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Scope and Purpose – The purpose of this paper is to present a variant of the ellipsoid algorithm that
can be used with equalities. This is a significant improvement over the classical algorithm, which yields
accurate solutions to convex and many nonconvex nonlinear programming problems but requires the
feasible set to be of full dimension and therefore cannot be used with equality constraints.

Abstract – This paper describes an ellipsoid algorithm that solves convex problems having linear equal-
ity constraints with or without inequality constraints. Experimental results show that the new method
is also effective for some problems that have nonlinear equality constraints or are otherwise nonconvex.
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1 The Ellipsoid Algorithm for Inequality Constraints

The classical ellipsoid algorithm [3] [11] [13] [8] solves nonlinear programming problems of the form

INLP : min
x∈<n

f0(x)

subject to fi(x) ≤ 0, i = 1. . .mI

where fi : <n → < for i = 0 . . .mI are convex real-valued functions. Starting with bounds U and L con-
taining the optimal point x∗ for INLP the ellipsoid algorithm generates a sequence of ellipsoids Ek, each
guaranteed to contain x∗, with the property that their volumes shrink to zero as the terms of a geometric
progression. The starting ellipsoid E0 = {x ∈ <n

∣∣ (x − x0)T Q−1
0 (x − x0) ≤ 1} is the smallest ellipsoid

containing U and L, with x0 the midpoint of the bounds and Q0 positive definite and symmetric.

Ek

Hk

fI(x) = fI(xk)

d

Ek+1

xk•

At each iteration, the algorithm finds the normalized
gradient g of the objective function f0(x) if xk is feasi-
ble or of a violated constraint fI(x) if xk is infeasible,
to calculate a direction

d = − Qkg√
gTQkg

. (1)

Using this d we find the next ellipsoid using the up-
dates

xk+1 = xk +
1

n + 1
d (2)

Qk+1 =
n2

n2 − 1

(
Qk − 2

n + 1
ddT

)
. (3)
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An iteration can be visualized geometrically as shown. A hyperplane Hk is constructed supporting the
contour fI(x) = fI(xk) and dividing the ellipsoid Ek in half. The next ellipsoid Ek+1 is the smallest
ellipsoid enclosing the half of Ek that contains x∗. In this construction, the direction vector d can be found
by translating Hk parallel to itself until it is tangent to Ek at xk +d. Analytically this amounts to minimizing
gTx over Ek, or solving

min
d∈<n

gTd

subject to dT Q−1
k d ≤ 1.

For this problem the Karush-Kuhn-Tucker conditions yield the formula (1) given above for d. The volumes
V [Ek] of the ellipsoids decrease according to V [Ek+1] = cnV [Ek] or V [Ek] = (cn)kV [E0], where [4]

cn =
n

n + 1

(
n2

n2 − 1

)(n−1)/2

< 1. (4)

This volume reduction ratio depends only upon the dimension n of the space.

The convexity of the fi(x) ensures that each ellipsoid Ek will contain x∗ and cn < 1 ensures that
the volumes V [Ek] decrease. For the algorithm to converge it is also necessary [9] [5] for the feasible set
S = {x ∈ <n

∣∣fi(x) ≤ 0, i = 1 . . .mI} to have dimension n. This prevents the algorithm from being used
to solve equality-constrained problems.

2 The New Algorithm

We want to use the ellipsoid algorithm for problems of the form

NLP : min
x∈<n

f0(x)

subject to fi(x) ≤ 0, i = 1. . .mI

Ax = b

where the fi(x) are convex as before and A has full rank mE < n. To solve these problems we constrain d
to lie in the flat F = {x ∈ <n

∣∣Ax = b} by requiring A(xk + d) = b or Ad = b − Axk = 0. Then d solves

min
d∈<n

gT d

subject to dT Q−1
k d ≤ 1

Ad = 0.

Using the Karush-Kuhn-Tucker conditions we get the direction d that minimizes gTd over the ellipsoid Ek

and is in the flat F ,

d = − (Qk − QkAT (AQkAT )−1AQk)g√
gT (Qk − QkAT (AQkAT )−1AQk)g

.

If x0 ∈ F , we can use this d in the updates (2-3) given earlier to generate a different sequence of ellipsoids
Ek, each containing x∗ and having centers xk in the flat F .

To control round-off errors, and to allow starting points x0 that are not feasible for the equality con-
straints, we project each xk onto the flat F . When the equality constraints are nonlinear, we linearize them
at each iteration and project xk onto that flat. It is because the linearization can be different at each itera-
tion for a nonlinear problem that we use the method outlined above rather than simply using the equalities
to eliminate variables and solving the reduced problem. Confining d to the flat F can result in the ellipsoid
Ek becoming highly aspheric more quickly than in the classical algorithm, leading to imprecise numerical
results. To refine the estimate of x∗, we sometimes restart the algorithm with a new smaller E0 centered on
the best iterate xk found so far.

2



3 The Volume Reduction Ratio

For the classical ellipsoid algorithm the ratio of volumes of successive ellipsoids is cn given above (4), and
cn < 1 so the volumes V (Ek) decrease monotonically to zero. The ellipsoid Ẽk = Ek ∩ F is the intersection
of the ellipsoid Ek = {x ∈ <n

∣∣(x − xk)T Q−1
k (x − xk) ≤ 1} with the flat F = {x ∈ <n

∣∣Ax = b}. The
volumes V (Ẽk) of the ellipsoids of intersection need to decrease monotonically to zero for the new algorithm
to converge. To show that this happens, we let the columns of B denote a basis for the null space of A, so
B is n× (n −mE). Then any solution x to Ax = b satisfies x = AT (AAT )−1b + By for some y ∈ <n−mE

[12]. The ellipsoid Êk with center yk in y−space can be obtained by substituting for x and xk in the above
formula for Ek and simplifying, so x ∈ Ek ∩ F if and only if

((AT (AAT )−1b + By)− (AT (AAT )−1b + Byk))T Q−1
k

((AT (AAT )−1b + By)− (AT (AAT )−1b + Byk)) ≤ 1
⇐⇒ (By − Byk)T Q−1

k (By − Byk) ≤ 1

⇐⇒ (y − yk)T BT Q−1
k B(y − yk) ≤ 1.

Thus, Êk = {y ∈ <n−mE
∣∣(y−yk)T BT Q−1

k B(y−yk) ≤ 1} is the ellipsoid in F described by the intersection
of Ek with F and Ẽk = {x ∈ <n

∣∣x = AT (AAT )−1b + By, y ∈ Êk}. Now recall that the volume of an
ellipsoid E = {x ∈ <n

∣∣(x−c)T W T W (x−c) ≤ 1} is V ol(E) = det(W−1)×V ol(S(0, 1)) where S(0, 1) is the
unit ball in n dimensions (centered at the origin) [4]. An ellipsoid is the image of the unit ball S(0, 1) under
some affine transformation, so we can assume that Ek is itself a unit ball centered at the origin (then Qk

is the n × n identity). The flat F of equalities passes through the center of the ellipsoid, so if Ek = S(0, 1)
then F goes through the origin and Ax = 0. If F goes through the origin, another affine transformation
could be used to rotate it into the position of a coordinate hyperplane, so without loss of generality we can
assume that d = [1, 0, . . .0]T . These assumptions correspond to letting

B =
[

I
Z

]

where I is the (n−mE)× (n−mE) identity and Z is an mE × (n−mE) zero matrix. Then BT Q−1
k B = I

and V ol(Ẽk) = V ol(S̃(0, 1)). Applying the update formula (3),

Qk+1 =
n2

n2 − 1
(Qk − 2

n + 1
ddT )

=




n2

(n+1)2
0 . . . 0

0 n2

n2−1
. . . 0

0
. . . 0

0 0 . . . n2

n2−1


 .

Then

BT Q−1
k+1B =




(n+1)2

n2 0 . . . 0
0 n2−1

n2 . . . 0

0
. . . 0

0 0 . . . n2−1
n2


 ,

where BT Q−1
k B is an (n − mE) × (n − mE) matrix. Thus the ratio of the volumes of successive ellipsoids

of intersection is

V ol(Ẽk+1)
V ol(Ẽk)

= det(W−1) =
n

n + 1

(
n2

n2 − 1

)(n−mE−1)/2

.
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For problems where rank(A) = mE = n − 1, the above ratio is
n

n + 1
which is strictly less than 1. For

problems where rank(A) = 1, the above ratio takes on its largest value,

n

n + 1

(
n2

n2 − 1

)(n−2)/2

< 1.

Thus the ratio of successive volumes, which depends on rank of A and the dimension of the problem, is
strictly less than 1 for all n ≥ 2 ( we only consider problems with equality constraints for n ≥ 2). Hence
the volumes of the ellipsoids of intersection decrease monotonically to zero as k increases and this algorithm
converges in polynomial time like the classical ellipsoid algorithm but faster.

4 Preliminary Computational Experience

We implemented the algorithm using double precision arithmetic and tested it on the test problems listed
below. We used a feasibility tolerance of 10−6 for the equality constraints, and started from published starting
points for all problems except HS109 (whose published starting point yields a matrix A that does not have
full row rank). The following table contains a summary of the results obtained by the new algorithm.

Problem N MI ME
INLP

Largest = Error Our f0(x
∗) Source f0(x∗)

CPU sec to

convex? ≥ 6 digits

HS6 [7] 2 0 (1) Yes -1.11022302D-15 0.00000000D+00 0.00000000D+00 0.01

HS7 [7] 2 0 (1) No 5.49743101D-07 -1.73205085D+00 -1.73205081D+00 0.01

HS8 [7] 2 0 (2) Yes -3.55271368D-15 -1.00000000D+00 -1.00000000D+00 0.03

HS26 [7] 3 0 (1) Yes 0.00000000D+00 0.00000000D+00 0.00000000D+00 0.04

HS28 [7] 3 0 1 Yes 2.22044605D-16 0.00000000D+00 0.00000000D+00 0.01

HS39 [7] 4 0 (2) Yes -3.78440229D-24 -1.00000000D+00 -1.00000000D+00 0.05

HS40 [7] 4 0 (3) No 8.84675277D-08 -2.50000013D-01 -2.50000000D-01 0.02

HS46 [7] 5 0 (2) Yes 0.00000000D+00 0.00000000D+00 0.00000000D+00 0.08

HS48 [7] 5 0 2 Yes 0.00000000D+00 0.00000000D+00 0.00000000D+00 0.10

HS49 [7] 5 0 2 Yes 0.00000000D+00 0.00000000D+00 0.00000000D+00 0.08

HS50 [7] 5 0 3 Yes 0.00000000D+00 0.00000000D+00 0.00000000D+00 0.09

HS51 [7] 5 0 3 Yes 0.00000000D+00 0.00000000D+00 0.00000000D+00 0.10

HS52 [7] 5 0 3 Yes 0.00000000D+00 5.32664756D+00 5.32664756D+00 0.06

HS107 [7] 9 8 (6) No 6.59650744D-16 5.05501145D+03 5.05501074D+03 0.95

HS109 [7] 9 20 (6) No 2.08545138D-11 5.32685133D+03 5.36206769D+03 0.93 ✯
HS119 [7] 16 32 8 Yes -8.88178420D-16 1.31363614D+02 1.32850557D+02 206.05 ✯
LINEAR [10] 2 0 1 Yes 0.00000000D+00 7.50000000D-01 7.50000000D-01 0.01

BS400 [1] 2 0 1 Yes 0.00000000D+00 3.35528345D+01 3.35528345D+01 0.02

BS401 [1] 3 0 (2) Yes -8.24308712D-07 -6.82207508D+00 -6.82207465D+00 0.01

BS403 [1] 2 1 (1) No 5.45599933D-07 -6.71459233D-01 -6.71459186D-01 0.02

BS403C [1] 2 1 (1) No -4.44089210D-16 7.22128130D-01 7.22128130D-01 0.04

BS467 [1] 4 4 2 Yes 8.88178420D-16 -7.16129032D+00 -7.16129032D+00 0.17

BS475 [1] 3 4 1 Yes 0.00000000D+00 -2.40000000D+01 -2.40000000D+01 0.01

BS475A [1] 2 1 1 Yes 0.00000000D+00 1.00000000D+00 1.00000000D+00 0.01

BS476 [1] 3 1 (1) No 3.23176964D-07 -2.01416790D+01 -2.01416753D+01 0.01

BS486 [1] 2 2 (1) Yes 0.00000000D+00 1.20000000D+01 1.20000000D+01 0.02

JM [10] 3 1 1 Yes 0.00000000D+00 -1.50000000D+00 -1.50000000D+00 0.01

HIM4 [6] 10 10 3 No 0.00000000D+00 -4.77610909D+01 -4.77699981D+01 0.96 ✯
HIM4A [6] 10 0 (3) No 6.81422498D-07 -4.77610950D+01 -4.77699981D+01 1.29 ✯
HIM5 [6] 3 3 (2) No 2.87427202D-07 9.61715172D+02 9.61715172D+02 0.01

HIM15 [6] 6 12 (4) Yes 3.27834981D-13 8.82759774D+03 8.82758000D+03 0.15 ✯
HIM20 [6] 24 30 (14) No -2.22044605D-16 5.17277178D-02 5.70109712D-02 504.63 ✯
BRM4 [2] 10 20 (7) No -9.51536104D-13 -1.16133689D+03 -1.76798529D+03 1.22 ✯

The first column of the table gives the name of the problem and a reference where it can be found; for the
starting points we used, see [10]. The second column lists the number of variables N, the number of inequality
constraints MI and the number of equality constraints ME. Parentheses around the value of ME indicate that
some or all of the equalities are nonlinear. The third column tells whether the problem without the equality
constraints, earlier called INLP, is convex. The fourth and fifth columns give the largest equality constraint
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function value and the objective value at the best point found using the new algorithm. The sixth column
gives the true minimum value if that is known exactly, or else (in slanting type) the objective value calculated
at the optimal point reported in the source from which we took the problem. To find the results given for the
new algorithm we ran each problem until the calculations could go no further (typically because d became
the zero vector), restarted with a new smaller E0 centered on the best iterate xk found so far, ran until
the calculations could go no further, and repeated this process until the xk stopped changing. In each case
the solution we found is strictly feasible for all inequality constraints and satisfies the equality constraints
within 10−6. For some of the problems our answers are much closer to the set of equalities than the answers
published in the source. In a few cases the best point we found has an objective value lower than the known
optimal value, because of the nonzero tolerance we used for the equality constraints. In other cases, marked
with a ✯, the exact solution is unknown to us and either the objective value at the best point we found is
lower than that reported in the source or the solution given in the source violates an equality constraint by
more than 10−6.

This algorithm, like the classical ellipsoid algorithm, usually finds feasible points that are not far from
optimal early in the solution process, so in practical applications it is unnecessary to continue restarting
until the answer is as precise as those we found. To measure the CPU time reported in the table for our
experimental code, we reran each problem under the UNIXTM time command, on an IBM RS6000 model 250
workstation, for long enough to get the first 6 (or more) digits of the objective value correct. From the
measured times it is clear that some of the test problems are much more difficult than others, but that even
the most difficult of them can be solved in no more than a matter of minutes using a computer of only
modest speed.

5 Summary

The new algorithm solves convex problems with linear equality constraints, with or without inequality
constraints, starting from points that are feasible or infeasible for the equalities. In addition, it solves some
otherwise convex problems having nonlinear equality constraints, and it solved most of the problems we tried
that are nonconvex even ignoring the equalities.

For the numerical stability of the algorithm, it is necessary to re-project the center found at each iteration
onto the flat of equalities. The accuracy of this algorithm is improved by recentering.
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