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Abstract

The inclusion of transaction costs is an essential element of any realistic portfolio
optimization. In this paper, we extend the standard portfolio problem to consider
convex transaction costs that are incurred to rebalance an investment portfolio. Market
impact costs measure the effect on the price of a security that result from an effort to
buy or sell the security, and they can constitute a large part of the total transaction
costs. The loss to a portfolio from market impact costs is typically modeled with a
convex function that can usually be expressed using second order cone constraints.
The Markowitz framework of mean-variance efficiency is used. In order to properly
represent the variance of the resulting portfolio, we suggest rescaling by the funds
available after paying the transaction costs. This results in a fractional programming
problem, which can be reformulated as an equivalent convex program of size comparable
to the model without transaction costs. An optimal solution to the convex program
can always be found that does not discard assets. The results of the paper extend the
classical Markowitz model to the case of convex transaction costs in a natural manner
with limited computational cost.
Keywords: Portfolio optimization, transaction costs, market impact costs, rebalanc-
ing, conic optimization, convex optimization.
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1 Introduction

Constructing a portfolio of investments is one of the most significant financial decisions
facing individuals and institutions. A decision-making process must be developed which
identifies the appropriate weight each investment should have within the portfolio. The
portfolio must strike what the investor believes to be an acceptable balance between risk
and reward. In addition, the costs incurred when setting up a new portfolio or rebalancing
an existing portfolio must be included in any realistic analysis. In this paper, we consider
convex transaction costs, including linear (proportional) transaction costs, piecewise linear
transaction costs, quadratic transaction costs, and market impact costs. In order to properly
reflect the effect of transaction costs, we suggest rescaling the risk term by the funds available
after paying the transaction costs.

Essentially, the standard portfolio optimization problem is to identify the optimal alloca-
tion of limited resources among a limited set of investments. Optimality is measured using
a tradeoff between perceived risk and expected return. Expected future returns are based
on historical data. Risk is measured by the variance of those historical returns.

When more then one investment is involved, the covariance among individual investments
becomes important. In fact, any deviation from perfect positive correlation allows a beneficial
diversified portfolio to be constructed. Efficient portfolios are allocations that achieve the
highest possible return for a given level of risk. Alternatively, efficient portfolios can be
said to minimize the risk for a given level of return. These ideas earned their inventor a
Nobel Prize and have gained such wide acceptance that countless references could be cited;
however, the original source is Markowitz [33].

One standard formulation of the portfolio problem minimizes a quadratic risk measure-
ment with a set of linear constraints specifying the minimum expected portfolio return, E0,
and enforcing full investment of funds. The decision variables xi are the proportional weights
of the ith security in the portfolio. Here n securities are under consideration. Let µi denote
the expected value of $1 invested in security i at the end of the period of interest, and let Q
denote the positive semidefinite covariance matrix of these values. When short selling is not
allowed, the proportions xi are restricted to be nonnegative and the resulting formulation is:

min 1
2
xTQx

s.t. µTx ≥ E0

eTx = 1
x ≥ 0,

(1)

where e denotes the vector of all ones. By varying the parameter E0 and solving multiple
instances of this problem, the set of efficient portfolios can be generated. This set, visualized
in a risk/return plot, is called the efficient frontier. An investor may decide where along the
efficient frontier (s)he finds an acceptable balance between risk and reward.

In this paper, we describe two methods for finding an optimal portfolio when convex
transaction costs have to be paid. Both methods require the solution of a convex program of
similar size to the Markowitz model. The models allow different costs for different securities,
and different costs for buying and selling, and capture the feature that transaction costs
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are paid when a security is bought or sold and the transaction cost reduces the amount of
that particular security that is available. The first model is related to a model developed
by Lobo et al. [31]. The second model is a refinement where the risk measure is scaled to
reflect the loss of principal due to transaction costs. This rescaled objective can be regarded
as the risk per dollar invested, so both the risk and the return in our model are measured
using the portfolio arising after paying the transaction costs. We show that various types of
transaction costs lead to conic optimization problems in both models. We show that the first
model may lead to the discarding of assets if a complementarity constraint is not imposed
between buy and sell decisions, because discarding assets can reduce the measure of risk.
In contrast, an optimal solution to the model with the rescaled objective will not result in
assets being discarded.

Chen et al. [15] survey research on the incorporation of transaction costs into the Markowitz
model. The portfolio rebalancing problem has similarities to the index tracking prob-
lem [1, 13, 18]. See Zenios [49] for a discussion of portfolio optimization models. The
optimal solution to the portfolio optimization problem is sensitive to the data Q and µ, so
estimating this data accurately is the subject of current research; see Chopra and Ziemba [16]
or Bengtsson and Holst [5] for example. Stochastic programming approaches to portfolio op-
timization have been investigated in [17, 25, 38, 39] and elsewhere; such approaches work
with sets of scenarios.

Modification of a portfolio should be performed at regular intervals, and determination
of the appropriate interval in the presence of transaction costs is a problem of interest.
Preferably, selection of the interval should be done in conjunction with selection of the
method used for rebalancing. This paper contains a method for rebalancing. There has
been interest in portfolios that can be modified continuously, starting with Merton [35].
These methods are generally limited computationally to problems with a small number of
securities. For a survey on the impact of transaction costs on the dynamic rebalancing
problem, see Cadenillas [11]. For a discussion of handling capital gains taxes in dynamic
portfolio allocation problems, see Cadenillas and Pliska [12].

This paper is organized as follows. We turn to the portfolio rebalancing problem in §2.
First, we motivate the cost model and provide examples of costs that fit this model, including
market impact costs. We give an example where the unscaled model gives a solution that is
not an attractive practical strategy. We show that this particular type of solution cannot arise
if there is a riskless asset. Alternative approaches to this problem are also discussed in §2. A
scaling method for preventing the unattractive solution is presented in §3, with the properties
of the optimal solution returned by this method given in §4. This method leads to a model
which can be cast as a quadratic programming problem, with additional convex constraints
depending on the structure of the transaction costs. Several types of costs are considered
in §4, including market impact costs that lead to second order cone programs. Efficiently
finding a portfolio to maximize the Sharpe ratio is the subject of §5. Computational results
for two empirical datasets are presented in §6. Finally, we offer concluding remarks in §7.
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2 Portfolio Rebalancing Problem

What we consider is an extension of the basic portfolio optimization problem in which
transaction costs are incurred to rebalance a portfolio, x̄, into a new and efficient portfolio,
x. A portfolio may need to be rebalanced periodically simply as updated risk and return
information is generated with the passage of time. Further, any alteration to the set of
investment choices would necessitate a rebalancing decision of this type.

In addition to the obvious cost of brokerage fees/commissions, here are two examples of
other transaction costs that can be modeled in this way:

1. Capital gains taxes are a security-specific selling cost that can be a major consideration
for the rebalancing of a portfolio. For more discussion of the impact of capital gains,
especially in a dynamic portfolio allocation model, see Cadenillas and Pliska [12].

2. Another possibility would be to incorporate an investor’s confidence in the risk/return
forecast as a subjective “cost”. Placing high buying and selling costs on a security
would favor maintaining the current allocation x̄. Placing a high selling cost and low
buying cost could be used to express optimism that a security may outperform its
forecast.

The transaction costs are assumed to be convex. To obtain a portfolio x from an initial
portfolio x̄, we pay transaction costs c(x− x̄), where c is a convex nonnegative function with
c(0) = 0. Transaction costs which meet this model include proportional, convex piecewise
linear, and convex quadratic transaction costs. Proportional transaction costs have the
structure:

c(x− x̄) =
n∑
i=1

ci(xi − x̄i) where ci(xi − x̄i) =

{
cBi (xi − x̄i) if xi > x̄i
cSi (x̄i − xi) otherwise

(2)

where cBi and cSi are positive constants.
We normalize so that the initial wealth is eT x̄ = 1. The resulting model for minimizing

the variance of the resulting portfolio subject to meeting an expected return of E0 > 0 in
the presence of transaction costs is

min 1
2
xTQx

s.t. µTx ≥ E0

eTx+ c(x− x̄) = 1
(3)

Note that we are allowing short selling here. If transaction costs are linear and if short
selling costs are also linear and at least as large as the cost of selling the asset, we can model
the transaction costs for security i as the convex piecewise linear function

ci(xi − x̄i) =


cBi (xi − x̄i) if xi > x̄i
cSi (x̄i − xi) if 0 ≤ xi ≤ x̄i
cSi x̄i − cSSi xi if xi < 0

(4)
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where cSSi is the proportional cost for short selling, with cSSi ≥ cSi . More general piecewise
linear convex transaction cost functions were considered by Potaptchik et al. [41] and by
Bertsimas et al. [6], for example.

An important part of the cost of trading a security is the market impact cost; it may
be the major part of the total transaction cost [46]. The market impact cost measures the
impact of trading a security that is somewhat illiquid on the price of a security. As more of a
security is bought or sold, the proportional cost increases due to the scarcity effect. Let f(v)
denote the change in price due to a transaction of size v. To simplify the presentation, we
assume v is positive; the treatment of negative v is analogous. It is generally accepted that
f(v) is a concave monotonically increasing function [20]. Torre [46] showed that f(v) ∝

√
v

fits the data well, a currently popular choice [19, 37] that “has been widely used in practice
for many years” [19]. Alternative choices have been proposed. For example, Almgren et
al. [3] determined empirically that f(v) ∝ v0.6 for some securities, and Zagst and Kalin [48]
have used a piecewise linear function. Assuming the security is purchased at the modified
cost, the overall market impact cost is vf(v), a convex function in v > 0 when f(v) ∝ vγ

for any nonnegative γ. If the transaction can be split into several pieces then the market
impact cost may be reduced; such models are considered by Moro et al. [37], for example.

Our assumptions on the transaction cost function are listed below:

Assumption 1 The transaction cost function c satisfies the following:

1. c(x) is a convex function of x.

2. c(0) = 0.

3. c(x) ≥ 0 for all x.

Continuous nonconvex transaction cost functions are considered in §4.4.
The return on an asset is the proportional increase in the value of the asset from the

beginning to the end of the period. We represent the expected return using ρ, so ρ = µ− e.
When there are no transaction costs we have eTx = 1, so the constraint µTx ≥ E0 is
equivalent to the constraint ρTx ≥ E0 − 1. However, when transaction costs are incurred,
we will have µTx < ρTx + 1 for asset allocations x, and so in this paper we use the more
restrictive constraint µTx ≥ E0.

A user might also require restrictions such as limiting the proportion of assets that can
be invested in a group of securities. We can express this as a homogeneous constraint on x.
For example, if security 1 must constitute no more than 10% of the resulting portfolio, we
can impose the constraint

9x1 −
n∑
i=2

xi ≤ 0.

We generalize this to allow m homogeneous constraints in our model, written in the form
Ax ≤ 0 where A is an m× n matrix and a is an m-vector. Note that a restriction on short
selling can be modelled using a constraint of this form.
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Model (3) contains a nonlinear equality constraint, so it is not a convex optimization
problem. It can be made convex by relaxing the transaction cost constraint, giving the
problem:

min 1
2
xTQx

s.t. µTx ≥ E0

eTx+ c(x− x̄) ≤ 1
Ax ≤ 0

(5)

A drawback to this model is that it may result in an optimal solution where assets
are discarded, as we show in §2.1. When the transaction costs are proportional as in (2),
separate buy and sell variables can be introduced for each security and the equality form of
the transaction cost constraint can be used. However, if a complementarity restriction on the
buy and sell variables is not also imposed, the optimal solution may require both buying and
selling a particular asset, which is clearly not an advisable practical strategy. The example
of §2.1 illustrates this phenomenon. If there is a riskless asset available then the transaction
cost constraint will hold at equality at the optimal solution to (5), as we show in §2.2. We
introduce the following terminology for these two cases.

Definition 1 A feasible asset allocation x is wasteful if eTx + c(x− x̄) < 1. Otherwise it
is called frugal.

Lobo et al. [31] give a model equivalent to (5) for the case of linear transaction costs. Their
model maximizes the expected return, subject to the variance being below some threshold.
For the example given in §2.1, this leads to an optimal solution where the transaction cost
inequality is satisfied strictly, corresponding to discarding assets.

Adcock and Meade [1] add a linear term for the costs to the original Markowitz quadratic
risk term and minimize this quantity. This requires finding an appropriate balance between
the transaction costs and the risk. The model assumes a fixed rate of transaction costs
across securities. The risk is measured in terms of the adjusted portfolio before transaction
costs are paid. Konno and Wijayanayasake [29] consider a cost structure that is considerably
more involved than ours, with the result that the model is harder to solve. Yoshimoto [47]
considers a similar transaction cost model to ours and proposes a nonlinear programming
algorithm to solve the problem and their computational results indicate that ignoring trans-
action costs can result in inefficient portfolios. In Braun and Mitchell [9], we investigated a
different relaxation of (3) for the case of proportional transaction costs and showed that good
solutions could be obtained using that relaxation. In particular, with such a cost structure,
(3) can be reformulated as a quadratic program with complementarity constraints. The
complementarity constraints impose a combinatorial structure on the problem and make it
hard to solve. We examined a semidefinite programming relaxation of this problem in [9],
and further references for this type of problem can be found there.

An alternative model is to reduce the vector of expected returns µ by the transaction
costs. Best and Hlouskova [7] give an efficient solution procedure for this problem for the case
of proportional transaction costs and a diagonal covariance matrix Q. The model implicitly
assumes that transaction costs are paid at the end of the period, impacting both the risk
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and the return. If the transaction costs must be paid at the beginning of the period then
care must be taken in the sale of assets to pay the transaction costs, in order to ensure that
the resulting portfolio has securities in the same proportion. Further, the return calculation
assumes a return on the amount paid in transaction costs, so this constraint needs to be
modified.

If the transaction costs include a fixed cost per transaction, one modeling approach is
to either place an upper bound on the number of transactions or to include a penalty term
for the number of transactions. This gives rise to a mixed integer nonlinear programming
problem. This approach has been investigated widely; see, for example, Perold [40], Bi-
enstock [8], Bertsimas et al [6], Konno and Wijayanayasake [29], Kellerer et al. [27], and
Lee and Mitchell [30]. The presence of the integrality restriction makes the formulation far
harder to solve than the one presented in this paper.

2.1 An example with an unattractive optimal solution

In this section, we give an example where the optimal solution to (5) is wasteful. Assume
we have two assets A and B, with expected end-of-period values µA = 1.5 and µB = 1.05.
Assume all transaction costs are equal to 2%, so cB = cS = 0.02e. Assume the covariance
matrix for the assets is

Q =

[
1 0
0 0.3

]
.

Assume wealth is initially equally split between the assets. Let the desired expected value
be E0 = 1.1.

With no transaction costs, the optimal solution to (1) is to take xA = 0.2308 and xB =
0.7692, giving an optimal value of 0.1154.

The optimal solution to the proportional transaction cost model (5) has xA = 0.2785
and xB = 0.6498, with an objective function value of 0.1021. This solution sells 0.2215 units
of asset A and only buys 0.1498 units of asset B, and results in a slack value of 0.0643 in
the transaction cost constraint. Thus, approximately 6.4% of the wealth is discarded by
this wasteful solution. It is clearly not an attractive practical strategy. The solution to (3)
where separate variables are introduced for buy and sell decisions but no complementarity
restriction is imposed leads to the same solution.

The best frugal solution has xA = 0.2283 and xB = 0.7610, with value 0.1129 (all numbers
given to four decimal places). This is a scaling of the optimal solution to the model with no
transaction costs, for this example.

In §3, we suggest a modification of (5) which results in a convex optimization problem
which always has a frugal optimal solution. For this example problem, the optimal solution
to the modified problem is the frugal solution given above.

2.2 A risk-free security

In this section we consider the case that one of the available securities is riskless and incurs no
transaction costs. We assume that the riskless security only appears in the additional linear
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constraints Ax ≤ 0 through a nonnegativity restriction. We show that in such a situation the
optimal solution to (5) satisfies the transaction cost constraint at equality. Thus in this case,
it is not necessary to impose complementarity constraints between the buy and sell variables;
or to rephrase, the mathematical program with complementarity constraints (MPCC) [32]
that has explicit buy and sell variables can be solved by solving its convex relaxation (5).

Let µf > 1 denote the value of the riskless security at the end of the period and let y
denote the amount invested in this security. Problem (5) can be written equivalently as

min 1
2
xTQx

s.t. µfy + µTx ≥ E0

y + eTx+ c(x− x̄) ≤ 1
Ax ≤ 0

y ≥ 0

(6)

where x, µ, c, and Q refer only to the risky securities. For any feasible solution with
y+ eTx+ c(x− x̄) < 1, an equally good feasible solution with y+ eTx+ c(x− x̄) = 1 can be
obtained by increasing y. Thus, there is an optimal solution to (6) with y+eTx+c(x−x̄) = 1.
We can prove a stronger result.

Theorem 1 Any optimal solution to (6) satisfies y+ eTx+ c(x− x̄) = 1 provided Q has full
rank and µ > 0.

Proof: We prove this by contradiction. Let x̂, ŷ be a feasible solution to (6) with ŷ +
eT x̂+ c(x̂− x̄) < 1. We can construct a better feasible solution in two steps.

First, increase y to ỹ = ŷ + 0.5(1− eT x̂− c(x̂− x̄)− ŷ). The slack in the first constraint
has been increased by µf (ỹ− ŷ), and the transaction cost constraint still has a positive slack.
Thus, there exists a nonnegative α < 1 such that x = x̃ := αx̂ is feasible with y = ỹ. Since
α < 1, it follows that x̃TQx̃ < x̂TQx̂. Therefore, x̂, ŷ cannot be optimal for (6).

3 Scaled Risk Measurement

To this point, we have been optimizing the standard risk measure for efficient frontiers, that
is:

1

2
xTQx.

When there are no transaction costs to be paid, one dollar is always available for investment,
i.e. (

∑n
i=1 xi = 1). This assumption is implicit in the standard risk measure. However, for

nonzero transaction costs that implicit assumption is no longer valid: one dollar is not avail-
able for investment, costs will be paid to rebalance. The appropriate objective is therefore

f(x) :=
xTQx

2(eTx)2
. (7)
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Here 1 − eTx is the amount paid in transaction costs. Therefore eTx is the actual amount
available for investment, so we are choosing to scale the standard risk measurement by the
square of the dollar amount actually invested. The scaled objective is the risk per dollar
invested.

This gives the fractional convex programming problem which we will solve to find the
optimal portfolio for a given expected return.

min xTQx
2(eT x)2

s.t. µTx ≥ E0

eTx+ c(x− x̄) ≤ 1
Ax ≤ 0

(8)

As we will see, there is always a frugal optimal solution to this problem. This contrasts with
the standard risk measure, which may have a wasteful optimal solution if there is no riskless
security, as shown in §2.1.

Analytically, notice that with zero transaction costs then eTx = 1 and we recover the
standard risk measurement. So our choice does pass the first test required of any theoretical
extension; recover the previous result. This choice also makes dimensional sense given the
quadratic numerator.

Our choice of this fractional objective function also makes intuitive sense. For nonzero
transaction costs, there are conflicting effects at work within the portfolio. For a given x̄, the
absolute amount of principal available for investment will decrease as the transaction cost
percentage is increased. But in order to get the same payoff (µTx) on a smaller amount of
principal the investor will need to reach for higher returns. This should correlate to taking
on higher levels of risk. Our fractional choice effectively boosts the risk measurement for
these transaction cost depleted portfolios, and results in a portfolio with lower transaction
costs.

Theorem 2 If the optimal solution to (8) is not optimal to (5) then the transaction costs
paid to implement the optimal solution to (8) will be less than those required by the optimal
solution to (5).

Proof: Let x̂ solve (8) and let x̃ solve (5). The feasible regions to (8) and (5) are identical,
so

x̃TQx̃ < x̂TQx̂ and
x̂TQx̂

(eT x̂)2
≤ x̃TQx̃

(eT x̃)2
.

It follows that eT x̂ > eT x̃.

Problem (8) is equivalent to a convex optimization problem so it can be solved efficiently,
as we show in §4. It is also shown in §4 that the optimal solution to (8) is frugal, even if
there is no risk-free security, provided the return constraint is active at the optimal solution.

In addition to being frugal and having lower transaction costs than the optimal solution
to (5), the optimal solution x∗ to (8) possesses other attractive features. It is the portfolio of
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minimum risk among all portfolios achieving expected return E0 and with transaction costs
no greater than a certain level.

Theorem 3 Let x∗ be an optimal solution to (8). Let T = 1− eTx∗ be the transaction costs
of this portfolio. The portfolio x∗ is the minimum risk portfolio among all portfolios with
expected return at least E0 and transaction costs no greater than T .

Proof: For any portfolio x̃ feasible in (8), we have

x∗TQx∗

(eTx∗)2
≤ x̃TQx̃

(eT x̃)2

It follows that if eT x̃ ≥ eTx∗ then x̃TQx̃ ≥ x∗TQx∗.

The Markowitz mean-variance model produces an efficient frontier as the desired level of
returns is varied. This frontier corresponds to the set of Pareto optimal solutions to the mul-
tiobjective portfolio optimization problem with the two competing objectives of minimizing
the variance and maximizing the expected return. Transaction costs add an additional fea-
ture to the picture, and minimizing transaction costs can be regarded as a third competing
objective. The set of Pareto optimal solutions is then a two-dimensional surface, which we
call the Transaction Cost Efficient Frontier (TCEF).

Definition 2 Let gi : IRn → IR, i = 1, . . . , k be competing objective functions, all to be
minimized. Let g(x) := (g1(x), . . . , gk(x))T . Let S ⊆ IRn be the set of feasible solutions. A
feasible point x∗ ∈ S is a Pareto optimal point for the multiple objective problem min{g(x) :
x ∈ S} if there is no x̃ ∈ S with g(x̃) ≤ g(x∗) and g(x̃) 6= g(x∗).

All three of our objective functions are convex. The feasible set of portfolios is

SP := {x ∈ IRn : eTx+ c(x− x̄) ≤ 1, Ax ≤ 0} (9)

It follows that Pareto optimal points can be found by minimizing one objective while bound-
ing the values of the other objectives. From Theorem 3, we have that the optimal solution to
(8) is a Pareto optimal solution for any choice of E0. As E0 is varied, the set of such solutions
traces out a curve on the surface of efficient solutions, which we call the Transaction Cost
Efficient Frontier Curve (TCEFC). In Figure 1, we indicate the structure of the TCEFC for
a nine-security problem, with three different choices for the transaction costs, namely zero
costs, 3% costs for each buy and sell decision, and 5% costs for each buy and sell decision.
The initial portfolio is equally weighted in the nine securities.

The optimal objective function is plotted against the value of E0. Optimizing this
quadratic program creates the situation where the c = 0% frontier extends furthest into
the risk/return plane. Other transaction cost efficient frontier curves are pulled back from
that limit as illustrated in Figure 1. It is apparent that transaction costs reduce the range
of investment choice.
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Figure 1: The initial portfolio is located by a circle. Notice that as the level of transaction
costs c increases, the curves shift right. Increased transaction costs reduce investment choice.
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The solution to (3) also sits on the efficient frontier, and traces out a curve as E0 is
varied. The optimal frugal solution to (5) is also a Pareto optimal solution.

The transaction costs are deterministic, based on the choice of portfolio. The returns
and covariances are stochastic. These different elements should be handled differently, and
this suggests that transaction costs should be emphasized to a greater extent than given
in (5). Solving (8) is a mechanism for giving greater emphasis to the deterministic loss of
transaction costs.

4 Solving the fractional quadratic program

The fractional objective f(x) from (7) can be made quadratic using the technique of replacing
the denominator by the square of the reciprocal of a variable. This is a straightforward
extension of the technique of Charnes and Cooper [14] for fractional programs where the
objective is a ratio of linear functions and the constraints are linear. Schaible [43] generalized
the method of [14] to problems where the objective function is a ratio of convex functions,
a setting which includes (7) as a special case. Let

t :=
1

eTx
(10)

and then define
x̂ := tx. (11)

Note that since c(x) is a nonnegative function, we must have t ≥ 1. The constraints of (8)
can be multiplied through by t. We also need to include the constraint eT x̂ = 1, which is
equivalent to (10). Thus, the fractional quadratic program (8) is equivalent to the convex
program with quadratic objective:

minx̂,t
1
2
x̂TQx̂

s.t. µT x̂ − E0t ≥ 0
eT x̂ + ĉ(x̂, t) − t ≤ 0
eT x̂ = 1
Ax̂ ≤ 0

(12)

where

ĉ(x̂, t) := tc(
1

t
x̂− x̄). (13)

Once we find a solution (x̂∗, t∗) to (12), we can obtain a solution x∗ to the original problem
(8) by rescaling x̂∗ so x∗ = 1

t∗
x̂∗.

We make the following Slater constraint qualification assumption, so that any local min-
imizer is a Karush-Kuhn-Tucker (KKT) point:

Assumption 2 There exists a feasible solution x̂, t for (12) with eT x̂+ ĉ(x̂, t)− t < 0.
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In the next two theorems, we show that the optimal solution to (12) satisfies the transac-
tion cost constraint at equality if the return constraint has a positive multiplier at optimality,
and that even if the return constraint is inactive there is an optimal solution satisfying the
transaction cost constraint at equality. The proofs of these theorems do not exploit the
structure of the objective function, so the results hold even if 1

2
x̂TQx̂ is replaced by another

measure g(x̂) of risk.

Theorem 4 If the optimal solution to (12) has a strictly positive Karush-Kuhn-Tucker
multiplier w for the return constraint µT x̂ − E0t ≥ 0 then the optimal solution satisfies
eT x̂+ ĉ(x̂, t)− t = 0.

Proof: If eT x̂ + ĉ(x̂, t) − t < 0 then the t component of the KKT optimality conditions
for (12) requires E0w = 0, that is, w = 0.

If an investor just wishes to minimize risk, with little concern for expected return, then
the value of E0 can be set to a low number, with the result that the return constraint may
be satisfied strictly in the solution to (12). Alternatively, it may be that the presence of
the homogeneous constraints Ax ≤ 0 results in an optimal solution that satisfies the return
constraint strictly. If the return constraint is not active at the optimal solution, then an
optimal solution may be wasteful. Nonetheless, there is an optimal solution that is frugal,
and that solution can be found efficiently. If we modify t while fixing x̂ = x̂∗ then the
objective function value in (12) does not change. Reducing t will reduce the amount spent
in transaction costs.

Theorem 5 There exists a frugal optimal solution to (12).

Proof: Let x̂∗ and t∗ be an optimal solution to (12) with eT x̂∗+ t∗c( 1
t∗
x̂∗− x̄)− t∗ < 0. If

x̂∗ 6= x̄ then x̂ = x̂∗, t = 1 violates the transaction cost constraint. Let tmin := min{t : t ≥
1, t < t∗, eT x̂∗+ tc(1

t
x̂∗− x̄)− t = 0}. This is well-defined since the transaction cost function

c is continuous. Note that x̂ = x̂∗, tmin ≤ t ≤ t∗ must be optimal in (12): it has value equal
to the optimal value, it satisfies eT x̂ = 1 and Ax ≤ 0, and decreasing t from t∗ increases the
slack in the return constraint.

Problem (12) is a convex optimization problem in the variables x̂ and t. The subgradients
of the transaction cost constraint can be obtained from the subgradients of c.

Theorem 6 Problem (12) is a convex optimization problem.

Proof: The transaction cost function ĉ(x̂, t) is convex if and only if it has a subgradient
at each point (x̂, t). Given x̂ and t > 0, let ξ denote a subgradient of c(x) at x = 1

t
x̂ − x̄.

We show there exists a subgradient of ĉ(x̂, t). For any s > 0 and any z, we have:

ĉ(z, s) = sc(
1

s
z − x̄)

13



≥ sc(
1

t
x̂− x̄) + sξT (

1

s
z − 1

t
x̂)

= tc(
1

t
x̂− x̄) + c(

1

t
x̂− x̄)(s− t) + ξT (z − x̂)− ξT x̂

t
(s− t)

= ĉ(x̂, t) +

[
ξ

c(1
t
x̂− x̄)− ξT x̂

t

]T [
z − x̂
s− t

]

Thus, ĉ(x̂, t) is convex for t > 0, and so (12) is a convex optimization problem.

The efficient frontier for (5) can also be obtained by maximizing the return, subject to
a threshold on allowable risk. This is the approach given in Lobo et al. [31], for example.
Analogously, the efficient frontier arising from (8) can be found by solving problems of the
form

max µTx
s.t. ||xTQx|| ≤ 2ReTx

eTx+ c(x− x̄) ≤ 1
Ax ≤ 0.

(14)

for different values of allowable risk R, where ||xTQx|| denotes the Euclidean norm of xTQx.
This is a second-order cone program if c is piecewise linear, and so can be solved efficiently
using an interior point method; see, for example, Andersen et al. [4].

Various different transaction cost functions are considered in the rest of this section. In
particular, piecewise linear cost functions (including proportional transaction costs) are the
subject of §4.1, quadratic and piecewise quadratic functions are discussed in §4.2, market
impact costs are detailed in §4.3, and an approach to nonconvex transaction cost functions
is proposed in §4.4. We also consider alternative measures of risk in §4.5.

4.1 Piecewise linear cost functions

If c(x) is a piecewise linear function of x then ĉ(x̂, t) is also piecewise linear, as a function of
x̂ and t. In this case, the transaction cost function can be represented as a sum of convex
functions, and each of those functions can be represented as the maximum of a set of linear
functions, so

c(x) =
∑
k∈K

ck(x) (15)

for some index set K, and

ck(x) = max
j∈J(k)

{cjk
T
x+ vjk} (16)

for an index set J(k) for each k ∈ K, and where cjk is an n-vector and vjk is a scalar. The
cost functions of (2) and (4) can be placed in this framework. The cost function ĉ(x̂, t) then
has this same structure. In particular,

ĉ(x̂, t) = tc(
1

t
x̂− x̄) =

∑
k∈K

ĉk(x̂, t) (17)
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with
ĉk(x, t) = max

j∈J(k)
{cjk

T
x̂+ (vjk − c

j
k

T
x̄)t}. (18)

Problem (12) can then be written equivalently as

minx̂,û,v̂,t
1
2
x̂TQx̂

s.t. µT x̂ − E0t ≥ 0
eT x̂ +

∑
k∈K zk − t ≤ 0 (PLP )

cjk
T
x̂ − zk + (vjk − c

j
k

T
x̄)t ≤ 0 ∀k ∈ K, ∀j ∈ J(k)

eT x̂ = 1
Ax̂ ≤ 0

This is a quadratic programming problem, with a convex quadratic objective function and
linear constraints, so it can be solved efficiently.

4.2 Quadratic and piecewise quadratic transaction costs

Convex quadratic terms in the transaction cost function c(x) result in the corresponding
portion of ĉ(x̂, t) being a second order cone constraint. For a quadratic cost function c(x) =
xTMx where M is a square symmetric positive semidefinite matrix, the transaction cost
constraint in (12), namely

eT x̂+ ĉ(x̂, t)− t ≤ 0 (19)

can be written equivalently as

t2 − t ≥ (x̂− tx̄)TM(x̂− tx̄)

or equivalently
(t− 0.5)2 ≥ 0.52 + (LT (x̂− tx̄))T (LT (x̂− tx̄))

since eT x̂ = 1, and where the matrix L satisfies LLT = M . This is a second order cone
constraint and so can be handled efficiently.

Piecewise quadratic convex cost functions are also of interest. For example, the transac-
tion cost for a security may take the form

ci(xi − x̄i) =


0.1(xi − x̄i)2 if 0 ≤ xi − x̄i ≤ 0.2

0.004 + 0.3(xi − x̄i − 0.2)2 if 0.2 ≤ xi − x̄i
0.15(xi − x̄i)2 if xi ≤ x̄i

representing the effect of scarcity of security i. By handling each of the three regions sepa-
rately, this can be expressed equivalently as

ci(xi − x̄i) =


min 0.1xi

2
1 + 0.3xi

2
2 + 0.15xi

2
3

subject to xi1 + xi2 + xi3 = xi − x̄i
0 ≤ xi1 ≤ 0.2, 0 ≤ xi2, 0 ≥ xi3
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Such individual security transaction costs can be summed. It may be that the transaction
cost function is proportional in certain regions. More general quadratic functions can also
be allowed. A general piecewise quadratic convex transaction cost function, with each region
being polyhedral, can be expressed as

c(x) =


min

∑
j∈J x

jTMjx
j + gTj x

j

subject to
∑
j∈J x

j = x
Pjx

j ≤ uj ∀j ∈ J

 (20)

where J is an index set of the polyhedral regions, each variable xj is an n-vector, each gj
and uj is an appropriately dimensioned vector, each Mj is a positive semidefinite matrix,
and Pj is an appropriately dimensioned matrix. Note that x is expressed as a sum of points
drawn from the different regions. We require that uj ≥ 0 so that xj = 0 satisfies the
polyhedral restriction Pjx

j ≤ uj. There is no constant term in the objective since c(0) = 0
by Assumption 1.

The transaction cost constraint (19) can then be expressed equivalently as the system of
constraints:

eT x̂ + t
∑
j∈J x

jTMjx
j + tgTj x

j − t ≤ 0
1
t
x̂ − ∑

j∈J x
j = x̄

Pjx
j ≤ uj ∀j ∈ J

Since t > 0 ,we can make the change of variables x̂j = txj for j ∈ J . Using ẑ to give the
quadratic part of the cost function results in the formulation:

eT x̂ + ẑ + gTj x
j − t ≤ 0

x̂ − ∑
j∈J x̂

j − tx̄ = 0

tẑ − ∑
j∈J x̂

jT
Mjx̂

j ≥ 0
Pjx̂

j − tuj ≤ 0 ∀j ∈ J

This is a mixture of linear constraints and a rotated second order cone constraint, so again
it can be handled efficiently.

4.3 Market impact costs

Market impact costs are typically modeled as

c(x− x̄) =
n∑
i=1

ci(xi − x̄i) =
n∑
i=1

κi|xi − x̄i|1+γ

where κi ≥ 0, i = 1, . . . , n are parameters for each security, and usually γ = 0.5.
The transaction cost constraint

eTx+ c(x− x̄) ≤ 1
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from (5) is equivalent to the family of constraints

eTx+
n∑
i=1

κiwi ≤ 1

|xi − x̄i|1+γ ≤ wi for i = 1, . . . , n. (21)

This approach can be generalized to allow different parameters κ+
i and κ−i for the buy and

sell decisions. The constraint (21) can be expressed as a family of second order constraints for
rational choices of γ, using techniques discussed by Alizadeh and Goldfarb [2]. For example,
with γ = 0.5, the constraint

(xi − x̄i)1.5 ≤ wi, xi ≥ x̄i

is equivalent to
(xi − x̄i)4 ≤ w2

i (xi − x̄i), xi ≥ x̄i

which in turn is equivalent to

(xi − x̄i)2 ≤ uwi, u2 ≤ (xi − x̄i), xi ≥ x̄i, u ≥ 0.

The transaction cost constraint in (12) can also be reformulated as a family of second
order cone constraints for positive rational γ. The individual component constraints take
the form

t(
1

t
x̂i − x̄i)1+γ ≤ wi,

1

t
x̂i ≥ x̄i

for a buy decision, which is equivalent to

(x̂i − tx̄i)1+γ ≤ wit
γ, x̂i ≥ tx̄i

since t is strictly positive. With γ = 0.5, we obtain an equivalent system:

(x̂i − tx̄i)4 ≤ w2
i t(x̂i − tx̄i), x̂i ≥ tx̄i,

which in turn is equivalent to

(x̂i − tx̄i)2 ≤ uwi, u2 ≤ t(x̂i − tx̄i), x̂i ≥ tx̄i, u ≥ 0.

Similarly, with γ = 0.6, we obtain an equivalent system:

(x̂i − tx̄i)8 ≤ w5
i t

3, x̂i ≥ tx̄i,

which in turn is equivalent to

(x̂i − tx̄i)2 ≤ u1wi, u2
1 ≤ u2t, u2

2 ≤ wit, x̂i ≥ tx̄i, u1, u2 ≥ 0.
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4.4 Nonconvex transaction costs

In this subsection, we consider relaxing Assumption 1.1. Nonconvex transaction costs of
interest include piecewise linear cost functions used when there are price breaks for large
transactions.

If the transaction cost function is continuous and has convex level sets then problem (8)
is still equivalent to (12) and may well still be a useful formulation. Further, it may be
possible to solve it efficiently using a cutting plane method, with a polyhedral representation
of the convex set of feasible solutions developed iteratively. In general, given a convex level
set C = {y ∈ IRm : g(y) ≤ 0} for some function g(y), if ỹ satisfies g(ỹ) ≥ 0 and g(y) is
differentiable at ỹ, then C ⊆ {y : ∇g(ỹ)T (y − ỹ) ≤ 0}.

In such an approach, the transaction cost constraint can initially be relaxed to eT x̂ ≤ t.
If the optimal solution (x̂∗, t∗) to the relaxation violates the transaction cost constraint, and
if ĉ is differentiable at (x̂∗, t∗), the linear constraint

(e+∇x̂ĉ(x̂
∗, t∗))T (x̂− x̂∗) + (

∂ĉ

∂t
(x̂∗, t∗)− 1)(t− t∗) ≤ 0

can be added to the formulation. A similar constraint can be found even at points where
ĉ(x̂∗, t∗) is not differentiable. (8) can thus be solved using the ellipsoid algorithm [26] or an
interior point cutting plane algorithm [23, 36].

4.5 Other measures of risk

Problem (8) uses the classical Markowitz measure of risk of xTQx. Other measures of
risk have been proposed in the literature; see, for example, Gondzio and Grothey [24] or
Rockafellar and Uryasev [42] or El Ghaoui et al. [21]. In many cases the objective function
of (8) can be modified similarly, and the rescaling of §4 can still be used to obtain a more
tractable problem. Robust optimization approaches to portfolio optimization include Kim
and Boyd [28]; it would be of interest to extend our framework to these approaches.

For example, the semivariance can be used in a manner similar to [24]. The semivariance
counts only scenarios where the return is less than the expected return. Given a finite number
of scenarios with known end-of-period values (µi)Tx and with probabilities pi, constraints of
the form

(µi)Tx− µTx+ s+
i − s−i = 0, s+

i , s
−
i ≥ 0 (22)

can be introduced, and the semivariance is equal to

SV :=
∑
i

pi(s
+
i )2.

The objective term xTQx of (8) can be replaced by SV , and the change of variables used
to obtain (12) can still be used, giving a quadratic objective function, with the additional
constraints (22) still linear after the transformation. Note that Theorems 4–6 still hold in
this setting.
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5 The Sharpe Ratio

One measure used to choose between portfolios on the efficient frontier is the Sharpe Ratio.
The portfolio that optimizes the Sharpe Ratio can be found by solving a fractional quadratic
programming problem, and so it can be found using the techniques of §4. This leads to a
curve on the efficient surface.

The Sharpe Ratio is defined as the ratio of the differential return to its standard devia-
tion [44, 45]. To be precise, the return of a portfolio is the proportional increase in the value
of the portfolio from the beginning to the end of the period. The differential return is the
difference between the return of the portfolio and the return obtained through the risk-free
security. The Sharpe Ratio is widely used in the financial community. As Sharpe [45] states,

“When choosing one from among a set of funds to provide representation in
a particular market sector, it makes sense to favor the one with the greatest
predicted Sharpe Ratio”.

The expected differential return is ζ := ρ − ρfe where ρf is the return from the risk-free
security. We can assume without loss of generality that ζ > 0 and Q is positive definite.
If there are no transaction costs, maximizing the Sharpe Ratio is equivalent to minimizing
the ratio of xTQx and (ζTx)2. This is independent of the scale of x, so the portfolio that
maximizes the Sharpe ratio can be found by solving the quadratic programming problem

min 0.5xTQx
subject to ζTx = 1

Ax ≤ 0
(23)

where the constraints Ax ≤ 0 capture additional restrictions on allowable portfolios. This
problem can alternatively be derived using the technique of §4, applied to a problem with
an objective of a ratio of xTQx and (ζTx)2.

Some care is needed when optimizing the Sharpe Ratio. For example, Goetzmann et
al. [22] show that it can be improved in some situations by discarding strategies with high
returns, since this reduces the risk denominator. Thus, it is advisable to control the allowable
portfolios through additional constraints of the form Ax ≤ 0. Without these additional
constraints, the optimal solution is proportional to Q−1ζ.

The problem (23) can be modified if there are transaction costs. The level of allowable
transaction costs can be explicitly limited. One possible formulation is the following:

minx̂,t
1
2
x̂TQx̂

s.t. eT x̂ + ĉ(x̂, t) − t ≤ 0
ζT x̂ = 1

ĉ(x̂, t) ≤ T
Ax̂ ≤ 0

(24)

where ĉ(x̂, t) is defined in (13) and T is a positive scalar. The solution x̂ to (24) needs to
be divided by t and it then gives a curve on the Transaction Cost Efficient Frontier (TCEF)

19



as T is varied. The expected value at the end of the period of the portfolio that maximizes
this transaction cost limited version of the Sharpe ratio is 1/t. The total amount paid in
transaction costs is no greater than T/t.

For the example of 2.1, assume the risk-free return ρf is 1%. The optimal Sharpe Ratio
with no transaction costs is 0.4954, achieved by placing approximately 78.6% of wealth in
Asset A and 21.4% in Asset B. The expected differential return is 39.4%. With proportional
transaction costs of 2% and with T sufficiently large, the same Sharpe Ratio is obtained, with
approximately 1.1% of the wealth consumed by transaction costs. The expected differential
return drops to 38.9%. With T = 0.01 the optimal Sharpe Ratio drops to 0.4815 and the
expected return drops to 29.8%. Just 0.3% of wealth is consumed in transaction costs and
57.3% and 42.4% of the wealth is invested in Assets A and B respectively.

6 Computational Results

We discuss two portfolios in this section, a nine-security one due to Markowitz [34], and a
portfolio consisting of the thirty stocks in the Dow Jones Industrial Average. Solving the
problem (12) for different values of E0 will give a transaction cost efficient frontier curve
(TCEFC).

We investigated the Markowitz 9-security portfolio with all transaction costs equal to 3%
and with all transaction costs equal to 5%, with the initial portfolio equally divided among
the securities in both cases. The structure of the results is indicated in Figure 1. For the
return and risk data, and more details of the results, see Braun [10]. A general observation
is that the portfolios along the TCEFC are not simply related to the portfolios along the
no transaction cost efficient frontier. Sometimes, entirely new securities are involved. Some-
times, buy and sell decisions are reversed. The introduction of costs changes the portfolio
rebalancing problem dramatically and the optimal solutions are also quite different.

We applied our solution strategy to the problem of rebalancing portfolios composed of the
30 stocks which currently make up the Dow Jones Industrials Average. All securities were
involved initially, with proportions varying from 1% to 5%. The buying and selling costs
varied from security to security, from 0% to 5%. For more details on these experiments, see
Braun [10]. As with the earlier example, the optimal solution was altered by the transaction
costs.

7 Conclusions

The results of this paper will allow the incorporation of transaction costs into portfolio
optimization problems, in a manner that leads to intuitive and sensible allocations. The
model calculates the risk of the resulting portfolio, weighted by the amount invested after
paying transaction costs. The model can be formulated as a convex optimization problem of
size comparable to the model with no transaction costs, and it can often be solved efficiently.

From the computational results, it appears that the effect of transaction costs is more

20



marked for relatively high levels of desired expected return, since the portfolio manager is
then forced to perform a lot of rebalancing because only a few assets can meet the desired
return requirement.
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