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Abstract

We present an analytic center cutting surface algorithm that uses mixed linear and mul-

tiple second-order cone cuts. Theoretical issues and applications of this technique are dis-

cussed. From the theoretical viewpoint, we derive two complexity results. We show that an

approximate analytic center can be recovered after simultaneously adding p second-order cone
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cuts in O(p log(p+1)) Newton steps, and that the overall algorithm is polynomial. From the

application viewpoint, we implement our algorithm on mixed linear-quadratic-semidefinite

programming problems with bounded feasible region and report some computational results

on randomly generated fully dense problems. We compare our cpu time with that of SDPLR,

SDPT3, and SeDuMi and show that our algorithm outperforms these software packages on

fully dense problems. We also show the performance of our algorithm on semidefinite relax-

ation of the maxcut and Lovasz theta problems.

Keywords: Second-order cone, semidefinite inequality, cutting plane techniques, semidefinite

programming.

1 Introduction

The analytic center cutting plane method (ACCPM) is an efficient technique for nondifferentiable

optimization problems. The method was first introduced by Sonnevend [28] in 1988. Theoretical

issues of this method have been studied in the literature for several settings. The main difference

in all methods is the geometry of cuts. In polyhedral cases, single linear, multiple linear, and

quadratic cuts have been studied. The theoretical complexity of the method has been reported

in several papers. See for instance, Ye [35], Atkinson and Vaidya [2], and Goffin, Luo and Ye

[9] for single linear cuts, Ye [36] and Goffin and Vial [10] for multiple linear case, and Luo and

Sun [18], Lüthi and Büeler [20], and Sharifi Mokhtarian and Goffin [26] for the case of quadratic

cuts, and Luo and Sun [19] for self-concordant inequalities.

Recently, there has been a growing interest in ACCPM incorporated with nonpolyhedral mod-

els, aka, analytic center cutting surface method (ACCSM). Complexity results of ACCSM have

been studied by several authors. Sun, Toh, and Zhao [31], Toh, Zhao, Sun [33], and Chua,

Toh, and Zhao [8] examine the addition of linear cuts for semidefinite programs, Oskoorouchi

and Goffin [22] derive the results for semidefinite cuts, and Oskoorouchi and Goffin [23] discuss

second-order cone cuts. Krishnan and Mitchell [15] give a unifying framework for cutting sur-

face approaches for semidefinite programming. Recently Basescu and Mitchell [3] presented a

complexity framework that covers general conic programming.

ACCSM has been implemented in practice for various applications. Oskoorouchi and Goffin [24]
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implement an ACCSM with semidefinite cuts (SDC) to solve eigenvalue optimization problem,

Krishnan and Mitchell [16] use a cut-and-price approach based on a polyhedral approximation to

solve the maxcut problem to optimality, and Sivaramakrishnan et al. [27] apply a decomposition

approach based on ACCSM for semidefinite relaxations of some combinatorial optimization

problems. All of the above papers report interesting numerical results.

This paper contributes to the theory and application of ACCSM in the following ways: we first

explore the theoretical issues of integrating mixed linear cuts (LC) and multiple second-order

cone cuts (SOCC) with ACCSM and introduce a second-order cone cutting surface method

(SOCCSM). We generalize the complexity results derived in [23] from single SOCC to multiple

SOCC’s. We derive two complexity results: the complexity of recentering after simultaneously

adding p(≥ 1) SOCCs and the complexity of the overall algorithm. In the implementation

part, we replace a p-dimensional SDC by multiple SOCC’s and illustrate that this replacement

improves the computational results presented in [24]. We implement our algorithm on mixed

linear-quadratic-semidefinite programming problems with bounded feasible region and test our

algorithm with various randomly generated problems and compare our numerical results with

that of SDPLR, due to Burer and Monteiro [6, 7] and Burer and Choi [5]; SDPT3-4.0-beta, due

to Toh et al. [32] and Tutuncu et al. [34]; and SeDuMi, due to Sturm [29, 30]. By comparing

our cpu time with the above-mentioned software packages we illustrate that SOCCSM is a very

efficient technique for moderate to large size problems with fully dense coefficient matrices.

2 Preliminaries

Throughout this paper we extensively use some well-known characteristics of second-order cone

programming. To keep the paper self-contained, we briefly review the most important properties

of the second-order cone. More comprehensive analysis can be found in Alizadeh and Goldfarb

[1].

First we introduce our notation: We use uppercase letters for matrices, lowercase letters for

vectors and Greek letters for scalars. The space of n−dimensional symmetric matrices is de-

noted by Mn, positive semidefinite matrices by Mn
+, n−dimensional real vectors by IRn, and

nonnegative real vectors by IRn
+. We also use A º 0 to indicate that A ∈Mn

+. We use 1 for an
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all one vector, and 1i for a vector with 1 in the ith position and zero elsewhere.

For x, s ∈IRn, we use the following notation: “x.s” is a component-wise product of xi and si,

that is (x.s)i = xisi; x.−1 is the component-wise inverse of x, and
∏

x =
∏n

i=1 xi. We use “;”

for joining two vectors in a column, i.e., (x; s) is a vector in IR2n made up of vectors x and s

joined in a column.

For two matrices A and B, (A,B) makes a matrix by joining them in rows, and A⊕B makes a

matrix by joining A and B in the diagonal

A⊕B =




A 0

0 B


 ;

‖A‖F is the Frobenius norm of A defined via ‖A‖F = tr(AT A), where “tr” adds the diagonal

elements of a symmetric matrix; and finally A • B is the inner product of A and B defined via

A •B = tr(AT B).

The second-order cone is defined as follows:

Kn = {x ∈ IRn : x = (ξ; x̄), ‖x̄‖ ≤ ξ},

where ‖.‖ is the standard Euclidean norm, ξ is a scalar, x̄ ∈IRn−1, and n is the dimension of Kn.

We use x ºKn y to indicate that x− y ∈ Kn. When n = 1, Kn =IR+.

Associated with the second-order cone, one can define a special case of Euclidean Jordan Algebra.

Let x = (ξ; x̄) ∈IRn and s = (σ; s̄) ∈IRn. Define x ◦ s = (xT s; ū), where ū ∈IRn−1, with

ūi = ξsi + σxi. The unique identity vector of this algebra is represented by e = (1; 0). Clearly,

x ◦ e = e ◦ x = x. Conventionally, we represent x ◦ x by x2. Every x ∈ Kn has a unique square

root in Kn.

Spectral decomposition and eigenvalues of x can be defined analogously to the cone of symmetric

matrices. For x = (ξ, x̄), one has

λ1 = ξ + ‖x̄‖ and λ2 = ξ − ‖x̄‖.

If λ1 and λ2 are both nonzero, then x is invertible, with x−1 satisfying x ◦ x−1 = e. If λ1 and

λ2 are both nonnegative, then x ∈ Kn, and if they are both positive, then x ∈ K◦n := {x ∈I

Rn : x = (ξ; x̄), ‖x̄‖ < ξ}
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Using the eigenvalues of x, the following algebraic matrix functions can be defined:

tr(x) := λ1 + λ2 = 2ξ

det(x) := λ1λ2 = ξ2 − ‖x̄‖2

‖x‖F :=
√

λ2
1 + λ2

2 =
√

2‖x‖

‖x‖2 := max{|λ1|, |λ2|} = |ξ|+ ‖x̄‖

Now let x = (ξ, x̄) ∈IRn with n ≥ 2 and define

Qx :=



‖x‖2 2ξx̄T

2ξx̄ det(x)I + 2x̄x̄T


 .

Qx is a quadratic operator that maps any vector s ∈IRn to a vector composed of quadratic terms

of x. For n = 1 with x = ξ, we can define the scalar Qx = ξ2.

In this paper we are dealing with the vectors of the form x = (x1; ...; xk), where xi is in the

second-order cone Kni . The primal algebra is therefore Kk = Kn1 × ...×Knk
. When there is no

ambiguity, we drop the superscript k from Kk. One can extend the above algebraic functions to

these block forms.

The next lemma generalizes the inequality proved in [23] to the block format. The proof of this

technical lemma is straightforward and is omitted.

Lemma 1 Let x = (x1; ...; xk) ∈ K, where xi ∈ Kni. If ‖x− e‖2 < 1, then

log det(x) ≥ tr(x− e)− ‖x− e‖2
F

2(1− ‖x− e‖2)
. (1)

Moreover, if ‖x‖F ≤ 1, then

log det(x + e) ≥ tr(x) + ‖x‖F + log(1− ‖x‖F ). (2)

3 Second-order cone cutting surface method

In this section we present an analytic center cutting surface technique that uses mixed linear

and multiple second-order cone cuts.
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Let AT
i y ¹Ksi

ci, for i = 1, . . . , nq be nq second-order cone inequalities and AT y ≤ c be nl linear

inequalities. Define

D = {y ∈ IRm : AT y ¹K c, and AT y ≤ c},

where A = (A1, A2, . . . , Anq), c = (c1; c2; . . . ; cnq), A ∈IRm×nl and K = Ks1 × . . .×Ksnq
.

Suppose that D is a compact convex set that contains a full dimensional ball with ε radius. We

are interested in finding a point in this ball. Let us call D, the dual set of localization.

In the algorithm that we describe here, a query point is obtained by computing an approximate

analytic center of the set of localization. For the moment, we assume that there exists an oracle

that determines either the query point is in the ε-ball, or returns a cut that cuts off the current

query point and contains the ε-ball. The cut is either a linear cut (LC) or a set of multiple

second-order cone cuts (SOCC). We describe the details of this oracle in Section 5, where we

discuss the implementation of the algorithm.

Let us first discuss a computational algorithm for the analytic center of D. Let

φ(s, s) =
1
2

log det s + log
∏

s,

where
s := c−AT y ºK 0

s := c−AT y ≥ 0.
(3)

It is easily verified that φ is a strictly concave function on D. Therefore, the maximizer of this

function over D exists and is unique. This maximizer is called the analytic center of D. From the

KKT optimality conditions y is the analytic center of D if and only if, there exists x = s−1 ºK 0

and x = s.−1 ≥ 0 such that

Ax + Ax = 0, (4)

where s and s satisfy (3).

Corresponding to the optimality condition (4), one can derive the primal set of localization and

its associated barrier function. Let

P = {x ∈ Knq , x ∈ IRnl
+ : Ax + Ax = 0},

then

ψ(x, x) = −cTx +
1
2

log detx− cT x + log
∏

x
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is strictly concave on P. The Cartesian product of P and D gives the primal-dual set of

localization. The corresponding barrier function is defined via

Φ(x, x, s, s) = ψ(x, x) + φ(s, s).

The unique maximizer of ψ over P and that of Φ over P × D coincide with the analytic center

derived for D. Therefore when there is no ambiguity, we refer to this point just as the analytic

center.

Definition 2 An approximate analytic center is a point that satisfies the dual feasibility (3),

the primal feasibility (4) and

η(x, x, s, s) ≤ η < 1,

where η2(x, x, s, s) = ‖Qx1/2s− e‖2
F + ‖xs− 1‖2.

An approximate analytic center can be computed using the primal, dual or primal-dual barrier

functions. In this paper we use the primal directions to compute the analytic center. The reason

is that in practice, adding the cuts returned by the oracle to the primal set of localization can

be handled more efficiently than that of the dual or primal-dual sets. Notice that calculating

the analytic center of one set yields the center of the other. Therefore, one can switch between

the primal, dual and primal-dual sets as needed.

Let a strictly feasible point of P be given. Since ψ is strictly concave on P, implementing

Newton’s method to maximize ψ(x, x) over P yields

dx = x−Qxs (5)

dx = x−X2s, (6)

where X is a diagonal matrix made up of vector x, and s and s satisfy (3), with

y = G−1g, (7)

where
G = AQxAT + AX2AT

g = AQxc + AX2c.
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Starting from a strictly feasible point, the above direction is implemented at each iteration until

the desired accuracy is reached. One can prove that the rate of convergence becomes quadratic

as the iteration gets closer to the analytic center.

We now present the framework of the second-order cone cutting surface method (SOCCSM):

Algorithm 1 (SOCCSM) Let (x0, x0), a strictly feasible point of P be given

Step 1. Compute (x̄, x̄), an approximate analytic center of P using the directions dx and dx

given in (5) and (6). Compute ȳ, an approximate center of D from (7).

Step 2. Call the oracle. If ȳ is in the ε-ball, stop.

Step 3. If the oracle returns a single linear cut bT y ≤ d, update P via

P+ = {x ºKnq 0, x ≥ 0, ζ ≥ 0 : Ax + Ax + bζ = 0}.

Otherwise go to Step 4.

Step 4. If the oracle returns multiple second-order cone cuts BT y ¹K d, update P via

P+ = {x ºKnq 0, z ºKp 0, x ≥ 0 : Ax + Bz + Ax = 0}.

Step 5. Find a strictly feasible point of P+ and return to Step 1.

In the remainder of this section, we elaborate Steps 3-5 in greater detail. Step 2 will be discussed

in Section 5.

After adding a cut to the set of localization, whether an LC or a set of SOCCs, the analytic

center of the updated set of localization should be recovered. As mentioned before, Newton’s

method is employed to obtain an approximate center from a strictly feasible point. However,

after adding a cut, the only available information is the previous approximate center, which

may not be strictly feasible. Therefore, we need an efficient procedure to obtain an initial point

for Newton’s algorithm. The procedure that we describe here not only gives a strictly feasible

point in P+, but also gives a warm start for the Newton directions. In Section 4.1, we show that

starting from such a point requires O(p log(p + 1)) Newton steps to recover the analytic center
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after adding p SOCCs. This procedure was initially proposed by Mitchell and Todd [21] in the

linear case when a single cut is added.

For the sake of simplicity, we combine the two types of cuts and treat a linear cut as a second-

order cone cut of size 1. All algebraic functions defined for the second-order cone can be simplified

to be used for the linear inequalities. For example for the linear cut s := c− aT y ≥ 0, we define

det(s) = s2. With this definition the potential function term from the SOCC and LC become

identical. Therefore “φ(s) = 1
2 log det s” works for both cases regardless of the size of n. Notice

that with the above definition tr(s) = 2s, and Qs is simply the scalar s2. All other definitions

as well as Lemma 1 hold.

A strictly feasible point of P+ updated in Step 3 or 4, can be obtained from the following

optimization problem:

max 1
2 log det z

s.t.

Adx + Bz = 0

‖Qw−1/2dx‖F ≤ 1,

where standard choices for w include w = x, w = s−1, and w = x1/2s−1/2. Using the KKT

optimality conditions, the updating direction reads

dx = −QwAT H−1Bz

where

H = AQwAT (8)

and

z−1 = pBT H−1Bz. (9)

The updating directions depend on z. Let

ϕ(z) = −p

2
zT V z +

1
2

log det z, (10)

where V = BT H−1B. Observe that (9) is indeed the optimality condition of

max{ϕ(z) : z ∈ Kp},
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and since ϕ is a strictly concave function, Newton’s method is most suitable for this problem.

Therefore using the quadratic approximation of ϕ(z + dz), one can derive

dz = (pV + Q−1
z )−1(z−1 − pV z)

or

dz = Qz1/2(pQz1/2V Qz1/2 + I)−1(e− pQz1/2V z)

Observe that the updating directions after adding a single linear cut can be simplified via

dx = −ζQwAT H−1b

ζ = (bT H−1b)−1/2.

In the next section we discuss the convergence analysis and complexity of our algorithm.

4 Convergence analysis and complexity

In this section we present two complexity results. First we establish a bound on the number

of Newton steps to recover centrality after adding multiple SOCCs, and then we discuss the

convergence and complexity of the overall algorithm.

4.1 Complexity of recovering the center

Let P and D be the current primal and dual localization sets respectively, and x̄ and ȳ be their

approximate analytic centers. Let P+ be the updated primal set as in Step 4 of Algorithm 1.

In order to derive the theoretical complexity, we need to make an assumption on the cuts in the

dual space.

Assumption 1 The updated dual set of localization is

D+ = {y ∈ D : BT y ¹Kp BT ȳ}.

That is, the cuts pass through the center.

Note that while Assumption 1 appears to be necessary in the complexity analysis, it does not

interfere with our algorithm in practice. This is because in practice we use the primal space to
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recover the centrality. As we observed in Section 3, in the primal space the location of the cuts

does not matter; and the updating direction can always be efficiently obtained using the primal

setting.

We need a dual direction. Similar to the primal case, one can obtain a dual updating direction

by solving the optimization problem

max 1
2 log det(−BT dy)

s.t.

‖Qw1/2AT dy‖F ≤ 1

where dy = y− ȳ, and the same choices are available for w as before. From the KKT optimality

conditions the optimal dy reads

dy = −1
p
H−1Bt−1

and

t =
1
p
BT H−1Bt−1, (11)

with

ds = −AT dy

Note that in view of (11)

z ◦ t =
1
p
e. (12)

We now fix w = s−1, so H = AQs−1AT = AQ−1
s AT . We have the following lemma. A similar

lemma for the case of single SOCC is presented in [23]. The extension to multiple SOCCs can

be done following the same line of proof, so we omit the proof.

Lemma 3 Let x+ = (x + αdx;αz) and s+ = (s + αds; αt), for α < 1− η. Then

φ(s+) ≥ φ(s) +
1
2

(
α + log(1− α

1− η
)
)

+
1
2

log detαt (13)

ψ(x+) ≥ ψ(x) +
1
2

(
α + log(1− α

1− η
)
)

+
1
2

log detαz (14)

Φ(x+, s+) ≥ Φ(x, s) + (α + log(1− α

1− η
)) + 2p log α− p log p. (15)

The next theorem establishes a bound on the gap between the next analytic center and the

updated point (x+, s+).
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Theorem 4 Let P+×D+ be the updated primal-dual set of localization and (x+, s+) be a strictly

feasible point defined in Lemma 3. Let (xa, sa) be the analytic center of P+ ×D+. Then

Φ(xa, sa)− Φ(x+, s+) ≤ p log p− ϑ(p, α, η)

where

ϑ(p, α, η) = p + 2p log α + α + log(1− α

1− η
)− η2

4(1− η)

Proof. Since

Φ(x, s) = −xT s +
1
2

log det(Qx1/2s)

and (x, s) is an approximate analytic center, in view of (1)

Φ(x, s) ≥ −xT s +
1
2
tr(Qx1/2s− e)− η2

4(1− η)

= −nk − η2

4(1− η)
. (16)

Now in view of Lemma 3

Φ(x+, s+) ≥

−nk − η2

4(1− η)
+ (α + log(1− α

1− η
)) + 2p log α− p log p.

The theorem now follows from the above inequality and noting that Φ(xa, sa) = −nk − p.

Theorem 4 proves that after adding p(≥ 1) SOCCs to the set of localization simultaneously,

the gap between the primal-dual barrier function at (x+, s+) and at the new analytic center

is bounded by O(p log(p + 1)). On the other hand Newton’s method is known to increase the

primal-dual potential function at least by a constant amount at each iteration. Thus at most

O(p log(p + 1)) Newton steps are needed to recover centrality after adding p SOCCs.

4.2 Convergence

In this section we derive a bound on the total number of cuts needed to obtain a point in the

ε-ball. We establish upper and lower bounds on the dual barrier function after k iterations,

and then show that these bounds must cross. The algorithm must terminate before the bounds

cross. Let us first establish a bound on the dual barrier function at the analytic center of D+.
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Let ψ∗, φ∗, Φ∗ be the optimal values of primal, dual and primal-dual barrier functions respec-

tively. That is ψ∗ = ψ(xa), φ∗ = φ(sa), and Φ∗ = Φ(xa, sa), and let ψ+, φ+, Φ+ be the updated

barrier functions for P+, D+ and P+ ×D+ respectively. From (14)

(ψ+)∗ ≥ ψ(x) +
1
2

log det z + ϑ1(p, α, η),

where

ϑ1(p, α, η) =
1
2

(
α + log(1− α

1− η
)
)

+ p log α.

Since (ψ+)∗ + (φ+)∗ = −n− p, one has

(φ+)∗ ≤ −n− p− ψ(x)− 1
2

log det z− ϑ1(p, α, η).

On the other hand in view of (16)

ψ(x) ≥ ψ∗ − η2

4(1− η)
.

Therefore

(φ+)∗ ≤ φ∗ − 1
2

log det z +
η2

4(1− η)
− p− ϑ1(p, α, η). (17)

We now obtain a lower bound on 1
2 log det z. Notice that from (12) zT (BT H−1B)z = 1

pz
Tz−1 =

1. Consequently, since z maximizes ϕ(z), for any z0 ∈ Kp such that

(z0)T (BT H−1B)z0 = 1, (18)

one has

log det z ≥ log det z0. (19)

Now define

z0 =
z̄√

z̄TBT H−1Bz̄
(20)

where z̄ = (z̄1; . . . ; z̄p) is defined such that z̄i = γ−1
i ei, where

γi =
√

(bi
1)T H−1bi

1, (21)

and bi
1 is the first column of matrix Bi. With this definition observe that

z̄TBT H−1Bz̄ =
p∑

i=1

p∑

j=1

z̄T
i BT

i H−1Bj z̄j

=
p∑

i=1

p∑

j=1

γiγje
T
i BT

i H−1Bjej

≤ p2
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Now on one hand, z0 satisfies (18), and on the other hand

log det z0 ≥ log
(

1
p

)2p

+ log det z̄

Therefore (19) reads

log det z ≥ −2p log p + log det z̄

and since log det z̄ =
∑

log det z̄i =
∑

log γ−2
i , then

log det z ≥ −2p log p− 2
∑

log γi. (22)

Inequalities (17) and (22) together yield the following inequality:

(φ+)∗ ≤ φ∗ + p log p +
∑

log γi +
η2

4(1− η)
− p− ϑ1(p, α, η).

With the arbitrary values η = 0.15 and α = 0.60, we proved the following lemma:

Lemma 5 If the oracle returns p blocks of SOCC, where p ≥ 1 and the dual set of localization

D is updated by adding these cuts simultaneously, then the optimal value of the updated dual

barrier function has the following upper bound:

(φ+)∗ ≤ φ∗ +
p∑

i=1

log γi + p log p.

Next, we present a lemma to establish an upper bound on the optimal value of the dual barrier

function at the k-th iteration. In order to keep this bound simple, we make a scaling assumption.

Assumption 2 The initial dual set of localization D0 is the unit ball.

It is important to note that Assumption 2 is simply a scaling assumption and it is made to keep

constants away from the bound.

Lemma 6 Let nk be the total number of cuts up to the iteration k. Let γi, for i = 1, . . . , nk be

defined as in (21). Then

(φk)∗ ≤
nk∑

i=1

log γi + nk log pmax,

where pmax := max{pi, i = 1, . . . , nk}.
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Proof. Let k be the current iteration. From Lemma 5

(φk)∗ ≤ (φk−1)∗ +
nk∑

i=1

log γi + pk log pk,

where pk is the number of SOCCs added in the k-th iteration. Since pmax ≥ pk for all k, applying

this inequality recursively, one has

(φk)∗ ≤ (φ0)∗ +
nk∑

i=1

log γi + nk log pmax.

The lemma follows from Assumption 2.

We now define a condition number on a second-order cone cut.

Definition 7 Let BT y ¹K d be a second-order cone cut and u ∈IRm. Define

µ = max
‖u‖≤1

det(BT u),

This condition number was first defined for semidefinite cuts in [22], and then modified for the

second-order cone cuts in [23]. We make the following assumption on the multiple second-order

cone cuts added at each iteration:

Assumption 3 Let (Aj
i )

T y ¹ cj
i , for i = 1, . . . , pj be multiple SOCCs added at iteration j =

1, . . . , k and let

µj
i = max

‖u‖≤1
det((Aj

i )
T u) (23)

be the condition numbers. Then

µj := min
i=1,...,pj

µj
i > 0, for all j = 1, . . . , k.

We now find a lower bound on the optimal value of the dual barrier function at the kth iteration.

Lemma 8

(φk)∗ ≥ nk log(ε
√

µmin),

where µmin = minj=1,...,k µj and ε is the radius of the ε-ball.
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Proof. Let yc be the center of the ε-ball. For each i = 1, . . . , pj and each j = 1, . . . , k, let uj
i

be the vector that achieves the maximum µj
i in (23). Then since the dual set of localization D

contains the ε-ball, one has cj
i − (Aj

i )
T y º ε(Aj

i )
T uj

i , and so

det(c−AT yc) =
k∏

j=1

pj∏

i=1

det(cj
i − (Aj

i )
T y)

≥
k∏

j=1

pj∏

i=1

det(ε(Aj
i )

T uj
i )

≥ ε2nk

k∏

j=1

(µj)pj

≥ ε2nkµnk
min.

The proof follows.

Combining Lemmas 6 and 8 gives the following inequality:

1
nk

nk∑

i=1

log γ2
i ≥ log

(
ε
√

µmin

pmax

)2

. (24)

On the other hand, since
∏

γ2
i ≤

(∑
γ2

i
nk

)nk

then

1
nk

nk∑

i=1

log γ2
i ≤ log

∑nk
i=1 γ2

i

nk
. (25)

Inequalities (24) and (25) yield

nk

(
ε
√

µmin

pmax

)2

≤
nk∑

i=1

γ2
i . (26)

It remains to bound the right hand side of (26). Let us first make another scaling assumption.

Assumption 4 Let AT
i y ¹K AT

i ȳ, for i = 1, . . . , nq, and aT
i y ≤ aT

i ȳ, for i = 1, . . . , nlc, be

second-order cone cuts and linear cuts added to the set of localization. One can assume that

max
i
{‖Ai‖F , ‖ai‖} ≤ 1.

Assumption 4 is another scaling assumption and does not reduce generality. Notice that if

‖Ai‖F ≤ 1, then the Euclidean norm of all columns of Ai is less than or equal 1.
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Lemma 9 Let

Hk = I +
1
16

nk∑

i=1

(bi
1)(b

i
1)

T ,

where bi
1’s are the first columns of matrices Bi of the second-order cone cuts, Then

(bi
1)

TH−1
k bi

1 ≥ γ2
i .

Proof. See Lemma 15 of [23].

The next lemma establishes an upper bound on the right hand side of Inequality (26). The

structure of this proof has some similarities to that of Lemma 9 in [36] for the case of linear

programming. Assumption 2 and our Lemma 9 enable us to prove a stronger result with an

upper bound that is only linear in m. We include the proof in detail in order to make the

strengthening clear.

Lemma 10

nk∑

i=1

γ2
i ≤ 2m(pmax + 16) log(1 +

nk

4m
)

Proof. Let

Hk = Hk−1 +
1
16

pk∑

i=1

bi
1(b

i
1)

T ,

with H0 = I. Let pk ≥ 2 (the case of pk = 1 yields a tighter bound, see [23]). One has

det(Hk) = (1 +
γ̄2

16
) det

(
Hk−1 +

1
16

pk∑

i=2

bi
1(b

i
1)

T

)
(27)

where γ̄2 = (b1
1)

T
(
Hk−1 + 1

16

∑pk
i=2 bi

1(b
i
1)

T
)−1

b1
1. Now let

J = I +
1
16

pk∑

i=2

H−1/2
k−1 bi

1(b
i
1)

TH−1/2
k−1 .

We prove that

J −1 º 16
pmax + 16

I. (28)

It suffices to show that xTJ x ≤ pmax+16
16 , for all x ∈IRm with ‖x‖ = 1. This can be seen from

the following chain of inequalities and Assumption 4.

xTJ x = ‖x‖+
1
16

pk∑

i=2

(xTH−1/2
k−1 bi

1)
2
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≤ 1 +
1
16

pk∑

i=2

(bi
1)

TH−1
k−1b

i
1

≤ 1 +
1
16

pk∑

i=2

‖bi
1‖2

Therefore

γ̄2 = (b1
1)

TH−1/2
k−1 J −1H−1/2

k−1 b1
1

≥ 16
pmax + 16

(b1
1)

TH−1
k−1b

1
1

≥ 16γ2
1

pmax + 16

Therefore (27) reads

det(Hk) ≥ (1 +
γ2
1

pmax + 16
) det

(
Hk−1 +

1
16

pk∑

i=2

bi
1(b

i
1)

T

)

Repeating this inequality for i = 2, . . . , pk, and taking “log” from both sides one has

log detHk ≥
pk∑

i=1

log

(
1 +

γ2
i

pmax + 16

)
+ log detHk−1.

On the other hand since γi ≤ 1 and pmax ≥ 2,one has

log

(
1 +

γ2
i

pmax + 16

)
≥ γ2

i

2(pmax + 16)
.

Consequently

log detHk ≥ 1
2

pk∑

i=1

γ2
i

pmax + 16
+ log detHk−1.

Notice that, a tighter inequality can be derived when pk = 1.

By repeating the same procedure for all second-order cone cuts, one has

log detHk ≥ 1
2(pmax + 16)

nk∑

i=1

γ2
i + log detH0

Now since log detHk ≤ m log( trHk
m ) and

trHk ≤ m +
nk

16
,

therefore
1

2(pmax + 16)

nk∑

i=1

γ2
i ≤ m log

(
1 +

nk

16m

)
.

The lemma follows immediately.

Combining Lemma 10 and inequality (26), yields our main result.
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Theorem 11 The second-order cone cutting surface method (Algorithm 1) finds a point in the

ε-ball when the total number of linear and second-order cone cuts reaches the bound

O

(
mp3

max

ε2µmin

)

Theorem 11 shows that Algorithm 1 is polynomial with respect to m and p.

5 Application: large scale conic optimization

In this section we discuss an application of SOCCSM on large scale conic optimization with

bounded feasible region. Consider the following pair of primal and dual linear-quadratic-

semidefinite programming problems:

min C •X + cTx + cT x

s.t.

AX + Ax + Ax = b

I •X = 1

X º 0,x ºK 0, x ≥ 0

(29)

and

max bT y + z

s.t.

AT y + zI ¹ C

AT y ¹K c

AT y ≤ c

(30)

where C ∈ Mns , c ∈IRnq , c ∈IRnl , b ∈IRm, A ∈IRm×nq , A ∈IRm×nl , and the linear operator

A : Mns →IRm, defined by (AX)i = Ai•X and its adjoint operator AT :IRm →Mns , defined by

AT y =
∑m

i=1 yiAi are all the given problem parameters; and X ∈Mns ,x ∈IRnq , and x ∈IRnl are

the primal problem variables, and y ∈IRm and z ∈IR are the variables of the dual problem. We

assume that the matrices Ai, i = 1, . . . , m are linearly independent. Notice that the constraint

I • X = 1 is implied from our assumption that the feasible region is bounded (See Helmberg

[12]).
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In this section we implement our algorithm on some randomly generated problems with dense

matrices and on some maxcut and Lovasz theta problems. Moreover, we compare our results

with that of some well-known software, namely SDPLR1, due to Burer and Monteiro [6, 7]

and Burer and Choi [5]; SDPT3-4.0-beta2,due to Toh et al. [32] and Tutuncu et al. [34]; and

SeDuMi3, due to Sturm [29, 30].

First observe that the equivalent formulation of Problem (30) as an eigenvalue optimization

problem reads

max bT y + λmin(C −AT y)

s.t.

AT y ¹K c

AT y ≤ c.

(31)

Let us first assume that the feasible region of Problem (31) is bounded. Later on in this

section, we describe a procedure that extends the algorithm to unbounded situations. Given our

assumption on the feasible region, without loss of generality, one can assume that the second-

order cone inequality AT y ¹K c contains (A0)T y ¹K e, where A0 = ( 0 −Im ). That is the

feasible region of Problem (31) falls in the unit ball ‖y‖ ≤ 1.

Let us first briefly study the objective function of Problem (31) and review some important

properties of the minimum eigenvalue function. More comprehensive analysis of the minimum

eigenvalue function and eigenvalue optimization can be found in Overton [25], Lewis and Overton

[17] and Helmberg and Rendl [13]. Let

f(y) := bT y + λmin(C −AT y).

It is well-known that the minimum eigenvalue of a symmetric matrix can be cast as a semidefinite

programming problem. Therefore f(y) can be written as:

f(y) = bT y + min
{
(C −AT y) • V : trV = 1, V ∈Mns

+

}
,

Although C − AT y is a differentiable matrix function with respect to y, the eigenvalues of

this matrix are not differentiable at points where they have multiplicity greater than one. In
1available at http://dollar.biz.uiowa.edu/ burer/software/SDPLR/papers.html
2available at http://www.math.nus.edu.sg/ mattohkc/sdpt3.html
3available at Advanced Optimization Library http://sedumi.mcmaster.ca
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maximizing the minimum eigenvalue of an affine combination of symmetric matrices, it is often

the case that the maximum occurs where f(y) is nondifferentiable. In such cases, one can work

with the subdifferential set rather than the gradient. The subdifferential of function f(y) using

the Clarke generalized gradient of λmin(C −AT y) and a chain rule can be derived as

∂f(y) := b− {v ∈ IRm : vi = (QT AiQ) • V, trV = 1, V ∈Mp̂
+},

where Q ∈IRn×p̂ is a matrix whose orthonormal columns are the eigenvectors corresponding to

the minimum eigenvalue with multiplicity p̂. Observe that if the maximum eigenvalue is unique

(p̂ = 1), then the subdifferential set will reduce to a unique vector, which is the gradient of f(y).

In other words, function f(y) is differentiable, if the multiplicity of λmin is one.

Now let F0 be the feasible region of Problem (31). That is

F0 = {y ∈ IRm : AT y ¹K c and AT y ≤ c}.

The following lemma provides upper and lower bounds for the optimal objective value of Problem

(31):

Lemma 12 Let f∗ be the optimal objective value of the eigenvalue optimization problem (31).

Let y0 ∈ F0 be feasible. Then |f∗| ≤ δ, where

δ = max

{
|f(y0)|, 1

ns
(|trC|+ ‖AI − nsb‖)

}
.

Proof. First observe the lower bound f∗ ≥ f(y0) for any feasible y0 ∈ F0. On the other hand

the objective function of the primal problem (29) provides an upper bound on f∗. We use a

restricted version of (29). First consider a relaxation of (31) where all constraints are removed

except for the ball constraint. That is

max bT y + z

s.t.

AT y + zI ¹ C

(A0)T y ¹K e.
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The primal problem (29) is, therefore, restricted to

min C •X + eT xq

s.t.

AX + A0xq = b

I •X = 1

X º 0, xq ºKm+1 0,

(32)

where xq = (ξq; x̄q), with x̄q ∈IRm.

Clearly the objective function of problem (32) at a feasible point provides an upper bound for

Problem (31). To obtain a feasible point of Problem (32), let X0 = 1
ns

I Â 0. From the definition

of A0, x̄0
q = 1

ns
AI− b satisfies the linear constraint AX0 +A0x0

q = b, and any ξ0
q ≥ ‖x̄0

q‖ satisfies

x0
q ºK 0. Therefore

f(y0) ≤ f∗ ≤ trC
ns

+ ‖ 1
ns
AI − b‖.

The lemma now follows from the above inequality.

Now let

D0 = {(y; z) ∈ IRm+1 : y ∈ F0, |bT y + z| ≤ δ},

be our initial localization set. That is D0 contains the feasible region of Problem (31) and the

optimal objective value f∗, and of course, is bounded and convex.

Let (y0; z0) ∈ D0 be an initial query point. If f is differentiable at y0, then p̂ = 1 and the matrix

Q reduces to a column vector q, and the set D0 can be replaced by

D := {(y; z) ∈ D0 : b̂T y + z ≤ d̂, bT y + z ≥ max(−δ, f(y0))},

where b̂ ∈IRm, with b̂i = qT Aiq, for i = 1, ..., m, and d = qT Cq. Otherwise, if f is not

differentiable at y0, then p̂ > 1, and the set D0 can be replaced by

D := {(y; z) ∈ D0 : B̂T y + zI ¹ D̂, bT y + z ≥ max(−δ, f(y0))},

where B̂T y+zI ¹ D̂ is a p̂-dimensional semidefinite inequality that contains the optimal solution

of Problem (31) and B̂T y =
∑m

i=1 yiB̂i, B̂i = QT AiQ, for i = 1, ...,m.

We relax this p̂-dimensional semidefinite inequality by second-order cone inequalities. First
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observe that if A ∈ M2
+, then positive semidefiniteness of A can be represented as a second-

order cone inequality [14]. That is



α γ

γ β


 º 0, if and only if α + β ≥

∥∥∥∥∥∥∥




α− β

2γ




∥∥∥∥∥∥∥
,

and the norm inequality is equivalent to a second-order cone inequality:



α + β

α− β

2γ



∈ S3. (33)

On the other hand, we know that every 2×2 principle submatrix of a positive semidefinite matrix

must be positive semidefinite. Therefore A ∈Mn
+ can be relaxed into n(n−1)

2 second-order cone

inequalities.

Now consider the semidefinite inequality
∑m

k=1 ykB̂
k + zI ¹ D̂, where B̂k, D̂ ∈ Mp̂. Consider

the 2× 2 principle submatrix in locations i and j, for i < j. One has



D̂ii D̂ij

D̂ij D̂jj


−

m∑

k=1

yk




B̂k
ii B̂k

ij

B̂k
ij B̂k

jj


− z




1 0

0 1


 º 0

or 


D̂ii −
∑

ykB̂
k
ii − z D̂ij −

∑
ykB̂

k
ij

D̂ij −
∑

ykB̂
k
ij D̂jj −

∑
ykB̂

k
jj − z


 º 0.

In view of (33), the above inequality is equivalent to



D̂ii + D̂jj −
∑

yk(B̂k
ii + B̂k

jj)− 2z

D̂ii − D̂jj −
∑

yk(B̂k
ii − B̂k

jj)

2D̂ij − 2
∑

ykB̂
k
ij



∈ S3. (34)

Now let dij = (D̂ii + D̂jj ; D̂ii− D̂jj ; 2D̂ij) and Bij ∈IRm×3 be a matrix whose kth row is defined

via (B̂k
ii + B̂k

jj , B̂
k
ii − B̂k

jj , 2B̂k
ij). Then (34) reads

dij − (Bij)T y − 2ez ∈ S3,

for all i < j. Therefore the semidefinite inequality B̂T y + zI ¹ D̂ can be relaxed into p̂(p̂−1)
2

second-order cone inequalities, and the set of localization be enlarged via

D = {(y, z) ∈ D0 : BT y + 2ze ¹K d, and bT y + z ≥ min(−δ, f(y0))}
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where B = (B1 B2 ... Bp), d = (d1; d2; ...; dp), and K = K3×K3× ...×K3 composed of p blocks,

where p = p̂(p̂−1)
2 and Bk’s and dk’s are as defined above.

Notice that one can generate far more SOCCs from a single SDC than just those coming from

pairs of eigenvectors from a particular eigenbasis. This can be done by multiplying an appro-

priate p̂ × 2 matrix U by the semidefinite cut to give UT (D − BT y − zI)U and requiring this

2 × 2 matrix to be positive semidefinite. Different U ’s would give different combinations of

eigenvectors. Unfortunately, it is not clear which are the useful U ’s. The procedure described

above can be regarded as putting one 1 in each column of U.

We implement Algorithm 1 with the set of localization D. Depending on which one of the above

cases occurs, a single linear cut or a set of multiple second-order cone cuts will be added to D
and the lower bound is updated. Therefore at the kth iteration the set of localization has the

following structure:

Dk = {(y; z) ∈ IRm+1 : (Âk)T y + 2ze ¹K ĉk, (Âk)T y + 1z ≤ ĉk, bT y + z ≥ θk},

where Âk contains nk
q = 2 +

∑k
i=1 pi blocks of SOCCs, Âk ∈IRm×nk

l contains nk
l linear cuts, and

θk = max(θk−1, f(yk−1)), is the best lower bound.

The set Dk is a compact convex set that is described by linear and second-order cone inequalities.

The lower bound cut bT y + z ≥ θk is a linear cut and could be incorporated into the linear

inequalities. However, since in our algorithm we implement a weighted analytic center with the

weight on the lower bound cut, we prefer to study this cut separately. In the presence of many

subgradient cuts, the use of the weighted analytic center helps to centralize the analytic center.

6 Computational experience

In this section we illustrate some preliminary computational results of Algorithm 1 when imple-

mented on pair of (29) and (30). The data for the test problems are randomly generated from

normal distributions with different means and standard deviations. We first derive a stopping

criterion to terminate the algorithm.
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6.1 Stopping criterion

To terminate the algorithm we compute the gap between the lower and upper bounds on the

optimal objective value at each iteration. Recall that the lower bound θk is regularly updated

at each iteration after adding cuts. We now describe a procedure to update the upper bound.

Given the definition of Dk, at the kth iteration of the algorithm the following relaxation of the

dual problem (30) is formed:

max bT y + z

s.t.

(Âk)T y + 2ez ¹K ĉk

(Âk)T y + 1z ≤ ĉk

−bT y − z ≤ −θk.

An upper bound for this problem is obtained by evaluating the objective function of the restricted

primal problem at a feasible point. The restricted primal problem corresponding to the relaxed

dual reads
min (ĉk)Tx + (ĉk)T x− θkξ

s.t.

Âkx + Âx− bξ = b

2ex + 1x− ξ = 1

x ºK 0, x ≥ 0, ξ ≥ 0.

(35)

On the other hand from Section 3, Equation (4), one can imply that xk ÂK 0, xk > 0, ξk > 0 at

the kth iteration of SOCCSM satisfies:

Âkxk + Âkxk − bξk = 0

2exk + 1xk − ξk = 0.

Therefore (xk/ξk, xk/ξk, 0) is feasible for the restricted primal problem (35), and therefore

δk :=
1
ξk

(
(ĉk)Txk + (ĉk)T xk

)

is an upper bound on the optimal objective value f∗.
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In our computational results we measure the gap between the upper and lower bounds

δk − θk

1 + δk

at each iteration. The algorithm stops when this gap falls below an ε.

6.2 Random problems

We now present some numerical results4 of implementing SOCCSM on problems (29) and (30)

with fully dense matrices. We compare our results with that of SDPLR, SDPT3, and SeDuMi.

In this section we initialize the problem with the quadratic constraints ‖y‖ ≤ 1 and |z| ≤ δ

to ensure the compactness of the feasible region, and c ≥ 0 in linear constraints AT y ≤ c

to guarantee a nonempty feasible region. To illustrate the performance of our algorithm, we

use the Matlab function “RANDN” to generate random data with full density from a normal

distribution. In Section 6.3 we implement the algorithm on sparse problems with unbounded

feasible region.

Tables 1 and 2 illustrate computational results and cpu times for problems with different ns,

m, and nl, the dimension of the original semidefinite block, the number of constraints in (29),

and the size of the original linear block respectively, that are presented in the first column. The

columns under lc and socc show the number of linear cuts and second-order cone blocks added

before the stopping criterion is satisfied. A second-order cone block contains multiple SOCCs

obtained from relaxing a semidefinite cut. The maximum number of cuts in an SOCC block is

indicated by p. The dimension of cut is indicated by “dim”, which represents the total number

of SOCC’s and LC’s added. The column under “gap” shows the relative error between the upper

and lower bounds. Finally, the last four columns compare the cpu time of SOCCSM, SDPLR,

SDPT3, and SeDuMi in seconds.

Notice that we use different duality gaps depending on the size of the problem. The cpu time

of all software have been calculated according to the corresponding gap. While this serves our

purpose in comparing cpu times, it saves us time in running the test problems. We also impose

a time limit of 10,000 seconds on all codes. Therefore a cpu time of 9999 indicates that the
4The results are obtained on a laptop computer with Intel(R) Pentium(R) M processor 2.00GHz and 2.00 GB

of RAM.
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software exceeds this time limit.

Table 1: Computational results on random problems
(ns, m, nl) lc socc p dim gap SOCCSM SDPLR SDPT3 SeDuMi

300,50,100 14 46 3 109 9.2e-4 16 29 69 352

300,50,300 5 24 2 53 8.6e-4 8 35 105 450

300,100,300 9 46 4 178 9.2e-4 59 71 110 620

300,100,600 4 31 4 121 7.8e-4 56 78 225 843

300,200,800 6 49 7 295 8.5e-4 246 127 438 1261

300,200,1100 4 44 4 169 8.6e-4 191 146 503 1834

300,300,800 11 79 8 518 9.2e-4 739 – 656 –

300,300,1000 5 62 7 335 9.2e-4 561 – 747 –

500,50,200 4 33 4 128 7.6e-4 77 144 247 1245

500,50,600 1 21 2 43 9.1e-4 21 155 468 1623

500,100,500 3 42 4 158 8.4e-4 169 265 1031 2084

500,100,1000 9 21 3 69 7.3e-4 67 358 1227 2504

500,200,500 11 81 5 384 9.1e-4 643 – 1555 –

500,200,2000 9 30 3 94 8.6e-4 398 – 1791 –

500,300,500 18 78 8 434 4.9e-3 895 – 2013 –

500,300,1000 1 44 7 221 4.7e-3 646 – 2558 –

800,10,400 0 9 2 18 4.8e-4 11 128 409 2281

800,10,800 8 1 2 10 4.2e-4 7 159 553 2798

800,50,500 1 22 3 58 9.1e-4 77 433 1453 3449

800,50,1000 18 1 2 20 7.3e-4 42 693 1624 3922

800,100,800 2 32 4 114 9.4e-4 313 – 2811 –

800,100,1200 2 27 3 73 9.5e-4 199 – 3587 –

800,200,1000 1 28 4 107 3.4e-3 467 – 5814 –

800,200,1500 1 24 5 98 4.5e-3 424 – 6332 –

The numerical results presented in these two tables show that SOCCSM can efficiently handle

large and dense problems. Comparing the cpu times show that it performs significantly better

than SDPLR, SDPT3, and SeDuMi when applied to dense problems with large ns and small to

moderate m. In almost all of the test problems presented here, SOCCSM reaches the desired

accuracy much faster than the other three software packages5.
5It should be mentioned that SDPLR has been designed for Low-Rank problems and SDPT3 has been designed

for large and sparse problems and they both performs extremely well when applied to appropriate problems.
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Unfortunately we could not test all of our problems with SDPLR and SeDuMi due to the input

structure of these two software packages. Both SDPLR and SeDuMi store problem data in

one (sparse) coefficient matrix. Obviously when the problem is dense this matrix exceeds the

memory capacity. SDPT3’s input structure is slightly better as it uses cells to store data. We

indicate these failures by dashes.

There are situations where SDPLR and SDPT3 outperform SOCCSM even on dense problems

(e.g., ns = 300 and m = 200 for SDPLR and ns = 300, m = 300, and nl = 800 for SDPT3).

This, more or less, happens whenever m is relatively large. The reason is that m directly defines

the dimension of the set of localization. Obviously the larger the set of localization, the more

cuts are required to satisfy the desired accuracy, and therefore the slower the convergence. This

is a weakness of ACCPM and our algorithm is no exception.

Table 2: Computational results on random problems
(ns, m, nl) lc socc p dim gap SOCCSM SDPLR SDPT3 SeDuMi

1000,10,500 2 7 2 16 7.6e-4 14 227 986 3995

1000,10,2000 8 1 2 10 5.5e-4 18 241 1798 5012

1000,50,400 11 17 2 45 8.4e-4 110 – 2097 –

1000,50,900 1 19 2 39 8.8e-4 69 – 2553 –

1000,100,500 3 46 3 137 3.9e-3 223 – – –

1000,100,1000 0 20 3 49 4.3e-3 134 – – –

2000,10,100 1 12 2 25 7.3e-4 112 – 4929 –

2000,10,500 1 8 2 17 7.1e-4 65 – 5996 –

2000,10,1000 0 7 2 14 4.8e-4 59 – 6617 –

2000,20,100 1 13 3 34 2.6e-3 177 – 8136 –

2000,20,500 0 8 2 16 3.2e-3 83 – 8664 –

2000,20,800 1 7 2 15 3.7e-3 70 – 9050 –

2500,10,100 2 6 2 14 4.5e-3 104 – 9999 –

2500,10,700 4 1 2 6 3.9e-3 32 – 9999 –

2500,20,50 4 18 3 41 4.3e-3 368 – 9999 –

2500,20,500 6 2 2 10 4.8e-3 87 – 9999 –

3000,10,100 1 9 2 19 4.3e-3 177 – – –

3000,10,500 0 6 2 12 3.2e-3 106 – – –

An interesting observation is that, while the cpu time of SDPLR, SDPT3, and SeDuMi consis-

tently increases as the problem dimension and the number of constraints rise, SOCCSM shows a
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Figure 1: Convergence of a random problem with ns = 300, m = 300, and nl = 800

better performance when dealing with problems with more constraints. This is indeed an inherit

advantage of SOCCSM. For instance, a random problem with ns = 800 and m = 10 is solved in

11 seconds when nl = 400, and in 7 seconds when we add additional 400 linear constraints. The

cpu time of SDPLR, SDPT3, and SeDuMi for the above two classes of problems increases from

128 to 159, 409 to 553, and 2281 to 2798 seconds respectively.

This observation was actually expected before running the test problems. The reason again goes

back to the structure of the set of localization. A problem with more constraints usually gives

rise to a smaller set of localization. In fact, the more constraints, the smaller the original set

of localization, and therefore SOCCSM does not need to add too many cuts or surfaces before

the desired accuracy is reached. For instance dim for a problem with ns = 2000, m = 10, and

nl =100, 500, and 1000 is 112 (12 blocks of SOCCs and 1 LC), 65 (8 blocks of SOCCs and 1

LC), and 59 (7 blocks of SOCCs and 0 LC) respectively.

The computational results reported in this paper also outperform those of the matrix generation

approach reported in Oskoorouchi and Goffin [24]. This shows that working with weaker but

less expensive cuts (second-order cone) has computational advantages over strong but expensive

cuts (semidefinite).

Figure 1 illustrates the convergence behavior of SOCCSM. It shows how the upper and lower

bounds approach the optimal solution for a problem with ns = 300, m = 300 and nl = 800.

As it appears in this figure the algorithm requires approximately 90 iterations before the gap

between the upper and lower bounds falls within the desired accuracy. Table 1 shows that the
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90 iterations are composed of 79 blocks of SOCCs and 11 linear cuts. A careful look at Figure 1

reveals an interesting observation. An approximate solution is reached around iteration 40 when

the lower bound approaches the optimal point. This is a very typical behavior of ACCPM. The

reason is that the upper bound is updated on a restricted version of the original problem (see

Problem (35) in Section 6.1) and therefore it is not the tightest possible bound. While there

is no other way to achieve a better bound, there might be a more appropriate way to define a

stopping criterion. For example one can use the gap between the lower bound and the z value of

the weighted analytic center (the (m+1)th component). Since the lower bound cut is associated

with a weight equal to the total number of cuts, the analytic center does not approach this cut

unless the localization set is reasonably small.

6.3 Maxcut and Lovasz Theta problems

Although SOCCSM is specifically designed for mixed linear-quadratic-semidefinite programming

problems with bounded feasible region, however it can be modified to handle unbounded prob-

lems as well. The latter class of problems arises in many combinatorial applications such as the

maxcut and Lovasz theta problems. We refer the reader to Helmberg [11] and references therein

for details on semidefinite relaxations in combinatorial optimization.

First consider the semidefinite relaxation of the maxcut problem:

min −1
4L •X

s.t.

diag(X) = 1

X º 0

(36)

where L is the Laplacian matrix of the graph. Notice that diag(X) = 1 implies that I •X = ns.

Therefore this problem is a special case of Problem (29) where C = −1
4L, Ai = 1i1T

i ∈ Mns ,

for i = 1, . . . , m, b = 1, and A, c, A, and c are all zeros.

Problem (36) is in fact the unconstrained and unbounded version of the eigenvalue optimization

problem (31). That is

max
y∈IRn

nsλmin(C + Diag(y)) + 1T y. (37)
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Table 3: Performance of SOCCSM on the max-cut and Lovasz theta problems
name ns m LC SOCC dim f cpu

mcp100 100 100 91 22 172 -2.269e+02 12

mcp124-1 124 124 126 35 243 -1.423e+02 27

mcp124-2 124 124 106 28 205 -2.707e+02 23

mcp124-3 124 124 79 25 160 -4.693e+02 16

mcp124-4 124 124 31 20 96 -8.673e+02 13

mcp250-1 250 250 228 59 428 -3.184e+02 217

mcp250-2 250 250 148 53 321 -5.337e+02 142

mcp250-3 250 250 42 45 205 -9.844e+02 92

mcp250-4 250 250 18 41 164 -1.688e+03 55

mcp500-1 500 500 425 98 800 -6.001e+02 1046

mcp500-2 500 500 296 84 623 -1.073e+03 1120

mcp500-3 500 500 65 60 303 -1.852e+03 426

mcp500-4 500 500 48 42 226 -3.579e+03 225

toruspm3-8-50 512 512 736 10 779 -5.289e+02 2419

maxG11 800 800 522 305 1613 -6.310e+02 12653

theta1 50 103 204 1 206 -2.303e+01 22

theta2 100 497 1056 31 1179 -3.300e+01 2516

theta3 150 1105 1699 79 1949 -4.241e+01 5642

The Lovasz theta problem is the following semidefinite programming relaxation of the indepen-

dent set problem:

min −1 1T •X

s.t.

Eij •X = 0, for {i, j} ∈ E

I •X = 1

X º 0

(38)

where E is the edge set and Eij is a matrix with one in ij-th and ji-th positions and zero

elsewhere. The equivalent eigenvalue optimization of the dual semidefinite program to the

Lovasz theta problem reads

maxλmin(−1 1T +
∑

ij∈E

Eijyij). (39)

Both Problems (37) and (39) are unconstrained versions of Problem (31). A minor modification
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in Algorithm 1 is required to handle these problems.

Since the set of localization must be bounded, we start from an artificial ball constraint ‖y‖ ≤ β,

where β > 0 is arbitrarily selected. Of course, the smaller the set of localization, the faster the

convergence. Therefore we initialize from β = 1. When an iteration gets close to this boundary

we increase the radius of the ball constraint by a factor of, say 1.5. While this approach gives

flexibility to the algorithm to further minimize the objective function and solve the unbounded

problem, it controls the size of the localization set.

An alternative approach is to impose the box constraint l ≤ y ≤ u, where l and u are arbitrary

m-vectors (l < u). At each iteration, if yi gets close to its upper or lower bounds, the artificial

bound is multiplied by 1.5 and moved away. There are advantages and disadvantages with each

of the above choices. The 2-norm constraint can be cast as a single second-order cone constraint

and easily incorporated into our algorithm. Clearly this has an advantage over the 2m linear box

constraints, especially when m is large. However, updating the ball constraint when the current

query point approaches its boundary will enlarge the entire localization set. Consequently more

cuts are needed to solve the problem, and it may result in slower overall convergence.

Table 3 illustrates our computational results on some challenging examples of the maxcut and

Lovasz theta problems selected from SDPLIB [4]. In this table the column under “f” illustrates

the value of the best lower bound obtained by the algorithm.

The test problems selected from SDPLIB are amongst problems that are known to be difficult

to solve. Comparing dim and the cpu time of each class of problem set, Table 3 further confirms

that SOCCSM works better on dense problems than it does on sparse ones. This is because the

sparse problems start with a rather large set of localization, and therefore too many cuts are

required before the desired accuracy is reached.

We report these results to show the performance of our algorithm on sparse problems, although

SOCCSM performs poorly on most of these problems.

We do not compare our cpu time in Table 3 with that of other software. This is because

SDPLR and SDPT3 have proven to work efficiently with the sparse problems. Since all of the

test problems in this table are somewhat sparse, these software packages have an advantage in

this area and of course work better. However, the results are somewhat comparable to, and

sometimes better than, those reported in Sivaramakrishnan et al. [27].

32



7 Conclusions

We presented an analytic center cutting surface method that uses mixed linear and multiple

second-order cone cuts. We discussed both theory and application of this technique. We proved

that the analytic center can be recovered after adding p second-order cone cuts in O(p log(p+1))

Newton steps and that the overall algorithm is fully polynomial. This result is an extension of

the complexity results of ACCPM. In particular it extends the complexity result of Oskoorouchi

and Goffin [23] from single to multiple SOCCs.

We implemented Algorithm 1 on mixed linear-quadratic-semidefinite programming problems

with bounded feasible region. We discovered that SOCCSM can efficiently handle randomly

generated problems with large and dense coefficient matrices. The numerical results presented

in this paper revealed three interesting observations: 1) a comparison of the CPU time between

our algorithm and SDPLR, SDPT3, and SeDuMi shows that SOCCSM outperforms primal-dual

interior point methods on dense problems; 2) SOCCSM performs better on problems with con-

straints, in fact the more constraints, the faster the convergence; and 3) comparing the numerical

results of this paper and that of Oskoorouchi and Goffin [24], illustrates the computational ben-

efits of utilizing the second-order cone relaxation on semidefinite cuts.
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