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Abstract

Many combinatorial optimization problems have relaxations that are semidef-
inite programming problems. In principle, the combinatorial optimization prob-
lem can then be solved by using a branch-and-cut procedure, where the prob-
lems to be solved at the nodes of the tree are semidefinite programs. It is
desirable that the solution to one node of the tree should be exploited at the
child node in order to speed up the solution of the child. We show how the
solution to the parent relaxation can be used as a warm start to construct an
appropriate initial dual solution to the child problem. This restart method for
SDP branch-and-cut can be regarded as analogous to the use of the dual simplex
method in the branch-and-cut method for mixed integer linear programming
problems.
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1 Introduction

Many combinatorial and quadratic optimization problems can be written as:

min vTCv
subject to vTAiv ] bi, i = 1, . . . , m (COP )

vj = ±1, j = 1, . . . , n,

where v is an n-vector, C and Ai, i = 1, . . . , m are symmetric n × n matrices, b is
an m-vector, and ] denotes either = or ≥ or ≤, depending on the particular ith
constraint. In many applications, C is a sparse matrix and each Ai is a rank one
matrix that may also be sparse. For example, the maximum cut problem in a graph
with weighted edges requires dividing the vertices of a graph into two sets so that
the total weight of the edges having one endpoint in each set is as large as possible.
This can be expressed in the form (COP ) by letting Cij be the negative of the edge
weight between vertices i and j, with no constraints of the form vTAiv ] bi necessary.
The equipartition problem requires that the vertices of a graph be divided into two
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sets of equal cardinality with as few edges as possible having one endpoint in each
set. This can be formulated by taking C to be the matrix of edge weights and taking
A1 = eeT , where e denotes a vector of ones of appropriate dimension, and b1 = 0. No
other constraints are needed. For other examples, see [1, 4, 10, 11, 19].

The standard semidefinite programming relaxation of (COP ) is

min C • V
subject to Vjj = 1, j = 1, . . . , n, (SDP )

Ai • V ] bi, i = 1, . . . , m
V � 0.

Here, • denotes the Frobenius inner product, so C • V :=
∑n

i=1

∑n
j=1 CijVij . Further,

V � 0 denotes that the matrix V must be positive semidefinite. (SDP ) is obtained
from (COP ) by noticing that the quadratic form vTCv can be written as C • V if we
equate vvT and V . It follows that the diagonal elements of V must equal one, and
that V must be positive semidefinite. The condition that V is a rank one matrix is
omitted, so (SDP ) is a relaxation of (COP ). This formulation has been used, for
example, in [18, 8, 11, 4, 13].

With the addition of slack variables, if necessary, (SDP ) can be written equiva-
lently as

min C • V + cT x
subject to Vjj = 1, j = 1, . . . , n (SDPE)

Ai • V + aT
i x = bi, i = 1, . . . , m

V � 0, 0 ≤ x ≤ u,

where c, x, u and ai, i = 1, . . . , m are l-vectors. Since V � 0 and the diagonal elements
of V are all equal to one, we have that −1 ≤ Vij ≤ 1 for any element. Therefore, it is
easy to calculate an upper bound ui for any slack variable xi. The dual problem to
(SDPE) is

max trace(W ) + bTy − uT w
subject to W +

∑m
i=1 yiAi + S = C (SDPD)

ATy + z − w = c
S � 0, z ≥ 0, w ≥ 0,

where A is an m × l matrix whose ith row is ai, W is a diagonal matrix, y is an
m-vector, S is an n × n matrix, and z and w are n-vectors.

There are many interior point algorithms for solving semidefinite programming
problems; see, for example, [1, 16, 12, 17, 14, 19]. Benson et al. [3, 4] have proposed
using a dual-scaling algorithm to solve SDP relaxations of combinatorial optimization
problems. This approach is able to exploit sparsity in the objective function matrix C
to solve far larger instances than previously reported with semidefinite programming
approaches. In particular, if C is sparse and Ai are sparse or of low rank, then S is
either sparse or a low rank modification of a sparse matrix. Therefore, sparse matrix
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techniques can be used if we only work with the dual variables. Primal variables can
be calculated as necessary.

A branch-and-cut approach is described in §2. In §3 we show that an analogue
of the dual simplex method can be used to solve semidefinite programming problems
when using a branch-and-cut approach, because a strictly feasible dual solution can
be found easily. A method for finding a bound for the child problems is described in
§4, and the determinants of the dual slacks of the child nodes are discussed in §5; the
results of these two sections suggest that branching on elements of V ′ that are close
to zero (the elements that are hardest to fix) has some useful properties. It may be
that there is no strictly feasible primal point after branching; it is shown in §6 how to
handle some forms of redundant constraints and how to modify the primal problem
in order to ensure the existence of a strictly feasible primal solution.

2 A branch-and-cut approach

Helmberg and Rendl [11] investigated a branch-and-cut approach to solving prob-
lems of the form (SDPE). They propose several classes of cutting planes, including
triangle inequalities:

Vij + Vjk + Vik ≥ −1,

−Vij − Vjk + Vik ≥ −1.

These inequalities are valid for any three distinct indices. They arise from exploitation
of the fact that Vij = vivj and the elements of v are all ±1. The corresponding
constraint matrix A∆ can be written as a rank one matrix ddT , where d only has
nonzeroes in positions i, j, and k. After adding cutting planes, the relaxations still
have the form (SDPE). The cutting planes should always be added using symmetric
matrices Ai.

Note that it is easy to find a new feasible iterate for the dual problem: we can set
the new components of y to be zero, and set zi = wi = 1 for the new components of z
and w. Helmberg and Rendl [11] propose taking V = I as the new primal iterate for
the MAX-CUT problem, since this is strictly feasible and is a convex combination of
cuts.

The branching scheme proposed by Helmberg and Rendl [11] corresponds to
branching on whether vi and vj should be the same or different. For the MAX-
CUT problem, this corresponds to deciding whether vertices i and j should be on the
same side of the cut or on opposite sides. With this branching rule, Vki and Vkj are
also then constrained to be either the same or different (depending on the branch)
for each index k. This means that the problem can be replaced by an equivalent
semidefinite program of dimension one less. Without loss of generality, let us assume
that we are branching on whether vn−1 = vn or vn−1 6= vn. If the objective function
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matrix C in the SDP formulation is written

C =


 C̄ p1 p2

pT
1 α β

pT
2 β γ


 , (1)

where C̄ is an (n − 2) × (n − 2) matrix, p1 and p2 are (n − 2)-vectors, and α, β,
and γ are scalars, then we obtain two different matrices depending on the branch. If
vn−1 = vn, we obtain:

CS =

[
C̄ p1 + p2

pT
1 + pT

2 α + 2β + γ

]
. (2)

If vn−1 6= vn, we obtain:

CO =

[
C̄ p1 − p2

pT
1 − pT

2 α − 2β + γ

]
. (3)

Similarly, if the matrices Ai are written

Ai =


 Āi qi1 qi2

qT
i1 αi βi

qT
i2 βi γi


 , (4)

where Āi is an (n − 2) × (n − 2) matrix, qi1 and qi2 are (n − 2)-vectors, and αi, βi,
and γi are scalars, then we obtain two different matrices depending on the branch. If
vn−1 = vn, we obtain:

AiS =

[
Āi qi1 + qi2

qT
i1 + qT

i2 αi + 2βi + γi

]
. (5)

If vn−1 6= vn, we obtain:

AiO =

[
Āi qi1 − qi2

qT
i1 − qT

i2 αi − 2βi + γi

]
. (6)

With the dual scaling algorithm of Benson et al. [4], it is useful to work with low
rank matrices, if possible. The transformation defined above leaves a rank one matrix
as a rank one matrix, as the following lemma shows.

Lemma 1 If Ai is a rank one matrix then AiS and AiO are both rank one matrices.

Proof: If Ai is a rank one matrix, we can write

Ai =




vA

Γ
Φ


 [

vT
A Γ Φ

]
,
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where vA is an (n− 2)-vector, and Γ and Φ are scalars. It is can then be verified that
AiS and AiO are given by

AiS =

[
vA

Γ + Φ

] [
vT

A Γ + Φ
]
, AiO =

[
vA

Γ − Φ

] [
vT

A Γ − Φ
]
,

as required.

For example, for the equipartition problem, on the vn−1 = vn branch, the con-
straint matrix Ai = eeT becomes

AiS =




1 . . . 1 2
...

. . .
...

...
1 . . . 1 2
2 . . . 2 4


 =




1
...
1
2




[
1 . . . 1 2

]
,

a rank one matrix.
After branching, the relaxation takes one of the following two forms, where V is

now an (n − 1) × (n − 1) symmetric matrix:

min CS • V + cT x
subject to Vjj = 1, j = 1, . . . , n − 1, (SDPES)

AiS • V + aT
i x = bi, i = 1, . . . , m

V � 0, 0 ≤ x ≤ u,

or

min CO • V + cTx
subject to Vjj = 1, j = 1, . . . , n − 1, (SDPEO)

AiO • V + aT
i x = bi, i = 1, . . . , m

V � 0, 0 ≤ x ≤ u.

Theorem 1 (Helmberg and Rendl [11].) Let v be a feasible solution to (COP ). De-
fine vn−1 := [v1, . . . , vn−1]

T and V n−1 := vn−1(vn−1)T . If vn−1 = vn then V n−1 is fea-
sible in (SDPES) for some choice of x ≥ 0; otherwise, V n−1 is feasible in (SDPEO)
with some choice of x ≥ 0.

Proof: The proof follows directly from the construction of (SDPES) and (SDPEO)
and the fact that V = vvT is feasible in (SDPE). We can use the same vector x as
in (SDPE).

3 Finding a new strictly feasible dual solution

In a branch-and-cut method for mixed integer linear programming problems, the sub-
problems obtained after branching are solved using the dual simplex method, because
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fixing a primal variable at zero or one corresponds to dropping a dual constraint, so
the old dual solution is still feasible. Branch-and-bound interior point methods have
been investigated for mixed integer linear programming problems, with moderate
success for some instances; see [5, 6, 15].

It is not quite so simple in the SDP case. However, we show in this section that it
is still possible to construct a dual strictly feasible solution to the new subproblems
using the old solution in a straightforward manner. A dual-scaling algorithm [3, 4]
could then be used to solve the resulting subproblems.

At each iteration of an interior point method for solving (SDPE), the matrix of
dual slacks S is positive definite. At optimality, this matrix will be positive semidef-
inite. There are four possible outcomes at a node of the branch-and-cut tree:

• The optimal solution to the relaxation corresponds to a feasible solution to
(COP ). In this case, we can fathom the node through feasibility.

• The problem (SDPE) is infeasible, so again we can fathom the node.

• The optimal solution to (SDPE) has value worse than a known feasible solution
to (COP ), so we can fathom by bounds.

• The optimal solution to (SDPE) has value better than the best known feasible
solution to (COP ) and it does not correspond to a feasible solution to (COP ).
In this case, it is necessary to branch.

Notice that in every case except the first, an approximate optimal solution to (SDPE)
will suffice, enabling us to determine the status of the node. In the first case, there
is no need to branch. Thus, we may assume that when we branch we know a feasible
dual solution where the matrix of dual slacks is positive definite. If, for numerical
reasons, it is desired to use an earlier dual iterate, that is also possible with the restart
procedure we describe below, again provided that the matrix of dual slacks is positive
definite.

The dual problems to (SDPES) and (SDPEO) are

max trace(W ) + bTy − uTw
subject to W +

∑m
i=1 yiAiS + S = CS (SDPDS)

ATy + z − w = c
S � 0, z ≥ 0, w ≥ 0

and

max trace(W ) + bT y − uTw
subject to W +

∑m
i=1 yiAiO + S = CO (SDPDO)

AT y + z − w = c
S � 0, z ≥ 0, w ≥ 0,

respectively, where now W is a (n − 1) × (n − 1) diagonal matrix, and S is a (n −
1) × (n − 1) symmetric matrix.
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Let (W ′, y′, S ′, z′, w′) be the known feasible solution at the parent node, where S ′

is a positive definite matrix. We will restart with:

Wii =

{
W ′

ii i = 1, . . . , n − 2
W ′

(n−1),(n−1) + W ′
nn i = n − 1

(7)

y = y′ (8)

z = z′ (9)

w = w′, (10)

and S defined to be the resulting dual slacks.
We write S ′ as:

S ′ =




M r1 r2

rT
1 τ ν

rT
2 ν ξ


 , (11)

where M is an (n − 2) × (n− 2) matrix, r1 and r2 are (n − 2)-vectors, and τ , ν, and
ξ are scalars. Since this is a positive definite matrix, it has a Cholesky factorization:

S ′ = L′L′T :=


 L 0 0

vT
1 φ 0

vT
2 ζ χ





 LT v1 v2

0 φ ζ
0 0 χ


 , (12)

where L is a lower triangular matrix, v1 and v2 are (n − 2)-vectors, and φ, ζ, and χ
are real numbers. Notice that

Lv1 = r1 (13)

Lv2 = r2 (14)

vT
1 v1 + φ2 = τ (15)

vT
2 v2 + ζ2 + χ2 = ξ (16)

vT
1 v2 + φζ = ν. (17)

Let W n−2 denote the top left (n − 2) × (n − 2) submatrix of W . Consider first
the case that we fix vn−1 = vn. The matrix of dual slacks for the subproblem is then
given by:

SS = CS − W −
m∑

i=1

yiAiS

=

[
C̄ − W n−2 − ∑m

i=1 yiĀi p1 + p2 − ∑m
i=1 yi(qi1 + qi2)

(p1 + p2)
T − ∑m

i=1 yi(qi1 + qi2)
T ρ

]

where ρ = α + 2β + γ −W ′
(n−1),(n−1) −W ′

nn −
m∑

i=1

yi(αi + 2βi + γi),

using (2) and (5)

=

[
M r1 + r2

(r1 + r2)
T τ + 2ν + ξ

]
, (18)
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from (SDPD) and (11). Similarly, if we fix vn−1 6= vn, we obtain

SO =

[
M r1 − r2

(r1 − r2)
T τ − 2ν + ξ

]
. (19)

We can now show that the updated dual solution given in equations (7–10) is
strictly dual feasible, so it gives an appropriate starting point for solving the child
subproblems..

Theorem 2 If S ′ is positive definite then both SS and SO are positive definite.

Proof: The matrix SS can be factored as

SS =

[
L 0

(v1 + v2)
T σS

] [
LT v1 + v2

0 σS

]
(20)

where
σ2

S := τ + 2ν + ξ − (v1 + v2)
T (v1 + v2),

using equations (12), (13), (14), and (18). If σS is a real number, then this is a
Cholesky factorization, so SS is indeed positive definite. We have from equations
(15), (16), and (17):

σ2
S = τ + 2ν + ξ − (v1 + v2)

T (v1 + v2)

= φ2 + ζ2 + χ2 + 2φζ

= (φ + ζ)2 + χ2

> 0,

since χ 6= 0 because S ′ is positive definite. It follows that SS is positive definite.
Similarly, the matrix SO can be factored as

SO =

[
L 0

(v1 − v2)
T σO

] [
LT v1 − v2

0 σO

]
(21)

where

σ2
O := τ − 2ν + ξ − (v1 − v2)

T (v1 − v2)

= (φ − ζ)2 + χ2

> 0,

using equations (12), (13–17), and (19) and the observation that χ 6= 0. It follows
that SO is positive definite.
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4 A lower bound for the new dual

Goemans [7] proposed a branch-and-bound scheme where the initial relaxation is
solved and this is used to obtain a bound for nodes lower in the tree. At level l of
the tree, node n − l + 1 is placed on one side of the cut or the other. The bound
obtained depends on the Cholesky factorization of S ′, the matrix of slacks at the root
node. No iterations are taken at any node other than the root node. In this section,
we construct a lower bound for the new dual problem in our framework using an
argument similar to that in [7].

The value of any feasible solution for the new dual subproblem (SDPDS) or
(SDPDO) provides a lower bound on the optimal value of the corresponding sub-
problem. This can be used to prune the subproblem if the bound is large enough.
The construction of equations (7–10) gives an initial point with the same value as the
last iterate from (SDPD). Define Ξ to be this value.

Theorem 3 A valid lower bound for (SDPDS) is Ξ + (φ + ζ)2 + χ2, and a valid
lower bound for (SDPDO) is Ξ + (φ − ζ)2 + χ2.

Proof: Adding (φ + ζ)2 + χ2 or (φ − ζ)2 + χ2 to W(n−1),(n−1), as appropriate, will
increase the dual objective value to the stated quantities. This change still leads to
positive semidefinite matrices SS and SO: setting σS = 0 in equation (20) and σO = 0
in equation (21) gives the corresponding slack matrix, and in each case it is clearly
positive semidefinite.

This theorem can be used to help determine an appropriate branching variable. It
may well be useful to look for a pair of vertices where the increase in the lower bound
is as large as possible. Of course, the examination of any pair of vertices requires
a Cholesky factorization of the matrix, after reordering the columns, so this search
would have to be performed in a careful manner.

The bounds given in Theorem 3 are exactly those obtained after fixing the last two
variables in the tree defined in [7]. In general, if we modified our algorithm to take
no iterations at subsequent nodes of the tree and if at level k we fix the relationship
of vertices n−k and n−k +1, then we would again obtain the same bounds as in [7].

5 The determinants of the child slack matrices

For this section, we assume that the primal and dual solutions for the parent problem
are perfectly centered, namely,

V ′S ′ = µI (22)

for some positive scalar µ, where V ′ is the primal iterate for the parent problem. This
is equivalent to

L′TV ′L′ = µI, (23)
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where L′ is defined in equation (12). Examining the (n, n) position of this equality
shows that

χ2 = µ, (24)

since V ′
ii = 1 for each i.

In general, if

V ′ =




. . .
...

. . .
1 ε
ε 1


 (25)

and

L′ =




. . . 0

. . .
φ 0
ζ χ


 , (26)

we have the following:

Lemma 2 If equation (22) holds then φε + ζ = 0 and φ2 + 2φεζ + ζ2 = φ2 − ζ2 = µ.

Proof: The proof follows from examination of the (n − 1, n) and (n − 1, n − 1)
entries of equation (23).

At the optimal solution to the underlying integer programming problem, V should
be a rank one matrix. This suggests that it may be good to branch on columns of
V that are close to orthogonal to one another. One situation in which the final two
columns of V will not be parallel is if ε = 0. In this case, we immediately obtain a
corollary to Lemma 2.

Corollary 1 . If V ′
(n−1),n = 0 then φ2 = µ and ζ = 0.

The next corollary relates to large values of ε.

Corollary 2 If (22) holds then −1 < ε < 1.

Proof: Since V is positive definite, we must have −1 ≤ ε ≤ 1. Further, in
Lemma 2, ε = ±1 leads to a contradiction.

Further, we can say something about the determinants of SS and SO. This value
will have an impact on the speed of convergence of the interior point method for the
child subproblems.

Theorem 4 Assume equation (22) is satisfied. Let ε = V ′
(n−1),n.

1. If ε = 0 then det(SS) = det(SO) = 2
µ

det(S ′).

2. For general ε,

det(SO) =
(1 + ε)2 + 1 − ε2

µ
det(S ′) and det(SS) =

(1 − ε)2 + 1 − ε2

µ
det(S ′).
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Proof: From equation (12), we have

det(S ′) = det(LLT )φ2χ2.

From equations (20) and (21), we obtain

det(SS) = det(LLT )σ2
S and det(SO) = det(LLT )σ2

O.

Lemma 2 implies

φ2 =
µ

1 − ε2
, φ − ζ = φ(1 + ε), and φ + ζ = φ(1 − ε).

The result follows from the proof of Theorem 2 and then examining the ratios

(φ − ζ)2 + χ2

φ2χ2
and

(φ + ζ)2 + χ2

φ2χ2
.

If ε ≈ ±1 then V ′ is close to singular, so S ′ has a large determinant. It follows
from the theorem that one of the child problems will have a far smaller determinant.

Comparing the proof of this theorem with Theorem 3 shows that the bound on
one of the child subproblems can be increased dramatically if ε ≈ ±1. Branching in
this manner resembles a depth first search, with it likely that one of the branches will
lead to a feasible solution quickly, and it may be possible to prune the other branch
effectively. Branching on values of ε close to zero resembles a breadth first search
approach, where both child subproblems are improved approximately equally.

The results in this section also suggest a way to fix or eliminate variables, analo-
gous with reduced cost fixing in the integer linear programming case. Let Υ be the
value of the best known feasible solution for (COP ). If one of the bounds given in
Theorem 3 is larger than Υ then the corresponding variable can be fixed to take the
opposite value. Notice that at least one of the bounds will be larger than Ξ + φ2. If
(22) holds then φ2 = µ

1−ε2
, so if ε is close enough to ±1 then one of the bounds will

be larger than Υ. If ε ≈ 1 then we may fix vn−1 = vn; if ε ≈ −1 then we may fix
vn−1 = −vn. Of course, (22) will not hold exactly, but it should hold approximately.
Therefore, for any entry Vij that is close enough to ±1, it may be worthwhile per-
forming a Cholesky factorization of S ′, with the columns ordered so that these two
columns are last, in order to confirm that one of the bounds is large enough to fix the
variables. A different method for fixing variables is proposed in Helmberg [9], which
also uses the matrix S ′ of dual slacks.

6 The child primal problem

Duality properties of semidefinite programming problems are not as strong as those
for linear programming problems. For example, it is possible that the primal and
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dual problems are both feasible but there is a positive duality gap between the opti-
mal primal and dual solutions. However, this cannot happen if there exists a strictly
feasible dual solution, as stated in the following well-known theorem (see, for exam-
ple, [1, 2, 16, 19]):

Theorem 5 If there exists a strictly feasible solution to (SDPD) and if the optimal
value of (SDPD) is bounded then there exists an optimal solution to (SDPE) and
the optimal values of (SDPD) and (SDPE) agree.

Note that Theorem 5 does not state whether the optimal value to (SDPD) is attained.
It is difficult to determine whether there exist strictly feasible solutions to (SDPES)

and (SDPEO) in general, without trying to solve the problems. There are two differ-
ent reasons why the child problems might not contain strictly feasible primal solutions:

• The relaxation of the underlying combinatorial optimization problem for this
branch does not have an appropriate solution. We discuss one method for
handling this case in §6.1

• The particular representation that we have for the problem does not allow
strictly feasible solutions, because some additional variables have now become
fixed or some constraints have become redundant. We discuss this case further
in §6.2.

The dual scaling method does not require a new strictly feasible primal iterate in
order to be restarted. All that is required is an upper bound z̄ on the value of the
current relaxation. Such an upper bound can be obtained from any point v that is
feasible in (COP ) and which satisfies the branching restrictions. Thus, heuristics can
be used to construct an upper bound, if an appropriate point is not known already.

6.1 Ensuring the primal relaxation has an interior

It is possible that the child problem has no feasible interior solutions even if the parent
problem has such solutions. For example, consider an equipartition problem with n
vertices where there are two subsets of the vertices that have already been fixed, with
the vertices in each subset required to appear on the same side of the partition as
each other, and suppose we branch to require that the two subsets appear on the
same side of the partition. Assume each subset contains less than half the vertices. If
more than half of the vertices are in the union of the two subsets then the subproblem
will be infeasible. If exactly half of the vertices appear in the two subsets then the
subproblem will have exactly one feasible solution, namely, that every other vertex
should appear on the opposite side from the two subsets.

We relate the feasible regions of (COP ) and (SDP ) in the following lemma.

Lemma 3 If the set of feasible solutions to (COP ) is full-dimensional then the set
of feasible solutions to (SDP ) contains a positive definite matrix.
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Proof: Let {v1, . . . , vn} be a set of linearly independent feasible solutions to
(COP ). Take V̂ := [v1, ..., vn]. Let V = 1

n
V̂ V̂ T . It follows that Vjj = 1 for

j = 1, . . . , n. Consider the constraint Ai • V ]bi. We have

Ai • V = trace(AiV )

=
1

n
trace(AiV̂ V̂ T )

=
1

n
trace(V̂ T AiV̂ )

=
1

n

n∑
k=1

(vk)TAiv
k.

Thus, if each vk satisfies the constraint (vk)TAiv
k]bi then V satisfies V TAiV ]bi. By

construction, V is positive semidefinite and, further, rank(V )=rank(V̂ ) = n. The
result follows.

The following corollary is an immediate consequence of this lemma.

Corollary 3 If the set of solutions to (COP ) with the additional restriction (vn−1 ±
vn = 0) still has dimension n−1 then there is a positive definite feasible primal matrix
for the child problem.

The results obtained in §3 still apply even if the problem has a less than full-
dimensional feasible region to (COP ).

If the feasible region to (COP ) is not full dimensional, there must be valid equality
constraints for the problem. These may be explicit or implicit. One technique used
in [4] for modeling combinatorial optimization problems with equality constraints is
to include an artificial variable with a corresponding large objective function coeffi-
cient. This technique is used when modeling the equipartition problem, among others.
When branching, an artificial variable could be added to all constraints that involved
Vj,(n−1) and/or Vjn for some j ∈ {1, . . . , n}, and this would ensure that the resulting
child primal problem was full-dimensional if the parent problem was full-dimensional.
Even if the child problem is infeasible, the problem with the artificial variable will
still be feasible, albeit with a large optimal value and the artificial variable nonzero
at optimality. It should not be necessary to solve such a subproblem to optimal-
ity within a branch-and-cut approach, as it is likely to be pruned before optimality
is reached. By placing upper and lower bounds on the artificial variable, a strictly
feasible interior point for the dual problem can be found easily.

6.2 Rank one inequalities

Consider the triangle inequality

Vj,(n−1) − Vj,n − V(n−1),n ≥ −1.
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This constraint can be written
ddT • V ≥ 1 (27)

where d is an n-vector given by

dj = 1, dn−1 = 1, dn = −1, dk = 0 otherwise.

On the branch where we fix vn−1 = vn, this constraint becomes Vjj ≥ 1, which
forces the corresponding primal slack variable to equal zero. Thus, the primal problem
no longer has a strictly feasible point. One remedy is to drop this constraint, which
requires dropping the corresponding dual variable yi. The matrix of dual slacks can
be left unchanged if Wjj is increased by yi; note that this leaves the dual objective
value unchanged. The other constraint involving yi is of the form −yi + zi −wi = ci,
and this can also be dropped without affecting the dual problem, since zi and wi only
appear in this constraint.

On the other branch, the triangle inequality becomes Vjj+4Vj,(n−1)+4V(n−1),(n−1) ≥
1, or equivalently, Vj,(n−1) ≥ −1. If yi ≥ 0 then this constraint can be dropped and
the matrix of dual slacks will still be positive definite. If yi is negative, it may be
necessary to decrease Wjj and W(n−1),(n−1) in order to regain a positive definite matrix
of dual slacks. The smallest total decrease in the components of W is to decrease Wjj

by 3yi and decrease W(n−1),(n−1) by 6yi. Note that the constraint −yi + zi − wi ≤ 0
can also be dropped; the upper bound ui is 8 (=9-1), and wi ≥ −yi. Thus, the dual
objective function value is not decreased by these modifications.

Consider the general case when Ai is a rank one matrix, so Ai = ttT and tT =
[t̄T , pt, qt]

T , where t̄ is an (n − 2)-vector and pt and qt are scalars. If at least two
components of t̄ are nonzero or at most one of pt and qt is nonzero, then the modified
constraint is unlikely to be redundant. If both pt and qt are nonzero and t̄ is zero then
the constraint can be deleted, with a possible adjustment in W(n−1),(n−1) and with the
dropping of a constraint of the form yi + zi − wi = ci. If pt and qt are both nonzero
and exactly one component of t̄ is nonzero, then the constraint can be handled as
indicated above for the triangle inequalities. It may be that the resulting constraint
requires that Vi,(n−1) take a particular value, either 1 or -1. In this case, we can fix
this element of V by combining columns i and n − 1, as described in §2.

7 Conclusions

Theorem 2 shows that an analogue of the dual simplex method can be used to solve
semidefinite programming problems when using a branch-and-cut approach, because
a strictly feasible dual solution can be found easily. Investigation of the properties of
this dual solution suggest that it may be useful to branch on elements of V ′ that are
close to zero, since the determinants of the new dual slack matrices are well behaved
and the bound on both branches of the tree can be increased. The results in this
paper should make it possible to exploit a warm start in an SDP branch-and-cut
algorithm, especially one that uses a dual-scaling algorithm [3, 4].
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