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Abstract

Interior point methods, the traditional methods for the SDP , are

fairly limited in the size of problems they can handle. This paper deals

with an LP approach to overcome some of these shortcomings. We

begin with a semi-in�nite linear programming formulation of the SDP

and discuss the issue of its discretization in some detail. We further

show that a lemma due to Pataki on the geometry of the SDP , implies

that no more than O(
p
k) (where k is the number of constraints in the

SDP ) linear constraints are required. To generate these constraints

we employ the spectral bundle approach due to Helmberg and Rendl.
This scheme recasts any SDP with a bounded primal feasible set as

an eigenvalue optimization problem. These are convex nonsmooth

problems that can be tackled by bundle methods for nondi�erentiable

optimization. Finally we present the rationale for using the columns of

the bundle P maintained by the spectral bundle approach, as our lin-

ear constraints. We present numerical experiments that demonstrate

the eÆciency of the LP approach on two combinatorial examples,

namely the max cut and min bisection problems.
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The LP approach potentially allows one to approximately solve

large scale semide�nite programs using state of the art linear solvers.

Moreover one can incorporate these linear programs in a branch and

cut approach for solving large scale integer programs.
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1 Introduction

Semide�nite programming (SDP ) is one of the most exciting and active re-
search areas in optimization recently. This tremendous activity was spurred
by the discovery of important applications in combinatorial optimization,
control theory, the development of eÆcient interior point algorithms for solv-
ing SDP problems, and the depth and elegance of the underlying optimiza-
tion theory. Excellent survey articles for SDP include Vandenberghe and
Boyd [43], the SDP handbook edited by Wolkowicz et al [45], Helmberg [20]
and Todd [42].

Since the seminal work of Alizadeh [1] and Nesterov and Nemirovskii [37],
the study of interior point methods has dominated algorithmic research in
semide�nite programming. However, for practical applications with many
constraints k, the number of arithmetic operations per iteration is often too
high. The main computational task here, is the factorization of a dense Schur
complement matrixM of size k, in computing the search direction. Moreover
this matrix is to be recomputed in each iteration, which is the most expensive
operation in each iteration. For most problems, the constraint matrices have
a special structure, which can be exploited to speed up the computation of
this matrix. In particular in combinatorial applications, these constraints
often have a rank one structure. Benson, Ye and Zhang [4] have proposed a
dual scaling algorithm that exploits this rank one feature, and the sparsity in
the dual slack matrix. However even in their approach the matrixM is dense,
and the necessity to store and factorize this matrix limits the applicability of
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these methods to problems with about 3000 constraints on a well equipped
work station.

Consider the semide�nite programming problem

min C �X
subject to A(X) = b (SDP )

X � 0;

with dual
max bTy

subject to ATy + S = C (SDD)
S � 0

where X;S 2 Sn, the space of real symmetric n� n matrices. We de�ne

C �X = Trace(CTX) =
Pn

i;j=1CijXij

where A : Sn ! IRk and AT : IRk ! Sn are of the form

A(X) =

2
664
A1 �X

...
Ak �X

3
775 and ATy =

Pk
i=1 yiAi

with Ai 2 Sn; i = 1; : : : ; k. We assume that A1; : : : ; Ak are linearly indepen-
dent in Sn. C 2 Sn is the cost matrix, b 2 IRk the RHS vector. The matrix
X 2 Sn is constrained to be positive semide�nite (psd) expressed as X � 0.
This is equivalent to requiring that dTXd � 0, 8d. On the other hand X � 0
denotes a positive de�nite (pd) matrix, i.e. dTXd > 0 , 8d 6= 0. Sn+ and
Sn++ denote the space of symmetric psd and pd matrices respectively. Also
diag(X) is a vector whose components are the diagonal elements of X, and
Diag(d) is a diagonal matrix, with the components of d. In the succeeding
sections we use Trace(X) and tr(X) interchangeably, to denote the trace of
the symmetric matrix X. �min(M) denotes the minimum eigenvalue of the
matrixM 2 Sn. An excellent reference for these linear algebra preliminaries
is Horn and Johnson [26].

Assumption 1 Both (SDP ) and (SDD) have strictly feasible points, namely
the sets fX 2 Sn : A(X) = b;X � 0g and f(y; S) 2 IRk � Sn : ATy + S =
C; S � 0g are nonempty.
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This assumption guarantees that both (SDP ) and (SDD) attain their
optimal solutions X� and (y�; S�), and their optimal values are equal, i.e.
C �X� = bT y�. Thus the duality gap X�S� = 0 at optimality.

Assumption 2

A(X) = b implies trX = a (1)

for some constant a � 0.

It can be shown that any (SDP ) with a bounded feasible set can be
rewritten to satisfy Assumption 2. Later we shall see that this enables us
to rewrite (SDD) as an eigenvalue optimization problem. A large class of
semide�nite programs, in particular several important relaxations of combi-
natorial optimization problems, can be formulated to satisfy this assumption,
such as max cut, Lovasz theta, semide�nite relaxations of box constrained
quadratic programs etc.

A number of approaches for large scale SDP 's have been developed re-
cently. A central theme in most of these schemes is a lemma due to Pataki
[39] on the rank of the optimal X matrices. The idea here is to exclusively
deal with the set of optimal matrices (a subset of the set of feasible ma-
trices), thereby working in a lower dimensional space. This allows us to
handle SDP 's that are inaccessible to interior point methods due to their
size. We discuss this issue in section 3. Such approaches include the spectral
bundle approach due to Helmberg and Rendl [21], a nonsmooth optimiza-
tion technique applicable to eigenvalue optimization problems. We present
an overview of this scheme in section 4. Other large scale methods include
Burer et al [10, 11, 12], who formulate (SDP ) as nonconvex programming
problems using low rank factorizations of the primal matrix X, and Van-
derbei and Benson [44]. Finally we must mention that Burer et al [13, 14]
have come up with attractive heuristics for max cut and maximum stable
set problems, where they solve (SDP ) with an additional restriction on the
rank of the primal matrix X.

The primary objective in this paper is to develop an LP approach to solv-
ing (SDP ). The aim is to utilize some of the large scale SDP approaches
within this LP framework. This potentially allows us to approximately solve
large-scale semide�nite programs using state of the art linear solvers. More-
over one could incorporate these linear programs in a branch and cut ap-
proach to solving large integer programs. This should overcome some of the
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diÆculties involved in branch and cut SDP approaches, i.e. the cost of solv-
ing the SDP relaxations and the issue of utilizing the solution of the parent
SDP problem to construct an appropriate solution for the child problem
(restart).

Ben Tal et al [6] have come up with an intriguing polyhedral approxima-
tion to the second order cone. This is subsequently improved in Glineur [18],
who also discusses various computational results. However we are not aware
of similar results for the cone of SDP matrices.

This paper is organised as follows. We present a semi-in�nite linear pro-
gramming formulation for the SDP in section 2. In particular we discuss
which of the two semi-in�nite formulations, we wish to use (primal or dual)
and the issue of discretization of this semi-in�nite formulation in some detail.
Section 3 presents some results on the geometry of SDP . In particular we
present Pataki's lemma on the rank of extreme matrices in (SDP ) and its
consequences on the discretization of semi-in�nite LP 's and conclude with
the appropriate constraints needed in the LP relaxations. Section 4 de-
scribes the spectral bundle method due to Helmberg and Rendl [21], a fast
algorithmic procedure to generate these constraints. Section 5 describes the
rationale for using the columns of P as linear constraints and introduces the
max cut and the min bisection problems, two combinatorial problems on
which we wish to test the LP approach. Section 6 describes some computa-
tional results and we conclude with some observations and acknowledgements
in sections 7 and 8 respectively.

Note that the convex constraint X � 0 is equivalent to

dTXd = ddT �X � 0 8d 2 IRn (2)

These constraints are linear inequalities in the matrix variableX, but there is
an in�nite number of them. Thus SDP is a semi-in�nite linear programming

problem in IR
n(n+1)

2 . The term semi-in�nite programming derives from the
fact that the LP has �nitely many variables, with an in�nite number of
constraints. The survey paper by Hettich and Kortanek [25] discusses theory,
algorithms, and applications of semi-in�nite programming.

Since dTXd � 0 can be rewritten as tr(ddTX) � 0, the de�nition of
positive semide�niteness immediately gives the following :

Corollary 1 The symmetric n � n matrix S is positive semide�nite if and
only if S �M � 0 for all symmetric rank one matrices M .
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2 A semi-in�nite linear programming formu-

lation

The only nonlinearity in (SDP ) and (SDD) is the requirement that the
matrices X and S need to be positive semide�nite. As we have seen in the
previous section these convex constraints are equivalent to an in�nite number
of linear constraints, giving rise to semi-in�nite linear programs. We now
consider two semi-in�nite linear programs (PSIP ) and (DSIP ) for (SDP )
and (SDD) respectively. These formulations follow directly from Corollary 1.

min C �X
subject to A(X) = b (PSIP )

dTXd � 0 8d 2 B

max bTy

subject to ATy + S = C (DSIP )
dTSd � 0 8d 2 B

Here B is a compact set, typically fd : jjdjj2 � 1g or fd : jjdjjinf � 1g. These
are commonly used in trust region methods. (Conn et al [15]). A few remarks
are now in order.

1. Since X is n� n and symmetric, (PSIP ) is a semi-in�nite linear pro-

gram in
�
n+1
2

�
= n(n+1)

2
= O(n2) variables.

2. There are k variables in the semi-in�nite formulation (DSIP ). We have

k �
�
n+1
2

�
(since the matrices Ai, i = 1; : : : ; k are linearly independent).

3. It is more eÆcient to deal with the dual semi-in�nite formulation, since
we are dealing with smaller LP 's.

We shall henceforth refer to (DSIP ) as (LDD). The dual (LDP ) then has
the following form.

min
R
B(d

TCd) dx
subject to

R
B(d

TAid) dx = bi i = 1; : : : ; k (LDP )
x � 0

We have permitted an in�nite number of vectors z 2 IRk whose ith compo-
nent is given by dTAid, i = 1; : : : ; k in the representation of b 2 IRk. However



SEMI-INFINITE LP APPROACHES TO SDP PROBLEMS 7

the reduction theorem stated below, indicates that at most k vectors zi are
required in the representation of b. For a constructive proof see Glasho� and
Gustafson [17].

Theorem 1 Let the vector z 2 IRk be a nonnegative linear combination of
the m vectors z1; : : : ; zm 2 IRk, i.e.

z =
Pm

i=1 xizi; xi � 0; i = 1; : : : ; m

Then z admits a representation

z =
Pm

i=1 �xizi; �xi � 0; i = 1; : : : ; m

such that at most k of the numbers �xi are nonzero and such that the set of
vectors fzij�xi > 0g, is linearly independent.

We cannot immediately conclude from theorem 1 that we only need to con-
sider feasible solutions fx1; : : : ; xmg with m � k, and that we can put m = k

from the start. It is quite possible that in the transition from (LDD) to
(LDR) the value of the objective function is a�ected, i.e.

R
B(d

TCd) dx <
Pk

j=1(d
T
j Cdj)xj

Thus we should apply the reduction theorem on k + 1 equations with the
(k + 1)th constraint being

R
B(d

TCd) dx = b0

We obtain the important result thatm = k+1 points di are enough. However
if we know that (SDP ) has a solution (Assumption 1), then we can putm = k

from the outset (Glasho� and Gustafson [17]). Thus an optimal solution to
(LDP ) has a �nite support i.e. there are only a �nite number of components
m of x that are nonzero.

We give conditions ensuring that there exists a discretization of (LDD)
with the same optimal value.

Theorem 2 Suppose that the optimal value of the linear semi-in�nite pro-
gramming problem (LDD) is �nite. If objective values of (LDD) and (LDP )
are the same, i.e. there is no duality gap, and the dual problem (LDP ) has
an optimum solution. Then (LDD) has a �nite discretization (LDR) with
the same optimal value.
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Proof: We have shown that an optimal solution to (LDP ) has a �nite
support. Now let (LPR) and (LDR) be the discretizations of (LDP ) and
(LDD), respectively, corresponding to an optimal solution of (LDP ) with a
�nite support. Thus we have val(LDP ) = val(LPR) = val(LDR), the latter
equality following from the strong duality theorem in �nite linear program-
ming. Since the feasible set of (LDR) includes the feasible set of (LDD),
val(LDD) � val(LDR). Thus

val(LDD) � val(LDR) = val(LPR) = val(LDP )

which together with the assumption val(LDD) = val(LDP ) imply that
val(LDD) = val(LDR).

In the presence of a duality gap we can show that

val(LDD) > val(LDR) = val(LPR) = val(LDP )

In this case val(LDR) is a subvalue for (LDD) (see Anderson and Nash [3]).
Moreover the duality gap can be as large as possible. See Anderson and Nash
[3], Glasho� and Gustafson [17] and Bonnans and Shapiro [7] for examples
of duality gaps in linear semi-in�nite programming.

We now establish a bound on the number of constraints m in (LDR).

Theorem 3 Suppose (LDD) is consistent and that there exists a �nite dis-
cretization of (LDD) with the same optimal value. Then there exists a dis-
cretization (LDR) such that val(LDD) = val(LDR) and m � k.

Proof: Follows from Theorem 1.
See Bonnans and Shapiro [7] for a proof based on Helly's theorem. Moreover
if we were to solve (LDR) using a simplex scheme, then not more than k

constraints would be binding at optimality. The following results are only
special cases for general results on the discretization of convex semi-in�nite
programs (Borwein [8], Ben Tal et al [5], Bonnans and Shapiro [7] and Hettich
and Kortanek [25]).

We discuss the �nite linear programs (LDR) and (LPR) and some of
their properties below. Given a �nite set of vectors fdi; i = 1; : : : ; mg, we
obtain the relaxation

max bT y

subject to did
T
i � ATy � did

T
i � C for i = 1; : : : ; m: (LDR)
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We now derive the linear programming dual to (LDR). We have

did
T
i � ATy = did

T
i � (

kX
j=1

yjAj)

=
kX

j=1

yjd
T
i Ajdi:

Thus, the constraints of (LDR) can be written as

kX
j=1

yjd
T
i Ajdi � dTi Cdi for i = 1; : : : ; m:

It follows that the dual problem is

min
Pm

i=1 d
T
i Cdixi

subject to
Pm

i=1 d
T
i Ajdixi = bj for j = 1; : : : ; k

x � 0:

This can be rewritten as

min C � (Pm
i=1 xidid

T
i )

subject to A(Pm
i=1 xidid

T
i ) = b (LPR)
x � 0:

Lemma 1 Any feasible solution x to (LPR) will give a feasible solution X

to (SDP ).

Proof: This lemma follows directly from the fact that (LPR) is a con-
strained version of (SDP ). However we present a formal proof. Set X =Pm

i=1 xidid
T
i . From (LPR) it is clear that this X satis�es AX = b. Moreover

X is psd. To see this

dTXd = dT (
Pm

i=1 xidid
T
i )d =

Pm
i=1 xi(d

T
i d)

2

� 0 8d
where the last inequality follows from the fact that x � 0. Moreover this X
also satis�es tr(X) = a.
Thus the optimal value to (LPR) gives an upper bound on the optimal value
of (SDP ). Moreover lemma 1 suggests a way of recovering a feasible primalX
matrix, which is extremely important if we are solving the underlying integer
program. For more details refer to section 5.2 on the max cut problem.
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3 Geometry of the SDP

In this section we study the geometry of the (SDP ) problem. In particular we
begin with Pataki's lemma [39] which gives a bound on the rank of optimalX
matrices. This has immediate implications on the size of the LP relaxation
(LDR). We conclude this section with the constraints, we need in this LP
relaxation.

We have strong duality XS = 0 at optimality (Assumption 1). This
implies that X and S commute at optimality, and thus share a common set
of eigenvectors. To emphasize this point, we present the following lemma 2
(Alizadeh et al [2]).

Lemma 2 Let X and (y; S) be primal and dual feasible respectively. Then
they are optimal if and only if there exists �P 2 IRn�n, with �P T �P = I, such
that

X = �PDiag(�1; : : : ; �n) �P
T

S = �PDiag(!1; : : : ; !n) �P
T

�i!i = 0 ; i = 1; : : : ; n

Here �P is an orthogonal matrix containing the eigenvectors of X and S.
Moreover the complementarity condition suggests that if X is of rank r and
S is of rank s, we have r + s � n. We can replace this inequality by an
equality if we impose nondegeneracy assumptions on (SDP ) and (SDD).
For more on nondegeneracy in the context of (SDP ) refer to Alizadeh et al
[2].

The following Theorem 4, due to Pataki [39] gives an upper bound on the
rank r, of optimal X matrices.

Theorem 4 There exists an optimal solution X� with rank r satisfying the
inequality r(r+1)

2
� k. Here k is the number of constraints in (SDP ).

Theorem 4 suggests that there is an optimal matrix X that satis�es the
upper bound (whose rank is around O(

p
k)). A similar result is established

in Alizadeh et al [2] under a nondegeneracy assumption. However, without
this assumption the bound need not hold for all solutions.

Thus the optimal X can be expressed as X = P�P T . Here � 2 Sr is
a diagonal matrix containing the r nonzero eigenvalues of X, and P is an
orthonormal matrix satisfying P TP = Ir, and containing the eigenvectors,
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corresponding to these r eigenvalues. Moreover to preserve the set of optimal
solutions, r should be at least

p
1+8k�1

2
.

From Lemma 2, it is clear that the columns in P belong to the null space
of the optimal S, i.e. we have pTi Spi = 0, i = 1; : : : ; r.

In the context of solving an (SDP ) as an (LP ), Pataki's theorem suggests
that there is an relaxation (LDR) which exactly captures the (SDP ) objec-
tive value, and has no more than O(

p
k) constraints. This is a tightening of

Theorem 3, which relies solely on linear semi-in�nite programming theory.
As a result not more than O(

p
k) variables in (LPR) would be nonzero. We

express this fact in corollary 2 below.

Corollary 2 Any (LPR) with val(LPR) = val(SDP ) must be degenerate.

Theorem 5 (SDP ) is equivalent to (LDR) with di = pi, i = 1; : : : ; r.

Proof: The optimal value to (LPR) gives an upper bound on the opti-
mal value of (SDP ). Thus an optimal solution to (SDP ) is also optimal in
(LPR), provided it is feasible in (LPR). The optimal solution to (SDP )
is given by X = P�P T =

Pr
i=1 �ipip

T
i , where �i > 0, i = 1; : : : ; r, and pi,

i = 1; : : : ; r are the corresponding eigenvectors. This is clearly feasible in
(LPR). This corresponds to (LDR) with di = pi, i = 1; : : : ; r.

We must mention at this stage that we could in practice solve (SDP ) us-
ing an interior point scheme, and utilize the P corresponding to the strictly
positive eigenvalues of X as d. This would give an (LDR) which attains the
(SDP ) optimal value. However as we have seen in the previous section inte-
rior point schemes are fairly limited in the size of problems they can handle.
Besides interior point schemes do not exploit Pataki's lemma (Theorem 4).

The spectral bundle method discussed in the next section, provides a way
to estimate these vectors quickly.

4 The spectral bundle method

The spectral bundle method is due to Helmberg and Rendl [21]. Other
references include Helmberg et al [20, 22, 23] and Oustry [38]. In this section
we give a detailed description of the spectral bundle scheme.

Since our original (SDP ) is a minimization problem, we will be dealing
in this section, with the minimum eigenvalue function, a concave function.
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However we shall be using terms like subgradients, subdi�erential etc, usually
associated with convex functions. These terms should be understood to be
the corresponding analogues for a concave function.

Consider the eigenvalue optimization problem (3).

maxy a�min(C �ATy) + bTy (3)

Problems of this form are equivalent to the dual of semide�nite programs
(SDP ), whose primal feasible set has a constant trace, i.e. Trace(X) = a for
all X 2 fX � 0 : A(X) = bg. This can be easily veri�ed as follows. From
the variational characterization of the minimum eigenvalue function, we have

�min(C �ATy) = minX:trX=1;X�0(C �ATy) �X (4)

Thus (3) is equivalent to taking the Lagrangian dual of (SDP ) with y being
the vector of dual variables corresponding to A(X) = b, and observing that
a�min(C�ATy) = minX:trX=a;X�0(C�ATy)�X. We can rewrite (3) strictly

as an eigenvalue optimization problem by incorporating the linear term bT y

into the eigenvalue function (each Ai is now replaced with (Ai� biI)). It can
be shown that any SDP with a bounded feasible set can be written in this
way, i.e. as an eigenvalue optimization problem. The minimum eigenvalue
function �min(:) is a nonsmooth concave function (the concavity follows from
the variational characterization). In fact this function is nonsmooth precisely
at those points where the minimum eigenvalue has a multiplicity greater
than one. A general scheme to minimize such functions is the bundle scheme
(Kiwiel [30, 31, 32], Lemarechal [35] and Schramm et al [41] and the books
by Urruty and Lemarechal [27, 28] (especially Chapter XV (3)). An excellent
survey on eigenvalue optimization appears in Lewis and Overton [36].

To motivate the bundle approach, we begin with some preliminaries for
the minimum eigenvalue function.

The subdi�erential for the minimum eigenvalue function, i.e. the collec-
tion of subgradients has the following representation.

@�min(X) = fPV P T : V 2 Sr; tr(V ) = 1; V � 0g (5)

Here P is an orthogonal matrix, containing all the eigenvectors correspond-
ing to the minimum eigenvalue. The expression (5) implies that the subd-
i�erential is given by the convex hull of rank one matrices ppT , where p is
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an normalised eigenvector corresponding to the minimum eigenvalue (these
eigenvectors are orthogonalized with respect to each other so that P is an
orthogonal matrix satisfying P TP = Ir). Also, r here is the multiplicity of
the minimum eigenvalue function. An upper bound on r is given by Pataki's
lemma (Theorem 4). We expect the value of r to increase as we approach
optimality. This is because we are maximizing the minimum eigenvalue and
the eigenvalues tend to cluster together. Once we have the subdi�erential we
can write the directional derivative �

=
min(y;D) as follows :

�
=
min(y;D) = �min(P

TDP ) (6)

Here D = �ATd = �Pk
i=1 diAi where d is the current search direction. P is

the orthogonal matrix containing the eigenvectors corresponding to the min-
imum eigenvalue function. The expression follows immediately from the fact
that the directional derivative is the support function for the subdi�erential
(Urruty and Lemarechal [27] and Oustry [38]).

We can design a steepest descent like scheme for maximizing the minimum
eigenvalue function as follows :- The search direction d involves solving the
following subproblem

maxd2IRk;jjdjj�1 �min(P
TDP ) = minW2@�min(X)

1
2u
jjb�A(W )jj2 (7)

The constraint jjdjj � 1 in (7) ensures that solution to the max-min problem
on the left is bounded. We can interchange the max and the min using strong
duality to get the problem on the right. Note that we have introduced the
constraint jjdjj � 1 into the objective function by means of Lagrangian weight

parameter u (the term ujdj2
2

penalises us from going too far from the current
point). This gives a quadratic semide�nite programming problem (QSDP ).
A few points are now in order :

1. At optimality when the search direction d = 0, we get primal feasibility
A(X) = b.

2. Solving (QSDP ) with X = PV P T 2 @�min(X) amounts to relaxing
S � 0 to P TSP � 0.

3. This amounts to the solution of the following eigenvalue problem (8)
over a relaxation of the dual feasible region.

maxy a�min(P
t(C �ATy)P ) + bTy (8)
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The spectral bundle returns the objective value of a feasible point in
(SDD). Hence the scheme provides a lower bound on the optimal
(SDP ) objective value.

4. For the convergence of the scheme, we actually need to consider the en-
tire � subdi�erential at each iteration which consists of all eigenvectors
corresponding to eigenvalues which are within an � of the minimum
eigenvalue.

Computing the entire � subdi�erential at each iteration is diÆcult, and
this is where the bundle idea comes in handy (Helmberg et al [21]). Instead
of computing the entire subdi�erential, we consider an arbitrary subgradient
from the subdi�erential and utilize the important subgradients from the pre-
vious iterations. Helmberg and Rendl [21] consider the following subset (9)
of the subdi�erential.

Ŵ � @�min(S)
= fW : W = � �W + PV P T ; � + tr(V ) = 1; � � 0; V � 0g (9)

Here �W is known as the aggregate matrix and contains the less important
subgradient information, while P is known as the bundle and contains the
important subgradient information. We are now ready to describe the key
ideas in the spectral bundle approach.

1. Consider a subset X = PV P T of the feasible X matrices. We are
exploiting Pataki's lemma [39] by considering only the subset of all
optimal X matrices, which allows us to operate in a lower dimensional
space.

2. Use this X to improve y. This involves solving the following direction
�nding subproblem

minX2Ŵ
1
2u
jjb�A(X)jj2 (QSDP )

We are now optimizing over all X belonging to the set Ŵ instead of
the entire subdi�erential. (QSDP ) is a quadratic SDP in

�
r+1
2

�
+ 1

variables. Moreover the aggregate matrix �W gives us the 
exibility of
using fewer columns (than the r given by Pataki's lemma) in P . This is
important, for we want to keep r small so that (QSDP ) can be solved
quickly.
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3. Use the value of y in turn to improve X. This is done by updating
the bundle P in each iteration. P attempts to recreate @�min(S) at
each iteration. If P is a bad approximation to the subdi�erential at a
point, we remain at that point and update P with more subgradient
information. This is termed as a null step in the spectral bundle scheme.

We have omitted a lot of details here; on how P and �W are updated in each
iteration, the ideas behind the convergence of the scheme etc. These are not
very important for the discussion in the next section. For more details refer
to Helmberg et al [20, 21].

The spectral bundle scheme has very good global convergence properties.
However it is only a �rst order scheme, since we are carrying out a �rst
order approximation of the minimum eigenvalue function. A second order
bundle method which converges globally and which enjoys asymptotically
a quadratic rate of convergence was developed by Oustry [38]. Helmberg
and Kiwiel [22] also extend the spectral bundle approach to problems with
bounds.

5 A set of linear constraints

A set of linear constraints for (LDR) can be derived from the bundle infor-
mation used by the spectral bundle method. We propose using the columns
of P as the vectors fdjg; j = 1; : : : ; r in (LDR). Since the number of vectors
r in the bundle P is O(

p
k) and we need at least k constraints to guarantee a

basic feasible solution, we need to look for other constraints as well. We shall
henceforth label these constraints as box constraints. Note that the columns
of P are dense, leading to a dense linear programming formulation (LDR).
We try to compensate for these dense constraints, by choosing d for our box
constraints that are sparse.

This section is organized as follows. The rationale for using the columns
of P as d is discussed in section 5.1. We illustrate the LP procedure on the
max cut problem in section 5.2, and the min bisection problem in section
5.3.

5.1 Rationale for using the columns of P

We are now ready to present the primary result in the paper.
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Theorem 6 If the spectral bundle terminates, and the number of columns
r in P satis�es Pataki's lemma, then these columns are candidates for the
cutting planes di.

Proof: At the outset we shall assume that the bundle scheme terminates in
a �nite number of steps. This will happen when d = 0 in (QSDP ). We then
have primal feasibility, i.e. A(X) = b, since 0 2 @�min(S). Thus (QSDP )
is now (SDP ) for some X = � �W + PV P T . Since P contains the important
subgradient information we expect tr(X) � tr(V ). Moreover if P contains
at least r columns, where r is given by Pataki's theorem 4, then � would
be zero (since we have not more than r nonzero eigenvalues at optimality).
Thus PV P T is essentially a spectral decomposition of X, with P contain-
ing the eigenvectors corresponding to the nonzero eigenvalues of X. Since
we have strong duality (Assumption 1), the vectors in P provide a basis for
the null space of S. From theorem 5 we �nd the columns of P ensure that
val(LDR) = val(SDP ) = val(SDD).
Typically the bundle method converges only in the limit to the optimal so-
lution. When the method terminates, the bundle P should contain a good
approximation for the � subdi�erential of �min(S) = 0.

�min(S
�) � pip

T
i � S� + �

= 0

We have a � inequality since �min(S) is a concave function. This is the
best approximation to �min(S) in a �rst order sense, since any other d would
satisfy ddT � S� > 0 (strict inequality). Since these constraints are nearly
binding, if we employ a simplex scheme to solve (LDR) we would expect
these constraints to be active at the optimal solution (among others since k
constraints would be binding at optimality) and by complementary slackness
the corresponding dual variables x will be nonzero in (LPR) (again we expect
them to be the larger ones in the nonzero x). Thus the columns of P are
good candidates for the cutting planes di.

5.2 The Max Cut problem

A semide�nite programming relaxation of the max cut problem is Goemans
and Williamson [19]. The SDP solution followed by a randomised rounding
leads to an 0:878 approximation algorithm for the max cut problem.
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max L
4
�X

subject to diag(X) = e

X � 0;
(10)

with dual

min eT y

subject to �Diag(y) + S = �L
4

S � 0
(11)

Here L = Diag(Ae) � A is the Laplacian matrix of the graph, where A is
the weighted adjacency matrix with Aii = 0, 8i and Aij = wij, 8fi; jg 2 E.
Thus the Laplacian matrix is

Lii =
P

j wij 8i
Lij = �wij i 6= j

Note that the a in trX = a is trivially n, the number of nodes in the graph.
Since S is psd, we have dTSd = dT (Diag(y)� L

4
)d � 0 , 8d. In particular

we propose to use the following d for the max cut problem.

MC1 Setting d = ei , i = 1 : : : n, where ei is the ith standard basis vector for
Rn. In particular ei has a one in the ith position and zeros elsewhere.
This generates the constraint yi � Lii

4
, i = 1 : : : n.

MC2 Setting d = (ei + ej) and (ei � ej) , 8fi; jg 2 E, gives rise to the

constraints yi + yj � Lii
4
+ Ljj

4
+ Lij

2
and yi + yj � Lii

4
+ Ljj

4
� Lij

2

respectively. Together these give yi + yj � Lii
4
+ Ljj

4
+ jLij

2
j.

MC3 The constraints in the bundle namely the columns pi , i = 1; : : : ; r of
the matrix P .

We consider an LP relaxation, LP containing MC1 and MC3. To obtain
tighter relaxations we can consider MC2 in addition to MC1 and MC3.

The LP relaxation LP is summarised below

min eTy

subject to yi � Lii
4

8i = 1; : : : ; n

Pn
i=1 p

2
jiyi � pTj

L
4
pj 8j = 1; : : : ; r

(12)
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with dual

max
Pn

i=1
Lii
4
xi +

Pr
j=1wj

pTj Lpj

4

subject to

2
664
1 " "

. . . p21 : : : p2r
1 # #

3
775
"
x

w

#
= e

"
x

w

#
� 0

(13)

Here pji refers to the jth component of vector pi and p2i , i = 1; : : : ; r are
vectors obtained by squaring all the components of pi , i = 1; : : : ; r. (12) has
n+r constraints in all. Note that x 2 IRn and w 2 IRr are the dual variables
corresponding to y � diagL

4
and the bundle constraints respectively. To get

a solution X to SDP , set X = Diag(x) +
Pr

j=1wjpjp
T
j . This matrix X is

positive semide�nite since x � 0 and w � 0. Moreover

L
4
�X = L

4
� (Diag(x) +Pr

j=1wjpjp
T
j ) =

Pn
i=1

Lii
4
xi +

Pr
j=1wj

pTj Lpj

4

This is precisely the objective value in (13). We have thus generated the
X which could be used in the Goemans and Williamson rounding procedure
[19] to generate an approximate solution to the max cut problem.

Using the Goemans and Williamson [19] (GW) rounding procedure on
the X generated by solving the relaxation LP , we can generate a cut that
is at least 0:878 times the LP objective value. We cannot guarantee that
the objective value of relaxation LP is an upper bound on the maximum cut
value. However, in practice the LP objective is within 1% of the spectral
bundle objective value, which incidentally is an upper bound on the optimal
SDP value. Thus we have some performance guarantee on the cut produced
by solving the LP relaxation LP followed by the GW randomized rounding
procedure.

5.3 The Min Bisection problem

The semide�nite programming relaxation for the min bisection problem was
ndependently proposed by Frieze and Jerrum [16] and Ye [46]. The relaxation
is
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min L
4
�X

subject to diag(X) = e

eeT �X = 0
X � 0;

(14)

with dual

min eT y

subject to �y0(eeT ) � Diag(y) + S = L
4

S � 0
(15)

We must note that Frieze and Jerrum [16] had the equipartition constraint
as eeT � X � 0. But since the optimal X is psd, we must have eTXe =
eeT �X � 0 at optimality, which is equivalent to eeT �X = 0.

Here L refers to the Laplacian matrix of the graph. y0 is the dual variable
corresponding to the constraint eeT �X = 0. To get the signs right, we need to
take the negative of the objective value of (SDD) to get the optimal solution
to the min bisection problem. Again a = n.

Note that the primal (14) does not have any Slater point (strictly feasible
point) due to the equipartition constraint eeT � X = 0. Thus (SDD) need
not attain its optimal solution. (There is no duality gap however since the
dual (15) has a Slater point). Moreover (15) has an unbounded optimal face.
To observe this set y0 !1 in (15). Doing so keeps S psd, but since y0 does
not appear in the objective function, this value remains unchanged.

We must emphasize here, that the absence of a primal Slater point a�ects
our LP relaxations (since we are dealing with (LDD)), and we need not have
a discretization, if (LDD) does not attain its optimal solution (Theorem 2).

Since S = y0ee
T + Diag(y) + L

4
is psd, we require dTSd = dT (y0ee

T +
Diag(y) + L

4
)d � 0, 8d.

In particular we propose to use the following d for the min bisection
problem.

MB1 Setting d = ei, i = 1; : : : ; n gives y0 + yi � �Lii
4
, i = 1; : : : ; n.

MB2 Setting d = e, where e is the all ones vector gives ny0 +
Pn

i=1 yi � 0,
since Le = 0.

MB3 The constraints in the bundle namely the columns pi, i = 1; : : : ; r.
This gives y0(p

T
i e)

2 +
Pn

j=1 p
2
jiyi � �pTi L

4
pi, i = 1; : : : ; r.
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MB4 Since the SDP has an unbounded feasible set, we impose an upper
bound on y0 say u.

The resulting LP is

min eTy

subject to y0 + yi � �Lii
4

i = 1; : : : ; n
ny0 +

Pn
i=1 yi � 0

(pTi e)
2y0 +

Pn
j=1 p

2
jiyi � �pTi L

4
pi i = 1; : : : ; r

y0 � u

(16)

Here pji refers to the jth component of the vector pi. The LP (16) has
n+ 1 + r constraints in all (excluding the upper bound).

If we set the upper bound u, we are in essence solving the following pairs
of SDP .

min

"
L
4

0
0 u

#
�

"
X 0
0 xs

#

subject to diag(X) = e

eeT �X = xs"
X 0
0 xs

#
� 0

(17)

with dual

max 0y0 + eT y

subject to Diag(y) + eeT y0 + S = L
4

S � 0
y0 � u

(18)

Here xs is the dual variable corresponding to the upper bound constraint
y0 � u. Also we have eeT �X = xs in (17). Similarly the dual variable corre-
sponding to this upper bound constraint in (16) should provide an estimate
for eeT �X. Note that the (17) has a Slater point and hence the dual (18)
attains its optimal solution.
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6 Computational results

In this section we test the linear programming approach on the max cut
and min bisection problems. The instances are taken from the 7th DIMACS
Implementation Challenge [40] and Borchers' SDPLIB [9]. The bundle con-
straints are computed using Helmberg's spectral bundle code SBmethod, Ver-
sion 1.1 [24] available at http://www.zib.de/helmberg/index.html. CPLEX
6.5 [29] is employed in solving the LP relaxations. All tests are executed on
a Sun Ultra 5.6, 440MHz machine with 128 MB of memory.

We utilize the default bundle parameters which are :

1. The relative tolerance (-te). The default value is 1e� 5.

2. The size of the bundle i.e. the number of columns in P. This in turn is
controlled by

(a) The maximum number of vectors kept nk (-mk). The default value
is 20.

(b) The maximum number of vectors added (-ma). The default value
is 5.

(c) The minimum number of vectors added nmin (-mik). The default
value is 5.

The columns in the tables represent

n Number of nodes in the graph.

k Number of SDP constraints.

m Number of edges in the graph.

r Bundle size, the number of columns in P .

% Error jSDP�LP
SDP

� 100j.
SDP The objective value of SDP .

LP The value of LP relaxation.

m1 The number of constraints in the LP relaxation.
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Name n m r SDP LP % Error

toruspm-8-50 1 512 1536 16 527.81 525.91 0.36
toruspm3-15-50 1 3375 10125 21 3.47e+03 3.43e+03 1.15

torusg3-8 1 512 1536 13 4.57e+07 4.54e+07 0.66
torusg3-15 1 3375 10125 18 3.13e+08 3.10e+08 0.96
mcp100 2 100 269 10 226.16 225.75 0.18
mcp124-1 2 124 149 20 141.99 141.06 0.65
mcp124-2 2 124 318 11 269.88 268.97 0.34
mcp124-3 2 124 620 11 467.75 467.37 0.08
mcp124-4 2 124 1271 10 864.41 863.72 0.08
mcp250-1 2 250 331 10 317.26 317.18 0.03
mcp250-2 2 250 612 14 531.93 531.18 0.14
mcp250-3 2 250 1283 13 981.17 980.32 0.09
mcp250-4 2 250 2421 13 1681.96 1679.70 0.13
mcp500-1 2 500 625 10 598.15 594.12 0.67
mcp500-2 2 500 1223 13 1070.06 1069.90 0.02
mcp500-3 2 500 2355 14 1847.97 1843.20 0.26
mcp500-4 2 500 5120 15 3566.74 3559.80 0.19
maxG11 2 800 1600 11 629.16 625.99 0.50
maxG32 2 2000 4000 14 1567.64 1557.91 0.62
maxG51 2 1000 5909 19 4003.81 3988.30 0.39

Table 1: Max Cut Test Results
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In table 1 we compare the SDP objective value with the value of the
LP relaxation. It is seen that the LP relaxation provides a fairly good
approximation to the SDP objective value, with the %error within a % of
the SDP objective value.

Name SDP LP
k n m1

toruspm-8-50 512 512 528
toruspm3-15-50 3375 3375 3396

torusg3-8 512 512 525
torusg3-15 3375 3375 3393
mcp100 100 100 110
mcp124-1 124 124 144
mcp124-2 124 124 135
mcp124-3 124 124 135
mcp124-4 124 124 134
mcp250-1 250 250 260
mcp250-2 250 250 264
mcp250-3 250 250 263
mcp250-4 250 250 263
mcp500-1 500 500 510
mcp500-2 500 500 513
mcp500-3 500 500 514
mcp500-4 500 500 515
maxG11 800 800 811
maxG32 2000 2000 2014
maxG51 1000 1000 1019
maxG55 5000 5000 5025
maxG60 7000 7000 7025

Table 2: Sizes of the max cut relaxations

We list the sizes of the LP relaxation in table 2. Note that k = n, for the
max cut problem. Thus the LP relaxation has (n+

p
n) = O(n) constraints.

1DIMACS [40]
2SDPLIB [9]
3Run out of memory
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Name m n r SDP LP m1 % Error jeeT �Xj
bm1 1 4711 882 10 23.44 24.99 893 6.59 0.06

gpp100 2 264 100 10 44.94 45.85 111 0.44 0.00
gpp124-1 2 149 124 10 7.34 7.35 135 0.01 0.00
gpp124-2 2 318 124 10 46.86 47.52 135 0.55 0.00
gpp124-3 3 620 124 11 153.01 153.59 136 0.16 0.00
gpp124-4 2 1271 124 11 418.99 420.35 261 0.14 0.01
gpp250-1 2 331 250 10 15.45 15.45 261 0.88 0.00
gpp250-2 2 612 250 12 81.87 82.22 263 0.26 0.00
gpp250-3 2 1283 250 13 303.50 305.99 264 0.56 0.00
gpp250-4 2 2421 250 13 747.30 751.72 264 0.43 0.00
gpp500-1 2 625 500 11 25.30 26.83 512 3.62 0.00
gpp500-2 2 1223 500 13 156.06 158.75 514 1.06 0.00
gpp500-3 2 2355 500 15 513.02 520.21 516 0.95 0.01
gpp500-4 2 5120 500 15 1567.02 1578.94 516 0.57 0.00
biomedP 1 629839 6514 - 33.60 MM 3 - - -
industry2 1 798219 12637 - 65.61 MM 3 - - -

Table 3: Min Bisection Test Results
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In table 3 we compare the SDP objective value with the value of the LP
relaxation (16). Here u = 1 is the upper bound on the variable y0. It is seen
that the LP relaxation provides a good approximation to the SDP objective
value. Moreover the dual variable xs provides an estimate for jeeT �Xj. This
value is well below 0:1 for all the reported instances. A typical LP relaxation
has n+ 1 +

p
n = O(n) constraints.

7 Conclusions

In this paper we have described LP approaches to solving SDP problems.
The LP approach uses the columns of the columns of P , in the spectral
bundle approach developed by Helmberg and Rendl [21] as constraints in the
SDP . The number of these constraints is bounded by the square root of
the number of constraints in the SDP . The resulting LP 's can be solved
quickly and provide reasonably accurate solutions. The key idea in using
these constraints is that they provide a good approximation to the null space
of S at optimality. It must emphasized that main computational task in this
bundle LP approach is in estimating the columns of the bundle P . Solving
the resulting LP 's is relatively trivial.

We can look at the LP approach presented in this chapter also as a way
of generating feasible primal iterates for the spectral bundle method. When
the spectral bundle terminates, the primal matrix X is not as yet primal
feasible, namely A(X) � b (in fact equality is attained only in the limit).
It is important to get hold of a primal feasible X in an SDP cutting plane
approach for combinatorial optimization problems.

The LP relaxation we solve is a relaxation to the dual SDP (SDD). The
objective value returned by the spectral bundle scheme is for a feasible y,
where S = C � ATy is psd. Thus when (SDP ) is a minimization problem,
the two schemes give upper and lower bounds respectively on the SDP ob-
jective value. Thus our approach provides another termination criteria for
the bundle approach (close to optimality). For the maxcut problem cannot
guarantee that our LP relaxation is an upper bound on the max cut value.
However in all cases the LP relaxation is within a small percentage of the
SDP objective value, a guaranteed upper bound on the SDP objective value.

We could, in practice strengthen the LP relaxations by computing a
spectral decomposition of the optimal X = � �W + PV P T = �P �V �P T , and use
the columns of �P (which correspond to the nonzero eigenvalues in �V ) as our
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linear constraints. But we found that this does not substantially improve the
LP relaxations for the max cut and min bisection problems, and hence we
have chosen not to mention these in our computational results. However this
choice may be important for (SDP ) with a large number of constraints such
as k equipartition and Lovasz theta problems (since we attempt to solve these
problems with a small number of columns in P ). As a result the aggregate
matrix �W , which contains the remaining subgradient information, becomes
important.

We have successfully tested the bundle LP approach on max cut, min bi-
section and box constrained QP 's. However it must be emphasized that we
have not had much success with SDP 's with a large number of constraints
such as Lovasz theta problems (Krishnan and Mitchell [33]). Since the num-
ber of constraints in the bundle is O(

p
k), larger bundle sizes are necessary.

Moreover it might be interesting to consider a second order bundle scheme
(Oustry [38]) to obtain quick solutions with smaller bundle sizes.

Another interesting topic for future research is to incorporate the LP

approach within a cutting plane or a branch and bound approach to solving
integer programs. However this approach is not entirely straightforward. For
instance for the max cut problem, it is not possible to guarantee a priori that
the LP feasible region will contain the entire max cut polytope. This will
lead to infeasibility during the course of a cutting plane approach. One way
to preserve feasibility is to choose box constraints that correspond to cuts in
the max cut problem.

We have also been working on cutting plane approaches (Krishnan and
Mitchell [33], [34]) to produce a sequence of LP 's whose solutions converge
to the SDP objective value. These cutting plane approaches arise naturally
out of exchange schemes developed for semi-in�nite programming (Hettich
and Kortanek [25]). To make such a cutting plane algorithm competitive
with the bundle LP approach several re�nements are required. The cutting
plane approach uses an interior point algorithm to solve the LP relaxations
approximately, because this results in better constraints than a simplex cut-
ting plane method. However the bundle LP approach is superior to these
cutting plane approaches, since not only do we get better objective values,
but the resulting relaxations are smaller as well. One way to explain this,
is that Theorem 4 due to Pataki [39], which suggests that there exists a de-
generate LP discretization that exactly captures the SDP objective value.
The cutting plane approaches rely on nondegeneracy for convergence, besides
nondegeneracy is also a generic property for the LP , i.e. it occurs almost
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everywhere (Alizadeh et al [2]).
To conclude it is felt that a beginning is made to solve an SDP with a

bounded feasible set as an LP . We provide empirical evidence that only a
few constraints, bounded by the square root of the number of constraints in
the SDP are typically required. This potentially allows us to approximately
solve large scale SDP 's using the state of the art linear solvers that are
readily available.
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