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Abstract

We develop a methodology for evaluating a decision strategy generated by a stochastic optimization

model. The methodology is based on a pilot study in which we estimate the distribution of performance

associated with the strategy, and define an appropriate stratified sampling plan. An algorithm we call

filtered search allows us to implement this plan efficiently. We demonstrate the approach’s advantages

with a problem in asset / liability management for an insurance company.
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1.0 Introduction and Background

Many significant problems dictate the development of strategies for handling sequential decision-making

under uncertainty, e.g., natural resource planning [25], financial planning [3, 6], and telecommunications

network expansion planning [27]. In such situations, there exists a planning horizon that consists of T

stages. The beginning of stage 1 represents the current time. During each stage the decision-maker must

select a course of action that affects the actions he/she can take in subsequent stages. See figure 1. The

end of the planning horizon usually represents the point at which some critical action must be taken or

some critical goal achieved. The goal of multi-stage stochastic optimization (MSO) is to develop a

sequence of decisions that maximizes the extent to which this goal is achieved. Estimating the expected

performance of a decision strategy returned by the MSO process is crucial to increasing the technology’s

effectiveness. Proper evaluation allows decision-makers to compareMSO-generated strategies with other

alternatives available to them in a statistically valid manner.

In this paper, we present a variance reduction technique called stratified filtered sampling (SFS) that

greatly improves the computational efficiency of this evaluation process. Variance reduction methods

attempt to reduce the standard error of the estimate of expected performance without introducing bias into

the estimation process. The technique presented herein is based on research associated with the Ph.D.

dissertation of the second author [26].

Insert Figure 1 here

1.1 The Multi-Stage Stochastic Optimization Process

We first introduce some notation. We let Xt, for t = 1, …, T, be the set of feasible decisions available at

time t, with X = (X1, …, XT). We let xt, for t = 1, …, T, be the decision(s) actually made in period t, with

x = (x1, …, xT). Also, we let tΩ , for t = 1, …, T, be the vector of random variables representing the

uncertain components associated with period t, with ),...,( T1 ΩΩ=Ω . Ω has associated with it a
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probability functionθ . Finally, let tω be a distinct realization of tΩ , with ),...,( T1 ωωω = . We

callω a scenario. Finally, the function z(x,ω ) measures the performance associated with x under

scenarioω ; we call z theperformance function.

An asset management example will clarify this notation further. Our goal in this example is to maximize

expected wealth at the end of a 10-year planning horizon. We allow adjustments to our portfolio (buying

and selling of assets) at the end of each year. The set of possible buying and selling decisions at the end of

each year corresponds to Xt; the actual buying and selling we implement corresponds to xt. Furthermore,

tΩ corresponds to the collection of possible returns on the assets in our portfolio in year t,tω to the

returns that actually manifest themselves. Therefore z(x,ω ) represents the wealth we accumulate over

the 10-year planning horizon via a progression of distinct buying and selling decisions (x) for a given

sequence of actual asset returns (ω ).

Insert Figure 2 here

The MSO process has four principal components: representation of the decision-maker’s attitude towards

risk, optimization, stochastic forecasting, and evaluation. See Figure 2. The first component –

representation of the decision-maker’s attitude towards risk – revolves around selection of the function z.

Two popular examples are the von Neumann-Morganstern expected utility model [28] and the nonlinear

penalty-based method [7].

The optimization component recommends the best actions for each stage of the planning horizon. A

common form (CF) of the associated model is as follows:

Model CF: :maxx )d()z(x, ωθω∫Ω
(CF-obj)

:s.t. ωω t,tt, bxA = (CF-a)
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)x,(uA 1ttt, −= ωω (CF-b)

)x,(vb 1ttt, −= ωω (CF-c)

Constraints (CF-a) define the set of feasible decisions in stage t under scenarioω . (CF-b) and (CF-c)

show, through the vector-valued functions ut and vt, that (CF-a) depend on both the manifestation of

uncertainty and the decisions made in the previous period. We can readily adapt (CF) to handle the case

in which periods prior to the previous one have an impact.

Unfortunately, there usually exists no closed form expression for the integration in (CF-obj); this

effectively precludes direct solution efforts. To address this, we employ the third component of the MSO

process: a stochastic forecasting model. We generate with this model a set of scenarios to serve as a proxy

for the uncertainty spaceΩ ; these scenarios comprise thesolution generation set. Our goal is to

optimize over the solution generation set rather thanΩ . (Examples of stochastic forecasting systems for

asset / liability management include Russell’s vector autoregressive system [6], the Towers’ Perrin

CAP:Link system [20], and Wilkie’s investment model [29].)

By construction, any decision strategy developed by optimizing over a distinct solution generation set

performs well when applied to scenarios in the set. The likelihood of the uncertainty manifesting itself as

one of these scenarios, however, is exceedingly small. Consequently, proper evaluation of the strategy

(the final phase of the process) is essential. Its goal is to assess the performance of a decision strategy in

scenarios outside the relevant solution generation set, or more specifically, estimate to an acceptable

accuracy the expected performance of the generated strategy with respect to the universe of all possible

scenarios.

The approach employed to generate the solution generation set and solve the resulting optimization

problem determines to a large extent our ability to conduct this testing. We present two basic approaches.
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The first generates the scenarios as atree. See Figure 3. Each path through the tree defines a scenario,

with each arc representing a specific manifestation of uncertainty for a distinct stage of the planning

horizon. Just as a given arc appears in multiple paths, so too does the associated manifestation of

uncertainty appear in multiple scenarios.

Insert Figure 3 here

To define the relevant optimization problem (that we call the tree form), we require some additional

notation. Let TREE denote the solution generation set,ωθ the probability of scenarioω occurring, and

t,xω the decision made in scenarioω at stage t, with )(xx t,ω
ω = , for t = 1, …, T. Finally, let t)(Nω

be the set of all scenarios that are identical to scenarioω through stage t (recall the possible “overlap”

among scenarios described above). We have the following:

Model TF: :maxx { }∑ ∈TREE
),z(x

ω
ωω ωθ (TF-obj)

:s.t. ωω t,tt, bxA = (TF-a)

)x,(uA 1ttt, −= ωω (TF-b)

)x,(vb 1ttt, −= ωω (TF-c)

t,t,~ xx ωω r

= for all ωω r,~ in (t)Nω (TF-d)

(TF) differs from (CF) in its objective function and in the presence of constraints (TF-d). As mentioned

earlier, (TF)’s objective function averages performance over the members of the solution generation set

rather than integrating over the spaceΩ . Constraints (TF-d) are callednonanticipativityconstraints;

they require that all decisions made with the same information be identical.
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(TF) is a deterministic program that maximizes a concave objective function (usually) over a convex

region (always). All the advantages of convex minimization are therefore relevant. Efforts to find

effective solution methodologies have given rise to the field of multi-stage stochastic programming with

recourse. Kall and Wallace [15] and Birge [4] provide excellent introductions and guidance for further

reading.

Evaluating the solution generated by a (TF) model is difficult because it does not generate a strategy that

can address arbitrary realizations of uncertainty. Only the decision returned for the first stage can handle

any realization of uncertainty. The remaining decisions - those for stages 2 or beyond - are defined

(meaningful) only for the specific scenarios on which they are based. This causes difficulty when

applying Monte Carlo simulation to estimate the expected performance [12].

In the second approach, the scenarios in the solution generation set possess a string structure. See Figure

4. Because independent sampling from the forecasting model creates each scenario, there is no overlap

among different scenarios, as in a scenario tree. Our goal in this approach is to find the best member of a

particular family ofdecision rules. A decision rule is a function r that maps tΩ into tX ; it thereby

dictates the actions to be taken at any stage in the planning period. (Formally, we have r:tΩ → tX .) A

family of decision rules is a set of functions R = {r1, r2, …}, with each member of R representing a

distinct instance of the given family. The values assumed by a vector of parameters

),...,,( K21 αααα = dictate the member of R that operates in a particular decision-making

environment.

Insert Figure 4 here

We refer to the optimization problem associated with this approach as the string form (SF). Let r be an

arbitrary member of decision rule family R,r
t,xω the decision made in scenarioω at stage t as dictated by
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rule r, and )x(x r
t,ωω =r , for t = 1, …, T. Denoting the relevant solution generation set as STRINGS, we

get the following:

Model SF: :maxα { }∑ ∈STRINGS

r ),z(x
ω ω

ω ωθ (SF-obj)

:s.t. )r( t
r

t, ωω =x (SF-a)

)(gr α= (SF-b)

A∈α (SF-c)

Here, constraints (SF-a) describe the dependence of the actions taken on the form assumed by the decision

rule. Constraints (SF-b) describe the dependence of the actual rule to be implemented onα . Constraints

(SF-c) establish limitations on the set of possible rules. Solving model (SF) is difficult because its

objective function is often non-concave (recall it is a maximization problem).

Offsetting this disadvantage is the model’s capacity to support Monte Carlo-based evaluation. An (SF)

model returns a decision rule; this rule is by definition a strategy that can address any realization of

uncertainty throughout the planning horizon. (Recall the mapping on which the rule is based.)

Consequently, testing on scenarios outside the solution generation set is much easier than with strategies

returned by (TF) models. In effect, model (SF) purchases increased testability at the expense of the

solution difficulties caused by its non-concavity. For a more detailed examination of the relative merits of

the tree- and string-based approaches, see Rush [26].

1.2 An Overview of Stratified Filtered Sampling

We specifically developed stratified filtered sampling to address the evaluation of rules generated by

string-form MSO models. As its name implies, the methodology is an extension of the well-known

sampling technique called stratified sampling (see Cochran [9], hereafter referred to as Cochran).

Previous applications of stratified sampling to Monte Carlo simulation have relied principally on
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stratification of the n-dimensional hypercube of uniform random numbers that drive the simulation (see,

for example, Niederreiter [24]). SFS relies on direct stratification of the distribution of performance

associated with theMSO-generated strategy (hereafter called the performance distribution); it selectively

evaluates those scenarios that contribute most to the variability of performance. The estimate it generates

we call thestratified performance estimate, or SPE. We note that other techniques for variance reduction

exist: correlation induction (which includes antithetic sampling [8] and Latin hypercube sampling [18]),

control variates [16], conditional expectation [17], importance sampling [10], and the relatively new

“quasi Monte-Carlo” methods [14]. Although developed for use within an MSO context, stratified filtered

sampling, like these other techniques, applies to other simulation environments as well.

The SPE-generation process consists of two steps. In the first, we conduct a pilot study to estimate the

performance distribution, and design the stratified sampling scheme. In the second step, we employ the

filtered search algorithm to efficiently implement the proposed scheme.

The rest of this paper is organized as follows. Section 2 introduces the “classical” version of stratified

sampling, motivating the advantages of our approach. Section 3 describes the components of the SPE-

generation procedure. Section 4 shows that SPE is unbiased. Section 5 discusses the application of SFS

to asset / liability management for an insurance company, and demonstrates the computational savings

afforded by filtered search. Section 6 presents concluding remarks.
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2 Introduction to Stratified Sampling

Let P be a population with mean Pµ and standard deviation Pσ . Assume that P has been divided into J

mutually exclusive and collectively exhaustive subpopulations, or strata: P1, …, PJ. Let jλ be the

probability that a random draw from P will yield an element of stratum Pj, for j = 1, …, J. Let jσ for j =

1, …, J be the standard deviation of stratum j. A stratified sampling plan defines, for a given total sample

size NSS, the size of the random sample to be drawn from each stratum j, Nj. Let jy be the sample mean

associated with the sample drawn from stratum j. The stratified sampling based estimate ofPµ is

)y(y jj jSS ∑= λ . We have the following results for “classical” stratified sampling:

Theorem 1 (Cochran, p. 91): Assume thatjλ for j = 1, …, J is known with certainty. Then SSy is an

unbiased estimate of Pµ .

Theorem 2 (Neyman [23]): The variance ofSSy is minimized for a total sample of size SSN if













=

∑ j jj

jj
SSj )(

NN
λσ

λσ
, for j = 1, …, J.

Theorem 3 (Cochran, p. 115): Let *
jN be the optimal size of the random sample drawn from stratum j

(as defined in Theorem 2). Assume that this optimal allocation plan is not implemented, and that instead

we draw a sample of size jN from each stratum j, such that SSj j N)N( =∑ . Then the proportional

increase in the variance ofSSy resulting from these deviations from the optimal stratified sampling plan

is ∑ 








 −
j *

j

2*
jj

SS N

)NN(

N
1

.

Two critical issues are the definition of the strata boundaries and the determination of the appropriate

number of strata. Cochran provides some basic theory, as well as references for further reading. For the

present discussion, we note that the principal goal underlying both questions is the maximization of both
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intra-stratum homogeneity and inter-stratum heterogeneity (Mulvey [21]). In other words, a good

stratification identifies those regions of the population that contribute most to variability and isolates them

as strata. Sampling thus is focused on those regions for which uncertainty is greatest. Figure 5 presents a

form the performance distribution might assume. Clearly, the right tail contributes most to overall

variability. The pilot study will yield enough information about the distribution’s shape to allow us to

isolate this tail as a distinct stratum.

Insert Figure 5 here
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3 Generating the Stratified Performance Estimate

We first review and/or introduce the following notation:

• r := the decision rule being evaluated.

• u := an appropriately-sized vector of uniform (0,1) random numbers, with U the space of all such

vectors.

• ω := a scenario.

• f r := the density function of the performance distribution for rule r, with meanrµ .

• z( rxω ,ω ) := the value of the performance function associated with rule r under scenarioω .

Whenω is generated randomly,z( rxω ,ω ) is a tantamount to a random draw from fr. For the sake

of notational convenience, we abbreviatez( rxω ,ω ) as )(xz r
ω .

• G := the (continuous) function which maps U intoΩ . G is the scenario generator function.

In terms of this notation, we generate SPE via stratification of the set of performance values for which fr

is the density. The description of stratified sampling in section 2.0 reveals three problems we must

address in order to accomplish this. Problem 1 is that we usually have no knowledge of the structure of fr.

This information is vital for identifying the collections of scenarios for which performance is extreme – a

key to the effectiveness of stratified sampling. Problem 2 also is due to lack of knowledge of fr - the λ ’s

are not known with certainty. Thus, we cannot directly invoke Theorem 1 to prove that SPE is unbiased.

(Section 4 shows that SPE is in fact an unbiased estimator ofrµ ). The third problem is that we have no

ready means of separating the scenario space into a collection of regions that we can map in a well-

defined fashion into the strata on which our stratified sampling plan is based. Consequently, the

implementation of the stratified sampling plan is computationally very difficult.

We address problems 1 and 3 by employing a two-phase procedure to generate SPE. In the first phase

(phase A), we randomly sample from fr to obtain adequate knowledge of its structure. This provides the
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blueprint for the stratified sampling plan. The second phase (phase B) implements the stratified sampling

plan. We have identified two possible implementation schemes. The first, the “naïve” implementation, is

guaranteed to work, but may require great computational effort. The second is a much less

computationally intensive scheme we call “filtered search”. Figure 6 displays the SPE generation process.

Insert Figure 6 here

The “Preliminaries” – definition of the relevant strategy and selection of the acceptable standard error –

require no explanation. We provide the details of Phases A and B below.

Phase A: Devise Stratified Sampling Plan via Pilot Study

A.1: Estimate fr.

Randomly sample from fr to construct an adequate representation of its structure, to wit:

• Draw a sample of size N from U.

• Define the corresponding N scenarios:ω = G(u), for each u generated.

• Calculate )(xz r
ω for eachω generated.

A.2: Define strata for fr.

Separate fr into J mutually exclusive and collectively exhaustive regions. (Recall that it is not our primary

purpose in this paper to describe how to construct these strata. For our tests, however, 10-15 strata have

worked very well.) Let SAMPj, for j = 1, …, J be the set of random draws from fr contained in each

stratum j. Let jn = |SAMPj|, the cardinality ofSAMPj. Let jσ̂ be the sample standard deviation of

SAMPj.

A.3: Insure precision of estimates of relevant strata parameters.
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The relevant parameters here arejλ and jσ . Recall that jλ is the probability that a random draw from f

S will fall in stratum j, jσ the true standard deviation of stratum j,
N

nˆ j
j =λ the sample estimate of jλ ,

and jσ̂ the sample estimate of jσ . Theorem 3 clearly reveals the importance of estimating thejλ ’s and

jσ ’s well. To address this issue, we implement the following procedure:

• Calculate
( ){ }

j

5.

j ˆ
Nˆ1ˆ

cv
λ
λλ −= , for j = 1, …, J.

• Let =max )(cvmax jj .

• Adequate Precision Check: Is max≤ δ? (We suggestδ = .20.)

if YES: Stop. (Precision of estimates is acceptable.)

if NO: Go to CORRECT_N.

CORRECT_N

• Determine, based on the current values of thejλ̂ ’s, the number of additional draws from fr needed to

satisfy the Adequate Precision Check; call this number B.

• Draw from fr B times.

• Place each draw from fr into the appropriate stratum as defined in A.2.

• Update jλ̂ , jσ̂ , jn , and jcv for j = 1, …, J.

• Recompute max.

• Return to Adequate Precision Check.

Note that jcv is the estimated coefficient of variation forjλ̂ . The Adequate Precision Check therefore

insures that the error in estimatingjλ is small relative to the magnitude of the estimate itself.

Furthermore, the procedure indirectly improves the precision with whichjσ̂ estimates jσ by increasing

the cardinality of theSAMPj’s.
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A.4: Define size of sample required from each stratum.

Let SPEN be the size of the entire sample needed for the SPE-generation process;SPEN will be a

function of the desired standard error. Let )j(NSPE be the required size of the random sample from

stratum j. As in section 2.0, let jy be the sample mean associated with the sample from stratum j. Then

the stratified performance estimator ofrµ is

∑=
j jj yˆSPE λ . (1)

SPE is identical to ssy from section 2 except that we have replacedjλ with its estimate, jλ̂ . The

Adequate Precision Check certifies the quality with which we estimate thejλ ’s. We estimate SPE’s

standard error as:

( ){ }[ ] 5.

j SPE
22 (j)Nˆˆ∑ σλ , (2)

We compute (j)NSPE using the optimal allocation scheme laid out in Theorem 2:













=

∑ j jj

jj
SPESPE

)ˆˆ(

ˆˆ
N(j)N

σλ
σλ

. (3)

Calculating the appropriate value for SPEN is straightforward; we simply increase it until the desired

value of standard error is indicated. Once this step is complete, the stratified sampling plan is complete.

Phase B: Implement Stratified Sampling Scheme

The specification of the stratified sampling scheme in A.4 defines the size of the random

sample, (j)NSPE , needed from each stratum. Recall, however, that upon leaving A.3 we already have a

sample of size jn from each stratum j. We therefore require an additional sample of
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size 0],n-(j)[NmaxM jSPEj = from each stratum j in order to satisfy the requirements of the

stratified scheme.

B.1: The Naïve Implementation.

This implementation scheme draws randomly from fr until the required number of additional draws from

each stratum have been obtained (figure 7). Because we cannot control the value of these draws, the

procedure will almost certainly draw more than necessary from some of the strata.

Insert Figure 7 here

This implementation scheme can be inefficient. To explain the reason for this, we require the following

definitions:

Definition 1: Thedifficulty ratio for each stratum j =
j

j
j

M
DR

λ
= .

Definition 2: Thecritical stratumis that stratum for which the difficulty ratio is largest.

We thus can state:

Lemma 1: The expected number of draws from fr required to satisfy the sample size requirement for each

stratum j is equal to DRj.

Proof: Immediate.

Lemma 1 shows that on average more simulation runs will be necessary to satisfy the sample size

requirement for the critical stratum (hereafter referred to as CS) than for any other stratum. It therefore

constitutes the chief computational obstacle associated with the naïve implementation. This

computational difficulty can potentially negate the original benefit of the stratified sampling approach.

B.2: “Filtered Search” implementation.
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We address the problems caused by the CS. The basis for the computational benefits of the filtered search

approach is that the effort required to generateω is usually very small relative to that required to

calculate )(xz r
ω , i.e., generation is cheaper than evaluation. Consequently, the majority of the effort

required to generate SPE usually lies not in the generation of the scenarios, but rather in the subsequent

evaluation of the performance function for all scenarios generated.

Figure 8 presents the modified implementation. The central idea is that once we have obtained the

requisite draws from all strata except the CS, we no longer blindly draw from fr. Instead, we predict for

each subsequently generated scenarioω whether or not )(xz r
ω will fall within the CS or not. (We

construct the predictor function with the information obtained during the pilot study, as explained below.)

Only if we predict that )(xz r
ω will fall within the CS do we actually conduct the relevant simulation run.

Thus, we incur the computational burden of calculating )(xz r
ω only if it seems likely that doing so will

serve our purpose.

Insert Figure 8 here

The key to the success of the Filtered Search scheme is the quality of the predictor mechanism. As in all

0-1 classification problems, two errors are possible (See Table 1). The quality of the predictor mechanism

is primarily dependent on the minimization of Prob (Type I error). There are two reasons for this. The

first concerns computational efficiency. Because elements of the CS occur by definition with extremely

low frequency, we must minimize the possibility that we miss one. The second reason concerns the

avoidance of bias in the estimation of the mean of the CS. (As section 4 will show, this is essential if SPE

is to be unbiased.) To see how bias can occur, refer again to Figure 5. Assume that the critical stratum

there is defined as [T,∞). Ambiguity over how to classify a given scenarioω will occur most frequently

when )(xz r
ω is “close” to T. Therefore, a predictor mechanism with high Type I error rate will tend to
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correctly classify scenarios for which )(xz r
ω is “far away” from T, and misclassify scenarios for which

)(xz r
ω is “close” to T. The result can be a biased sample mean.

Insert Table 1 here

Many techniques are available for 0-1, or binary, classification, such as logistic regression [13],

discriminant analysis [19], CART [5], neural networks [11], and bilinear separation via mathematical

programming [2], all of which can be adapted to emphasize the minimization of the Type I error rate.

Because the example application in section 5 employs logistic regression, we close this section with a brief

introduction to the methodology.

Binary logistic regression is a form of regression in which entities of interest can belong to one of two

possible groups, say 0 and 1; our goal is to predict membership. (In our situation, the entities of interest

are distinct scenariosω ; we want to predict whether )(xz r
ω will fall in the critical stratum or not.) Let

p = probability that the entity of interest is a member of group 1. The technique predicts membership by

employing as its dependent variable the log-likelihood ratio that the entity of interest is a member of group

1, or the logit of p:







−

=
p1

p
lnL ,

and fitting the following model:

Error+++++= nn22110 X...XXL ββββ .

Maximum-likelihood, not least squares, is the basis of the fitting process. We estimate p as follows:

)L̂exp(1

)L̂exp(
p̂

+
= ,

where nn22110 Xˆ...XˆXˆˆL̂ ββββ ++++= .
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As one would expect, the default for assigning the value 1 to the entity of interest is a value forp̂ greater

than .5. Changing this threshold allows us to control Type I and II error rates.
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4 Showing that SPE is Unbiased

Recall that ∑=
j jj yˆSPE λ . We need to show that rE(SPE) µ= . We have the following:

Lemma 2: Let P be an arbitrary population, with (true) meanPµ . Let P1, …, PJ be a set of mutually

exclusive and collectively exhaustive strata for P. For each stratum j, j = 1, …, J, define the following:

jµ = (true) mean of stratum j and jλ = (true) probability that an arbitrary member of P is an element of

stratum j. Then ∑=
j jj

P .µλµ

Proof: See Cochran, p. 91.

Lemma 3: For any j, let jλ̂ and jy be, respectively, the estimated probability that a random draw from f

r will come from stratum j and the sample mean of the (j)NSPE draws from stratum j required by the

stratified sampling scheme.Assume that our control of the Type I error rate is sufficient for jj )yE( µ= .

Then jjjj )yˆ(E µλλ = .

Proof: We condition on the random variablejλ̂ , to wit:

)yˆE( jjλ { }}ˆ|yˆ{EE jjj λλ=

( )∑ =⋅==
l

ll )ˆPr(]ˆ|yˆE[ jjjj λλλ

{ }( )∑ =⋅=
l

ll )ˆPr(yE jj λ

{ }( )∑ =⋅=
l

ll )ˆPr(yE jj λ

( )∑ =⋅=
l

ll )ˆPr( jj λµ , because we assumed our control of the Type I error

rate allows jy to be unbiased

( )∑ ==
l

ll )ˆPr( jj λµ

)ˆ(E jj λµ=
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jj λµ=

Theorem 4: Under the conditions of Lemma 3,SPEis an unbiased estimator of rµ .

Proof:

E(SPE) ( )∑=
j jj yˆE λ

( ){ }∑=
j jj yˆE λ

∑=
j jj µλ , by Lemma 3.

rµ= , by Lemma 2.

Although we have now proven the desired result, we also state the following for the sake of completeness:

Lemma 5: Under the conditions of Lemma 3, 0)y,ˆ(Cov jj =λ .

Proof: )y(E)ˆ(E)yˆ(E)y,ˆ(Cov jjjjjj λλλ −= 0jjjj =−= µλµλ .
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5 Example Application

We describe the manner in which multi-stage stochastic optimization allowed us to address issues in

multi-year asset / liability management faced by a major reinsurance firm, focusing particularly on the

role played by stratified filtered sampling and the effectiveness of filtered search. The firm had a strategy

for deciding both the extent of its underwriting and the amount of its capital it would make available for

investment. Its problem was to decide how to allocate this available capital among five different

investment instruments (A, B, C, D, and E) over a five year planning horizon.

Our first task was to select a performance function. In consultation with the firm, we decided to consider

the utility of the firm’s net asset position at the end of the planning horizon. We selected the following

utility function: -CwBewutil(w) −= , with B = 10 and C = 4. For a discussion of the merits of this

function, see Bell [1]. The firm calculated its net asset position at the end of the planning horizon via:

0

05NAP
wp

wpwp −
= , where 5wp represents wealth position at the end of year 5, and0wp initial

wealth.

There were 30 different sources of uncertainty, i.e.,Ω in this instance is a 30-vector: the annual returns

for each of the investment instruments ( ti,ret , for i = A, …, E and t = 1, …, 5), and the dollar value of

the claims paid out at the end of each year (tc , for t = 1, …, 5). We employed two different stochastic

forecasting systems to deal with this uncertainty: 1) the CAP:Link system developed by the first author

[20] addressed investment return uncertainty, and 2) a proprietary system developed by the firm addressed

claim uncertainty.

Optimization to find an acceptable assetallocation strategy was next. Discussion with the firm resulted in

reducing the set of eligible instruments to A, B, and E. Our recommendation (to which the firm agreed)

was to find a suitable instance of the “fixed-mix” family of decision rules; we thus opted for the string
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approach to MSO described in the Introduction. A fixed-mix rule specifies the relative proportion that

each investment instrument should occupy in an asset portfolio at the beginning of each stage of the

relevant planning period. Only when the returns on all available instruments are identical will these

relative proportions continue to satisfy the “fixed-mix”. Thus, the rule specifies the specific buying and

selling necessary to rebalance the portfolio at the end of each year (stage) of the planning horizon. (Thus,

rxω in this situation corresponds to the sequence of buying and selling decisions dictated by fixed-mix rule

r under scenarioω .) With a fixed-mix rule, wealth position changes over the course of the planning

horizon in the following manner:

( )( ){ } ti titi,1t cret1 −+= ∑+ wpwp α ,

where iα is the proportion of wealth to be placed in instrument i per the buying and selling dictated by

the relevant “fixed-mix” rule. Let ),,( EBA αααα = , and let rNAPω denote the final net wealth

position achieved by fixed-mix rule r under scenarioω . Creating a solution generation set with 1000

scenarios, we constructed the following string model:

∑ω ωα )(xz
1000

1
max r

:s.t. ( )rr NAPutil)(xz ωω =

1EBA =++ ααα

0≥α

Solving this model yielded a strategy we labeled r1: 40% of available capital in investment A, 40% in

investment B, and 20% in investment E.

The SFS process – particularly the filtered search component – proved very successful in evaluating this

strategy. Implementation of steps A.1 through A.3 of the SPE-generation procedure required 10,000

draws from fr1. We defined 13 strata (see Table 2).
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Insert Table 2 here

In consultation with the company’s management, we set the desired standard error = .035. Application

of (2) and (3) of SPE-generation step A.4 dictated that that NSPEbe 1335. (Note that the sample standard

deviation of the 10,000 draws from fr1 was 14.772. We thus would require 178,000 simple random

samples from fr1 to achieve what the stratified approach achieves in 1335.) Table 3 presents the stratified

sampling scheme for NSPE= 1335, as well as the difficulty ratio for each stratum. Clearly, stratum 1 is the

critical stratum. This makes sense, given that its estimated standard deviation is at least two orders of

magnitude larger than that of any other stratum.

Insert Table 3 here

Next, we constructed the logistic regression predictor function required for filtered search. The original

10,000 draws from fr1 served as the model building data set. There were initially twenty independent

variables available for the model: the returns for instruments A, B, and E, and the claim payouts. We

reduced this to eight by aggregating the five annual returns for each instrument into a joint measure of

return for the whole planning horizon, in the following manner:

aggregate return for instrument i = ( ) 0.1ret1agret
5

1t
ti,i −+= ∏

=

.

The model fitting process included six of these into the final model:

E54321 1.016agret1.863c5.857c6.467c7.595cc650.8236.10L̂ −−−−−−−= .

Testing of the resulting predictor function yielded the following error rates: Prob (Type II error) =

.007581, Prob (Type I error) = ~ 0. Clearly, the magnitude of the claims is the most significant factor in

predicting membership in the critical stratum. To understand this, recall from Table 2 that the threshold

for the critical stratum is util(NAP) = -85, and note that util(NAP) ≤ -85 occurs only when NAP≤ ~.56,

i.e., when at least 56% of the initial asset position is lost during the planning period.
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Table 2 shows that the only strata for which Mj > 0 are strata 1 (M1 = 668), 2 (M2 = 15), and 3 (M3 = 38),

with stratum 1 the critical stratum. We applied filtered search to “find” these final 668 + 15 + 38 = 721

draws. We obtained the required number of draws from strata 2 and 3 (plus 7 additional draws from the

critical stratum) after 2768 simulation runs. The filtering process began at this point. An additional

213,880 scenarios were generated with 3324 actually evaluated to find the remaining 661 draws from the

critical stratum. Compare this with the corresponding results of the naïve implementation in finding the

remaining 721: 216,648 scenarios generated, with 216,648 scenarios evaluated. Filtered search required

98% fewer evaluations than naïve search. Also, the total number of scenarios generated by filtered search

was 2768 + 213,880 = 216,648, the same number generated by the naïve implementation. The equality of

these numbers shows that the logistic regression predictor function did not commit a single Type I error.

We close this discussion by noting the success of our efforts; the firm eventually adopted an asset

allocation strategy very similar to r1.
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6 Conclusions

We have motivated the need for rigorous evaluation of strategies generated by multi-stage stochastic

optimization models, and presented a methodology called stratified filtered sampling that both fulfills this

need and has value as a general tool for variance reduction. The methodology is based on stratification of

the distribution of performance associated with the generated strategy. The principal obstacle to

implementing such an approach is the inability to sample efficiently from a given region of this

distribution. We presented a robust methodology called filtered search that overcomes this obstacle,

insuring the computational tractability of the methodology.

We are currently investigating techniques to adapt algorithms for solving multi-stage stochastic

optimization models to account for the “sampled” nature of the scenarios on which they are based. As we

have discussed herein, many current algorithms treat the scenarios as the collectively exhaustive set of

ways in which the relevant uncertainty might manifest itself. Of course, the scenarios are samples from

the infinite set of possible manifestations. One particular solution strategy we find promising calls for the

direction of search in the optimization process to be defined by statistical significance.
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stage 1 stage 2 stage 3 stage T
decision decision decision decision

uncertainty uncertainty uncertainty
uncertainty

stage 1 stage 2 stage 3

…….

Figure 1
Depiction of sequential decision-making under uncertainty.

(Heavy arcs represent the random variables for the uncertainty in each stage.)
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Stochastic
forecasting model Attitude towards risk

Optimization
model

Solution algorithm

Strategy

Evaluation of strategy

Figure 2
The MSO process
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Figure 3
A 3-stage, 6-scenario tree.

The nodes again represent decisions, but the arcs now distinct realizations of
uncertainty.

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Figure 4
A solution generation set containing six 3-stage scenarios in string form
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Preliminaries
- Define rule r
- Define acceptable standard error of estimation

Phase A: Devise Stratified Sampling Plan via Pilot Study
A.1 Estimate fr.
A.2 Define strata for fr.
A.3 Insure precision of relevant strata parameters
A.4 Define size of sample required from each stratum

Phase B: Implement Stratified Sampling Scheme
B.1 Naïve implementation
B.2 Filtered search implementation

Figure 6
The SPE Generation Process

Figure 5
Possible form of fr
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no

yes

Figure 7
The naïve implementation

Set rule r

Generate scenarioω

Calculate )(xz r
ω

Have required number
of draws from all strata

been obtained?

Place )(xz r
ω

in correct stratum

STOP
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no yes

yes

no

no

yes

Figure 8
Filtered search implementation

Set rule r

Generate scenarioω

Have required
number of draws

from all strata
except CS been

obtained?

Predict if )(xz r
ω

will fall in CS

Generate scenarioω

Calculate )(xz r
ω

Place )(xz r
ω

in correct stratum

Calculate )(xz r
ω

Have required number
of draws from all strata

been obtained?

Place )(xz r
ω

in correct stratum

STOP
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REALITY

CS Not CS

DECISION Predict CS Correct Type II error

Predict not CS Type I error Correct

Table 1
Possible errors for predicting membership in critical stratum
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Stratum Stratum boundaries
Cardinality after

pilot sudy

jn

Estimated st.
dev. after pilot

study

jσ̂

Estimated
probability of

occurrence

jλ̂

Coefficient of
variation

1 -∞ < u ≤ -85 25 189.23 0.0025 .19975
2 -85 < u≤ -50 34 9.89 0.0034 .17125
3 -50 < u≤ -20 139 8.67 0.0139 .08423
4 -20 < u≤ -10 224 2.77 0.0224 .06606
5 -10 < u≤ -5 330 1.44 0.033 .05413
6 -5 < u ≤ -2.5 474 .71 0.0474 .04483
7 -2.5 < u≤ -1.25 552 .36 0.0552 .04137
8 -1.25 < u≤ -.6 512 .19 0.0512 .04305
9 -.6 < u≤ 0 821 .17 0.0821 .03344
10 0 < u ≤ .5 1392 .15 0.1392 .02487
11 .5 < u≤ -1.0 2289 .14 0.2289 .01835
12 1.0 < u≤ 1.5 2596 .14 0.2596 .01689
13 1.5 < u <∞ 612 .13 0.0612 .03917

Table 2
Core information obtained through pilot study

Stratum

size of sample
needed per
stratified

sampling plan
NSPE(j)

# of draws needed after
pilot study

max [NSPE(j) – nj, 0]
Difficulty ratio

1 693 668 267200
2 49 15 4412
3 177 38 2734
4 91 0 0
5 70 0 0
6 49 0 0
7 29 0 0
8 14 0 0
9 21 0 0
10 30 0 0
11 48 0 0
12 53 0 0
13 11 0 0

Table 3
Summary of stratified sampling plan

Stratum 1 is the critical stratum due to its difficulty ratio


