ∗

0 (s̄0) −
k∑

l=1
θfl

2
(2 lnP + 14 + ln

Θ

α2
+ ln

k∑
i=1

(
pi∑

j=1
‖ei

j‖2
Vi

)

k∑
t=1

pt

). (3.106)

Now we have to get an estimate for:
k∑

i=1
(

pi∑
j=1

‖ei
j‖2

Vi
). We will take the same

approach used by Ye in [25]. Because of the specifics of our problem, we will present

here the entire scheme.

Let C0 := 16‖c̃0‖2. Each term ‖ei
j‖2

Vi
can be bounded from above if we use
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Lemma 21:

‖ei
j‖2

Vi
≤ C0〈ei

j, A
∗
i (Āi−1Ā

∗
i−1)

−1Aie
i
j〉i.

Let Ai be the matrix representation of the operator Ai with respect to the basis

{ei
j}, j = 1, . . . , pi for i = 1, . . . , k. Let A0 be the matrix representation for A0

with respect to an orthonormal basis {e0
j}, j = 1, . . . , 2m of X0. The corresponding

matrix representation for Āi is given by the m × (2m +
k∑

i=1
pi) block matrix Āi =

[A0,A1, . . . ,Ak]. Let ai
j be the j-th column of Ai. Using this notation we have:

k∑
i=1

(
pi∑

j=1

‖ei
j‖2

Vi
) ≤ C0

k∑
i=1

pi∑
j=1

(ai
j

T
(
i−1∑
l=0

AlAT
l )−1ai

j).

Let B0 := A0AT
0 and Bi+1 = Bi + Ai+1AT

i+1, for i ≥ 0.

With this notation:

k∑
i=1

(
pi∑

j=1

‖ei
j‖2

Vi
) ≤ C0

k∑
i=1

pi∑
j=1

(ai
j

T
(Bi−1)

−1ai
j). (3.107)

Lemma 22 Let CB = 1
1+(P+3)‖B−1

0 ‖ . Then

k∑
i=1

(
pi∑

j=1

‖ei
j‖2

Vi
) ≤ 4C0

3CB

(2m ln
tr(B0) +

k∑
i=1

pi

2m
− ln(detB0)). (3.108)

Proof: Notice that: AiAT
i =

pi∑
j=1

ai
ja

i
j
T
. If we denote:

ω2 = ai+1
1

T
(Bi +

pi+1∑
j=2

ai+1
j ai+1

j

T
)−1ai+1

1

then, as shown by Ye in [25],

detBi+1 = det(Bi +
pi+1∑
j=1

ai+1
j ai+1

j

T
) = (1 + ω2) det(Bi +

pi+1∑
j=2

ai+1
j ai+1

j

T
).
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We know from the initial assumptions that ‖Ai‖ = 1 for all i > 0 so:

‖ai+1
j ‖ ≤ ‖Ai+1‖ = ‖Ai+1‖ = 1.

We can rewrite ω2 as:

ω2 = ai+1
1

T
B

− 1
2

i (I +
pi+1∑
j=2

B
− 1

2
i ai+1

j ai+1
j

T
B

− 1
2

i )−1B
− 1

2
i ai+1

1 .

Next, for any y with ‖y‖ = 1:

yT (I +
pi+1∑
j=2

B
− 1

2
i ai+1

j ai+1
j

T
B

− 1
2

i )y = 1 +
pi+1∑
j=2

(yTB
− 1

2
i ai+1

j )2

≤ 1 +
pi+1∑
j=2

‖B− 1
2

i ai+1
j ‖2

= 1 +
pi+1∑
j=2

ai+1
j

T
B−1

i ai+1
j

≤ 1 +
pi+1∑
j=2

ai+1
j

T
B−1

0 ai+1
j

≤ 1 + ‖B−1
0 ‖

pi+1∑
j=2

‖ai+1
j ‖2

≤ 1 + (pi+1 − 1)‖B−1
0 ‖

≤ 1 + (P + 3)‖B−1
0 ‖.

So the maximum eigenvalue of I +
pi+1∑
j=2

B
− 1

2
i ai+1

j ai+1
j

T
B

− 1
2

i is less than or equal to

1 + (P + 3)‖B−1
0 ‖. This allows us to write:

ω2 ≥ 1

1 + (P + 3)‖B−1
0 ‖a

i+1
1

T
B−1

i ai+1
1 . (3.109)

Hence:

detBi+1 ≥ (1 +
ai+1

1
T
B−1

i ai+1
1

1 + (P + 3)‖B−1
0 ‖) det(Bi +

pi+1∑
j=2

ai+1
j ai+1

j

T
). (3.110)

Repeating this process inductively, we finally get
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ln detBi+1 ≥
pi+1∑
j=1

ln(1 +
ai+1

j
T
B−1

i ai+1
j

1 + (P + 3)‖B−1
0 ‖) + ln det(Bi).

or, using CB:

ln detBi+1 ≥
pi+1∑
j=1

ln(1 + CBa
i+1
j

T
B−1

i ai+1
j ) + ln det(Bi). (3.111)

We know that Bi −B0 is a positive semidefinite matrix for any i ≥ 1. So:

ai+1
j

T
B−1

i ai+1
j ≤ ai+1

j

T
B−1

0 ai+1
j ≤ ‖B−1

0 ‖‖ai+1
j ‖2 ≤ ‖B−1

0 ‖.

Based on this, it is clear that, for any P > 0:

CBa
i+1
j

T
B−1

i ai+1
j ≤ ‖B−1

0 ‖
1 + (P + 3)‖B−1

0 ‖ <
1

3
< 1.

Now, the inequality ln(1 + x) ≥ x− x2

2(1−x)
holds true for any x ∈ [0, 1). Using it

and the fact that the function 1− x
2(1−x)

is decreasing, we get, for any i = 0, . . . , k−1

ln(1 + CBa
i+1
j

T
B−1

i ai+1
j ) ≥ CBa

i+1
j

T
B−1

i ai+1
j (1 − 1/3

2(1 − 1/3)
)

or

ln(1 + CBa
i+1
j

T
B−1

i ai+1
j ) ≥ 3

4
CBa

i+1
j

T
B−1

i ai+1
j .

So, for any i = 0, . . . , k − 1

ln detBi+1 ≥ ln det(Bi) +
3

4
CB

pi+1∑
j=1

ai+1
j

T
B−1

i ai+1
j .



72

After we add the inequalities corresponding to i = 0 to i = k − 1, we get:

ln detBk ≥ ln det(B0) +
3

4
CB

k∑
i=1

pi∑
j=1

ai
j

T
B−1

i−1a
i
j.

Now:

tr(Bk) =
k∑

i=0
tr(AiAT

i ) =tr(B0) +
k∑

i=1

pi∑
j=1

‖ai
j‖2 ≤tr(B0) +

k∑
i=1

pi.

Using the mean inequality (for the sum and the product of eigenvalues of Bk):

ln(detBk) ≤ 2m ln
tr(B0) +

k∑
i=1

pi

2m
.

The conclusion follows immediately.

Note that ln(detBk) is well defined since Bk is positive definite being the sum of

the positive definite matrix A0AT
0 and positive semidefinite matrices AiAT

i .

Using Lemma 22 and inequality (3.106) we get:

f̄ ∗
k (s̄k) ≥ f̄ ∗

0 (s̄0) −
k∑

l=1

θfl

2
(ln 4C0ΘP 2

3CBα
+ 14 + ln

(2m ln

tr(B0)+

k∑
i=1

pi

2m
−ln(det B0))

k∑
i=1

pi

).

Corollary 2 gives an upper bound for f̄ ∗
k (s̄k):

f̄ ∗
k (s̄k) ≤

k∑
i=1

θfi
ln
θfi

εΛ
+ θf0 ln

θf0

ε
√

2
.

Theorem 14 The algorithm stops with a solution as soon as:

(
k∑

l=1
θfl

) lnH
(2m ln 1

2m
(tr(B0)+

k∑
i=1

pi)−ln(det B0))

k∑
i=1

pi

≤ 2f̄ ∗
0 (s̄0) − 2θf0 ln

θf0

ε
√

2
.

with H = 4C0Θ3P 2e14

3ε2Λ2CBα
. The number of cuts added is at most O∗(mP 3Θ3

ε2Λ2 ) (here O∗

means that terms of low order are ignored). Here we assumed that ‖c̃0‖ has the size

of order
√
m. Also we used the fact that ‖B−1

0 ‖ has order O(1).
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Proof: This result follows directly from the previous analysis. Note here that

CB = 1
1+(P+3)‖B−1

0 ‖ has a contribution in the complexity result.

This result is similar with the ones for linear or semidefinite programming. Θ

and Λ are the only extra terms. The reason for this is straightforward. In the

linear or semidefinite case the potential functions are separable. In general this is

not necessarily the case. This explains the presence of Θ which characterizes the

barrier functional as a whole. The only assumption we made on the cuts that are

added was that the operators describing them have unit norms. This assumption is

not critical. We use it only to keep the analysis simple. In the linear programming

approach a similar assumption often made is that the matrices describing the cuts

are assumed to have columns of norm one. This gives more structure to the cuts.

In our general case we cannot work at “column” level. So we had to use an overall

characterization of the cuts. The parameter Λ characterizes the quality of the cuts

that are generated by the oracle.

In the next chapter we will present some numerical results and will try to inter-

pret them. The analytic center cutting planes method can be used not only to solve

feasibility problems but also to solve optimization problems. In the last chapter of

our thesis we will propose an algorithm for solving linear programming problems us-

ing a mixture of an interior-point method and analytic center cutting plane method.

We will determine an upper-bound for the total number of cuts that are added in

order to get a solution. Also we will determine an upper-bound for the total number

of iterations (i.e. the total number of analytic centers) needed to get the solution.



CHAPTER 4

Numerical Results

4.1 Preliminaries

In this chapter we will analyze the performance of the algorithm we propose.

Although the method suggested by us in the previous chapters can be used for

solving any type of feasibility conic programming problem, we will consider only

feasibility convex problems that are based on a mixture of linear and second order

cones. A similar analysis was done by Oskoorouchi in [12] for the cone of positive

semidefinite matrices.

At the beginning we will take a look at some issues that arise when combining

these two types of cones. Then we will present some numerical results obtained by

solving a set of feasibility problems derived from the library of problems proposed in

“The Seventh DIMACS Implementation Challenge Semidefinite and Related Opti-

mization Problems”. The results we obtain are in concordance with the theoretical

analysis. The efficiency of the algorithm depends, as expected, on the “thickness”

of the set of interest. We conclude this chapter by looking at how our algorithm

might be used in solving optimality problems. Our results will show that we can

use an analytic center cutting plane method approach to solve optimality problems

but, in this case the performance is not very good compared to other algorithms.

4.2 LP - SOCP Feasibility Problem

In implementing the algorithm we followed all the steps described in the previous

chapters. Here we will just point out the places where the specifics of the analyzed

problem can be used to simplify the implementation.

The self-concordant barrier functionals corresponding to the “LP-SOCP” case

have a part fL corresponding to the linear part of the problem and a part fQ corre-

74
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sponding to the quadratic part. fL has the form:

fL(s) = −
nL∑
i=1

ln si. (4.1)

The quadratic part is in fact a sum of self-concordant barrier functionals. Each

term of this sum corresponds to a second order cone used in defining the current

outer-approximation set. Each term has the form:

gQ(s) := − ln(s2
1 −

nQ∑
j=2

s2
j), (4.2)

where nQ is the dimension of the cone.

For these functionals, the gradient, the Hessian and the inverse of the Hessian

are easy to compute. We need all these quantities for computing the Newton steps,

the recovery of feasibility direction and to measure the distance to the θ - analytic

centers of the outer-approximation sets Ωi.

For a feasible (in the current approximation set) point (x, y, s), the scaling point

w is defined as the unique point such that: H(w)x = s. This point is important for

our implementation of the algorithm because ‖x−w‖w will be used to measure the

distance to the θ - analytic center (as proven in Theorem 12 ).

For fL, the gradient and the Hessians are immediate to obtain. The scaling point

w is given by:

wi =

√
si

xi

, i = 1, . . . , nL. (4.3)

Unlike the linear part, for the SOCP part, the Hessian of the barrier functional

is no more a diagonal matrix. If the dimension of the second order cone is large, the

Hessians will be fully dense causing a potential bottleneck for the algorithm. Still,
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once we compute the Hessian HQ(z), its inverse H−1
Q (z) is easy to obtain:

HQ(z) =
2

F 2




F + 2
nQ∑
i=2

z2
i −2z1z2 −2z1z3 · · · −2z1znQ

−2z2z1 F + 2z2
2 2z2z3 · · · 2z2znQ

−2z3z1 2z3z2 F + 2z2
3 · · · 2z3znQ

· · · · · · · · · · · · · · ·
−2znQ

z1 2znQ
z2 2znQ

z3 · · · F + 2z2
nQ



, (4.4)

H−1
Q (z) =




F + 2
nQ∑
i=2

z2
i 2z1z2 2z1z3 · · · 2z1znQ

2z2z1 F + 2z2
2 2z2z3 · · · 2z2znQ

2z3z1 2z3z2 F + 2z2
3 · · · 2z3znQ

· · · · · · · · · · · · · · ·
2znQ

z1 2znQ
z2 2znQ

z3 · · · F + 2z2
nQ




(4.5)

with F = z2
1 −

nQ∑
i=2

z2
i .

As mentioned since the beginning, we use in our approach local-inner products

instead of the original ones. This helps us in the theoretical analysis. The local-

inner product is induced by an arbitrary fixed vector e strictly interior to the cone.

This vector must be chosen such that, for its linear and second order conic parts eL

and eQ, ‖HL(eL)−1‖ = 1 and ‖HQ(eQ)−1‖ = 1. We can choose the eL component to

be the nL-dimensional vector of all ones. For eQ one option is to take eQ1 =
√

2 and

eQi = 0 for i = 2, . . . , nQ. For such a vector e it is easy to see that HL(eL) = InL
and

HQ(eQ) = InQ
. With this choice the Hessian matrices don’t change when the inner

product changes and the equalities ‖HL(eL)−1‖ = 1 and ‖HQ(eQ)−1‖ = 1 hold.

Once the scaling issue is solved we can start to analyze the specifics of the “LP-

SOCP” problem. In this case the feasible set considered is described by both LP

and SOCP inequalities. One way of defining such a set is:

Γ = {y ∈ IRm : ATy + s = c, s ∈ IRn0 ⊕K1 ⊕ . . .⊕Kn, Ki ∈ IRni -SOCP cones }.
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The algorithm starts by setting up the first outer-approximation set Ω0:

Ω0 = {y ∈ IRm : −M ≤ yi ≤M,∀i = 1, . . . ,m}. (4.6)

The size of Γ is unknown so we don’t know before-hand what value to assign to

M . One way of dealing with this issue is to choose a rather arbitrary value for M ,

say 1000 and to increase it if needed. We know we have to increase M if the size of

the slack variables at the current θ - analytic center corresponding to Ω0 becomes

close to zero. This is a sign that the set Γ is not fully contained in Ω0. In this case

our strategy was to increase M by a factor of 10.

The most expensive part of the algorithm is to compute the Newton steps required

to get close to a θ - analytic center. We used two types of Newton steps to prove

that the algorithm converges: first we take a sequence of Nesterov-Todd steps to

bring the current point closer to the θ - analytic center (i.e. ‖x− w‖w ≤ α). Then

we proved that a different type of steps need to be taken to move the point even

closer. In practice it was enough for us to use only the Nesterov-Todd directions.

The Nesterov-Todd directions are given by:

dx := −PL,w(x+ gw(x)), (4.7)

ds := −PL⊥,w∗(s+ gw∗(s)). (4.8)

For the “LP-SOCP” case these directions become:

dx = −(I −H(w)−1AT (AH(w)−1AT )−1A)(w − x), (4.9)

ds = −AT (AH(w)−1AT )−1A(w − x). (4.10)

Here A is the matrix that describes the current feasible region Ω. It is in fact

the ⊕ sum of the matrix that describes Ω0 and the matrices describing the cuts

added during the evolution of the algorithm. The Hessian H(w) is a block diagonal

matrix, each block corresponding to a different cone used in describing the set

Ω. So, the inverse H(w)−1 is also a block diagonal matrix. Then, if we assume

that Ω is described by nL linear inequalities and nQ conic ones these matrices are:
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A := AL ⊕ A1 ⊕ . . . ⊕ AnQ
and H(w)−1 = diag(HL(w)−1, H1(w)−1, . . . , HnQ

(w)−1).

Computing the inverse matrix AH(w)−1AT is the most numerically intensive part

of the whole algorithm. Using the previous notations:

AH(w)−1AT = ALHL(w)−1AT
L +

nQ∑
i=1

AiHi(w)−1AT
i . (4.11)

One way of computing this inverse is to solve the corresponding “augmented

form” system as described in [24]. This means that computing u := (AH(w)−1AT )−1v

is equivalent to solving the system:


 0 A

AT H(w)




 u

ū


 =


 −v

0


 (4.12)

The system is well-defined because H(w) is positive definite (as the Hessian of a

strictly convex functional) and the matrix A has full rank. In solving this system

we use UMFPACK 4.1 (a set of routines for solving equations of form Ax = b,

with A sparse). It is based on a LU decomposition that combines a column pre-

ordering strategy with a right-looking unsymmetric-pattern multifrontal numeric

factorization (see [3] for details). The “augmented system” method is best to be used

when the problem we are considering has a sparse A and the dimensionality of the

quadratic cones is low (so the block-diagonal Hessian has small blocks). This method

might become unstable if the diagonal of H has both small and large elements. This

usually happens in the final stages of the algorithm, when we are close to a solution

and when the domain of interest Γ is very flat.

After taking a sequence of Nesterov-Todd steps, the current point (x, y, s) is at

a θ - analytic center for the outer-approximation domain Ω. The primal and dual

feasible sets are described by a matrix A1 and the vectors b and c1:

FP := {x : A1x = b with x ≥K 0}
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and

FD := {s : AT
1 y + s = c1 with s ≥K 0}.

Now we call the oracle. If the point is not yet strictly interior to Γ, the oracle

returns a p - dimensional cut described by a matrix A2 and a vector c2.

After adding the cuts centrally, the point becomes (x ⊕ β, y, s ⊕ γ), with γ = 0

and β = 0. Now a feasibility step (∆x⊕β,∆y,∆s⊕γ) is required. We have already

shown that:

A1∆x+ A2β = 0, (4.13)

AT
1 ∆y + ∆s = 0, (4.14)

AT
2 ∆y + γ = 0. (4.15)

Theoretically, the best way is to choose β and γ to move the point as far as

possible from the boundary. From a practical point a view, any β and γ that will

bring the point inside the feasible region might be considered. Our goal is to get

feasible so we could start by taking γ = β. If we consider the linear and SOCP

components of β:

β := βL ⊕ βQ1 ⊕ . . . βQs ,

then one way of choosing β would be:

(βL)i = 1, for all i = 1, . . . , nL

βQi
= e1 the vector of all zeros with the first component equal to one.

Before adding the cuts, the point (x, y, s) was strictly feasible. So we can choose

any direction for ∆x and ∆s as long as we scale their size to keep the point feasible.

The only issue right now is to find ∆y.

The cuts to be added are described by a matrix A2 that is fully ranked and is
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injective. So the system AT
2 ∆y+γ = 0 is under-determined. If A2 is an m×n matrix

then m ≥ n and rank(A2) = n. After choosing γ, the vector ∆y is readily available

from the previous system (we just need to pick n linearly independent columns of

AT
2 , fix to zero the components of ∆y corresponding to the other columns of AT

2

and then solve the well-defined remaining system). Once we have ∆y, we take

∆s = −AT
1 ∆y.

The matrix A1 contains all the constraints used by the algorithm in defining the

outer-approximation sets. So, the first columns of A1 correspond to the initial set Ω0.

This means that the left-most block of A1 is an identity matrix. The requirement

that A1∆x + A2β = 0 can be written as: [I . . .]∆x + A2β = 0. Then one choice

for ∆x would be to take its first components to be equal to “ − A2β” and fix the

remaining ones to zero.

Now, the last thing to do is to scale all these vectors to make sure that the new

point is feasible for the new set of primal-dual problems.

The cuts returned by the oracle are central. This means that, after adding the cuts

y is on the boundary of the new dual feasible set. If the cuts are linear constraints,

then

AT
2 y = c2.

After adding the cut this way all the slack corresponding to A2 are equal to zero so

y is on the boundary of the new dual feasible set.

There are two ways of adding an “SOCP” cut centrally. One is to do it as before.

Because all the slack variables corresponding to A2 are zero, the point is now at the

vertex of the second order cone corresponding to A2. Sometimes this might be too

aggressive. Another way of adding the cut might be

AT
2 y + s = c2 with s2

1 =
∑
i≥2

s2
i .

This way the cut is central but, after adding it the point is on a ray of the second

order cone instead of being its vertex.

The second way of adding SOCP cuts is more useful when solving optimality
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problems. This is because we want the vector c (used in defining the dual set) to

be as close as possible to the original one, used in describing the objective function

of the optimality problem. This aspect is irrelevant for the feasibility problems so,

in this case we can use the first, more aggressive type of SOCP cuts.

4.3 Numerical Results

We tested our algorithm using Matlab v6.0 on a Windows XP, 1.8GHz Pentium

4 Pc with 512M RAM. For the most expensive parts of the algorithm we used mex

files compiled with lcc 2.4, the Matlab’s own C compiler. We used “UMFPACK 4.1”

developed by Timothy A. Davis (see [3]) to compute the inverses of the matrices

used by the Nesterov-Todd directions.

The test problems we solved are modified versions of the ones proposed in the

“Seventh DIMACS Implementation Challenge - Semidefinite and Related Optimiza-

tion Problems”. This is a collection of conic programming optimization problems.

We modified these problems into feasibility problems. The problems are organized

in families.

Table 4.1: Details for the problems from the Seventh DIMACS Imple-
mentation Challenge

NAME ROWS QUADR LIN

nql30 3680 [900; 900x3] 3602
nql60 14560 [3600;3600x3] 14402
nql180 130080 [32400; 32400x3] 129602

nql30old 3601 [900;900x3] 5560
nql60old 14401 [3600; 3600x3] 21920
nql180old 129601 [32400; 32400x3] 195360

nb-L1 915 [793; 793x3] 797
nb-L2 123 [839; 1x1667, 838x3] 4

nb 123 [793; 793x3] 4

The first column in this table contains the name of the problem. The second

one indicates the number of rows used in describing the problem. The third column
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gives the number of quadratic cones together with the dimension of the cones. The

last column gives the number of linear constraints.

The only problems we couldn’t solve were from the “qssp” and “scheduling”

families of problems. This is because for our algorithm to work we need the matrices

describing the cuts to have full rank. The “qssp” problems have linear dependency

for the constraints corresponding to the quadratic cones. The “scheduling” problems

have only one or two quadratic cones of high dimensions. Their corresponding

matrices are rank deficient.

None of the problems we consider has a fully dimensional dual-feasible set. This

is because all these problems contain linear constraints of the form aTy = 0. This is

forcing the dual feasible domain to be flat. In order to overcome this we increased

all the values of c by a constant to eliminate all the zeros. This constant is in this

case an upper-bound for the “thickness” of the domain. We tried different values

for the constant. As expected, for bigger constants (i.e. the less flat the domain)

the number of iterations required by the algorithm was smaller.

In order to improve the performance of the algorithm we are using weights for

the constraints that are generated by the oracle. Usually we took the weight for

a cut to be proportional to the size of the violation of that particular cut and the

frequency the cut is returned by the oracle.

We are interested in the number of analytic centers generated in order to get a

feasible point (the “AC’s” column) and the total number of Newton steps gener-

ated (in “Newton” column). We will explore how the convergence of the algorithm

depends on the number of cuts to be added, the size of the initial set Ω0 and the

thickness of the set of interest Γ (we are using the constant we used to change c as an

upper bound for the thickness). Although time is important we should mention here

that our code is inherently slow. This is because we are using Matlab that is much

slower than the corresponding “C” or FORTRAN code. The biggest bottleneck is

computing the inverse matrices for the Nesterov-Todd steps (this could take up to

90% of all running time).

We will consider three different cases for the thickness of the set Γ. The min |c|
will be set to 10 (relatively “thick” set), 1 and .01 (relatively flat set). For each of
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these cases we will use either a small (the size 10) starting set Ω0 or a large one

(the size 5000). Also for the number of cuts to be added at a point (in “No Cuts

(%)” column) we will consider three different scenarios. We will add few cuts (the

number of columns describing the cuts is no more than 5% of the number of rows

of the problem), a moderate number of cuts (10% of the number of rows) and lots

of cuts (50% of the total number of rows). Also we will register the total number of

different cuts that are added in order to solve the problem and the highest frequency

with which a cut is chosen by the oracle (in “Used (Freq)” column). We also register

the percentage of the number of cuts used from the total number of constraints (in

“Per.” column).

As expected, the performance of the algorithm depends on the size of the first

outer-approximation set Ω0. The number of iterations is directly proportional to

size of the ratio between the size of Ω0 and the thickness of Γ. If this ratio is small,

then the number of cuts added is significantly smaller than the total number of

constraints.

The number of violated cuts to be added at each iteration influences the number

of iterations too. It is better to add as many violated cuts as possible at a time

instead of just a few ones. The quality of the oracle is really important here. If the

oracle is fast in getting violated cuts then the strategy is to add many of them at

each iteration, otherwise it is better to add a moderate number of them. In general,

the total number of cuts used by the algorithm is the same, regardless of how many

of them are added at each iteration.

The strategy of adding many cuts may backfire if the number of violated cuts is

large but most of them are linearly dependent (as in the “nb” problem). In this case

the oracle spends more time searching for independent cuts. So the oracle plays an

important role here. That’s why the structure of the problem (i.e the matrix A and

vector c) should be considered when solving a particular type of problems.

As an example, all the SOCP constraints from the “nql” family of problems are

linearly independent. Using this information in designing the oracle can decrease

the overall running time by more than 75%.

So the best strategy to use is to start with a small initial set Ω0 (which might be
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Table 4.2: Numerical results for feasibility problems (min |c| = 10)
Name Size Ω0 No Cuts (%) AC’s Newton Used (Freq) Per. Time

184 (5%) 25 87 744 (2) 0.16 29.37
10 368 (10%) 14 48 744 (2) 0.16 16.84

nql30 1840 (50%) 4 15 744 (2) 0.16 6.78
184(5%) 16 74 900 (1) 0.19 21.14

5000 368 (10%) 9 50 900 (1) 0.19 14.70
1840(50%) 3 17 900 (1) 0.19 6.43

728 (5%) 29 114 3284 (2) 0.18 158.31
10 1456 (10%) 15 59 3284 (2) 0.18 95.78

nql60 7280 (50%) 4 16 3284 (2) 0.18 107.48
728 (5%) 16 92 3600 (1) 0.20 89.68

5000 1456 (10%) 9 51 3600 (1) 0.20 54.96
7280 (50%) 3 18 3600 (1) 0.20 30.78

6504 (5%) 16 79 32400 (1) 0.20 1654.62
10 13008 (10%) 9 44 32400 (1) 0.20 1076.68

nql180 65040 (50%) 3 14 32400 (1) 0.20 810.10
6504 (5%) 16 154 32400 (1) 0.20 1764.11

5000 13008 (10%) 9 92 32400 (1) 0.20 1243.57
65040 (50%) 3 26 32400 (1) 0.20 859.43

46 (5%) 12 44 156 (1) 0.09 298.75
10 92 (10%) 7 22 161 (1) 0.10 130.94

nb-L1 458 (50%) 5 18 238 (1) 0.15 53.62
46 (5%) 295 893 1448 (38) 0.91 1628.58

5000 92 (10%) 49 498 1448 (38) 0.91 915.47
458 (50%) 53 158 1448 (38) 0.91 542.81

7 (5%) 6 22 5 (1) 0.04 3.59
10 13 (10%) 6 22 5 (1) 0.04 3.18

nb 62 (50%) 6 22 5 (1) 0.04 3.57
7 (5%) 2 8 1 (1) 0.01 1.98

5000 13 (10%) 2 8 1 (1) 0.01 1.85
62 (50%) 2 8 1 (1) 0.01 1.81

expanded if needed) and to use an oracle that exploits the structure of the problem

in order to generate as many linearly independent violated cuts as possible in the

shortest amount of time.
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Table 4.3: Numerical results for feasibility problems (min |c| = 1)
Name Size Ω0 No Cuts (%) AC’s Newton Used (Freq) Per. Time

184 (5%) 13 39 744 (1) 0.16 11.09
10 368 (10%) 8 23 744 (1) 0.16 7.86

nql30 1840 (50%) 3 9 744 (1) 0.16 4.09
184(5%) 16 83 900 (1) 0.19 21.79

5000 368 (10%) 9 50 900 (1) 0.19 14.70
1840(50%) 3 18 900 (1) 0.19 6.78

728 (5%) 15 46 3284 (1) 0.18 55.22
10 1456 (10%) 8 25 3284 (1) 0.18 32.15

nql60 7280 (50%) 3 10 3284 (1) 0.18 21.56
728 (5%) 16 106 3600 (1) 0.19 96.23

5000 1456 (10%) 9 57 3600 (1) 0.19 57.97
7280 (50%) 3 19 3600 (1) 0.19 33.50

6504 (5%) 16 64 32400 (1) 0.19 1259.18
10 13008 (10%) 9 36 32400 (1) 0.19 876.36

nql180 65040 (50%) 3 12 32400 (1) 0.19 743.62
6504 (5%) 16 99 32400 (1) 0.19 1186.26

5000 13008 (10%) 9 82 32400 (1) 0.19 1096.10
65040 (50%) 3 26 32400 (1) 0.19 983.17

46 (5%) 8 26 112 (1) 0.07 131.42
10 92 (10%) 6 19 133 (1) 0.08 84.22

nb-L1 458 (50%) 4 13 155 (1) 0.10 34.95
46 (5%) 428 1154 1556 (51) 0.98 2106.90

5000 92 (10%) 216 635 1556 (51) 0.98 1185.04
458 (50%) 66 200 1556 (51) 0.98 625.34

7 (5%) 2 6 1 (1) 0.01 1.84
10 13 (10%) 2 6 1 (1) 0.01 1.81

nb 62 (50%) 2 6 1 (1) 0.01 1.71
7 (5%) 2 8 1 (1) 0.01 1.81

5000 13 (10%) 2 8 1 (1) 0.01 1.89
62 (50%) 2 8 1 (1) 0.01 1.71

4.4 Solving Optimization Problems

The analytic center cutting plane method can be used not only for solving feasi-

bility problems but also for solving optimality problems. To do this, the algorithm

has to be incorporated in a larger interior-point scheme. Because we are going to

use our analytic center cutting plane scheme, the problems we will consider must

have a fully dimensional dual feasible set.
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Table 4.4: Numerical results for feasibility problems (min |c| = 0.01)
Name Size Ω0 No Cuts (%) AC’s Newton Used (Freq) Per. Time

184 (5%) 97 235 1344 (84) 0.29 116.21
10 368 (10%) 92 210 1344 (84) 0.29 110.14

nql30 1840 (50%) 87 185 1344 (84) 0.29 104.36
184(5%) 127 419 4502 (10) 1 336.12

5000 368 (10%) 69 272 4502 (10) 1 245.21
1840(50%) 39 194 4502 (10) 1 222.79

728 (5%) 94 179 3639 (93) 0.20 394.84
10 1456 (10%) 95 159 3639 (94) 0.20 370.73

nql60 7280 (50%) 95 144 3639 (94) 0.20 392.74
728 (5%) 126 579 18002 (9) 1 2429.08

5000 1456 (10%) 81 595 18002 (9) 1 2592.14
7280 (50%) 76 544 18002 (10) 1 2511.97

6504 (5%) 20 90 32402 (3) 0.20 2199.56
10 13008 (10%) 13 55 32402 (3) 0.20 1532.60

nql180 65040 (50%) 7 27 32402 (3) 0.20 1366.12
6504 (5%) > 10000

5000 13008 (10%) > 10000
65040 (50%) > 10000

46 (5%) 92 346 1576 (4) 0.99 675.67
10 92 (10%) 47 176 1576 (4) 0.99 362.04

nb-L1 458 (50%) 22 74 1578 (4) 0.99 296.56
46 (5%) 604 1644 1590 (66) 1 2988.47

5000 92 (10%) 312 936 1590 (65) 1 1723.00
458 (50%) 87 294 1590 (66) 1 858.29

7 (5%) 18 41 6 (10) 0.05 6.57
10 13 (10%) 18 41 6 (10) 0.05 7.68

nb 62 (50%) 18 41 6 (10) 0.05 5.84
7 (5%) 23 68 6 (20) 0.05 5.29

5000 13 (10%) 23 68 6 (20) 0.05 10.09
62 (50%) 23 68 6 (20) 0.05 6.40

The problem we are considering is given by:

min cTx

subject to Ax = b, (P )

x ≥K 0

together with its dual:
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max bTy

subject to ATy + s = c, (D)

s ≥K 0

Here ≥K refers to the fact that the cones used are ⊕ sums of second order cones

and IRn
+. In this case the feasible set of the dual problem will be the equivalent of

the Γ set from a pure feasibility problem.

In our approach sometimes the current-point will be outside of Γ. We say we have

a solution to the primal-dual optimization problem if the duality gap is smaller than

a given tolerance τdg and the point is feasible in Γ.

As long as the current point is outside Γ we proceed with an analytic center

cutting plane scheme, generating a sequence of outer-approximations sets of Γ by

adding central cuts through the θ - analytic centers of those sets. Once the point

becomes feasible in Γ we start an interior-point scheme. This means that we scale

the logarithmic part of the barrier functional by a positive parameter µ. At the

beginning the barrier functionals weren’t scaled so, in this case, µ = 1. As soon as

the point becomes feasible in Γ we decrease µ:

µ = (1 − Θ)µ,

with 0 < Θ < 1 a given fixed constant. After decreasing µ we compute the θ -

analytic center for the same set but with a different scaled barrier functional. We

keep decreasing µ until either the duality gap becomes smaller than τdg or the current

point gets out of Γ. In the later case we start the new iteration with a step from

the analytic center cutting plane scheme.

If Γ is not fully dimensional then the scheme will never get to decrease µ to zero,

driving the point towards the solution. In this case we can start decreasing µ as

soon as the distance to Γ becomes smaller than a preset value τfeas.

In the final chapter we will consider the LP-only version of this algorithm (so

there are no second order cones involved in describing the primal-dual optimization

problem). There we will prove that this algorithm converges and we will give an
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estimate for the total number of θ - analytic centers required to be generated before

obtaining a solution.

For a point (x, y, s) generated by the algorithm we define the total violation to

be absolute value of the sum of all negative slacks for the current point. Before

presenting the results, let’s introduce the algorithm.

The Algorithm

Input

setup the initial set Ω0

initialize the point (x, y, s)

get the θ - analytic center for Ω0

compute the duality gap

get the total violation

while |duality gap| ≥ τdg or total violation > τfeas

call the oracle at (x, y, s)

if the point is feasible in Γ

decrease µ (µ := (1 − Θ)µ)

get the new θ - analytic center

compute the duality gap and total violation

else the point is outside Γ

add the cuts, generate a new, smaller outer-approximation set for Γ

get the new θ - analytic center

compute the duality gap and total violation

return

STOP

The performance of the algorithm depends on the “thickness” of the dual feasible

set, the size of the first outer-approximation set Ω0 and the quality of the oracle. It

is better to start with a rather small initial outer-approximation set (and expand it

later if needed) instead of starting with a large one. This observations are similar

to the ones for the case of pure feasibility problems.
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We will attempt to solve some of the problems from the “Seventh DIMACS

Implementation Challenge”. This time we will consider only some of the cases we

analyzed in the previous section.

As we said before, the dual-feasible sets for these problems are not fully dimen-

sional. So we had to change the vector c to transform those sets in fully-dimensional

ones.

Table 4.5: Numerical results for some modified problems suggested in the
“Seventh DIMACS Implementation Challenge”

Name Size Ω0 No AC’s Newton sts Cuts (Freq.) Used/Total Time (s)
nql30 10 326 858 2791 (20) 0.61 494.81
nql30 5000 149 275 3975 (20) 0.88 262.05
nql60 10 424 889 16830 (57) 0.93 3150.48
nql60 5000 318 654 16454 (22) 0.91 2904.20
nb 10 561 646 252 (11) 0.31 248.07
nb 500 604 1063 258 (12) 0.32 376.86
nb-L1 10 217 271 794 (20) 0.49 1331.42
nb-L1 500 322 639 1557 (51) 0.97 2562.84

There is no clear strategy on how to decrease µ. In our tests we decrease µ by 50%.

The duality gap cannot become too small (less than 10−6 - 10−7) without running in

numerical problems. This happens because, when the algorithm is getting close to

the optimal solution, some of the slacks become really small (at optimality they are

in fact zero) and some might be quite large. This creates difficulties for the analytic

center cutting plane scheme when computing the Hessian of the barrier functional

and its inverse.

The number of cuts added by the algorithm is sometimes more than 80% from

the total number of constraints. If the initial outer-approximation set Ω0 is chosen

carefully enough, this number can be dropped below 65%. This can save memory

and space usage.

The algorithm proposed here works better when dealing with problems where the

dual-feasible set is not known before hand and the oracle generates violated cuts as

needed. If the dual-feasible set is completely described from the beginning, then our

algorithm will systematically perform worse than some other interior-point solvers.

For really big/difficult problems it is possible for the other solvers to fail while our
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algorithm might be able to generate at least some strictly feasible points.

We conclude this chapter by considering different instances of a problem that

appears when solving sparse Partial Least Squares (PLS) problems and its kernel

version (KPLS) (see [10], [20] and [21] for more details).

The problem we are considering is given by:

minw,s,ξ,ε
1

νm

∑
i ξi + ε

subject to 1
2
‖xi − s− uiw‖ − ξi ≤ ε, (P )

ξi ≥ 0, i = 1, . . . ,m.

Here, xi, s, w are points in IRn.

Each of the constraints involved in describing the feasible region is equivalent to:


 2ε+ 2ξi

xi − s− uiw


 ∈ Kn+1, (4.16)

with Kn+1 an n+ 1 dimensional second order cone.

Using this observation we can write the problem in a primal-dual formulation:

max bTy

subject to AT
i y + σi = ci, (P )

BTy ≤ 0,

σi ∈ Kn+1, i = 1, . . . ,m.

min
m∑

i=1
cTi Xi

subject to
m∑

i=1
AiXi +BX̂ = b, (D)

X̂ ∈ IRm
+ , Xi ∈ Kni+1, i = 1, . . . ,m.

Here:

y = [ε, ξ1, . . . , ξm, s
T , wT ]T ∈ IR2n+m+1,

Xi ∈ Kn+1, i = 1, . . . ,m,
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b = [−1,− 1

νm
eT , 01×2n]T ∈ IR2n+m+1,

ci = [0, xT
i ]T ∈ IRn+1,

BT = [0m×1
... − Im

...0m×n
...0m×n],

Ai =




−2
...
... 0(m+1)×n

−2ei
...

. . . . . .
... In

02n×1
... . . .
... uiIn




∈ IR(2n+m+1)×(n+1),

with e the vector of all ones, ei the vector of all zeros with the i-th component equal

to 1 and In the identity matrix.

This problem has the dual feasible region fully dimensional so we can start solving

the problem directly, without modifying the vector c (as in previous cases).

We can use our algorithm to solve the initial problem written in the above form.

The performance of the algorithm when solving this type of problem depends on

both, the size of m (the number of points xi) and n ( the dimensionality of the

second order cones involved).

In our analysis we will look at how the size of m and n influence the performance

of the algorithm.

We generate a set of problems of different sizes. The points xi for all these

problems have the coordinates between 0 and 1. The weights ui are random numbers

between 1 and 6. Also we took ν = 0.5.

In solving these problems, we took the set Ω0 to be a cube centered at 0 and

with the side length equal to 10. The number of violated cuts to be added is no

more than 85% of the total number of rows of the matrix A describing the problem.

Also the parameter µ is decreased each time by 75%. The algorithm stops with an

approximate solution when the duality gap is smaller than 10−6.

For each problem we registered the number of points and their dimensionality in

the “Size” column (i.e. [100 × 3] describes a problem with 100 points, each point
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Table 4.6: Numerical results for PLS subproblems
Size No AC’s Newton sts Cuts (Freq.) Used/Total Time (s)
[100 × 3] 132 293 171 (8) 0.85 29.43
[100 × 5] 165 563 166 (12) 0.83 51.31
[100 × 25] 183 504 158 (10) 0.79 185.17
[500 × 3] 190 587 799 (13) 0.79 165.92
[500 × 5] 185 438 871 (11) 0.87 227.71
[500 × 25] 195 615 746 (9) 0.74 1396.12
[1000 × 3] 159 395 1296 (9) 0.64 218.26
[1000 × 5] 170 442 1381 (9) 0.69 352.26
[1000 × 25] 226 746 1489 (13) 0.74 4039.45
[5000 × 3] 176 462 6576 (9) 0.65 948.70
[5000 × 5] 195 582 6936 (9) 0.69 1379.97
[10000 × 3] 203 462 13005 (9) 0.65 2653.94
[10000 × 5] 200 582 13746 (9) 0.68 3807.11

having dimension 3). The number of analytic centers generated in order to solve

the problem are given in the second column. We also registered the number of

Newton steps, the total number of different cuts added (together with the highest

frequency a cut was used) and the time for each problem. We also registered in the

“Used/Total” column the percentage of the number of cuts used by the algorithm

from the total number of constraints.

As expected, the number of iterations and the number of Newton steps is pro-

portional to the size of the problem and the dimension of the SOCP cones. The

percentage of the number of cuts used from the total number of cuts used in describ-

ing a problem is slightly decreasing while the size of the problem increases. This

makes the algorithm more efficient for bigger problems.

The performance of the algorithm depends on the size of the SOCP cones. This

is because the Hessian associated to each cone is fully dense and its size is equal to

the dimension of the cone.



CHAPTER 5

An Interior-Point Method Approach to Solving Linear

Programming Problems

5.1 Introduction

In this chapter we propose an algorithm for solving linear programming problems

that involves both an interior-point approach and the analytic center cutting planes

method studied in the previous chapters. This algorithm is an extension of the

algorithms proposed by Andersen et al. [1] and Terlaky et al. [16], [19]. The

problem studied here is:

min c̃Tx

subject to Ãx = b (P̃ )

x ≥ 0

together with its dual:

max bTy

subject to ÃTy + s = c̃ (D̃)

s ≥ 0

with Ã ∈ IRm×ñ, full-rank matrix, x, s, c̃ ∈ IRñ and b̃, y ∈ IRm.

Our goal is to solve the dual problem (D̃).

Let Γ = {y ∈ IRm; ÃTy < c̃} be the feasible region for the dual problem. As in

the general case, we will assume that Γ contains a small ball of radius 2−L and it is

bounded and contained in an m dimensional cube

C = {y ∈ IRm;−e ≤ y ≤ e}.

93
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We also assume, without loss of generality that c̃ and the rows of Ã have the 2-norm

equal to one.

The existence of an oracle is assumed. For each point y ∈ C the oracle either

recognize that y ∈Γ or returns a set of p central cuts:

BTy ≤ BTy, B ∈ IRm×p (5.1)

with Γ⊆ C ∩ {y ∈ IRm;BTy ≤ BTy}. We assume the rows of B have norm equal to

one.

In solving (P̃ ) − (D̃) we will find the µ - analytic centers (they will be defined

later) for a sequence of polytopes Pi containing Γ (Γ ⊂ Pi ⊂ Pi−1). We start with

P0 being the m-dimensional cube C. We find its µ - analytic center (µ - AC) and

call the oracle. If AC /∈ Γ add the cuts returned by the oracle to P0 and find the AC

for the new domain P1. We keep doing this until, at the k-th iteration, the analytic

center of Pk is in the interior of Γ. At this stage, we will take some primal-dual

steps (with the parameter µ) along the central-path of Pk until the point gets out of

Γ. We then call the oracle at the current point and use analytic centers to generate

tighter outer-approximations Pi for Γ until again the analytic center of one Pi is in

the interior of Γ. We will keep decreasing µ as the algorithm progresses. We stop

with infeasibility if the number of cuts added exceeds a certain value or when the

polytope Pi becomes too flat.

We have a solution when the current point is in Γ and (n + 2m)γµ is smaller

than a small parameter ε. Here n is the total number of cuts that get added. γ is a

constant between 0 and 0.5. The reason for choosing this stopping criteria instead of

the classical one ((n+ 2m)µ < ε) will be explained towards the end of the chapter.

5.2 Notations and Conventions

Throughout this chapter the vector norm used is the usual one: ‖u‖ =

√
n∑

i=1
u2

i ,

for any vector u ∈ IRn.

For a vector u ∈ IRn we define the n-dimensional vectors uk,
√
u and 1

u
by:
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(uk)i = uk
i , (

√
u)i =

√
ui and (

1

u
)i =

1

ui

for i = 1, . . . , n.

Because we use a mixture of an interior-point method and an analytic center

cutting planes method we will need to have a means to estimate the distance from

the current point to the analytic center of a domain or its central path. We will use

two different proximity measures: δM that describes the distance of the point to the

analytic center and δT describing the distance to the central path:

δM(x, s, µ) = ‖xs
µ

− e‖

and

δT (x, s, µ) =
1

2
‖
√
xs

µ
−
√
µ

xs
‖

where x, s ∈ IRn
+ and µ ∈ IR+. Here, xs is the Hadamard product of x and s (i.e.

xs ∈ IRn with (xs)i = xisi, i = 1 . . . n). Notice that xs = XSe with e ∈ IRn being

the vector of all ones and X and S the diagonal matrices corresponding to x and s.

We will use δT as an overall proximity measure.

We will call a feasible point (x, s, µ) approximately centered if it satisfies the

inequality δT (x, s, µ) ≤ τ for some constant τ .

5.3 Dikin’s Ellipsoids

In order for the analytic center cutting planes scheme to work we need to make

sure that, after adding the cuts the direction we choose to recover feasibility will

move the point inside the feasible region. Before the oracle is called the current

point is feasible in the outer approximation set Pi. Adding the cuts does not impact

the feasibility with respect to the constraints defining Pi. The point is still feasible

with respect to the old constraints. The infeasibility is related only to the new added

cuts.
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So, when choosing the direction that brings the point inside the new outer ap-

proximation set, we need to make sure that the point remains feasible with respect

to the old cuts.

It is easy to see that if we start with a feasible point x > 0, then x + ∆x > 0 if

||x−1∆x|| < 1. This inequality defines the Dikin ellipsoid. So if we move along any

vector from a Dikin’s ellipsoid centered at a feasible point x we stay feasible.

In this section we will introduce some results regarding these ellipsoids circum-

scribing or contained in the feasible region FP . All results are similar to the ones

from Goffin and Vial [5] (section 3.2), the difference being that we deal with µ -

analytic centers instead of pure analytic centers. The presence of µ is the only

difference.

For a point x ∈intFP we define an ellipsoid containing x and inscribed in FP by:

EP = {∆x : A∆x = 0, ‖X−1∆x‖ ≤ 1}. (5.2)

Similarly we define the Dikin ellipsoid corresponding to a point s ∈intΓ, inscribed

in Γ:

ED = {∆s : ∆s = −AT ∆y, ‖S−1∆s‖ ≤ 1}. (5.3)

Lemma 23 Let (x, s) be a µ-center and D = X
1
2S− 1

2 . Then:

1.
√
µ(1 − θ)EP ⊂ {∆x : A∆x = 0, ‖D−1∆x‖ ≤ 1} ⊂

√
µ(1 + θ)EP ,

2.
√
µ(1 − θ)ED ⊂ {∆s : ∆s = −AT ∆y, ‖D∆s‖ ≤ 1} ⊂

√
µ(1 + θ)ED.

Proof: Follows from Goffin and Vial [5].
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5.4 Adding Cuts in a Primal-Dual Interior-Point Scheme

with Long Step Updates

In solving (P̃ )−(D̃) using the algorithm we propose we will have to take sequences

of interior primal-dual steps. Each time the current AC is in the interior of Γ we

set up a problem (P ) − (D):

min cTx

subject to Ax = b (P )

x ≥ 0

together with its dual:

max bTy

subject to ATy + s = c (D)

s ≥ 0

with A and c containing the constraints corresponding to the initial cube C and the

cuts added as the algorithm progressed. Instead of solving (P ) − (D) to optimality

we stop as soon as the current point gets out of Γ.

The interior-point scheme used is the one suggested by Peng et al. in [16] (a long

step primal-dual scheme). Solving (P ) and (D) is equivalent to solving the next

system:

Ax = b, x ≥ 0

ATy + s = c, s ≥ 0

xs = 0.

In an interior-point algorithm, the last equation is replaced by: xs = µe, with
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µ > 0. Next, a sequence of systems of equations is generated:

Ax = b, x ≥ 0

ATy + s = c, s ≥ 0

xs = µe.

The solution (x(µ), y(µ), s(µ)) for this system of equations describes the central

path of (P ) and (D) towards the solution for the original problem. As µ → 0 the

solution (x(µ), y(µ), s(µ)) moves along the central path, and at the limit, xs = 0,

giving the optimal solution for (P ) and (D).

For each µ, a sequence of damped Newton steps are taken moving the point

close to the central path (i.e. δT (x, s, µ) ≤ τ). The Newton steps are taken along

the directions ∆x, ∆y, ∆s given by the solution to the modified Newton equation

system (5.4) as given by Peng et al. in [16]:

A∆x = 0,

AT ∆y + ∆s = 0, (5.4)

s∆x+ x∆s = µ1+ η
2

e

(xs)
η
2

− xs, η > 0.

The step is scaled by a damping parameter α > 0 (the step length). In a regular

interior-point scheme, the damped Newton steps are taken until δT (x, s, µ) becomes

smaller than a given parameter τ . Then, µ is reduced by a factor of (1 − Θ) (with

0 < Θ < 1) and the procedure is repeated until either the point becomes infeasible

in Γ or (n+ 2m)γµ ≤ ε when the algorithm stops with the approximate solution for

the problem.

In the approach we propose, right before µ is decreased, the oracle is called to

check for the feasibility (with respect to Γ) of the current point. If the point is not

feasible the oracle returns a set of p (p < m) violated cuts. These cuts are added

right through the current iterate, increasing the dimensionality of the problem and

changing the feasibility for the current point. Also we keep track of µ. When we

will set up a new problem (P ) − (D), µ takes the last value it had when we took
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primal-dual steps.

Next we will analyze how the feasibility can be recovered in an efficient way, and

the impact the new cuts have on the proximity measure δT (x, s, µ).

Let (x, y, s) be the point (x(µ), y(µ), s(µ)) right before the cuts are added. This

point is strictly feasible and is close to the central path of the relaxation problem:

Ax = b,

ATy + s = c,

δT (x, s, µ) =
∥∥∥√xs

µ
−
√

µ
xs

∥∥∥ ≤ τ,

x, s > 0.

For this point the oracle returns p-central cuts of the form:

aT
m+jy ≤ aT

m+jy, j = 1, . . . , p, ∀y - feasible.

Let B = (am+1, am+2, . . . , am+p) be the matrix corresponding to the new added

cuts. After adding the cuts, the current point becomes (x̂, ŷ, ŝ) with

x̂ =


 x

0


 , ŷ = y, ŝ =


 s

0


 , with x̂, ŝ ∈ IRn+p and ŷ ∈ IRm.

The new primal and dual feasible regions are described by:

ATy + s = c,

BTy + γ = BTy,

Ax+Bβ = b,

x, s, β, γ ≥ 0.

After introducing the cuts, (x̂, ŷ, ŝ) is lying on the boundary of the new feasible

region. First a step to recover strict feasibility must be taken. For more flexibility,

a scaled step is taken instead of a full step.
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Let


 dx

β


, dy and


 ds

γ


 be the directions used for getting back into the feasible

region with dx, ds ∈ IRn+2m, dy ∈ IRm and β, γ ∈ IRp. Let αP and αD be the scaling

factors. The point is moved from (x̂, ŷ, ŝ) to:


 x+ αPdx

αPβ


 , y + αDdy,


 s+ αDds

αDγ


 .

The vectors dx, dy and ds are the Dikin’s directions used by Goffin and Vial

in [5] which are based on the directions introduced by Mitchell and Todd (for one

additional constraint case). Also β and γ are similar to the ones used in the paper

mentioned above. So, by using a similar approach, it can be proven that the AC of

the new region can be reached in µO(p(ln(p+1)) steps (for details see Section 5.6).

Next, let’s analyze the recovery of feasibility step. Before taking the step, the

point (x̂, ŷ, ŝ) is on the boundary of the feasible region. By taking this step the

point is moved back, inside the feasible region. So, for the new point, the following

set of equalities must hold:

A(x+ αPdx) + αPBβ = b,

AT (y + αDdy) + s+ αDds = c, (5.5)

BT (y + αDdy) + αDγ = BTy.

Using the fact that (x, y, s) was feasible for the problem before adding the cuts

and that the scaling factors αP and αD are strictly positive these equations can be

simplified to:

Adx +Bβ = 0,

ATdy + ds = 0, (5.6)

BTdy + γ = 0.



101

Using the arguments of from Goffin and Vial [5] (Theorem 4.2) we can choose

the feasibility directions:

dx = −D2AT (AD2AT )−1Bβ,

dy = −(AD2AT )−1Bβ,

ds = AT (AD2AT )−1Bβ,

γ = BT (AD2AT )−1Bβ.

with D = X
1
2S

− 1
2 and β being defined as the unique solution to:

max

{
−p

2
βTV β +

p∑
i=1

log βi

}
with V = BT (AD2AT )−1B.

In fact it turns out that β and γ are solutions for:

max

{
−

p∑
i=1

log βi : β ≥ 0, Adx +Bβ = 0, ‖D−1dx‖ ≤ 1

}
,

max

{
−

p∑
i=1

log γi : γ ≥ 0, BTdy + γ = 0, ‖DATdy‖ ≤ 1

}
.

These problems are well posed and have unique solutions. Among the KKT

conditions these solutions verify are:

‖D−1dx‖ = 1, (5.7)

‖Dds‖ = 1.

Once back in the feasible region we take a sequence of Newton steps towards the

central-path. Once close to the central-path, we call the oracle again. If the point

is not in Γ then we add the p - central cuts, take the directions described before to

get back strictly interior, and then get the analytic center of the new region. This

procedure is repeated until the µ - analytic center gets back in Γ when we will start

a new sequence of primal-dual interior steps (this time the µ - analytic center is

already on the central path so we don’t need to re-initialize it).
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5.5 The Algorithm

The algorithm contains two main parts: one part corresponding to the Primal-

Dual step, and one in which the cuts are added and feasibility is recovered.

The Algorithm

Input

a proximity parameter τ =
√

2m

an accuracy parameter ε > 0

a scaling parameter α for the primal-dual step

scaling parameters αP and αD for the ‘recovery of feasibility’ step

a fixed barrier update parameter Θ, 0 < Θ < 1

a constant γ, 0 < γ < 0.5

µ = 1, n = 0, y = 0 (the initial analytic center)

A = [Im , −Im], cT = [eT , eT ]

begin

while (n+ 2m)γµ ≥ ε and y /∈ Γ

get µ -analytic center (x, y, s)

call oracle at y

if y ∈ Γ

µ = (1 − Θ)µ

else

add p - central cuts

n = n+ p

take feasibility step

get µ - analytic center

end if

end while

STOP with the solution

end
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5.6 The Recovery of Feasibility Step

We encounter the problem of recovery of feasibility in two circumstances. One is

after a sequence of primal-dual interior steps and the current point just got out of

the feasible region. The other case is right after p - central cuts are added through a

µ - analytic center. Both these circumstances are similar, so we will not differentiate

between these two cases in the next analysis.

Now we are ready to analyze what the adding of cuts changes in the problem.

There are two things we should worry about when choosing the directions, and the

scaling factors: one is to ensure that we are getting a feasible point, and the other

is to keep track of the change in the proximity measure.

It is easy to check that the directions proposed verify the system (5.6). Also,

both β and γ are strictly positive (see Theorem 4.2 and formulas (11) and (12) from

[5]). The only thing to ensure is:

x+ αPdx > 0 and s+ αDds > 0.

The next two lemmas will provide us with bounds for αP and αD that will keep

the above inequalities true.

Lemma 24 Let β be the maximizer for F (β) = −p
2
βTV β +

p∑
i=1

ln βi. Then

β
T
V β = 1 and β(V β) =

1

p
e.

Proof: The function F (β) is concave and it is maximized over the convex set

IRm
+ . At β we have that: ∇F (β) = 0. But ∇F (β) = −pV β + 1

β
. So, for β we have

pV β = 1
β

or, equivalently, V β = p−1 1
β
. The result follows immediately.

So far we did not use the fact that prior to adding the cuts

δ := δT (x, s, µ) ≤ τ.

Let’s analyze how this bound affects the size of the component-wise products
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xisi. We have

δ
2

=
1

4

n∑
i=1

(
xisi

µ
+

µ

xisi

− 2

)
. (5.8)

Each term of the sum is positive and δ ≤ τ implies that

xisi

µ
+

µ

xisi

− 2 ≤ 4τ 2, i = 1, . . . , n. (5.9)

We can rewrite this as:

(xisi)
2 − µ(2 + 4τ 2)xisi + µ2 ≤ 0, i = 1, . . . , n. (5.10)

These inequalities hold if and only if:

µ(1 + 2τ 2 − 2τ
√
τ 2 + 1) ≤ xisi ≤ µ(1 + 2τ 2 + 2τ

√
τ 2 + 1) for i = 1, . . . , n (5.11)

or:

µ(
√
τ 2 + 1 − τ)2 ≤ xisi ≤ µ(

√
τ 2 + 1 + τ)2 for i = 1, . . . , n. (5.12)

Using these inequalities we can prove the following lemma.

Lemma 25 1. If 0 < αP <
√
µ(
√
τ 2 + 1 − τ) then x+ αPdx > 0.

2. If 0 < αD <
√
µ(
√
τ 2 + 1 − τ) then s+ αDds > 0.

Proof: Let’s notice that if ‖v‖ = α then all the components of v satisfy −α ≤
vi ≤ α.

1. x + αPdx = Xe − αPD
2AT (AD2AT )−1Bβ. If we substitute D = X

1
2S

− 1
2 and

factorize then:

x+ αPdx = D(X
1
2S

1
2 e− αPDA

T (AD2AT )−1Bβ). (5.13)

Now
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[DAT (AD2AT )−1Bβ]T [DAT (AD2AT )−1Bβ]

= βTBT ((AD2AT )−1)TAD2AT (AD2AT )−1Bβ = βTV β = 1.

So ‖DAT (AD2AT )−1Bβ‖ = 1. This implies that:

−e ≤ DAT (AD2AT )−1Bβ ≤ e.

Finally

x+ αPdx ≥ (
√
µ(
√
τ 2 + 1 − τ) − αP )De > 0 (5.14)

if 0 < αP <
√
µ(
√
τ 2 + 1 − τ).

2. Similarly,

s+ αDds = Se+ αDA
T (AD2AT )−1Bβ

= D−1(X
1
2S

1
2 e+ αDDA

T (AD2AT )−1Bβ)

≥ (
√
µ(
√
τ 2 + 1 − τ) − αD)D−1e > 0

if 0 < αD <
√
µ(
√
τ 2 + 1 − τ).

Now that the feasibility is insured we have to worry about the change in δ.

The next lemma will be of help for our analysis. It gives us a way to compare

the proximity measures before and after adding the cuts (i.e. after changing the

dimensionality of the problem).

Lemma 26 Let δ = 1
2
||v − v−1|| and δ+ = 1

2

∥∥∥∥∥∥∥

 v

u


−


 v

u



−1

∥∥∥∥∥∥∥. Then

δ2
+ = δ2 +

1

4

∥∥∥u− u−1
∥∥∥2
, for any v, u. (5.15)

Proof: The proof is almost trivial.



106

Let δ be the proximity measure right before adding in the cuts and δ+ the proxim-

ity value after the cuts have been added in and the step for the recovery of feasibility

has been taken. We want to find an upper bound for δ+ knowing that before adding

the cuts δ ≤ τ .

If we take:

δ1 =
1

2

∥∥∥∥∥∥
√

(x+ αPdx)(s+ αDds)

µ
−
√

µ

(x+ αPdx)(s+ αDds)

∥∥∥∥∥∥
then, using the previous lemma:

4δ2
+ = 4δ2

1 +

∥∥∥∥∥
√
αPαD

µ
βV β −

√
µ

αPαD

1

βV β

∥∥∥∥∥
2

.

Using Lemma 24, we get that:

4δ2
+ = 4δ2

1 +

∥∥∥∥∥
√
αPαD

µ

1

p
e−

√
µ

αPαD

pe

∥∥∥∥∥
2

= 4δ2
1 +

αPαD

µ
+

µ

αPαD

p2 − 2p.

Let x+ = x+ αPdx and s+ = s+ αDds. Then δ1 can be written as:

δ1 =
1

2

∥∥∥∥∥
√
x+s+

µ
−
√

µ

x+s+

∥∥∥∥∥ .

We already know that dx = −D2AT (AD2AT )−1Bβ, ds = AT (AD2AT )−1Bβ with

D = X
1
2S

− 1
2 . If take v = DAT (AD2AT )−1Bβ then ‖v‖ = 1, dx = −Dv and

ds = D−1v. Using these notations:

x+s+ = xs+ αDx(D
−1v) − αP s(Dv) − αPαD(Dv)(D−1v)

= xs+ αDx(X
− 1

2S
1
2v) − αP s(X

1
2S

− 1
2v) − αPαD(X

1
2S

− 1
2v)(X

− 1
2S

1
2v).

Componentwise:

x+
i s

+
i = xisi + (αD − αP )

√
xisivi − αPαDv

2
i for i = 1, . . . , n. (5.16)
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Substituting back in δ1:

4δ2
1 =

n∑
i=1

(
x+

i s+
i

µ
+ µ

x+
i s+

i

− 2
)

=
n∑

i=1

(
xisi+(αD−αP )

√
xisivi−αP αDv2

i

µ
+ µ

xisi+(αD−αP )
√

xisivi−αP αDv2
i
− 2

)

= 4δ
2
+

n∑
i=1

(
(αD−αP )

√
xisivi−αP αDv2

i

µ
+ µ

xisi+(αD−αP )
√

xisivi−αP αDv2
i
− µ

xisi

)

To simplify the analysis, let’s take αP = αD := α. The expression for δ1 is

significantly simplified:

4δ2
1 = 4δ

2
+

n∑
i=1

(
−α2v2

i

µ
+

µ

xisi − α2v2
i

− µ

xisi

). (5.17)

Using (5.12), the fact that ‖v‖ = 1 and α > 0 we get:

4δ2
1 = 4δ

2 − α2

µ
+ µ

n∑
i=1

(
1

xisi − α2v2
i

− 1

xisi

)

= 4δ
2 − α2

µ
+ µ

n∑
i=1

α2v2
i

xisi(xisi − α2v2
i )

≤ 4δ
2 − α2

µ
+

µ

µ(
√
τ 2 + 1 − τ)2 − α2

.

Now we can relate the measures of proximity before adding the cuts and after

they are added and one step is taken inside the feasible region:

4δ2
+ ≤ 4δ

2 − α2

µ
+

µ

µ(
√
τ 2 + 1 − τ)2 − α2

+
α2

µ
+

µ

α2
p2 − 2p.

with 0 < α <
√
µ(
√
τ 2 + 1 − τ).

We should choose the scalar α such that the step is as deep as possible and the

bound for δ+ is as tight as possible. Possible choices for α might be
√

µ
2
(
√
τ 2 + 1−τ)

or
√

µ
4
(
√
τ 2 + 1 − τ).

As µ decreases from one iteration to another, it seems that smaller values for α
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give a good upper-bound for δ+. We can get a bound for δ+:

δ2
+ ≤ δ

2
+ 3(2τ + 1)2p2 (5.18)

if we take α =
√

µ
2
(
√
τ 2 + 1 − τ) and use the fact that 1

2τ+1
<

√
τ 2 + 1 − τ < 1

2τ
for

any positive τ .

This inequality holds for any τ > 0. Actually, because we use the long step

primal-dual algorithm proposed by Terlaky et al. in [16], in order to get a better

complexity, τ should be of order of
√
n+ 2m.

In fact choosing τ =
√
n+ 2m is useful in one more way (as we will see shortly).

In the next section we will prove that if a µ - analytic center is feasible in Γ then, it

is also approximately centered. Hence, we can start the sequence of long primal-dual

steps by directly decreasing µ (because we are already close to the central path).

5.7 Potential Functions and Analytic Centers

Let m be the dimension of the dual-space and n the total number of cuts that

have been added so far by the algorithm. In analyzing the algorithm, potential

functions are used. The functions used here are: the primal potential

ϕP (x) = −cTx+ µ
2m+n∑
i=1

lnxi, (5.19)

the dual potential

ϕD(s) = bTy + µ
2m+n∑
i=1

ln si (5.20)

and the primal-dual potential

ϕPD(x, s) = ϕP (x) + ϕD(s). (5.21)

Here µ ∈ (0, 1).

We define the exact µ - analytic center of FD = {s > 0 : ATy + s = c} to be the

unique point maximizing ϕD over FD.
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If we consider the problem

max{ϕD(s) : ATy + s = c, s > 0}

then the first-order optimality conditions are:

xs = µe,

ATy + s = c, s > 0, (5.22)

Ax = b, x > 0.

Equivalently, the exact µ - analytic center may be defined as the optimal solution

to

max{ϕP (x) : Ax = b, x > 0}.

A µ - analytic center is a point (x, y, s) for which the next relations hold:

‖xs
µ
− e‖ ≤ θ < 1,

ATy + s = c, s > 0,

Ax = b, x > 0.

Now we can prove:

Lemma 27 If θ < 3
4
, each µ - analytic center feasible in FD, is also approximately

centered (i.e. δT (x, s, y) ≤ τ =
√
n+ 2m).

Proof: If a µ - analytic center is approximately centered then δM(x, s, µ) ≤ θ.

So, 1 − θ ≤ xisi

µ
≤ 1 + θ. Then

δT (x, s, µ) ≤
√

(n+ 2m)
2θ − θ2

1 − θ
<

√
n+ 2m

for any θ < 3
4
.
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This lemma allows us to call the oracle as soon as the µ - analytic center becomes

infeasible. So no extra centering steps are required.

We now introduce a result that relates the potential functions evaluated at an

exact µ - analytic center with the values of the same potentials at an µ - analytic

center (similar to the Corollary 3.2 from [5]). Let’s start by noticing that the

primal-dual potential value at any feasible point (x, y, s) is bounded and the bound

depends only on the dimensionality of the space and the parameter µ.

Lemma 28 Let x ∈ intFP and s ∈ intFD. Then

ϕPD(x, s) ≤ −µ(2m+ n)

with equality if and only if µ = 1 and xs = e.

Proof: We will use the following inequality:

ln(t) ≤ t− 1,∀t > 0,

with equality if and only if t = 1. Using this inequality and the fact that x ∈ intFP

and s ∈ intFD (which implies that xT s = cTx− bTy) we get:

ϕPD(x, s) = ϕP (x) + ϕD(s) = µ
2m+n∑
i=1

lnxisi + bTy − cTx ≤ (µ− 1)xT s− µ(2m+ n).

Because 0 < µ < 1 and x, s > 0 the conclusion follows.

Lemma 29 Let (xC , sC) be the exact µ - analytic center and (x, s) be a µ - analytic

center. Let ϕC
P = ϕP (xC) and ϕC

D = ϕD(sC). Then:

−µ(2m+ n) ≥ ϕPD(x, s) ≥ −µ(2m+ n) − θ2

1 − θ2
µ+ µ(2m+ n) lnµ

and

ϕP (x) ≥ ϕC
P − µ

θ2

1 − θ2
.
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Proof: The first inequality is already proved.

For the second one we will minimize ϕPD(x, s) over the set of all µ - analytic

centers. We can get a lower bound for ϕPD(x, s) by minimizing it over the set

{(x, s); ‖xs
µ
− e‖ ≤ θ}. By taking ui := xisi and using the fact that xT s = cTx− bTy

we can rewrite the problem as:

min − 2m+n∑
i=1

ui + µ
2m+n∑
i=1

lnui,

s.t.
2m+n∑
i=1

(ui

µ
− 1)2 ≤ θ2.

The objective function is concave and the feasible region is convex and compact

(it is a sphere). So the solution of this problem is among the KKT points. It turns

out that the KKT point that minimizes the objective function is the vector u with

one component equal to µ (1 − θ) and all other 2m+ n− 1 components equal to µ.

So

ϕPD ≥ µ(θ + ln(1 − θ)) − (2m+ n)µ+ (2m+ n)µ ln(µ).

Using the inequality

t+ ln(1 − t) ≥ − t2

1 − t2
,∀t ∈ (0, 1),

we get the first result.

At the µ - analytic center (xC , sC) we have: xC
i s

C
i = µ, ∀ i = 1, . . . , 2m+ n. So

ϕC
P + ϕC

D = −(xC)T sC + µ
2m+n∑
i=1

ln(xC
i s

C
i ) = −µ(2m+ n) + µ(2m+ n) ln(µ).

If we substitute in the first result we get:

ϕP (x) + ϕD(s) = ϕPD(x, s) ≥ ϕC
P + ϕC

D − µ
θ2

1 − θ2
.
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Because ϕC
D ≥ ϕD(s) we conclude that:

ϕP (x) ≥ ϕC
P − µ

θ2

1 − θ2
.

Another useful result from [5] is

Lemma 30 Let h be any point in IRm such that ‖h‖ < 1. Then,

m∑
i=1

ln(1 + hi) ≥ eTh+ ‖h‖ + ln(1 − ‖h‖).

5.8 Algorithm Analysis

Let (x, y, s) be a µ - analytic center corresponding to an outer-approximation set

Pi. Let’s assume that this point is infeasible so we call the oracle and add the cuts

centrally. Let dx, dy, ds, β and γ be the vectors describing the feasibility step. As

already proven in Section 5.4, dx and ds inherently verify (5.7):

‖D−1dx‖ = 1,

‖Dds‖ = 1,

with D = X−1/2S1/2.

For this point and these directions the following lemma holds.

Lemma 31 For any α with α < µ(1 − θ), the next inequalities hold:

‖αX−1dx‖ < α

µ(1 − θ)
< 1 and ‖αS−1ds‖ < α

µ(1 − θ)
< 1.

Proof: Using Lemma 23 and µ < 1 we get:

‖αX−1dx‖ = α‖X−1dx‖ ≤ α
√
µ(1 + θ) ≤ α√

µ(1 − θ)
<

α

µ(1 − θ)
< 1.



113

Similarly:

‖αS−1ds‖ = α‖S−1ds‖ ≤ α√
µ(1 + θ)

<
α√

µ(1 − θ)
<

α

µ(1 − θ)
< 1.

Lemma 32 The following inequalities hold:

|cTdx + yTBβ − µeTX−1dx| ≤ θ

1 − θ

and

|(dy)
T b+ µeTS−1ds| ≤ θ

1 − θ
.

Proof: Similar to Lemma 5.2 from [5].

Using these results, we can relate the values of the potential functions right before

adding the cuts through the µ - analytic center, and after the feasibility is recovered

(by taking the feasibility step scaled by a factor α ).

Lemma 33 The following inequalities hold:

ϕ̃P (x+(α)) ≥ ϕP (x) + µp lnα+ α+ µ ln

(
1 − α

µ(1 − θ)

)
+ µ

p∑
i=1

ln βi,

ϕ̃D(s+(α)) ≥ ϕD(s) + µp lnα+ α+ µ ln

(
1 − α

µ(1 − θ)

)
+ µ

p∑
i=1

ln(γi),

ϕ̃PD(x+(α), s+(α)) ≥ ϕPD(x, s) + 2µp lnα+ 2α+ 2µ ln

(
1 − α

µ(1 − θ)

)
− µp ln p.

Here x+(α) = x + αdx and s+(α) = s + αds correspond to the new point after the

scaled feasibility step was taken.

Proof: Let’s define ui to be equal to either αx−1
i dxi or αs−1

i dsi. In either case,

using Lemma 31, it turns out that ‖u‖ ≤ α
µ(1−θ)

< 1. Note that t + ln(1 − t) is a
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decreasing function of t. Then using Lemma 30:

m∑
i=1

ln(1 + ui) ≥ eTu+ ‖u‖ + ln(1 − ‖u‖) ≥ eTu+
α

µ(1 − θ)
+ ln(1 − α

µ(1 − θ)
).

The first relation is proved immediately.

ϕ̃P (x+(α)) = −c̃Tx+(α) + µ
m∑

i=1
lnx+

i (α) + µ
p∑

i=1
lnαβi

= −cTx− αcTdx − αyTBβ + µ
m∑

i=1
lnx+

i (α) + µ
p∑

i=1
lnαβi

= −cTx− αcTdx − αyTBβ + µ
m∑

i=1
lnxi + µ

∑
i=1

ln (1 + αx−1
i dxi) + µ

p∑
i=1

lnαβi

= ϕP (x) − αcTdx − αyTBβ + µ
p∑

i=1
lnαβi + µ

∑
i=1

ln (1 + αx−1
i dxi)

≥ ϕP (x) − αcTdx − αyTBβ + µ
p∑

i=1
lnαβi + µαeTX−1dx + α

1−θ
+ µ ln(1 − α

µ(1−θ)
).

Now we just have to use Lemma 32.

The second statement follows similarly. The last inequality follows by adding the

other two inequalities and using βγ = 1
p
e (from Lemma 24).

Once feasible a sequence of Newton steps is taken toward the µ - analytic center

of the new outer approximation set. A standard result in linear optimization (see

[26] or [19]) gives a description of the change in the primal-dual potential after a

scaled Newton step.

Theorem 15 Let (x, y, s) be a feasible point with ‖xs
µ
− e‖ ≥ θ > 0. Let x̃(α) =

x + α∆x and s̃(α) = s + α∆s with ∆x and ∆s being the primal-dual Newton

directions. Then there exists a step size α > 0 and a constant σ such that:

ϕPD(x̃(α), s̃(α)) ≥ ϕPD(x, s) + σ. (5.23)

So for each scaled Newton step the primal-dual potential changes by a constant

σ. This helps us in estimating the number of steps required to get to an µ - analytic

center.

Lemma 34 The number of Newton steps required to compute the updated
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µ - analytic center is bounded by:

ν =
−µp− ρ

σ
= µO(p ln(p+ 1)) (5.24)

where

ρ = − θ2

1 − θ2
µ− µp lnµ+ 2pµ lnα+ 2α− µp ln p+ 2µ ln (1 − α

µ(1 − θ)
). (5.25)

Proof: Let’s consider the potential function gap ∆ϕ̃PD:

∆ϕ̃PD = ϕ̃C
P + ϕ̃C

D − ϕ̃PD(x+(α), s+(α)).

Here ϕ̃C
P and ϕ̃C

D are the potential functions evaluated at the exact µ - analytic

center of the region obtained after adding p - cuts. We know (see (5.22)) that, at

an exact µ - analytic center:

xisi = µ.

Substituting this in the definition for potential functions it turns out that:

ϕ̃C
P + ϕ̃C

D = (2m+ n+ p)(−µ+ µ ln(µ)). (5.26)

Using the bounds for ϕ̃PD(x+(α), s+(α)) (from Lemma 33) and for ϕPD(x, s) (from

Lemma 29) we get:

∆ϕ̃PD ≤ −p(µ− µ ln(µ)) +
θ2

1 − θ2
µ− 2pµ lnα− 2α+ pµ ln p− 2µ ln(1 − α

µ(1 − θ)
).

By taking:

ρ = − θ2

1 − θ2
µ− µp lnµ+ 2p lnα+ 2α− µp ln p+ 2µ ln (1 − α

µ(1 − θ)
)

we obtain the result.

Notice that the number of Newton steps required to move from one analytic
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center to the next one decreases as the algorithm proceeds (because µ decreases

geometrically).

Now that we know the number of Newton steps required to move from one analytic

center to another, the only thing we need is an estimate for the total number of µ

- analytic centers generated by the algorithm before we are guaranteed to get the

solution of the problem.

The key observation here is that for each µ -analytic center generated by the

algorithm, there exists a unique exact µ - analytic center corresponding to the same

outer-approximation set. So the total number of µ - analytic centers is equal to the

total number of exact µ - analytic centers.

Following the approach in Goffin and Vial [5], the analysis of the dual potential

will be used in estimating the total number of exact µ - analytic centers.

First we will establish how the dual potential changes from one exact µ - analytic

center to the next one.

Two different situations arise. One is when the exact µ - analytic centers corre-

spond to different outer-approximation sets (so for in this case these AC correspond

to the same µ but different sets). This case is similar to the analysis from [5] and

we will just cite it for the results we need.

The second case, carefully analyzed here, is when these two exact µ - analytic

centers correspond to the same set but the µ parameter is different (i.e. they are

arising in a sequence of Primal-Dual steps).

For the first case we have:

Lemma 35 Let sC and s̃C be two consecutive exact µ - analytic centers correspond-

ing to two different outer-approximation sets. Let ϕC
D and ϕ̃C

D be the values of the

dual potentials at these points. For all 0 < α < 1 − θ

ϕ̃C
D ≤ ϕC

D + µ
p∑

i=1

ln τi + µκ(θ, α, p)
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where

κ(θ, α, p) = p ln p− p(1 − lnµ) − p lnα− α

µ
+

θ2

1 − θ2
− ln (1 − α

µ(1 − θ)
)

and τi are the components of the vector τ given by τ 2 = diagV . That is:

τi =
√
aT

m+i(AX
2AT )−1am+i = µ−1

√
aT

m+i(AS
−2AT )−1am+i, i = 1, . . . , p.

Proof: Similar to Theorem 5.5 from [5]. The only difference is the presence of

the parameter µ. Although this difference might seem to be a small, it has a big

impact in analyzing the complexity of the algorithm.

For µ = 1 the exact formulation of Theorem 5.5 from [5] is obtained. If we choose

α and θ carefully enough then, it turns out that

κ(θ, α, p) ≤ µp ln (p+ 1)

(see Theorem 5.5 from [5]) . So:

ϕ̃C
D ≤ ϕC

D + µ
p∑

i=1

ln τi + µp ln (p+ 1). (5.27)

We now need some upper bound for τi. Ye in [25] (see Theorem 10) gives a global

bound when all n added cuts are taken into account (not only the last p cuts added

at the last call of the oracle). Using a similar approach, the following inequality can

be proved:

n∑
i=1

τ 2
i ≤ 24m2

5µ2
ln (1 +

n

8m2
). (5.28)

Here the µ parameter corresponds to the smallest value it had at the end of the last

sequence of Primal-Dual interior point steps. Using the concavity of the logarithm
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function:

n∑
i=1

ln τi =
1

2

n∑
i=1

ln τ 2
i

n
≤ 1

2
ln(

24m2

5µ2n
ln (1 +

n

8m2
)). (5.29)

Let’s consider now the case when the current µ - analytic center is obtained after

a sequence of interior-point steps followed by a feasibility step.

Using the same notation as before, let sC and s̃C be the two consecutive exact

µ - AC and ϕC
D and ϕ̃C

D be the values of the dual potentials. In this case the

outer-approximation set doesn’t change but µ̃ = (1 − Θ)µ. So:

ϕC
D = bTy + µ

2m+n∑
i=1

ln si,

ϕ̃C
D = bT ỹ + µ̃

2m+n∑
i=1

ln s̃i = bT ỹ + (1 − Θ)µ
2m+n∑
i=1

ln s̃i.

Because these µ - analytic centers are exact, they maximize the dual potential

functions (with parameters µ and (1 − Θ)µ). This observation leads to:

2m+n∑
i=1

ln si ≥
2m+n∑
i=1

ln s̃i.

So:

ϕ̃C
D

µ̃
≤ ϕC

D

µ
+
bT ỹ

µ̃
− bTy

µ
. (5.30)

Let (xj, yj, sj) be an µj - analytic center. Let us introduce the following notation:

ϕj(sj) = µjΨj(sj), (5.31)

lj = bTyj. (5.32)

Here, ϕj is the dual potential function at the j - th iteration.

Using this notation, the relationship between the dual-potential functions at two
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consecutive exact µ - analytic centers (xj, yj, sj) and (xj+1, yj+1, sj+1) become:

Ψj+1(sj+1) ≤ Ψj(sj) +
p∑

i=1

ln τi + κ(θ, α, p) (5.33)

for the first case and

Ψj+1(sj+1) ≤ Ψj(sj) +
lj+1

µj+1

− lj
µj

. (5.34)

Now, before analyzing the complexity let’s review the algorithm, introducing

some useful notations at the same time.

5.9 Algorithm Overview

We are interested in finding an upper bound for the total number of cuts that

are added before we get the solution. This means that we should keep track only of

the number of calls of the oracle. We start with the big cube C as the first outer

approximation for Γ. Let’s call it P1. Let µ1 = 1 and AC1 be its µ = µ1 - analytic

center. Call the oracle. Assuming AC1 is not in Γ, the oracle returns p1 central

cuts. Introduce the cuts; P1 becomes P2 with the µ1 - analytic center AC2. Call

the oracle, get p2 central cuts, add them and obtain the new region P3. Keep doing

this until, at the (k1 −1)-th iteration, the µ1 - analytic center ACk1 of Pk1 is strictly

interior to Γ. Now take a sequence of primal-dual steps. Initialize µ with µ1. Take

Newton steps until the point gets close to the central path (i.e. δT (x, s, µ) < τ ,

for some τ). Change µ into µ(1 − Θ) (with 0 < Θ < 1). Keep taking primal-dual

interior steps until at the end of the k1 + 1-th iteration (when µ = µ1(1−Θ)k1) the

point gets out of Γ. Take µ2 = µ1(1−Θ)k1 . Call the oracle that returns pk1 central

cuts. Add them to Pk1 that becomes Pk1+1 with the µ2 - analytic center ACk1+1.

Call the oracle at ACk1+1 and find the next µ2 - analytic center. Do this until after

k2 − 1 outside steps the µ2 - analytic center ACk1+k2 is again inside Γ. Initialize

the sequence of interior primal-dual steps with µ = µ2. Take the steps until, the

point gets out of Γ (with a corresponding µ = µ2(1−Θ)k2). Call the oracle, add pk2

cuts and get the new domain Pk1+k2+1. Take now µ3 = µ1(1 − Θ)k2 . Now generate
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a sequence of µ3 - analytic centers until, after k3 − 1 iterations, the AC gets back

into Γ. We keep doing this until (n + 2m)γµ < ε (n being the total number of

constraints) while the current point is in Γ that is the solution.

We assumed that Γ contains a ball of radius 2−L. In the following section we will

prove that the number of µ - analytic centers generated by the algorithm is finite.

So, sooner or later the µ - analytic center will end-up in Γ. Hence at least one

sequence of interior primal-dual steps will be generated. In a limit case we might

get feasibility at the same time with the solution.

5.10 Complexity

Using the notations we just introduced and the relations between dual potentials

at different µ - analytic centers we get, after the algorithm just finished the s-th

sequence of Primal-Dual sequence of steps:

Ψk1+...+ks+1 ≤ Ψ1 +
ns∑
i=1

ln(τi) +
k1+...+ks−1∑

i=1

(pi ln(pi + 1)) −

− lk1

µ1

+
lk1+1 − lk1+k2

µ2

+
lk1+k2+1 − lk1+k2+k3

µ3

+

+ . . .+
lk1+...+ks−1+1 − lk1+...+ks

µs

+
lk1+...+ks+1

µs+1

,

with Ψi = Ψ(si), pi - the number of cuts returned by the oracle at ACi and ns

the total number of cuts generated by the algorithm until ACk1+...+ks .

Let p be the maximum number of cuts that the oracle generated at any call. All

the µ - analytic centers generated by the algorithm are in the initial cube

C = {y ∈ IRm;−e ≤ y ≤ e}.

This helps provides us with bounds for li and li − lj:

li ≤ √
m‖b‖,

li − lj ≤ 2
√
m‖b‖.
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So:

Ψk1+...+ks ≤ Ψ1 +
ns∑
i=1

ln(τi) +
k1+...+ks−1∑

i=1
(pi ln(pi + 1))+

+ 2‖b‖√m( 1
µ1

+ 1
µ2

+ . . .+ 1
µs+1

).

Because the algorithm did not stop at the last sequence of primal-dual interior

steps, (ns + 2m)γµs+1 ≥ ε. On the other hand µs = (1 − Θ)t for some integer t, so

we can write:

1

µ1

+
1

µ2

+ . . .+
1

µs+1

≤
t∑

i=0

1

(1 − Θ)i
≤ 1

(1 − Θ)tΘ
≤ 1

µsΘ
≤ (ns + 2m)γ

εΘ
.

Thus:

Ψk1+...+ks+1 ≤ Ψ1 +
ns∑
i=1

ln(τi) + (ns + 2m) ln(1 + p) + 2‖b‖√m(ns + 2m)γ

εΘ
.

The first µ - analytic center generated by the algorithm is the one corresponding

to the fixed, given cube C. So Ψ1 can be considered a constant (its value does not

depend on the problem).

At the beginning we made the assumption that the domain Γ contains a ball of

radius 2−L. Let ȳ be the center of this ball with the corresponding slack vector

s̄. So s̄i > 2−L. The last exact µ - analytic center considered in our analysis is

(xk1+...+ks+1, yk1+...+ks+1, sk1+...+ks+1). So:

Ψk1+...+ks+1 =
ϕD(ss+1)

µs+1

≥ bT ȳ

µs+1

+
2m+ns∑

i=1

ln s̄i.

Or:

Ψk1+...+ks+1 ≥ −2
‖b‖√m

ε
(ns + 2m)γ + (ns + 2m) ln 2−L.

Finally, using the concavity of the logarithm function, (5.29) and the above in-

equalities:

−2‖b‖√m(
1

εΘ
+

1

ε
)(ns + 2m)γ−1 + ln 2−L − ln(1 + p) − Ψ1

ns + 2m
≤
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≤ 1

2
ln(

24m2

5ε2(ns + 2m)1−2γ
ln (1 +

ns

8m2
)). (5.35)

Now it is clear why we need to have (n+2m)γµ < ε, γ < 0.5, as a stopping criteria

for the primal-dual part of the algorithm (instead of the usual one: (n+2m)µ < ε).

Using this last inequality it is clear that the algorithm converges. This is because, in

time ns - the total number of cuts that are added increases. At the limit, as ns goes

to infinity, the left hand side of the inequality converges to a constant number while

the right-hand side converges to negative infinity making the inequality untrue. So

the algorithm converges.

By ignoring the lower order terms the total number of cuts that are added during

the evolution of the algorithm is of order:

O((
pm

2−Lε
)

2
1−2γ ). (5.36)

By taking γ = 1
16

then 2
1−2γ

is about 2.3. In implementing this algorithm we need

to choose γ such that to get a small number of analytic centers without being too

aggressive in the primal-dual interior point scheme.

Our results compare favorably with results obtained in different instances.

In a pure analytic center cutting planes method scheme applied to a linear fea-

sibility problem (see [5]), the number of cuts added before the algorithm generates

an strictly feasible point is of order

O((
pm

2−L
)2). (5.37)

For a pure analytic center cutting plane method applied to a semidefinite feasi-

bility problem (see [12]) the result is

O(
m3p2

2−2L
). (5.38)



CHAPTER 6

Conclusions and Future Work

In this thesis we proposed and analyzed an algorithm for solving feasibility problems

that arise in conic programming. The approach is based on an analytic center cutting

plane method. We generalized here the particular cases of linear programming,

second order cone programming and semidefinite programming. Our algorithm can

be easily adjusted to these particular cases.

The assumptions we made about the problem are usual ones. Although we are

dealing with a general case we didn’t need to impose any extra conditions on the

problems. The feasibility problems have convex, closed, bounded, fully dimensional

sets of interest. These sets are described by an oracle that either recognizes that a

point is strictly interior to the set or returns a set of violated constraints. Multiple

cuts are added centrally when the current point is infeasible. These cuts can be

linear, quadratic, semidefinite or any combination of these types.

The complexity results are similar to the ones obtained for less general cases. We

proved that our algorithm generates no more than O∗(mP 3Θ3

ε2Λ2 ) analytic centers before

a solution is obtained. This result compares favorably with O∗(m2P 2

ε2 ) (obtained for

the linear case) and O(m3P 2

ε2 ) (for the semidefinite case). The extra terms we have

are Θ and Λ, which characterize the self-concordant functionals and the cuts that

are introduced, respectively.

The numerical results we obtained are encouraging and are in line with the the-

oretical ones.

We also proposed a new algorithm for solving optimality problems. This algo-

rithm incorporates the analytic center cutting plane method we proposed for fea-

sibility problems. We completely analyzed the complexity of this algorithm in the

linear case.

Open questions remain to be addressed in future work. It would be interesting to

analyze how the algorithm changes if deep cuts are used (instead of central ones) or

if some of them are dropped. In our analysis the operators describing the cuts had
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to be injective. This requirement limits the size of second order cones that can be

added by the oracle. Also we didn’t analyze here the complexity of the algorithm

we proposed for solving optimality problems.

Finally, from a practical perspective, a better implementation of the algorithm

is required to make possible a fair comparison (from the time point of view) with

other existing solvers.

All these issues remain to be addressed in our future work.
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