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Abstract

The class of mathematical programs with complementarity constraints (MPCCs)
constitutes a powerful modeling paradigm. In an effort to find a global optimum, it
is often useful to examine the relaxation obtained by omitting the complementarity
constraints. We discuss various methods to tighten the relaxation by exploiting com-
plementarity, with the aim of constructing better approximations to the convex hull
of the set of feasible solutions to the MPCC, and hence better lower bounds on the
optimal value of the MPCC. Better lower bounds can be useful in branching schemes to
find a globally optimal solution. Different types of linear constraints are constructed,
including cuts based on bounds on the variables and various types of disjunctive cuts.
Novel convex quadratic constraints are introduced, with a derivation that is particu-
larly useful when the number of design variables is not too large. A lifting process
is specialized to MPCCs. Semidefinite programming constraints are also discussed.
All these constraints are typically applicable to any convex program with complemen-
tarity constraints. Computational results for linear programs with complementarity
constraints (LPCCs) are included, comparing the benefit of the various constraints on
the value of the relaxation, and showing that the constraints can dramatically speed
up the solution of the LPCC.
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1 Introduction

Mathematical programs with complementarity constraints (MPCCs) arise in many settings.
For example, Hobbs et al. [25] discuss applications in deregulated electricity markets; Pang et
al. [38] discuss an application in maximum-likelihood-based target classification. The paper
[37] shows how the MPCC provides a unifying framework for various modeling paradigms,
including hierarchical and inverse optimization. Most recently, the MPCC is used as a
tractable formulation for the estimation of pure characteristics models based on empirical
market shares [39]. There has been a great deal of research on finding stationary points for
MPCCs; see [37] for a list of references. In order to determine a globally optimal solution
to an MPCC, it is necessary to find a lower bound on the problem, typically by relaxing
the problem. Tightening the relaxation can lead to improved lower bounds, which can be
exploited in, for example, branching and domain decomposition schemes. In this paper, we
describe several methods for tightening relaxations of MPCCs. We focus on linear programs
with complementarity constraints (LPCCs), a rich subclass of MPCCs. We have previously
described logical Benders decomposition and branch and cut methods for finding globally
optimal solutions to LPCCs [27, 26, 28]; these methods can be improved by the techniques
presented in the current paper. The proposed tightening techniques are expected to be
particularly useful for solving the class of convex programs with complementarity constraints,
which is a subclass of MPCCs broader than the LPCCs; this extension is presently being
investigated.

An LPCC is a linear program with additional complementarity constraints on certain
pairs of variables. Because of the complementarity constraints, it is a nonconvex, nonlinear
disjunctive program. These problems arise in many settings, with the complementarity
constraints often used to model logical relations. For example, LPCCs can be used to model
bilevel programs, inverse problems, quantile problems, indefinite quadratic programs, and
piecewise linear programs; see [28] for a recent summary of such applications.

Given vectors and matrices: c ∈ IRn, d ∈ IRm, e ∈ IRm, b ∈ IRk, A ∈ IRk×n, B ∈ IRk×m,
and C ∈ IRk×m, the LPCC is to find a triple v := (x, y, w) ∈ IRn × IRm × IRm in order to
globally solve the optimization problem

Φ , minimize
x,y,w

cTx + dTy + eTw

subject to Ax + By + Cw ≥ b

0 ≤ y ⊥ w ≥ 0

(1)

where the ⊥ notation denotes the perpendicularity between two vectors, which in this con-
text, pertains to the complementarity of these vectors. Thus, without the orthogonality
condition: y ⊥ w, the LPCC is a linear program (LP). With this condition, the LPCC is
equivalent to 2m LPs. The variables x are sometimes called design variables.

Relaxing the complementarity condition leads to a linear programming problem. For
some problems, this relaxation can be quite weak, so in this paper we consider methods for
improving the relaxation. Bounds on the variables y and w can be used to construct linear
constraints, as we show in §3. These cuts are well-known, and we test refinements of the
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cuts. Disjunctive cuts were developed in the 1970’s [7] initially for integer programming.
They have been studied extensively and can be generated to cut off points that violate the
complementarity constraints, using the optimal simplex tableau to the LP relaxation and in
other ways. We discuss the specialization of disjunctive cuts to LPCCs in §4. The nonconvex
quadratic constraint yTw ≤ 0 is valid for (1); we consider novel convex quadratic relaxations
of this constraint in §5. Constraints that are valid on part of the feasible region can be lifted
to give constraints valid throughout the feasible region, a technique that can also be used
to strengthen other constraints; we discuss lifting in §6. The products of variables can be
linearized and a semidefinite constraint imposed to tighten the linearization, as discussed
in §7. Each of the families of cuts can be strengthened by exploiting the other families.
Thus, the overall strength of the relaxation depends on the order in which the cuts are
derived, and it can be further strengthened by repeatedly generating constraints. Under
certain conditions, the work of Balas [7] and of Kojima and Tunçel [30] shows that repeated
generation of cuts leads to the convex hull of the feasible region of (1).

2 Problem generation and computational setup

We experimented with a randomly generated collection of linear programs with complemen-
tarity constraints. The parameters in (1) were generated as follows. The matrices A, B,
and C are written as A = [ĀT , −NT , I]T , B = [B̄T , −MT , 0]T , and C = [0, I, 0]T where 0
denotes a matrix of zeroes of the appropriate dimension, Ā and B̄ have k̄ = k−m−n rows,
and M and N have m rows. Similarly, the right hand side is written b = [b̄T , qT , 0]T with
b̄ ∈ IRk̄ and q ∈ IRm. We set e = 0, so the problem is equivalent to

minimize
x,y,w

cTx + dTy

subject to Āx + B̄y ≥ b̄

x ≥ 0

0 ≤ y ⊥ q +Nx+My ≥ 0,

a standard form in the LPCC literature [28].
The entries in c and d are uniformly distributed integers between 0 and 9, which ensures

the problem is not unbounded. The entries in Ā, B̄, and N are uniformly generated integers
between -5 and 5, with a proportion of the entries zeroed out. The matrix 1

2
(M + MT ) is

set equal to LLT where L is an m× r matrix whose entries are uniformly generated integers
between -5 and 5, with a proportion of the entries zeroed out. This construction ensures that
1
2
(M + MT ) is positive semidefinite, which is necessary for the approach we develop in §5

and which occurs in some classes of practical instances [28]. The matrix M is then obtained
from 1

2
(M + MT ) by adjusting the nonzero off-diagonal entries by a uniformly distributed

random integer between -2 and 2.
To ensure feasibility of (1), a solution x̄, ȳ is generated. The entries in x̄ are integers

uniformly distributed between 0 and 9. Two thirds of the entries in ȳ are set equal to
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zero, and the remainder are integers uniformly distributed between 0 and 9. The entries
in the right hand side b̄ are chosen so that each slack with the generated solution is an
integer uniformly distributed between 1 and 10, so the constraints are strictly satisfied by
the generated solution. The third of the entries in q corresponding to the positive components
of ȳ are chosen so that complementarity is satisfied. Another third of the entries in q are
chosen so that the corresponding components of q + Nx̄ + Mȳ are zero, so ȳi = w̄i = 0 for
these entries. The final third of the entries of q are chosen so that the corresponding slack
in q+Nx̄+Mȳ ≥ 0 is an integer uniformly distributed between 1 and 10. The construction
is designed so that it is unlikely that the generated solution x̄, ȳ is optimal.

The tests in §3, §4, and §5 were run on a single core of an AMD Phenom II X4
955@3.2GHZ with 4GB memory, using C++ with callable CPLEX 11.0. All times are
reported in seconds. Problems with m = 100, 150, and 200 complementarities were solved,
with n = 2 and k̄ = 20. The matrices Ā, B̄, N , and L were either 20% or 70% dense. The
rank r of L was either 30 or 60 for m = 100, either 30 or 100 for m = 150, and either 30 or
120 for m = 200. Five problems were solved for each choice of m, sparsity, and rank, leading
to a total of 60 problems.

3 Linear constraints based on bounds on the variables

3.1 Construction of the constraints

Given finite upper bounds yui and wui on yi and wi respectively, the constraint

wui yi + yui wi ≤ yui w
u
i , (2)

which we term a bound cut, is valid for the LPCC (1), because of the complementarity
restriction on yi and wi. The bounds yui and wui may not be readily available and can be
calculated by solving linear programming problems. Before calculating bounds, it is useful to
find a good feasible solution to the LPCC, using either a heuristic or a nonlinear programming
solver such as KNITRO [20] or FILTER [23]. The value of this solution provides an upper
bound ΦUB on the optimal value Φ of (1) and so the constraint

cTx+ dTy + eTw ≤ ΦUB (3)

is valid for any optimal solution to (1). We let S denote the set of feasible solutions to (1)
that satisfy (3). The convex hull of S is a polyhedron and it can be outer approximated by

Ξ , {(x, y, w) ∈ IRn+2m : Ax+By+Cz ≥ b, cTx+dTy+eTw ≤ ΦUB, y ≥ 0, w ≥ 0}. (4)

If an inequality description of the convex hull of S was known then the LPCC could be
determined by solving the linear program of minimizing the objective over the convex hull.
The aim of constructing the inequalities in this paper is to obtain a tighter approximation
to the convex hull than Ξ. Under certain conditions, this constraint defines a facet of the
convex hull of feasible solutions to the LPCC, as shown by De Farias et al. [22] for the case
of a knapsack LPCC. It is straightforward to prove the following proposition.
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Proposition 1. Assume either (i) yi ≥ 0 defines a facet of S and wi ≤ wui defines a facet of
{(x, y, s) ∈ S : yi = 0} and there is a point in S with yi = yui or (ii) wi ≥ 0 defines a facet
of S and yi ≤ yui defines a facet of {(x, y, s) ∈ S : wi = 0} and there is a point in S with
wi = wui . Then (2) defines a facet of S.

Proof. We prove case (i). If yui = 0 then the result is immediate. If yui > 0 then the facet
assumptions together with a point satisfying the constraint (2) at equality that is not in
{(x, y, s) ∈ S : yi = 0} leads to the conclusion, from standard lifting arguments.

We will give a generalization of this proposition later, in Proposition 3. In principle, an
upper bound on yi can be found by solving the linear program

maximize
x,y,w

yi

subject to Ax + By + Cw ≥ b

cTx + dTy + eTw ≤ ΦUB

wi = 0

0 ≤ y, w ≥ 0,

(5)

and an upper bound on wi can be constructed similarly. These bounds may be infinite; they
can be tightened by further exploiting complementarity. For example, we experimented with
the following procedure, choosing p equal to 2 or 3:

Bound tightening procedure

Step 0. Find initial upper bound yui by solving (5). Let (x̂, ŷ, ŵ) denote the optimal
solution.

Step 1. Let sj = ŷjŵj for j = 1, . . . ,m. Let J denote the indices of the largest p
components of s.

Step 2. Solve the 2p linear programs of the form (5) with the additional constraints
that for each j ∈ J either yj = 0 or wj = 0. Update yui to be the largest of the optimal
values of these 2p linear programs.

A similar procedure is used to improve wui .
It may be advisable computationally to limit the number of bounds calculated. One

approach to do this is to first solve the LP relaxation of (1) and then only calculate bounds for
variables where the complementarity constraint is violated. Similarly, the bound tightening
procedure could be used only for constraints (2) that are tight at the solution to the LP
relaxation of (1).

If upper bounds are available for all the variables yi and wi then (1) is equivalent to the
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# splits # refine % gap closed CPU time (secs) sufficient

100 150 200 100 150 200

0 0 45.5 48.0 51.2 1.4 6.8 22.5 0

4 69.8 75.9 74.9 16.3 76.5 257.7 10

8 72.7 76.3 75.3 30.8 151.4 482.9 15

1 0 55.8 55.4 57.4 3.9 18.3 60.2 1

4 76.9 84.1 76.6 42.1 194.3 660.5 15

8 81.1 85.5 77.1 73.4 367.0 1171.1 17

2 0 58.3 59.0 60.0 6.0 29.0 93.1 1

4 82.6 86.1 77.6 61.8 285.6 999.7 16

8 86.6 87.8 79.5 104.7 542.2 1786.1 19

3 0 60.6 60.1 61.8 10.4 49.9 159.4 1

4 85.6 88.9 80.0 102.7 505.1 1672.4 18

8 91.3 90.6 80.6 171.6 901.6 3150.6 21

Table 1: Bound cuts for LPCCs.

following integer programming problem:

minimize
x,y,w

cTx + dTy + eTw

subject to Ax + By + Cw ≥ b

0 ≤ y ≤ Y uz

0 ≤ w ≤ W u(1− z)

z ∈ {0, 1}m

(6)

Here, 1 denotes the vector of all ones, and Y u and W u are diagonal matrices, with diagonal
entries equal to the bounds yu and wu.

3.2 Computational results

An experiment was performed to test the ideas presented so far. The results were not
significantly affected by sparsity or rank, so we aggregate into 20 problems each with 100,
150, or 200 complementarities. The results are contained in Table 1. The first column
reports the choice of p in the bound tightening procedure. The second column gives the
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number of refinements of the bound tightening procedure: once bounds have been found,
the bound finding LP (5) can be tightened. The third, fourth, and fifth columns give the
relative improvement in the gap between the lower bound on (1) given by its LP relaxation
and the optimal value of (1); each entry in these columns is averaged over 20 problems.
The sixth, seventh, and eighth columns give the run time, with each entry averaged over 20
instances. The final column notes the number of problems (out of 60) for which the bound
cuts were sufficient to prove global optimality.

The bound cuts are effective at closing a large proportion of the duality gap. However,
they are quite expensive, especially with additional refinements and splits. It is noticeable
that the smaller problems benefit slightly more than the larger problems from additional
refinements and splits. The bound cuts are surprisingly effective at proving optimality for
these problems, with over one-third of the problems solved to optimality with the most
extensive version of the cuts. Refining the bound cuts 8 times closes between 47% and 78%
of the gap remaining after the addition of just the initial bound cuts.

We also used CPLEX 11 to try to solve these problems to optimality, on the same
computer hardware. The callable library version of CPLEX was used, which allows the
representation of disjunctive constraints using indicator constraints, so it is possible to work
directly with formulation (1) together with constraints (2) and (3). An initial feasible solution
was found with a heuristic. A time limit of two hours was placed on each run. The results
are contained in Table 2. The columns indicate the number of problems that were solved in
the two hour time limit, and the average time for each set of 20 instances. Both the time
to solve the problems to optimality after adding the cuts and the total time including the
cut-generation time are included in the table. All total times that are within 50% of the
minimum are highlighted. The cuts lead to dramatic improvements in the ability of CPLEX
to solve the instances and in the total time required. It is not worthwhile to refine the cuts
for the smaller problems with m = 100 complementarities. For larger problems, the time
invested in generating the cuts and refining them can lead to strong overall performance, with
one good option being to use four refinements along with one split. Additional refinements
or splits aid the algorithm in finding a solution within the two hour limit; only one problem
cannot be solved within two hours with the more extensive cut generation choices. Even
better performance could probably be obtained by generating and adding the bound cuts
selectively, based on the solution to the LP relaxation; in this paper, we are examining the
strength of the class of cuts as a whole.

4 Linear constraints based on disjunctive programming

4.1 Disjunctive cuts

Valid constraints can be constructed from any point in Ξ that is not in the convex hull
of feasible solutions to (1), using a disjunctive programming approach. If yiwi > 0 in an
extreme point optimal solution to a relaxation of (1) then it is not in the convex hull, so
valid constraints are constructed that are satisfied by all points in Ξ with yi = 0 and by
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# splits # refine successful solve time (secs) total time (secs)

100 150 200 100 150 200 100 150 200

no cuts 20 11 5 98 3862 5852 98 3862 5852

0 0 20 19 12 13 632 3265 14 639 3290

4 20 20 18 6 102 1558 22 179 1816

8 20 20 18 5 66 1382 36 217 1871

1 0 20 19 12 12 843 2992 16 861 3052

4 20 20 19 4 64 906 46 258 1567

8 20 20 19 3 78 942 76 445 2113

2 0 20 20 13 10 496 2962 16 525 3055

4 20 20 19 4 67 930 66 811 1930

8 20 20 19 2 60 977 107 602 2763

3 0 20 19 13 8 536 2763 23 586 2922

4 20 20 19 3 60 795 106 565 2467

8 20 20 19 2 52 841 174 954 3992

Table 2: Solving to optimality with bound cuts for LPCCs.
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all points in Ξ with wi = 0. A cut generation linear program can be formulated to find
such valid constraints. Balas [7, 8] developed many of the results regarding disjunctive
cuts for integer programming. Many of the approaches used in integer programming are
also useful in more general disjunctive programs. For example, Audet et al. [4] consider
disjunctive cuts for bilevel linear programs. For good recent surveys of methods of generating
disjunctive cuts see [11, 16, 40, 44]. It was shown empirically in the 1990’s that general cuts
such as disjunctive cuts [9] and Gomory cuts [10] could be very effective for general integer
programs. Theoretically, the convex hull of an LPCC can be obtained using the lift-and-
project procedure, since the disjunctions are facial [21]. Also of interest is recent work
showing that disjunctive cuts can be effective for mixed integer nonlinear programming
problems [14, 45, 46, 49]. Judice et al. [29] investigated disjunctive cuts for problems with
complementarity constraints.

Let v = (x, y, w) ∈ IRn+2m and let v̂ be the optimal solution to the LP relaxation. A
general disjunctive cut for the union of a family of polyhedra is an inequality that is valid
for each polyhedron in the family. It can be obtained by solving a cut generation LP which
ensures the cut is dominated by a nonnegative linear combination of the valid constraints
for each polyhedron. This cut generation LP can be large, so methods have been developed
to find cuts without solving the full cut generation LP. The optimal simplex tableau for the
linear programming relaxation can be used directly to generate constraints that cut off v̂ if
it violates the complementarity restrictions. In particular, if yiwi > 0 then the two rows of
the simplex tableau corresponding to the basic variables yi and wi can be written as follows,
where R denotes the set of nonbasic variables:

yi +
∑
j∈R

âyij vj = ŷi

wi +
∑
j∈R

âwij vj = ŵi.
(7)

The disjunction yi = 0 ∨ wi = 0 is equivalent to the disjunction

∑
j∈R

âyij
ŷi
vj ≥ 1 ∨

∑
j∈R

âwij
ŵi

vj ≥ 1

since yi and wi are nonnegative variables. Let αj = max

{
âyij
ŷi
,
âwij
ŵi

}
for j ∈ R. We can

construct the following valid constraint for (1):∑
j∈R

αjvj ≥ 1. (8)

This constraint is violated by v̂ since v̂j = 0 for j ∈ R. It is valid because either yi = 0 or
wi = 0 in any feasible solution, so the sum of the nonbasic variables in (7) must be equal to
the right hand side for at least one of the constraints, and the sum of the nonbasic variables
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(scaled by the right hand side) is overestimated by the sum given in (8). This is called a
simple cut by Audet et al. [5], and is based on intersection cuts for 0-1 programming [6] and
has also been investigated by Balas and Perregaard [12].

If the complementarity restrictions for components i and k are both violated by v̂ then
the corresponding 4 rows of the simplex tableau can be combined to obtain valid constraints
for

Ξik , Ξ ∩ {v | yiwi = 0} ∩ {v | ykwk = 0}.

In particular, we can set up the following cut generation LP which generates a constraint
that is valid for each of the four pieces of Ξik corresponding to each assignment of the i and
k complementarity relationships. Any feasible solution to this LP gives a valid constraint of
the form (8) that cuts off v̂:

minimize
α,u

∑
j∈R

αj

subject to αj ≥ u1i

âyij
ŷi

+ u1k

âykj
ŷk

∀j ∈ R

αj ≥ u2i

âyij
ŷi

+ u2k

âwkj
ŵk

∀j ∈ R

αj ≥ u3i

âwij
ŵi

+ u3k

âykj
ŷk

∀j ∈ R

αj ≥ u4i

âwij
ŵi

+ u4k

âwkj
ŵk

∀j ∈ R

1 ≤ upi + upk for p = 1, . . . , 4

upq ≥ 0 for p = 1, . . . , 4, q = i, k.

(9)

The first four constraints correspond to different pieces of Ξik and ensure that constraint (8)
is dominated by a nonnegative combination of the constraints for that piece. For example,
the first constraint corresponds to the piece with yi = yk = 0, and ensures the constraint
is dominated by a combination of the corresponding nonbasic parts of (7). The objective
function together with the constraints 1 ≤ upi+upk act to normalize the constraint generation
LP; other normalizations could be used instead. This linear program is far smaller than
the standard disjunctive cut generation LP; it in effect constrains many variables from the
standard LP to be equal to zero. Balas and Perregaard [11] discuss similar methods for
making the cut generation LP easier to solve. It should be noted that the standard simple
cut is an optimal solution to a constrained version of (9), obtained by adding the constraints
upi = 1 and upk = 0 for p = 1, . . . , 4.
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cut type # refine % gap closed CPU time (secs) sufficient

100 150 200 100 150 200

disjunctive m/8 65.3 65.7 61.9 18.4 162.9 708.5 0

m/2 75.9 75.1 70.8 78.6 605.2 2547.6 1

simple m/8 32.7 25.3 21.4 0.1 0.8 3.4 0

m/2 34.6 26.0 21.9 2.6 23.8 118.1 0

Table 3: Computational results with disjunctive cuts.

4.2 Computational results

The disjunctive cuts and simple cuts were tested for the same problems as in §2, in the
same computational environment. Computational results are contained in Table 3. The
cuts were refined successively, with the number of refinements proportional to the number
of complementarities and given in the second column of the table. Columns 3 to 9 of the
table have the same meanings as in Table 1.

The general disjunctive cuts are far more effective than the simple cuts, but they are
considerably more expensive. Additional refinement is quite useful for the disjunctive cuts,
but far less so for the simple cuts. Audet et al. [5] have experimented with disjunctive cuts
for LPCCs arising from bilevel programs, with encouraging results.

5 Convex quadratic constraints

5.1 Construction of the constraints

The complementarity constraint
0 ≤ y ⊥ w ≥ 0

is equivalent to the nonnegativity constraints y, w ≥ 0 together with the nonconvex quadratic
constraint

yTw ≤ 0. (10)

In this section, we consider convex quadratic relaxations of (10). We assume w can be
written as a linear function of x and y, so

w = q +Nx+My (11)

where q, N , and M are dimensioned appropriately. We express the complementarity restric-
tion in terms of x and y, so the number of constraints depends on the dimension n of x
rather than on the number m of complementarity constraints. We have

yTw = qTy + yTNx+ 1
2
yTM̃y
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where M̃ = M +MT , so we look for convex relaxations of the quadratic constraint

qTy + yTNx+ 1
2
yTM̃y ≤ 0. (12)

Let p denote the number of nonnegative eigenvalues of M̃ and construct an eigen-
decomposition of M̃ as

M̃ = V ΛV T

where V is an orthogonal matrix with columns denoted vi, Λ is a diagonal matrix, and the
diagonal entries λi of Λ are arranged in decreasing order. Let k denote the rank of N and
construct a factorization N = ΓTΨ, where Γ is a k × m matrix and Ψ is a k × n matrix.
With the definition of k-dimensional variables ỹ and x̃, and the addition of the constraints

ỹ = Γy (13)

x̃ = Ψx, (14)

constraint (12) is equivalent to the constraint

qTy +
k∑
j=1

ỹjx̃j + 1
2

p∑
i=1

λi(v
T
i y)2 ≤ 1

2

m∑
i=p+1

|λi|(vTi y)2

or equivalently the convex quadratic constraint

qTy +
k∑
j=1

σk + 1
2

p∑
i=1

λi(v
T
i y)2 ≤ 1

2

m∑
i=p+1

|λi|πi (15)

with the additional nonconvex constraints

ỹjx̃j = σj j = 1, . . . , k (16)

(vTi y)2 ≥ πi i = p+ 1, . . . ,m (17)

When the feasible region for ỹj and x̃j is given by a rectangle, it was shown by Al-Khayyal
and Falk [2] that the lower convex envelope and upper concave envelope of (16) are given by
the following McCormick cuts [34]:

x̃lj ỹj + ỹljx̃j ≤ σj + x̃lj ỹ
l
j j = 1, . . . , k

x̃uj ỹj + ỹuj x̃j ≤ σj + x̃uj ỹ
u
j j = 1, . . . , k

x̃lj ỹj + ỹuj x̃j ≥ σj + x̃lj ỹ
u
j j = 1, . . . , k

x̃uj ỹj + ỹljx̃j ≥ σj + x̃uj ỹ
l
j j = 1, . . . , k,

(18)

where ỹlj, ỹ
u
j , x̃lj and x̃uj denote the bounds on ỹj and x̃j. These constraints are ex-

ploited in packages for nonconvex optimization, including BARON [43, 50], αBB [1], and
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COUENNE [15]. Tightenings of these inequalities combining together terms for several
indices j have been recently investigated by Bao et al. [13].

We look for convex quadratic relaxations of (16) and linear relaxations of (17) that exploit
the structure of the other linear constraints on ỹj and x̃j. If vli ≤ vTi y ≤ vui for all valid choices
of y then the concave envelope of (17) is

πi ≤ (vli + vui )vTi y − vlivui . (19)

For any scalar α > 0, (16) is equivalent to the constraint

1

4α
(ỹj + αx̃j)

2 ≤ σj +
1

4α
(ỹj − αx̃j)2

which can be relaxed to the convex quadratic constraint

1

4α
(ỹj + αx̃j)

2 ≤ σj +
1

4α
((αl + αu)(ỹj − αx̃j)− αlαu) (20)

where αl and αu denote lower and upper bounds respectively on ỹj − αx̃j. Methods for
choosing α are discussed in [35]. It is also shown in this reference that (20) can define part
of the envelope of (16). Further, for certain configurations of the feasible (ỹj, x̃j) region,
inequalities (20) together with (18) define the lower convex envelope and upper concave
envelope of (16). Thus, we propose to relax (12) using the linear constraints (13), (14),
(18), and (19), and the convex quadratic constraints (15) and (20). We have the following
proposition regarding the strength of (20).

Proposition 2. [35] Let Pj denote the projection of a polyhedral relaxation of (1) onto the
(x̃j, ỹj) plane. Let

P̄j , {(x̃j, ỹj, σj) | (x̃j, ỹj) ∈ Pj, σj = x̃j ỹj}.

(a) Assume Pj has the form

x̃Lj ≤ x̃j ≤ x̃Uj , ỹ
L
j ≤ ỹj ≤ ỹUj , L

j ≤ x̃j − ᾱỹj ≤ U j

for parameters ᾱ, x̃Lj , x̃Uj , ỹLj , ỹUj , Lj and U j.

1. If ᾱ > 0, x̃Uj − x̃Lj = ᾱ(ỹUj − ỹLj ), and Lj + U j = x̃Lj + x̃Uj − ᾱ(ỹLj + ỹUj ) then the lower
convex underestimator of σj over Pj is given by (18) together with (20) with α = ᾱ.

2. If ᾱ < 0, x̃Uj − x̃Lj = −ᾱ(ỹUj − ỹLj ), and Lj +U j = x̃Lj + x̃Uj − ᾱ(ỹLj + ỹUj ) then the upper
concave overestimator of σj over Pj is given by (18) together with (20) with α = ᾱ.

(b) Let Pj have the form

Lj1 ≤ x̃j − ᾱỹj ≤ U j
1 , L

j
2 ≤ x̃j + ᾱỹj ≤ U j

2

for some ᾱ > 0. If Pj is nonempty then the convex envelope of P̄j is given by (20) with
α = ±ᾱ. �
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% gap closed CPU time (secs) sufficient

100 150 200 100 150 200

McCormick 44.3 49.1 47.9 0.2 0.5 1.2 0

+ 8 refines 83.5 91.5 90.7 9.7 29.4 67.6 6

+ quadratic 83.5 91.5 90.8 10.0 30.3 69.3 8

Table 4: McCormick cuts and convex quadratic cuts.

5.2 Computational results

The test problems and computational environment were the same as in section 2. The
convex quadratic program solver CPLEX reported that the matrix M+MT was not positive
semidefinite for 5 of the 60 instances, due to numerical errors, and so these problems were not
solved. Consequently, each entry in the “gap” columns and the “time” columns represents a
mean of 20, 19, or 16 instances. The performance of refining the McCormick cuts procedure
is compared with refining the bound generation procedure in Figure 1.

Using convex relaxations of the constraint yTw ≤ 0 is very effective for this class of prob-
lems, giving better bounds than from either the bound cuts of section 3.2 or the disjunctive
cuts of section 4.2, in far less time. The quadratic constraint (20) is only marginally helpful
for these problems; simply iteratively tightening the McCormick bounds (18) works very
well.

We also attempted to solve these problems to optimality, using a combination of bound
cuts and McCormick cuts. We used the bound cut procedure with no splits and 4 refinements,
since these bounds can be found in a moderate amount of time (Table 1) and the cuts are
quite effective at solving the problems (Table 2). After adding these refined bound cuts, the
McCormick cut generation procedure was used, with 8 refinements, as in Table 4. For these
runs, CPLEX reported that the matrix M + MT was indefinite for 4 of the 60 instances,
and it was unable to solve an additional three instances in the two hour time limit. This left
20, 19, and 14 instances with 100, 150, and 200 complementarities, respectively. These 53
instances were also all solved in the two hour limit using just the bound cuts. The runtimes
with just the bound cuts and also with the bound cuts together with the McCormick cuts
are contained in Table 5. Five additional problems were solved at the root node through the
addition of the McCormick cuts. The additional time required to generate the McCormick
cuts is worthwhile for the larger instances.

When using just the bound cuts, 2 of the 200 complementarity instances cannot be solved
in 2 hours, and 5 other instances require at least 20 minutes. The two instances requiring at
least 2 hours still cannot be solved within that time limit with the addition of McCormick
cuts, but the duality gap at the end of the time limit has been noticeably reduced. CPLEX
reported that M + MT was indefinite for one of the remaining hard instances, and it was
unable to solve one of them within the 2 hour limit. The McCormick cuts reduced the run
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Figure 1: Comparison of average gap closed by refinements of bound cuts and McCormick
cuts.

solve time (secs) total time (secs)

100 150 200 100 150 200

Bound cuts 6 74 626 48 268 1286

Bound + McCormick 6 37 368 58 260 1095

Table 5: Solving to optimality with McCormick cuts.
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time on each of the other 3 hard instances, with the average solve time dropping from 2681
seconds to 1598 seconds.

6 Lifting constraints

Lifting is a methodology for modifying a constraint that is valid on one part of the feasible
region so that it is valid throughout the feasible region. Let P ⊆ IRn

+ denote a polyhedron

and let P0 , {x ∈ P : xi = 0} for a fixed component i. Given a constraint aTx ≥ β that
is valid on P0, a lifting procedure can be used to extend this constraint so that it is valid
throughout P . This idea is widely employed in integer programming [36].

De Farias et al. [22] describe a lifting procedure for LPCCs with k = 1 and all coefficients
negative. They show that (2) defines a facet of the feasible region under some mild conditions
on the coefficients of the problem. They also show that if an inequality is facet defining
when wi = 0 then it can be lifted to a facet-defining inequality for the whole feasible region
by solving a parametric linear program, again under certain mild assumptions. Further,
they describe various families of facet-defining inequalities. Richard and Tawarmalani [42]
generalize lifting to nonlinear programs. Given an affine minorant of a function f(x, y) :
IRm+n → IR that is valid for a particular choice of y, they show how the affine minorant can
be extended to be a minorant for all y. Of particular interest is the case when f(x, y) is a
membership indicator function for a set S, which is zero for points in the set and infinite
otherwise.

The general lifting framework of [42] can be specialized to LPCCs by using a membership
indicator function for the set S of feasible points to the LPCC (1) that satisfy the objective
function bound constraint (3). Given disjoint subsets I1, I2 ⊆ {1, . . . ,m}, let

SI1,I2 , {v | (x, y, w) ∈ S : yi = 0 ∀i ∈ I1, wi = 0 ∀i ∈ I2}.

Let
αTv ≤ β

be a valid constraint for SI1,I2 and let i ∈ I1. We want to extend the constraint so that it is
valid for SI1\i, I2 , constructing a constraint of the form

αTv + νiyi ≤ β

for some constant νi. As shown in [42], it suffices to choose νi so that νiyi underestimates

g(ξ) , inf
{
β − αTv | v ∈ SI1\i, I2 , yi = ξ

}
.

If SI1\i, I2 is compact, the parameter νi can be determined by solving a fractional program:

νi , inf

{
β − αTv

yi
| v ∈ SI1\i, I2 , yi > 0

}
,

which can be solved as a parametric LPCC. For example, (2) can be derived by lifting
the inequality wi ≤ wUB

i that is valid on Si,∅, when we obtain νi = wUB
i /yUB

i . The lifting
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line with slope νLB
i

ξ̄

gLB(ξ)

ξ0

Figure 2: Illustration of the function gLB(ξ) for 0 < ξ ≤ yUB
i .

procedure can be used to obtain facets of conv(S) using the following proposition from [42]
(see also [22, 36]) specialized to the case of the LPCC:

Proposition 3. If αTv ≤ β defines a facet of conv(SI1,I2), if the dimension of SI1\i, I2 is one
more that the dimension of SI1,I2 , and if the constraint αTv + νiyi ≤ β is valid for SI1\i, I2

and satisfied at equality by at least one point in SI1\i, I2 \ SI1,I2 , then αTv + νiyi ≤ β defines
a facet of SI1\i, I2 . �

Determining the optimal choice for νi is itself a hard problem, so a relaxation can be
used in order to obtain a lower bound νLB

i . Any lower bound will provide a constraint

αTv + νLB
i yi ≤ β

that is valid throughout SI1\i, I2 . For example, a parametric linear programming problem can
be solved to find a lower bound gLB(ξ). The function gLB(ξ) is then a piecewise linear convex
function in 0 < ξ ≤ yUB

i , as illustrated in Figure 2. In order to construct a lower bound
using parametric linear programming, it is necessary to have polyhedral outer approximations
S̄I1\i, I2 ⊇ SI1\i, I2 and S̄I1,I2 ⊇ SI1,I2 . We have gLB(0) ≥ 0, since we can assume the constraint
αTv ≤ β is included in the description of S̄I1,I2 . The left hand limit of gLB(ξ) as ξ → 0+ is
found by solving the linear program

gLB(0+) = min {β − αTv : v ∈ S̄I1\i, I2 , wi = 0, yi = 0 }.

If gLB(0+) < 0 then it is not possible to lift the constraint using the relaxation, since the
resulting bound on νi is −∞. Using a parametric LP approach, the lower bound νLB

i is
chosen to equal

νLB
i = inf

{
β − αTv

ξ
| v ∈ S̄I1\i, I2 , wi = 0, 0 < ξ ≤ yUB

i

}
,

illustrated in the figure, with ξ̄ equal to the arginf. It is the slope of the greatest homogeneous
affine minorant of gLB(ξ), and may well be negative. Note that if gLB(0+) = 0 then νLB

i is
the slope of the first line segment of gLB(ξ).
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Example 1. Consider the following LPCC feasible region:

2x1 − y1 ≤ 4 (21)

2x1 + y1 ≤ 6 (22)

x1 + 2y1 ≤ 6 (23)

y1 − y2 ≤ 2 (24)

x1, x2 ≥ 0 (25)

0 ≤ y1 ⊥ w1 , 3x1 − 2y1 + 2 ≥ 0 (26)

0 ≤ y2 ⊥ w2 , 3x1 + x2 + 6y1 − 14 ≥ 0. (27)

When y1 = 0, it follows from (21) that x1 ≤ 2. We lift this constraint so that it is valid
when y1 > 0, giving a constraint of the form

x1 + ν1y1 ≤ 2.

By complementarity (26), if y1 > 0 then w1 = 0. We can calculate the function gLB(ξ) for
ξ > 0 using the following LP:

gLB(ξ) = minimize 2 − x1

subject to 2x1 ≤ 4 + ξ

2x1 ≤ 6 − ξ

x1 ≤ 6 − 2ξ

− y2 ≤ 2 − ξ

3x1 = 2ξ − 2

3x1 + x2 ≥ 14 − 6ξ

x1, x2, y2 ≥ 0.

This gives

gLB(ξ) =


+∞ if 0 < ξ < 1

8− 2ξ

3
if 1 ≤ ξ ≤ 2.5

+∞ if 2.5 < ξ

as illustrated in Figure 3(a). The greatest slope for a homogeneous affine minorant of gLB(ξ)
is νLB

1 = 0.4, leading to the lifted constraint

x1 + 0.4y1 ≤ 2. (28)

The projection of the LP relaxation onto the (x1, y1) space is illustrated in Figure 3(b). Note
that if the complementarity condition in (27) is imposed when calculating g(ξ) then either

18



slope νLB
i = 0.4

gLB(ξ)

ξ0 1 2.5

1

2

(a)

x1

y1

0 2 3

1

3

(b)

Figure 3: (a) Illustration of the function gLB(ξ) for 0 < ξ in Example 1. (b) Projection
of example on (x1, y1) space, with the LP relaxation feasible region shaded. The thick line
segments indicate points satisfying y1w1 = 0. The dashed line is the lifted constraint (28).

y1 ≤ 2 or 3x1 + 6y1 ≤ 14. This leads to a slightly larger coefficient ν = 2/3, resulting in
a somewhat stronger lifted constraint. Thus, gLB(ξ) is a strict minorant of g(ξ) for this
example. �

A constraint that is valid for SI1,I2 can be successively lifted in all the variables yi, i ∈ I1

and wi, i ∈ I2, leading to a valid constraint on S. The order of lifting can affect the resulting
constraint. Finding sequence-independent liftings is a topic of active research in integer
programming. For more details see [42].

7 Semidefinite constraints

Let ξ = (x, y, w) ∈ IRn+2m. By taking products of the constraints defining (1), we can obtain
nonconvex quadratic constraints on the elements of ξ. For example, the complementarity
relationships imply yiwi = 0 for each i. These constraints can be relaxed to linear constraints
by introducing a matrix Υ to represent

Υ = ξξT ,

replacing all quadratic terms by the corresponding entries in Υ and then relaxing the equality
to the semidefinite inequality

Υ � ξξT .

This leads to a semidefinite programming relaxation of (1) that is tighter than the LP
relaxation. This approach is well-known for quadratically constrained quadratic programs,
and there has been recent research on trying to improve it; see Luo et al. [33] and its
references, for example.

Tightened linear equalities for (1) can be obtained by projecting down from the (Υ, ξ)
space onto the ξ space. This convex relaxation procedure has been extensively analyzed
for 0 − 1 programming, and it has been shown by Lovasz and Schrijver [32] that repeated
application leads to the convex hull of the feasible region. Kojima and Tunçel [30] explore
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Percentage of gap closed
n m k SOCP SDP

20 50 50 15.2 75.0
30 40 60 24.3 63.4
40 30 60 26.7 69.3
40 40 10 22.6 54.0
50 30 20 54.2 99.9
60 20 30 76.9 100.0

Table 6: SDP results.

semidefinite programming (SDP) relaxations of quadratic constraints in detail and charac-
terize the results of successive convex relaxation. They extend the work of [32] to finding
the convex hull of a general nonconvex region, not necessarily one that arises from a 0-1
integer programming problem. Variants of their procedure converge to the convex hull in a
finite number of steps. Anstreicher [3] showed that an SDP approach can be complementary
to using the reformulation-linearization technique. Recent work on semidefinite relaxation
approaches to mixed integer nonlinear programming problems includes [19, 41].

We experimented with using CSDP [17] for solving SDP relaxations of LPCCs generated
in the same way as those in §2. We were unable to solve instances as large as those in §2
in reasonable computational times, so we report results on smaller instances. We used a
positive semidefinite matrix of the form

Ῡ ,

 1
x
y

 [ 1 xT yT
]

=

 1 xT yT

x xxT xyT

y yxT yyT

 ,
with the equality constraint relaxed. The model included constraints that all entries in Υ
be nonnegative, that the entries corresponding to yiwi be zero, that the entries in the first
row and column of Ῡ satisfy the appropriate linear constraints on x and y in (1), that the
linear combinations of entries in Ῡ corresponding to the products yi(Āx + B̄y + C̄w − b)j,
(Āx + B̄y + C̄w − b)i(Āx + B̄y + C̄w − b)j and xi(Āx + B̄y + C̄w − b)j be nonnegative,
and that the entries in Ῡ corresponding to the terms xi, x

2
i , yj, and y2

j satisfy the convex
quadratic constraints

x2
i ≤ xUB

i xi and y2
j ≤ yUB

j yj.

The results are contained in Table 6. Also contained in the table are results for the second-
order cone programming (SOCP) relaxation which includes all the constraints of the SDP,
except for the requirement that Υ be positive semidefinite. A lower bound was obtained by
solving the relaxations of these problems containing the bound cuts (2) and the McCormick
constraints (18), and the integer program (6) was solved in order to obtain the optimal value.
The table gives the proportion of the gap between the optimal value and the lower bound
from the McCormick cuts that is closed using the SOCP and SDP relaxations.
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It is clear from the table that the SDP relaxation can be very strong. However, the
computational time for this approach is not competitive with an LP-based integer program-
ming approach, at least for these problems and when solving the SDPs to optimality with
a primal-dual method. It may be helpful to use alternative techniques to solve the SDP
problems, such as those in, for example, [18, 24, 31, 47, 48], techniques that can also be
used to solve the SDPs approximately. Approximate solutions may be appropriate when the
solver is incorporated into a branching scheme. It may also be more effective to add the
linear constraints on Υ selectively as cutting planes.

It is also possible to construct constraints that the linear combinations of entries in Ῡ
corresponding to the products yiwk, wiwk, wi(Āx+ B̄y+ C̄w−b)j, and xiwk be nonnegative,
but we found these constraints resulted in SDPs that were too large for our solver. In
principle, these constraints could be added as cutting planes, as could the earlier ones.

8 Conclusions

The cuts described in this paper can dramatically reduce the gap between the global op-
timal value and the lower bound provided by a simple linear programming relaxation. We
investigated adding whole families of cuts and quantifying how the lower bound is improved.
The cuts can often be greatly improved by refining them, that is, by applying them and
then recalculating them. For example, with bound cuts, a lower bound can be calculated
using a single application of the bound-calculating procedure. The gap between the optimal
value and this lower bound is reduced by 47% or more in all our test cases when the bounds
are refined 8 times, and the overall reduction in the duality gap is on the order of 75% to
90% when compared with the initial LP relaxation. Further, using refinements can often
result in a lower overall runtime to solve the LPCC to optimality, even when taking the
time for the refinements into account. The bound cuts appear to be more effective than
the disjunctive cuts, which are expensive to calculate in their full form. Methods to speed
up the calculation of disjunctive cuts certainly save time, but they appear to give cuts that
are noticeably weaker than using the full disjunctive cut generation LP. When the dimen-
sion of the x variables is not too large, we have shown how to construct linear relaxations
of the nonconvex quadratic constraint yTw ≤ 0 by expressing the constraint in terms of
just the x and y variables. These McCormick constraints can be very effective, especially if
they are refined. The refined cuts can typically reduce the gap by about 90% on our test
problems. Novel quadratic constraints can be used to improve the McCormick cuts, but
the improvement is not great for our test instances. Tighter relaxations can be obtained by
using semidefinite relaxations, but these are currently expensive computationally to solve to
optimality. Methods to approximately solve the SDP relaxations could be useful, as could
methods using the SDP as a cut-generation mechanism in an LP approach as in [31, 41, 48].

We are currently investigating the use of these classes of constraints in a branch-and-cut
algorithm for finding the global optimum to the LPCC. In such an algorithm, the cuts are
added more selectively, rather than adding whole families of cuts.
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