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Abstract

Autonomous wireless devices such as sensor nodes and stereo cameras, due
to their low cost of operation coupled with the potential for remote deploy-
ment, have found a plethora of applications ranging from monitoring air, soil
and water to seismic detection and military surveillance. Typically, such a net-
work spans a region of interest with the individual nodes cooperating to detect
events and disseminate information. Given a deployment of sensors and tar-
gets over a region, a sensor pairing is desired for each target that optimizes the
coverage under certain constraints. This problem can be modeled as an integer
programming problem and solved using branch-and-cut. For larger problems,
it is necessary to limit the number of variables, and a GRASP routine was de-
veloped for this purpose. Valid cutting planes are developed and computational
results presented.
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Figure 1: An example topology of sensor nodes deployed for target detection.

1 Introduction

Autonomous wireless devices such as sensor nodes and stereo cameras, due to their

low cost of operation coupled with the potential for remote deployment, have found

a plethora of applications ranging from monitoring air, soil and water to seismic

detection and military surveillance [2, 13, 16, 17]. Typically, such a network, as

shown in Figure 1, representing a dense deployment of wireless nodes, spans a region

of interest with the individual nodes cooperating to detect events and disseminate

information.

Existing research has primarily concentrated on developing algorithms, be it dis-

tributed or centralized, to optimize network longevity metrics [3]. This is due to the

fact that the physical constraints of battery-powered sensors impose limitations on

their processing capacity and longevity. As battery power in the nodes decays, certain

parts of the network may become disconnected or the coverage may shrink, thereby

reducing the reliability and the potency of the sensor network. Given such a scenario,

it is desirable that the sensors are deployed in a manner facilitating optimization of

network properties such as coverage and connectivity. In particular, there exists a

class of problems, termed topology control problems, that address the assignment of

power values to the nodes of an ad hoc network so as to result in a graph topology

satisfying certain specified properties [11].
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In the current work, we consider a variant of the topology control problem wherein

random deployment of stereo cameras over a region is carried out with the objective of

assigning the optimal pair for each stationary target contingent on certain constraints.

While there is a general consensus that random deployment of nodes yields poor per-

formance, analytical studies characterizing the performance bounds attainable have

not been addressed in the literature. In many cases, one might be constrained to opt

for a random deployment and not have control over node placement. For instance,

when sensors are deployed under extreme conditions such as fire, rain etc., one can

at best hope for a random dispersal of nodes over the region to be monitored. Under

such circumstances, it is imperative that the researcher has an estimate on the num-

ber of sensors to be deployed in order to establish desired network properties. This

provides our motivation for seeking to characterize the performance of such random

node deployments.

Battery power is a prime resource in sensor networks, and needs to be conserved

in order to prolong the connectivity as well as the coverage of the network. Optimal

power consumption and its variants form the central theme of the bulk of the current

research on sensor networks. The objective of the current work is twofold: to study

the feasibility of obtaining a coverage of target locations subject to certain constraints

and to propose optimization frameworks for random deployment of sensors addressing

the constraints such as minimizing sensor movement and number of sensors moved

while ensuring coverage of all the targets.

The rationale behind the feasibility study is that attaining satisfactory bounds

on random deployment can preclude the need for complex distributed or centralized

algorithms to be executed at the sensors. This in turn reduces the power consumption

of the sensor nodes. Also, the choice of minimizing the total movement of sensors

stems from the fact that power expenditure is directly proportional to the distance

moved. Here, we assume that the target is stationary while the sensor cameras have

the ability to move around in the deployed region. Consider the following scenario:

sensors are deployed randomly over a region with the objective of detecting certain

events of interest, termed targets, whose coordinates are known; the objective then is

to cover each event (target) with minimal movement of the sensor nodes. A target is

said to be covered if there exist at least 2 sensors that meet user defined constraints

on the radial distance from the target and the angle subtended by them at the target.

The problem statement and the constraints imposed on the sensor coverage can then

be formulated as follows:

Problem Statement: Given parameters d1 ≤ d2 and θ, and a deployment
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Figure 2: Target estimation scenario.

of s sensors and t targets (s ≥ 2t) over a region, obtain a sensor pairing for

each target that optimizes the coverage under the following constraints:

For each target position x, assign a unique pair of sensors and place them

at positions s1 and s2 such that

d1 ≤ d(x, si) ≤ d2 for i = 1, 2 (1)

where d(x, si) denotes the Euclidean distance between x and si. Further,

position the two sensors so that the angle φ(s1, x, s2) defined by the target

and the two sensors satisfies

φ(s1, x, s2) ≤ θ (2)

We now elaborate on the formulation of the coverage requirements. The line of

sight of a sensor is best characterized by an unbounded conical region. As a result, a

single sensor can only detect the presence or absence of a target but not its location.

The position estimation of a target location, therefore is determined by the area of

intersection of two or more sensors, as shown in Figure 2. Indeed it is desirable

for the sensors to position themselves in a manner that minimizes this intersecting

area in which the target is located. This is so because the smaller the area, lesser

is the error in estimation. Two factors that are key to the estimation process are

the radial distances of the sensors and their angular orientation with the target. For

example, the conical sensing area increases with increasing radial distance, and this

coupled with the sensors subtending an obtuse angle at the target would translate

to a high estimation error, since the area of intersection in which the target can be

located is large. Thus, while determining coverage requirements, it is imperative that
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Target x
Initial position of sensor 1 (r1, 0)

Initial position of sensor 2 (r2, β)

Final position of sensor 1 (d2, α)

Final position of sensor 2 (d2, α + θ)

θ
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β

Figure 3: Two sensors and a target. Both sensors must be moved into the annulus,

and they must be separated by no more than θ. The inner circle has radius d1 and

the outer circle has radius d2. The positions are expressed in polar coordinates.

these concerns are addressed and this is the motivation behind the formulation of

constraints (1) and (2).

In this paper, we formulate the problem of covering the targets with minimum total

distance moved by the sensors as an integer programming problem. We can obtain

exact solutions to problems with 50 targets in reasonable time. For larger problems,

it is necessary to use heuristics to select good candidate sets of pairs of sensors for

each target; the integer programming problem restricted to the corresponding set

of variables can be solved effectively for problems with 200 targets. By examining

problems with 50 targets, it appears that the heuristic methods for selecting sets of

pairs are very effective and often lead to the optimal solution, especially if s ≥ 3t.

2 Finding the cost of a pairing

Given a target position and two sensors, the placement of the two sensors that min-

imizes their total movement subject to (1) and (2) is found. To fix notation, the

target x is regarded as the origin and all angles are measured from the line defined by

x and the initial position of sensor 1. Assume without loss of generality that sensor 2

makes an angle β between 0 and π. This is illustrated in Figure 3.

The optimal cost of a pairing can be found by solving an optimization problem

with a single variable, namely the angle α moved by sensor 1. The optimal value

of α must lie between 0 and max{0, β − θ}. Choosing α corresponds to choosing a

wedge to which both sensors must move, and the closest points in the wedge to the

two sensors can then be found as follows. Let r1 be the initial distance of sensor 1
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from the target. For a given value of α, the best radius for sensor 1 is then

r′1(α) :=


d2 if r1 cos α ≥ d2

d1 if r1 cos α ≤ d1

r1 cos α otherwise

If β ≤ α + θ then sensor 2 is moved radially to be within the annulus (if necessary).

Otherwise, sensor 2 is moved to the angle α + θ, the quantity r2 cos(β − θ − α) is

calculated, and the best radius for sensor 2 is

r′2(α) :=


d2 if r2 cos(β − θ − α) ≥ d2

d1 if r2 cos(β − θ − α) ≤ d1

r2 cos(β − θ − α) otherwise

Thus, the positions of the sensors can be expressed in terms of the angle α, and the

objective function is to minimize the sum of the distances moved by the two sensors.

This one variable optimization problem was solved using a simple line search routine.

The objective function may be nonconvex in α. Nonetheless, it is quite flat, and so

it is straightforward to find the optimal value to an acceptable accuracy. For example,

the objective function is plotted in Figure 4 for the case θ = 0, d1 = d2 = 1, r1 = 3,

r2 = 2, and β = 2.5 radians. (Note that all angles in this paper are given in radians.)

3 Integer programming formulation

For each target i and each pair of sensors j and k, define the binary variable

xi
jk =

 1 if target i is covered by sensors j and k

0 otherwise

An integer programming formulation of the problem is as follows:

min
∑t

i=1

∑s−1
j=1

∑s
k=j+1 ci

jkx
i
jk

subject to
∑s−1

j=1

∑s
k=j+1 xi

jk = 1 i = 1, . . . , t∑t
i=1

∑j−1
k=1 xi

kj +
∑t

i=1

∑s
k=j+1 xi

jk ≤ 1 j = 1, . . . , s (IP )

xi
jk binary, i = 1, . . . , t, j = 1, . . . , s− 1, k = j + 1, . . . , s

We refer to the first set of constraints as target cover constraints and they ensure

that a pair of sensors is assigned to each target. The second set of constraints are the

sensor matching constraints and they ensure that no sensor is assigned to more
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Figure 4: The objective function for a single target and two sensors, with required

distances d1 = d2 = 1, initial radii r1 = 3, r2 = 2, required angle θ = 0, and initial

angle β = 2.5 radians.

than one target. The objective function coefficients ci
jk are calculated as discussed

in §2. The set of targets is denoted T and the set of sensors is denoted S.

Problem (IP ) with general costs ci
jk is an NP-hard problem, with reduction from

the 3D-assignment problem (see Isler et al. [8]). Our problem is related to the Eu-

clidean 3-matching problem. Johnsson et al. [9] showed that the general 3-matching

problem is NP-complete.

The solution to the problem requires finding a matching of the sensors, with each

matched pair assigned to a target. The polyhedral structure of the matching problem

is well understood, with Edmonds [5] showing that only odd-set constraints are needed

to define the convex hull of feasible integer solutions. These odd-set constraints can

be generalized to our problem to give a valid inequality for each set W of r sensors

where r is odd:
t∑

i=1

∑
j,k∈W,j<k

xi
jk ≤

r − 1

2
(3)

This constraint is valid since r sensors can be used to cover at most (r−1)/2 targets.

Summing the sensor matching constraints for the vertices in W , dividing by two, and

rounding down gives (3). Hence, these cutting planes have Chvatal rank [4] equal to

one. Further, when |W | = 3 the constraints are clique inequalities: a valid assignment
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can use at most one of the triples {(i, j, k) : i ∈ T, j ∈ W, k ∈ W}.
Each of our variables has three indices, with one index corresponding to a target

and the other two indices corresponding to sensors. The problem is related to the

three-index assignment problem, where all three indices are drawn from different sets.

Interesting recent work on three-index and higher index assignment problems includes

results on the optimal value by Grundel et al. [7] and a metaheuristic by Aiex et al. [1].

4 A GRASP routine

A greedy randomized adaptive search procedure (GRASP) was developed to find good

feasible solutions. For larger problems, it was impracticable to solve the full integer

programming formulation directly, so a subset of the triples was selected. One of the

purposes of the GRASP routine was to aid in the selection of a very good selection of

triples for the integer programming formulation with a restricted number of variables.

GRASP routines are metaheuristics designed to find very good solutions by sam-

pling. They construct solutions in a similar manner to greedy heuristics, but rather

than always making the greedy choice, one of the best few choices is made randomly.

They are especially appropriate in our situation, where we use them as a method

for selecting a good subset of variables to feed into an integer programming solver.

This is because the GRASP will return many variables that are used in some solution

that is close to optimal, and will not give variables that are unlikely to appear in

an optimal solution. Another factor working in favor of GRASP is our assumption

of a random deployment of sensors. This ensures that on average the sensors are

spread out over the region as opposed to being clustered in a particular area. As

a result when a sensor is chosen by GRASP, in all likelihood the pairing sensor is

not too far apart, thereby helping to optimize the radial distance criterion. GRASP

was introduced by Feo and Resende [6] and has been used for many combinatorial

optimization problems. For example, Li et al. [10] have developed a GRASP for the

quadratic assignment problem and Aiex et al. [1] presented a GRASP for the three-

index assignment problem, problems which are somewhat related to our problem. For

surveys see [12, 14].

The GRASP routine is described in Figure 5. The routine first finds a good perfect

matching of the sensors and then assigns sensor pairs to targets. The constructed per-

fect matching is 2-optimal, in the sense that replacing any two edges in the matching

with two unused edges will not result in a better perfect matching.

The final solution returned by the GRASP routine could be refined further with a
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1. While there are unpaired sensors:

(a) Randomly select an unpaired sensor.

(b) Randomly select one of its three closest neighbors and

pair off these sensors.

2. Use a 2-change routine to find a 2-optimal perfect match-

ing of the sensors.

3. While there are uncovered targets:

(a) Randomly select a target.

(b) Randomly select one of the three closest sensors to

the target.

(c) Create a triple consisting of the target, the chosen

sensor, and the pair of the sensor.

Figure 5: GRASP routine for generating good feasible solutions.
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local optimization procedure. For our experiments, this was not necessary, since the

set of triples determined by the GRASP routine enabled the exact solution of 90%

of our randomly generated problems with 50 targets: see §5. Our approach could be

regarded as a hybrid approach, combining a GRASP routine to select triples with an

exact branch-and-cut approach to find the optimal solution drawn from those triples.

Isler et al. [8] looked at a greedy heuristic for this problem, as well as a 2-locally

optimal heuristic with a 5
3

approximation performance guarantee.

4.1 Path relinking

GRASP algorithms typically include a path-relinking component [15]. Path-relinking

tries to find new solutions by combining known good solutions. The branch-and-cut

approach could be regarded as a path-relinking strategy, since it looks at all possible

combinations of the solutions to hand, as well as additional variables with small cost.

Given two feasible solutions, a path-relinking approach to our problem could move

from one solution to the other by interchanging pairs of sensors, resulting in a path

of feasible solutions. The value of these intermediate solutions along the path can be

checked to see if they are better than the known solutions.

In the branch-and-cut setting, complete solutions of t triples are not necessary:

the input to the branch-and-cut routine is a set of individual triples. The triples found

along the path could be included in this set. Rather than limiting the algorithm to

the triples found on paths, we constructed the sets Si for i = 1, . . . , t, consisting of

all the sensors included in at least one pair assigned to target i in one of the five best

solutions found by the GRASP routine. We then constructed all triples of the form

{(i, j, k) : j, k ∈ Si}. We discuss our results with this approach in the next section;

the default setting was to not include these additional triples.

5 Computational results

Sensors and targets were randomly placed in the unit square using a uniform dis-

tribution. For a given number of targets, four parameters were varied: the number

of sensors, the required angle θ, and the two radii d1 and d2. Five instances were

generated for each set of parameters, and the tables below contain the means for the

appropriate five instances. An example problem can be found in Figure 6.

Our algorithm consisted of two stages for problems with 50 targets. First, all

the objective function coefficients ci
jk were calculated by solving single variable opti-

mization problems, as discussed in §2. The time for this calculation is listed as the
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Figure 6: Illustration of a 50 target, 110 sensor problem. The solid circles denote the

sensors while the smaller concentric circles denote the targets.
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s θ d1 d2 Generation time Solution time Tree size

Mean Mean Max Mean Max

110 5.0 0.03 0.06 77.399 122.314 155.23 0.8 2

110 5.0 0.02 0.03 77.366 104.858 146.01 0.6 2

110 0.5 0.03 0.06 84.339 146.164 167.87 5.4 9

110 0.5 0.02 0.03 84.695 135.952 184.60 6.2 13

200 5.0 0.03 0.06 646.634 275.048 347.56 0.2 1

200 5.0 0.02 0.03 652.887 251.602 282.47 0.0 0

200 0.5 0.03 0.06 678.581 313.790 428.02 0.0 0

200 0.5 0.02 0.03 672.194 265.358 310.01 0.0 0

Table 1: Results for problems with 50 targets, working with all triples.

generation time in the tables below. Then the integer programming formulation (IP )

was solved using CPLEX 9.1, with the time listed as Solution time in the tables. Note

that CPLEX is able to exploit clique inequalities in its branch-and-cut approach. All

results were obtained on a Sun Ultra 10 Workstation, with a 440MHz UltraSPARC-IIi

processor. Computational results are given in Table 1. The final column gives the

number of nodes in the branch-and-cut tree, as reported by CPLEX. The mean and

the max of the solution time and tree size over the five instances are reported. The

max generation time is not reported because the generation times for a given set of

parameters varied by less than 5%.

With more targets, it is necessary to use a subset of the variables. To investigate

the accuracy of the solution obtained with a reduced set of variables, the problems

with 50 targets were attacked with a heuristically selected set of triples. We first ran

the GRASP routine five times, and all triples found by the routine were included in the

set of working variables. This ensures that the restricted integer program is feasible.

Secondly, for each target we added the kt triples of smallest value that contain the

given target, where k = 10 if s < 3t and k = 4 if s ≥ 3t. With this parameter choice,

the number of variables grows quadratically in the number of targets for s=O(t);

the number of variables in the full formulation is O(t3). The results are contained in

Table 2. The entries in the Generation time column now contain the time to calculate

the objective function coefficients for the reduced set of variables; this includes the

time for the GRASP routine. Note that the runtimes in Table 2 are far better than

those in Table 1.

Recall that each line in Tables 1 and 2 corresponds to the average of five instances.
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s θ d1 d2 Generation time Solution time Tree size

Mean Mean Max Mean Max

110 5.0 0.03 0.06 8.313 6.218 7.15 1.0 2

110 5.0 0.02 0.03 10.111 5.080 6.62 0.4 2

110 0.5 0.03 0.06 15.024 8.404 11.29 11.8 37

110 0.5 0.02 0.03 15.022 8.204 14.25 9.2 24

200 5.0 0.03 0.06 16.115 1.414 1.76 0.0 0

200 5.0 0.02 0.03 16.107 1.280 1.50 0.0 0

200 0.5 0.03 0.06 38.566 1.668 2.30 0.0 0

200 0.5 0.02 0.03 39.049 1.344 1.67 0.0 0

Table 2: Results for problems with 50 targets and a reduced set of triples.

For all 20 of the instances with 200 sensors, the optimal solution found using the

reduced set of triples was identical to that found using the full set of triples. Four

of the 20 instances with 110 sensors had inferior solutions with the reduced set of

triples, namely two each of the two sets of instances with θ = 5 (corresponding to no

restriction on the angle). The relative errors are between 8 × 10−4 and 2.6 × 10−3.

Thus, the reduced set is sufficient in 36/40 = 90% of the cases. When the number

of sensors is close to twice the number of targets and where there is no restriction on

the angle, it is occasionally useful to use two sensors from opposite sides to cover a

particular target; the sensor matching heuristic is not good at detecting such pairs of

sensors.

We experimented with the path-relinking strategy described at the end of §4.1 for

the four problems where the reduced set of triples led to an inferior solution. The

extra triples found using path-relinking did not improve the solution to any of these

instances. Therefore, we did not use the path-relinking strategy for the experiments

with 100 and 200 targets.

Because of the success of the algorithm with the reduced set of triples when there

are 50 targets, we also attacked problems with 100 and 200 targets using a reduced

set of triples. We used the same rules for determining an appropriate set of triples as

for the 50 target case, and the results are contained in Tables 3 and 4. Comparing

the mean and max values for the six sets of problems where the mean solution time

was greater than 100 seconds shows that one problem in each of these sets was far

harder than the others.

It is clear that the problems with s ≥ 3t are far easier than the problems where

12



s θ d1 d2 Generation time Solution time Tree size

Mean Mean Max Mean Max

220 5.0 0.03 0.06 89.279 44.462 59.99 9.4 24

220 5.0 0.02 0.03 89.100 35.262 46.54 4.8 13

220 0.5 0.03 0.06 144.430 326.062 1323.04 938.0 4573

220 0.5 0.02 0.03 144.799 273.464 1164.77 920.0 4524

400 5.0 0.03 0.06 208.770 6.516 9.67 0.4 2

400 5.0 0.02 0.03 208.753 6.218 9.22 0.6 3

400 0.5 0.03 0.06 390.253 7.320 13.16 2.4 12

400 0.5 0.02 0.03 390.949 6.974 8.52 0.2 1

Table 3: Results for problems with 100 targets and a reduced set of triples.

s θ d1 d2 Generation time Solution time Tree size

Mean Mean Max Mean Max

440 5.0 0.03 0.06 1164.06 705.026 1835.68 296.8 1102

440 5.0 0.02 0.03 1166.54 584.388 1712.05 186.6 789

440 0.5 0.03 0.06 1609.13 5733.162 15257.69 4845.2 15128

440 0.5 0.02 0.03 1598.26 730.480 1651.94 195.0 569

600 5.0 0.03 0.06 1753.79 48.952 65.33 1.4 5

600 5.0 0.02 0.03 1753.22 40.788 54.96 2.0 9

600 0.5 0.03 0.06 2641.71 90.778 199.44 39.6 176

600 0.5 0.02 0.03 2616.60 99.996 165.23 37.0 91

Table 4: Results for problems with 200 targets and a reduced set of triples.
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s ≈ 2t. The hardest problems are those with θ = 0.5 and for some of these the

solution time exceeds the generation time and the branch-and-cut tree is quite large.

The solution time and tree size generally decrease as the radii decrease.

6 Conclusions and future research

The integer programming approach has enabled the solution of large instances. For

comparison, Isler et al. [8] looked at similar problems with t = 5 or t = 10. When

s ≥ 3t, the integer programs appear to be relatively straightforward, and the set of

triples found by the heuristics contains the optimal set for all of our test problems

with t = 50. Hence, it appears that using a sufficiently large number of sensors

will lead to good coverage, and such solutions can be found effectively with a hybrid

GRASP/branch-and-cut approach.

For most problems, the generation time exceeds the solution time. The exceptions

are the problems with s ≈ 2t and θ = 0.5. For these problems, it may be worthwhile

to develop more sophisticated cutting plane routines, allowing the exploitation of

violated constraints of the form (3) for values of |W | ≥ 5.

The generation time could be sped up using parallelization. For example, if the

sensors have sufficient computing and battery power, they could be used to determine

the objective function coefficients. For the problems where the generation time is the

bottleneck, this parallelization would allow the solution of larger instances effectively,

and would also increase the value of a more sophisticated cutting plane routine.

The algorithm has the structure of a branch-and-price-and-cut approach, except

that we don’t go back and do the pricing step in order to verify optimality. The

integration of such a pricing step would probably allow the solution to optimality of

the larger instances considered in this paper, especially those with s ≥ 3t.

It would be desirable to extend this approach to give a robust solution. It is

conceivable that some sensors may not work, and so alternative assignments may

need to be made. Variants of the problem (IP ) could be constructed to minimize the

expected cost of covering all the targets, or to minimize the cost subject to the cost

of meeting any failure falling within some tolerance.

Other problems can also be modeled using this framework. For example, Isler et

al. [8] look at the “focus of attention” problem, where two sensors are assigned to a

target with the aim of tracking the movement of the target. Values are determined

for the assignment of a particular pair of sensors to a particular target, and then the

aim is to choose an assignment to minimize the sum of these values. This is a problem

14



in exactly the form of our problem (IP ), but with a different method for calculating

the objective function coefficients ci
jk.
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