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Abstract

The presence of complementarity constraints brings a combinatorial flavour
to an optimization problem. A quadratic programming problem with com-
plementarity constraints can be relaxed to give a semidefinite programming
problem. The solution to this relaxation can be used to generate feasible solu-
tions to the complementarity constraints. A quadratic programming problem
is solved for each of these feasible solutions and the best resulting solution
provides an estimate for the optimal solution to the quadratic program with
complementarity constraints. Computational testing of such an approach is
described for a problem arising in portfolio optimization.
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1 Introduction

Mathematical programming problems with complementarity constraints arise in many
settings, including engineering and economics. Complementarity relations arise nat-
urally from requirements for equilibrium. For surveys of applications see Ferris and
Pang [6] and Luo et al. [24]. The example problem we will consider later is drawn
from portfolio optimization. This problem can be stated as a quadratic programming
problem with complementarity constraints. It has the form

min f(x, w, v)
subject to g(x, w, v) = 0

wT v = 0
x, w, v ≥ 0

where x is a p-vector, w and v are n-vectors, f(x, w, v) is a quadratic function, and
g(x, w, v) is a linear function. Approaches to solving mathematical programs with
complementarity constraints include SQP methods (Fletcher et al. [7, 8], Fukushima
et al. [9]), interior point methods (Luo et al. [24], see also Leyffer [22]), regular-
ization schemes (Scholtes [32]), active set methods (Fukushima and Tseng [10] and
Scholtes [31]), and nonsmooth optimization techniques (Outrata and Zowe [29]). See
also Ferris et al. [5] for preprocessing and tests of nonlinear programming approaches.
The difficulty with these problems comes from the complementarity constraints,
which impose a combinatorial structure on the problem (Scholtes [33]). Scheel and
Scholtes [30] discuss optimality conditions for mathematical programs with comple-
mentarity constraints.

One impractical method to solve these problems is explicit enumeration. The
complementarity condition wT v = 0 requires that at least one of wi and vi be zero,
for each component i. Examining each possible choice for which n nonnegativity
constraints should be active gives 2n quadratic programming problems, each of which
can be solved efficiently.

In this paper, we investigate a method for choosing a good subset of these 2n

possible subproblems. The method first solves a semidefinite programming relax-
ation of the original problem, and then uses the solution to the relaxation to try to
determine a candidate set of variables that can be fixed equal to zero. If enough
variables are fixed to zero, the number of possible quadratic programming problems
is tractable and a solution can be found. This approach is heuristic, in that there
is no guarantee that the quadratic programming subproblem corresponding to the
optimal complementarity alignment will be selected. Nonetheless, the semidefinite
programming relaxation provides a lower bound on the optimal value to the problem
and the value of the best quadratic subproblem provides an upper bound.

Semidefinite programming problems are convex optimization problems. They con-
sist of a linear objective function and linear constraints together with a constraint
that the variables correspond to a positive semidefinite matrix. For example, the vari-
ables themselves might be the entries of a symmetric positive semidefinite matrix, and
the objective function and other constraints are linear functions of the entries of this
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matrix. For more on semidefinite programming, see the website maintained by Helm-
berg [12], the survey papers by Todd [35] and Vandenberghe and Boyd [38], and the
SDP handbook edited by Wolkowicz et al. [39].

In §2, we describe a semidefinite programming relaxation of a quadratic program
with complementarity constraints. The algorithm is given in §3. Degenerate cases
are considered in §5. Our example problem from portfolio optimization is the subject
of §4, with computational results contained in §6.

2 A semidefinite programming relaxation

In order to simplify the notation we write our standard form quadratic program with
complementarity constraints as

min 1
2
xT Qx + cT x

s.t. Ax = b (QPCC)
x ∈ C

0 ≤ x ≤ u

where c, u, and x are n-vectors, A is an m × n matrix, Q is a symmetric positive
semidefinite n× n matrix, b is an m-vector, and C is the set of n-vectors satisfying a
complementarity relationship of the form xixj = 0 for certain pairs of indices.

The standard technique for obtaining a semidefinite programming problem from
a quadratic programming problem is to exploit the fact that the trace of a matrix
product DE is equal to the trace of ED, provided both products are defined. It follows
that xT Qx = trace(QxxT ). Writing X = xxT , we have trace(QxxT ) = trace(QX).
Since Q and X are symmetric, this is equal to the Frobenius inner product Q • X,
where

D • E :=
n∑

i=1

n∑
j=1

DijEij.

The introduction of a homogenizing variable t lets us write the objective function
to (QPCC) equivalently as

1

2
xTQx + cT x =

1

2

[
Q c
cT 0

]
•
([

x
t

] [
xT t

])
=

1

2
Q̄ • Z

provided t = 1, and where

Q̄ :=

[
Q 0
0 0

]

and

Z :=

[
X tx
txT t2

]
(1)

with
X := xxT . (2)
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The lifting procedures of Balas et al. [1] and Lovász and Schrijver [23] and the
reformulation-linearization technique of Sherali and Adams [34] all involve multiplying
a linear constraint by a variable. Let âi denote the ith row of A, written as a column
vector. Multiplying the constraint âT

i x = bi by xj gives a constraint that can be
written as

(âie
T
j + ejâ

T
i ) • X − bixj = 0 (3)

where ej denotes the jth unit vector of appropriate dimension. This constraint is
valid for i = 1, . . . , m and j = 1, . . . , n. These constraints are implied by Ax = b
so they do not immediately provide additional information in the original variables.
They will prove useful when we change variables later.

The constraints Ax = b can be written equivalently as Ax − bt = 0 if t = 1.
Defining the column vector ai := [âT

i , −bi]
T , we can express (3) as a constraint on Z:

(aie
T
j + eja

T
i ) • Z = 0 (4)

This is valid for i = 1, . . . , m and j = 1, . . . , n + 1, so ej now has dimension n + 1.
Setting j = n + 1 gives back the constraints Ax − bt = 0.

The complementarity constraint xixj = 0 can be expressed as Zij + Zji = 0, or
equivalently as (eie

T
j + eje

T
i ) • Z = 0. This is similar to constraints arising in SDP

formulations of the independent set problem [23].
The nonnegativity constraints on x can be written (en+1e

T
j + eje

T
n+1) • Z ≥ 0 for

i = 1, . . . , n. We also impose a nonnegativity requirement on the other off-diagonal
entries in Z, with constraints of the form (eie

T
j + eje

T
i ) • Z ≥ 0. The upper bound

constraint xi ≤ ui is equivalent to Zii ≤ u2
i , which can be written (eie

T
i ) • Z ≤ u2

i .
Requiring t = 1 can be expressed as (en+1e

T
n+1) • Z = 1.

Putting all this together, we obtain an equivalent optimization problem to (QPCC),
expressed in terms of the variable Z:

min 1
2
Q̄ • Z

s.t. (aie
T
j + eja

T
i ) • Z = 0 i = 1, . . . , m, j = 1, . . . , n + 1

(eie
T
j + eje

T
i ) • Z = 0 (i, j) ∈ I

(eie
T
i ) • Z ≤ u2

i i = 1, . . . , n
(eie

T
j + eje

T
i ) • Z ≥ 0 i = 1, . . . , n, j = i + 1, . . . , n + 1

(en+1en+1)
T • Z = 1

Z is symmetric and has rank 1

Here, I denotes the set of complementarity relationships corresponding to x ∈ C .
Relaxing the constraint that Z have rank one to the requirement that Z be positive

semidefinite gives the semidefinite programming problem

min 1
2
Q̄ • Z

s.t. (aie
T
j + eja

T
i ) • Z = 0 i = 1, . . . , m, j = 1, . . . , n + 1

(eie
T
j + eje

T
i ) • Z = 0 (i, j) ∈ I (SDP )

(eie
T
i ) • Z ≤ u2

i i = 1, . . . , n
(eie

T
j + eje

T
i ) • Z ≥ 0 i = 1, . . . , n, j = i + 1, . . . , n + 1

(en+1en+1)
T • Z = 1

Z � 0
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where Z � 0 is the notation used to indicate that the matrix Z is required to be
symmetric and positive semidefinite.

Note that the constraints (eie
T
i ) •Z ≤ u2

i , (en+1e
T
n+1) •Z = 1, and Z � 0 together

imply that Zij ≤ uiuj, so there is no need to impose upper bound constraints on the
off-diagonal entries.

Problem (SDP ) can be solved in polynomial time using an interior point method
and we used SDPT3 [36, 37] for some of our computational testing. For larger scale
problems, we used the spectral bundle method of Helmberg and Rendl [18, 14, 15].
Cutting plane and bundle methods for approximating the nonsmooth constraint Z �
0 are discussed in Krishnan and Mitchell [21].

More general linear complementarity relationships can be captured in the (SDP )
formulation. For example, if we have a constraint (dTx + α)(gT x + β) = 0 then we
can formulate the constraint[

dgT + gdT αg + βd
αgT + βdT 2αβ

]
• Z = 0.

If desired, a cutting plane approach can be employed to solve (SDP ), so that
only a subset of the constraints (aie

T
j + eja

T
i )•Z = 0 are used initially and additional

constraints are added as needed. The maxcut problem and other combinatorial opti-
mization problems have been solved with this approach; for more details, see Helmberg
and Rendl [17, 15, 16], Krishnan [20], and Mitchell [27].

3 An SDP-based algorithm

We solve (SDP ) as the first stage of an enumerative algorithm. The solution matrix
for (SDP ) provides an estimate x̃ for the optimal solution vector x∗, and that estimate
for x∗ is used to deduce information about membership in the optimal active set,
as discussed later in this section. Such information allows us to identify the most
promising QP-subproblems which are then solved and the best observed solution is
identified. Since (QPCC) is an NP-hard problem, it cannot be guaranteed that the
deduced information is accurate.

As a secondary and corrective step, the best identified solution vector is recursively
examined for degeneracy. (We delay discussion of degeneracy until §5, so as to anchor
it in terms of the portfolio optimization problem described in §4.) If degeneracy is
present then additional QP-subproblems are also solved. The final result of this
process is returned as the best found solution. Figure 1 presents this strategy using
a flowchart.

One metaphor for complete enumeration of all choices for the active set of non-
negativity constraints is that of a tree. Speaking in those terms, the idea behind our
strategy is that solving (SDP ) gives us a way to immediately go deep into the tree.
We hope to be able to correctly eliminate a large number of leaves from consideration.
With the recursive degeneracy check, additional leaves can be considered as justified.
Figure 2 illustrates our strategy using this tree metaphor.
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Solve (SDP)

       Deduce Active Set Information

Solve Corresponding QP-subproblems

Select MinimumExamine for Degeneracy

Relax (QPCC)
into (SDP)

If found, solve "Neighboring" QP-subproblems

If no change or not degenerate, 
report best found solution

Figure 1: Flowchart illustrating the solution strategy used.
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Figure 2: The figure uses the tree metaphor for our solution strategy. By solving
(SDP ) and attempting to determine members of the optimal active set, only the
small shaded set of QP-subproblems need to be initially considered. Here the bold
lines illustrate where activity decisions have been made within the tree.
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Let Z∗ denote a solution matrix returned for (SDP ). This solution matrix may
be an intermediate iterate or could be the solution returned as optimal from the SDP
solver. The spectral decomposition can be applied. Analytically:

Z∗ =
n+1∑
i=1

λiξiξi
T

where λ1 ≥ λ2 ≥ . . . ≥ λi ≥ . . . ≥ λn+1 are the eigenvalues of Z∗ listed in order of
decreasing magnitude. The eigenvector associated with each λi is denoted by ξi.

Let Z1 = λ1ξ1ξ1
T . This is certainly a rank-one matrix; in fact it has the attractive

property of being the “closest” rank-one matrix to Z∗ w.r.t. ‖ · ‖2 (see Demmel [4]
or Golub and Van Loan [11], for example). Given Zij ≥ 0 ∀i, j, it follows from
the theorem of Perron-Frobenius (see, eg, [19]) that every component of ξ1 has the
same sign. Without loss of generality, we assume ξ1 ≥ 0. As an aside, the second
eigenvalue, λ2, measures how close the full matrix is to being rank-one, analytically:
‖Z∗ − Z1‖2 = λ2. Computationally, λ2 was found to be a solver-independent measure
of progress towards a rank-one solution matrix.

Our estimate x̃ comes directly from this rank-one matrix Z1. The following ana-
lytic construction identifies the relationship that exists between x̃ and Z1:

Z1 = λ1ξ1ξ1
T

=
(√

λ1 ξ1

) (√
λ1 ξ1

T
)

=:

[
x̃
t̃

] [
x̃T t̃

]

We compute x̃ after using the spectral decomposition to find the closest rank-one
matrix, Z1, to a solution of (SDP ). Once x̃ has been determined, we compare x̃i and
x̃j for (i, j) ∈ I in order to determine whether to set xi = 0 or xj = 0. The complete
procedure is given in Figure 3.

A heuristic which is perhaps better suited for larger problems is to rank the deci-
sions and always generate QP-subproblems corresponding to the weakest N decisions
where N is specified by the user. This single parameter N takes the place of the two
decision tolerances, Ltol and Utol. This idea has the computational advantage that the
number of QP-subproblems is fixed. Such control over subproblem generation could
perhaps be useful for balancing the computational load if subproblems are solved in
parallel.

Since we are using (SDP ) as the first stage in an enumerative algorithm, it is
not necessarily the most productive investment of computation to solve (SDP ) all
the way to optimality. Stopping at some intermediate stage can still provide enough
information to make valid activity decisions. The computational results presented in
§6 exemplify the empirical accuracy of this remark.

Estimating x̃ via the spectral decomposition is numerically stable and makes fullest
use of all information contained in the (SDP ) solution matrix. Other estimates are

possible, for example x̃ =
√

diag (X∗) where X∗ is the first block of Z∗. However,
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Step 1: Solve (SDP ) until a user-specified stopping criterion is satisfied. Several
examples of valid stopping criteria are: a fixed number of iterations, a time
limit, a threshold on the second eigenvalue λ2, or a relative precision optimality
criterion.

Step 2: Take the solution returned from (SDP ) and apply the spectral decomposi-
tion to find the closest rank-one matrix, Z1 = λ1ξ1ξ1

T .

Step 3: Estimate x̃ =
√

λ1 ξ1(1 :n). Here the notation ξ1(1 :n) refers to the first n
elements of ξ1.

Step 4: Use x̃ to make activity decisions. Introduce tolerances Utol and Ltol.

If
{

x̃i

ui
≥ Utol and

x̃j

uj
≤ Ltol

}
then xj = 0 should be considered active.

If
{

x̃i

ui
≤ Ltol and

x̃j

uj
≥ Utol

}
then xi = 0 should be considered active.

If neither criterion is satisfied then neither constraint is forced to be active.

Figure 3: Choosing an active set of constraints

these are only useful if (SDP ) is solved to optimality. As mentioned previously, this
is not necessarily the most productive investment of computation.

It may be possible to use sensitivity analysis to justify some of the activity deci-
sions. Given a decision to make xi = 0 active, it would be useful to determine lower
bounds on the values of quadratic subproblems where this constraint is not forced to
be active. If (i, j) ∈ I , such a bound can be determined by estimating the cost of
forcing xj = 0 to be active. The optimal value of (SDP ) with the additional con-
straint Zjj = 0 provides such a bound. Of course, solving this modified semidefinite
programming is not attractive computationally if a number of variables are being con-
sidered, so Helmberg [13] describes a dual search procedure for underestimating the
optimal value. The performance of variants of Helmberg’s procedure in the setting of
(QPCC) is worthy of further investigation.

Our algorithm requires the solution of several related quadratic programming
problems. Solution information to one problem, including the optimal solution and
Lagrange multipliers, can sometimes be used to give a good warm start for a similar
problem.

4 A portfolio optimization problem

Constructing a portfolio of investments is one of the most significant financial deci-
sions facing individuals and institutions. A decision-making process must be devel-
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oped which identifies the appropriate weight each investment should have within the
portfolio. The portfolio must strike what the investor believes to be an acceptable
balance between risk and reward. In addition, the costs incurred when setting up a
new portfolio or rebalancing an existing portfolio must be included in any realistic
analysis.

Essentially the standard portfolio optimization problem is to identify the optimal
allocation of limited resources among a limited set of investments. Optimality is
measured using a tradeoff between perceived risk and expected return. Expected
future returns are based on historical data. Risk is measured by the variance of those
historical returns.

Markowitz [25] first presented a quadratic programming model for choosing a
portfolio, minimizing a quadratic risk measurement with a set of linear constraints
specifying the minimum expected portfolio return, E0, and enforcing full investment
of funds. The decision variables xi are the proportional weights of the ith security in
the portfolio. Here n securities are under consideration. Additionally, µ is the column
vector of expected returns and V is the positive semidefinite covariance matrix. This
formulation is:

minx
1
2
xTV x

s.t. µT x ≥ E0∑n
i=1 xi = 1

xi ≥ 0 ∀i.

By varying the parameter E0 and solving multiple instances of this problem, the
set of efficient portfolios can be generated. This set, visualized in a risk/return plot,
is called the efficient frontier. The return E0 can be plotted on the horizontal axis and
the risk 1

2
xTV x can be plotted on the vertical axis. An investor may decide where

along the efficient frontier (s)he finds an acceptable balance between risk and reward.
Transactions are made to change an already existing portfolio, x̄, into a new and

efficient portfolio, x. A portfolio may need to be rebalanced periodically simply as
updated risk and return information is generated with the passage of time. Further,
any alteration to the set of investment choices would necessitate a rebalancing decision
of this type.

We assume proportional transaction costs are paid each time a security is bought
or sold. In addition to the obvious cost of brokerage fees/commissions, here are two
examples of other transaction costs that can be modeled in this way:

1. Capital gains taxes are a security-specific selling cost that can be a major con-
sideration for the rebalancing of a portfolio.

2. Another possibility would be to incorporate an investor’s confidence in the
risk/return forecast as a subjective “cost”. Placing high buying and selling
costs on a security would favor maintaining the current allocation x̄. Placing a
high selling cost and low buying cost could be used to express optimism that a
security may outperform its forecast.
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Let w and v denote the quantities of the securities that are bought and sold,
respectively. In an efficient portfolio, a stock will not be both bought and sold, so we
impose the complementarity constraint wT v = 0. Let cB and cS denote the vectors of
transaction costs incurred for buying and selling, respectively. We assume cB+cS > 0,
0 ≤ cB ≤ e and 0 ≤ cS ≤ e, where e denotes the vector of ones.3 The total amount
paid in transaction costs is cT

Bw + cT
Sv and the amount invested in each security is

x = x̄ + w − v. The total amount invested after paying the transaction costs is
eTx = eT x̄ − cT

Bw − cT
Sv = 1 − cT

Bw − cT
Sv. This can be expressed equivalently as a

constraint on w and v, namely (cB + e)T w + (cS − e)T v = 0. We require that the
expected return for x should be at least E0. The calculation of the risk needs to be
normalized by the square of the amount invested, giving a modified risk measurement:

scaled risk =
1

2

xTV x

(1 − cT
Bw − cT

Sv)2
.

By using a change of variables x̂ = sx, ŵ = sw, and v̂ = sv, with s = 1/(1−cT
Bw−cT

Sv),
we get a quadratic program with complementarity constraints:

minx̂,ŵ,v̂,s
1
2
x̂T Qx̂

s.t. µT x̂ − E0s ≥ 0
x̂ − ŵ + v̂ − x̄s = 0 (POCC)

(cB + e)T ŵ + (cS − e)T v̂ = 0
− cT

Bŵ − cT
S v̂ + s = 1

ŵT v̂ = 0
x̂, ŵ, v̂, s ≥ 0.

This change of variables is an extension of the standard method of Charnes and
Cooper [3]. It is valid since the nonnegativity of w, v, cB and cS force s to be greater
than one.

The criterion given in Figure 3 used upper bounds on the variables. Since we
wish to avoid buying and selling the same security, we can impose the constraints
w ≤ e − x̄ and v ≤ x̄. These do not translate into simple upper bounds on ŵ and v̂
in (POCC). For our computational results, the costs cB and cS were small enough
that we could use a slight weakening of the bounds in (SDP ). We performed the
calculation in the last step of Figure 3 with the original variables w and v.

In §6, we will discuss the computational performance of our algorithm when ap-
plied to this quadratic program with complementarity constraints. It should be noted
that there are alternative methods to solve this problem; see Mitchell and Braun [28]
for an exact algorithm. Other approaches to portfolio problems with transaction costs
are surveyed in [28]; these include models with fixed costs per transaction, models
placing transaction costs directly in the objective function, models with price breaks
for different size transactions, dynamic rebalancing methods, stochastic programming
approaches, and models for the related index tracking problem.

3If there exists a security for which the transaction costs are zero, then it is not necessary to
introduce separate buy and sell variables for this security. To simplify the presentation, we assume
that at least one of the transaction costs for each security is nonzero.
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5 Degeneracy

A degenerate decision is one where both members of a complementary pair are zero in
the best found solution to a quadratic programming subproblem. In the context of our
solution strategy, degeneracy has the following effects. At the very least, degeneracy
causes us to exclude more possibilities from consideration than can really be justified.
At worst, degeneracy can be one obstacle that prevents us from identifying the optimal
solution. Degeneracy relates to the accuracy — or better said — inaccuracy of our
information regarding the optimal active set.

Our response to degenerate decisions will be to enumerate more possibilities.
However, we obviously want to generate and solve as small a total number of QP-
subproblems as possible. So if we respond to degeneracy by solving additional QP-
subproblems, which problems are sensible? It turns out that the geometry of the
feasible region gives us a rationale for which additional QP-subproblems should be
considered.

The exploration of the feasible region has some similarities with the active set
approach of Scholtes [31]. Scholtes also looks at different quadratic programming
subproblems and looks to move between them by imposing varying combinations
of active constraints. Typically the active constraints will include both indices in
some complementary pairs and this imposed degeneracy is then relaxed based on
consideration of Lagrange multipliers.

For the rest of this section, we will discuss degeneracy in the context of the portfolio
optimization of §4. This discussion generalizes easily. A degenerate decision in the
portfolio optimization problem is to neither buy nor sell a security i, so xi = x̄i.
Figure 4 illustrates a three security problem where decisions regarding x1 and x2 were
originally made following solution of (SDP ). Intersecting these decisions identifies
the two faces which must be considered. The best observed solution in this set of
QP-subproblems is located by the point A.

By inspection, point A contains a degenerate decision for x2. Geometrically, this
is recognizable since point A lies on the decision boundary x2 = x̄2. The most con-
servative response is to simply “unmake” the degenerate decision for x2. This would
mean that the only enforceable decision boundary concerns x1. Being to the left of
the decision boundary x1 = x̄1 means that one additional subproblem correspond-
ing to the additional shaded face must be examined. Geometrically, that additional
subproblem corresponds to a neighboring face since it shares a boundary.

To finish off our three dimensional example, Figure 5 presents the correspond-
ing tree for the example of Figure 4. The same shading scheme is used and the
QP-subproblem which gave rise to solution A is labeled. One observation is that
although there are 23 = 8 possible active sets, there are only 6 faces in the feasible
region. The explanation is that a possible active set exists for each possible buy and
sell combination. However, two of these active sets are immediately known to be in-
feasible. The infeasible active sets correspond to buying every security or selling every
security. This cannot be consistent with the full investment constraint and has no
geometrical realization. As a technical aside, the response to the degenerate decision
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Figure 4: This figure idealizes the feasible region of the three security rebalancing
problem. Point A is a degenerate solution which could be optimal. However, the
additional neighboring face must be examined before that could be decided with any
confidence.
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regarding x2 brings one of those infeasible QP-subproblems into consideration.
There are multiple ways that additional QP-subproblems can be generated in re-

sponse to degeneracy. The approach which has already been discussed is conservative
in the sense that it “unmakes” any decision that is found to be degenerate. This
means that the number of additional subproblems grows exponentially each time a
degenerate decision is found. Other approaches are more aggressive in the sense that
fewer additional QP-subproblems are considered in response to degeneracy. The two
approaches we will present here both rely on decision-making criteria which are sim-
ilar to the one introduced in the final step of Figure 3. However for the recursive
degeneracy check, the best observed QP-subproblem solution vector is supplied as
the estimate x∗.

Before beginning our presentation of two specific degeneracy responses, an implicit
characteristic of any QP-subproblem solution should be made explicit. Notice that
the solution of every QP-subproblem has already had complementarity imposed. That
is to say there are only two possible estimates for each complementary pair: either
(x∗

i , 0) or (0, x∗
j) where x∗

i , x
∗
j ≥ 0 depends on which variable was assumed to be active

for that subproblem. This allows us to construct a specialized decision criteria for
each approach.

5.1 The conservative choice

The first approach is the most conservative way to grow the tree. It reverses any
decision that is found to be degenerate and so doubles the number of QP-subproblems
for each degenerate decision. Suppose an initial activity decision was made for the
complementary pair (xi, xj). The conservative decision criteria can be expressed in
the following manner:

If xj ≥ 0 had been considered an active constraint but x∗
i ≈ 0 then xj ≥ 0

should no longer be forced to be active.

The analytic statement x∗
i ≈ 0 was implemented as x∗

i ≤ ε where ε is a numerical
tolerance, for example ε = 10−8.

5.2 A more aggressive approach

Once an optimal solution is found for any QP-subproblem, several useful pieces of
information are known. First, that QP-subproblem objective value is an upper bound
on the optimal value of (QPCC) just as (SDP ) was a lower bound on (QPCC).
Second — and of more direct interest — that solution vector constitutes an estimate
of the complete optimal active set. Even with complementary pairs of variables
for which no activity decision was made, decisions regarding what was bought and
what was sold can be observed. The previous conservative approach discarded that
information. This more aggressive approach makes use of that information.

13



x
3

x
2

1
x

x

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Originally Considered

Considered in Response to Degeneracy

buy sell sell

buy

sellsell

buy

sell

buy buy

sell

buy

sell

buy

A
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the leaves that were actually considered.

14



Again, let x∗ be the best observed QP-subproblem optimal solution vector. All
determinations of active constraints found by the conservative approach are ob-
served. Additional requirements are imposed, in order to restrict the number of
QP-subproblems. Suppose no initial activity decision was made for the complemen-
tary pair (xi, xj). The aggressive approach also uses (x∗

i , x
∗
j) as its estimate and

applies the following decision criteria:

If
x∗

i

ui
≥ Ūtol then xj ≥ 0 should now be considered an active constraint.

Here, Ūtol is a user-specified tolerance. It is important to stress that nondegenerate
decisions are never reversed by this criteria.

In simplest terms, the aggressive approach keeps all decisions which can be inferred
from the best observed solution, while reversing any degenerate decisions made in
Figure 3. Figures 6 and 7 show in sequence an example of how this approach works.
With the aggressive approach, the number of additional QP-subproblems that will
be enumerated in response to degeneracy grows linearly in the number of degenerate
variables.

We are considering an NP-hard optimization problem so we cannot guarantee that
our strategy with either a conservative or aggressive degeneracy response will always
identify the optimal solution. Being aggressive by considering fewer subproblems is a
systematic way to reduce the amount of computation but does not guarantee better
performance. Being conservative systematically increases the number of subprob-
lems brought into consideration but still does not provide a guarantee of optimality.
However, in real-world situations where suboptimal solutions offering incremental im-
provement have their own value, this variety in approach is a useful feature of our
strategy.

6 Computational results

We discuss two portfolios in this section, a nine-security one due to Markowitz [26]
in §6.1, and a portfolio consisting of the thirty stocks in the Dow Jones Industrial
Average in §6.2. More data on these problems can be found in Braun [2].

As the parameter E0 is varied, an efficient frontier is traced out. When the
transaction costs are zero, this gives the classical Markowitz efficient frontier. For
nonzero transaction costs, we obtain what we refer to as a transaction cost efficient
frontier, or TCEF.

6.1 Performance analysis for the Markowitz portfolio

Each point on a nonzero transaction cost efficient frontier corresponds to a separate
instance of (QPCC). Each instance is a separate test of how well our solution strategy
performs. Looking at a specific frontier or even just at a specific point, performance
information regarding our solution strategy can be presented.
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Figure 8: The circle locates the initial portfolio. This figure presents information
regarding the performance of our solution strategy.

We assume the initial portfolio is equally weighted in the nine securities and that
the costs are 5% for both buying and selling any security. Figure 8 shows the c=5%
TCEF. For this TCEF, the Spectral Bundle solver [18] was allowed a 10 minute
time limit to solve each instance of (SDP ). For all instances, (SDP ) was solved
to optimality before that time limit was reached. A conservative set of tolerances
(Ltol = 10% and Utol = 90%) was used to make activity decisions. The terms used in
Figure 8 have the following meanings:

• “Hmin(QPsubs)” points are found using our solution strategy.

• “min(QPSubs)” points result from exhaustively considering all possibilities.

• Finally, the series “(SDP ) Optimal” locates the optimal value of the relaxation.

Looking at Figure 8, several observations can be made. To provide orientation,
comparisons can be made for each level of required expected return. This corresponds
to vertical comparisons in the plot. First, notice that our solution strategy correctly
identified the true optimal solution in every instance along this frontier. This is
indicated by the “dot within a square.” A second observation is that the optimal
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Required (SDP ) Minimal Number of
Expected Objective QP-subproblem QP-subproblems

Return (%) Value Objective Value Considered
18.26 0.043725 0.122595 n.a.
17.62 0.037793 0.086903 16
16.98 0.031234 0.070248 16
16.34 0.025977 0.058898 16
15.70 0.021162 0.049131 16
15.06 0.018161 0.040815 16
14.42 0.015173 0.034284 16
13.78 0.013183 0.029781 16
13.14 0.011649 0.027103 16
12.50 0.010877 0.024602 16
11.86 0.010024 0.023381 32
11.22 0.009383 0.021267 32
10.58 0.008607 0.019820 32
9.94 0.007897 0.018517 32
9.30 0.007363 0.017363 32
8.66 0.006915 0.016326 32
8.02 0.006528 0.015471 16
7.38 0.006182 0.015153 16
6.74 0.005994 0.014462 16
6.68 0.005937 0.014426 16
6.10 0.005909 0.013850 8

Table 1: Since 9 securities were involved, the fourth column compares against a total
of 29 = 512 possible QP-subproblems. Notice that for most cases, correct decisions
were made for 5 out of the 9 securities. No degenerate solutions were encountered
during this calculation.

value of (SDP ) does appear to be a consistently tight lower bound on the true
optimum.

Table 1 contains the numerical results illustrated in Figure 8. It also quantifies the
assertion that our strategy considered a relatively small number of QP-subproblems
in order to find the optimal solution. To explain the lone “n.a.” entry in Table 1, the
highest returning point on any TCEF is directly solvable as a linear program. There-
fore, equivalent performance information regarding the number of QP-subproblems
is not applicable.

6.1.1 Examination of the QP-subproblems selected by the strategy

Table 1 demonstrates that our strategy selected a relatively small subset from the
set of all possible QP-subproblems. However, the optimal subproblem was located
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Optimal
Optimal Objective Values

Objective Values for QP-subproblems
for the 10 Best Selected by the

QP-subproblems Strategy Comment on Relationship
0.024602 0.024602 Strategy selected true optimal solution.
0.024703 Not selected, see Figure 9.
0.024722 0.024722 Selected by our strategy.
0.024737 0.024737 Selected by our strategy.
0.024875 0.024875 Selected by our strategy.
0.024877 0.024877 Selected by our strategy.
0.025168 0.025168 Selected by our strategy.
0.025186
0.025238
0.025240

0.033665 Feasible but not close to optimal.
0.034617 Feasible but not close to optimal.
0.035161 Feasible but not close to optimal.

Table 2: Notice that the QP-subproblems selected by our strategy are densely clus-
tered near the true optimum. More specifically, the strategy selected the true optimal
and five other subproblems located within 2% of the true optimum.

within that subset. Was this simply luck or can we provide some additional support
for the performance of our strategy? Support can and does come from an analysis of
the distribution of the QP-subproblems selected by our strategy against the set of all
possible subproblems.

We now choose to focus on a single representative point rather then the entire
Markowitz c=5% TCEF. The point chosen corresponds to a required expected return
of 12.50%. This is close to the return already offered by the initial portfolio since
µT x̄ = 12.60%. Exhaustively searching all 512 possible QP-subproblems identifies
that only 290 subproblems are feasible. Each feasible QP-subproblem has an optimal
objective value which we sort to identify the 10 Best QP-subproblems. Here, “Best”
refers to the property that from the set of all possibilities, these QP-subproblems have
the 10 smallest optimal objective values.

A similar examination of the 16 QP-subproblems that were selected by our strategy
finds that 9 are feasible. The optimal objective values of these 9 QP-subproblems can
also be sorted by objective value. Table 2 presents a side-by-side comparison of the
results.

In Table 2, the “2nd Best” QP-subproblem with objective value 0.024703 was not
selected by our strategy. This would certainly seem to weaken this analysis. However,
looking at the actual portfolios which are optimal in each subproblem is enlightening.
Figure 9 below presents that information. The vertical ordering and side-by-side
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Figure 9: Securities numbered 1 through 9 exist. No activity decisions were made
for securities #3, 5, 6, and 7. The first and second rows of the lefthand panel are of
particular relevance.

comparison format of Table 2 is replicated in Figure 9. Symbols indicate whether
the optimal allocation of a particular security was unchanged, increased, or decreased
from its initial value. The symbols used are: bought 4, sold 5, unchanged 2. The
absence of a symbol means that the entire allocation of that particular security was
liquidated.

Notice that the optimal solution of the 2nd Best QP-subproblem is feasible in
the true optimum. Table 3 highlights this by showing the active set choices for
these subproblems. This subproblem was not selected because it violated the activity
decision to sell security #2. As evidenced by the true optimum, that sell decision was
in fact correct. So, an analysis of the optimal solutions supports the performance of
our strategy, at least for this instance.

To conclude this analysis, we observe that our strategy selected a subset of QP-
subproblems which disproportionately populates the most promising region of the
search space. This is exactly the behavior which was the original goal of our solution
strategy.

6.1.2 Presentation of the Markowitz c=5% TCEF portfolios

As was mentioned earlier, the actual real-world rebalancing process requires informa-
tion about the actual amounts of each security that should be bought or sold. Before
leaving this TCEF, Figure 10 shows which securities are involved at each point along
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Objective Values
for the 2 Best Security Number

QP-subproblems 1 2 3 4 5 6 7 8 9
0.024602 Sell Sell Buy Sell Buy Sell Buy Sell Sell
0.024703 Sell Buy Buy Sell Buy Sell Buy Sell Sell

Table 3: This table contains the active set choices for the 2 Best QP-subproblems.
Notice that the slightly suboptimal QP-subproblem solution is feasible in the true
optimal. All decisions are the same except for security #2. Since this subproblem
was constrained to buy security #2, the slightly suboptimal solution is a “Buy=0”
decision.

the TCEF. We use the same symbology that was introduced for Figure 9. However,
the vertical scale is now the minimum required expected return (ie. the horizontal
coordinate) of the efficient frontier plots.

Figure 10 contains a great deal of useful information which can be accessed by
visual inspection. Looking down a column, changes occurring in the portfolio as the
required expected return is decreased can easily be seen. Also, horizontal comparisons
between panels allow for comparisons to be made between the no-cost and c=5%
frontiers. The portfolios along the TCEF are not simply related to the portfolios
along the no transaction cost efficient frontier. Sometimes, entirely new securities are
involved. Sometimes, buy and sell decisions are reversed. So Figure 10 highlights
that the introduction of costs changes the portfolio rebalancing problem dramatically
and that the optimal solutions are also quite different.

6.1.3 A degenerate case

The uniform portfolio allocation and cost structure is not the most realistic test for
our solution strategy. Real portfolios change their relative composition over time as
the better-returning securities grow more than those performing less well or those
securities that decline outright. So nonuniform initial allocations are worth consid-
eration. Also, to take full advantage of the flexibility of our cost model, nonuniform
costs will be considered as well. The TCEF presented in this subsection also makes
use of the Markowitz dataset. All nine securities are involved initially. The alloca-
tions were randomly selected as were the buying and selling costs. Those costs were
kept on the order of a few percent. (These parameters are detailed in Braun [2].)

For one of the required returns for this instance, a degenerate optimal solution was
obtained. In this solution, six of the nine nonnegativity constraints were determined
to be active in the final step of Figure 3. For the conservative approach detailed in
§5.1, 32 subproblems were solved altogether. With the aggressive approach of §5.2,
only 11 subproblems needed to be solved. The optimal solution was found in each
case, but only after examining the additional problems as detailed in §5.
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Figure 10: These panels show which securities are involved along the no-transaction
cost efficient frontier (left) and the c=5% TCEF (right).
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6.2 Rebalancing a Dow Jones portfolio

In this final set of computational results, we demonstrate the effectiveness of our
strategy on a larger and so more realistic dataset. We applied our solution strategy
to the problem of rebalancing portfolios composed of the 30 stocks which currently
make up the Dow Jones Industrials Average. All securities were involved initially.
With a portfolio of 30 securities, there are 230 ∼ 109 or over a billion possible QP-
subproblems. All securities were involved initially, with proportions varying from 1%
to 5%. The buying and selling costs varied from security to security, from 0% to 5%.
For the values of the parameters x̄, cB, and cS, as well as for the return and risk data,
see Braun [2].

For this TCEF, the Spectral Bundle solver was allowed 30 minutes to solve each
instance of (SDP ). However, no instance was solved to optimality before that time
limit expired. As the caption of Figure 11 notes, this degrades how tight of a lower
bound (SDP ) provides for some points along the TCEF. However, the use of sub-
optimal (SDP ) solution matrices does not appear to have degraded the validity or
performance of our decision-making process. Large numbers of activity decisions were
made and no degenerate points were encountered. The same conservative set of de-
cision tolerances was used as in §6.1. The performance of the strategy is illustrated
in Figure 11, with the corresponding numerical results detailed in Table 4. Similar
figures to Figure 10 can be constructed for this portfolio, allowing similar conclusions.

7 Conclusions

We have demonstrated an interesting approach to finding a good solution to a quadratic
programming problem with complementarity constraints. The computational testing
on portfolio optimization problems shows that the method holds promise. Further
investigation of the method on larger problems arising from different applications is
planned.
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