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Abstract

The problem of minimizing the rank of a symmetric positive semidefinite matrix
subject to constraints can be lifted to give an equivalent semidefinite program with com-
plementarity constraints (SDCMPCC). The formulation requires two positive semidef-
inite matrices to be complementary. This is a continuous and nonconvex reformulation
of the rank minimization problem. We develop two relaxations of the problem. We
show that constraint qualification holds at any stationary point of either formulation
and we explore the structure of the local minimizers.
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1 Introduction to Rank Minimization Problems

Rank constrained optimization problems have received increasing interest because of their
wide application in many fields including statistics, communication and signal processing
[10, 32]. In this paper we mainly consider one genre of the problems whose objective is to
minimize the rank of a matrix subject to a given set of constraints. The problem has the
following form:

minimize
X ∈Rm×n

rank(X) + φ(X)

subject to X ∈ C
(1)
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where Rm×n is the space of size m by n matrices, and C is the feasible region for X. The
function φ(X) is assumed to be convex and Lipschitz, with Lipschitz parameter L.

The class of problems has been considered as computationally challenging because of
its nonconvex nature, particularly because the rank function is highly discontinuous. Many
methods have been developed previously to solve the problem, including nuclear norm ap-
proximation [10, 23, 25, 2]. The lack of theoretical guarantee for these convex approximations
for general problems motivates us to turn to the exact formulation of the rank function, which
can be constructed as a mathematical program with semidefinite cone complementarity con-
straints (SDCMPCC), as shown in §2.

Analogously to the LPCC formulation for `0 minimization problem [11], the advantage of
the SDCMPCC formulation is that it can be expressed as a smooth nonlinear program, thus
it can be solved by general nonlinear programming algorithms. The purpose of this paper
is to investigate the structure of the SDCMPCC formulation, especially stationary points
for two relaxations of it. In general, a local minimizer of an SDCMPCC problem may not
satisfy first order optimality conditions because of the complementarity constraints. We’ve
previously shown [31] that the first order optimality conditions do indeed hold at local
minimizers of the SDCMPCC lifting of the rank minimization. In the current paper, we
show in §3 that these first order optimality conditions also hold at local minimizers of two
different relaxations of the SDCMPCC lifting. The structure of the KKT points is described
in §4. We show convergence of the sequence of KKT points as the relaxation parameter is
reduced in §5, where we also show that limit points have a minimal structure, which we call
nondominated.

1.1 Previous work on rank minimization

The best-known class of rank minimization problems is matrix completion, where the ob-
jective is to recover a low rank matrix from a sparse set of measurements [3]; collaborative
filtering problems fit within this framework. Another example of matrix completion prob-
lems arises in security in power networks: multi-channel phasor measurement units (PMUs)
are located on many power lines and they provide information about the status of links many
times per second. This information is typically of low rank, and recovery from missing or cor-
rupted data can be performed through the solution of rank minimization problems [12, 13].
There has been considerable progress on algorithms for matrix completion, including recent
work on fast gradient methods [16, 5]. However, it is not clear that these approaches will
generalize to other rank minimization problems.

Positive semidefinite rank minimization has been applied to the Euclidean distance ge-
ometry problem. Given an incomplete distance matrix between points in Rd, where Dij is
the distance squared between two points i and j, we want to reconstruct the location of each
point. If the location of the points is given by the matrix P ∈ Rn×d, we hope to find a matrix
B = PP T such that at each (i, j) where Dij is known, Dij = Bii + Bjj − 2Bij. We also
know that the rank of B is d, and so B can be recovered by the following rank minimization

2



problem
minimizeB rank(B)

subject to Dij =Bii +Bjj − 2Bij∀(i, j) ∈ Ω

B � 0

(2)

Further applications include the recovery of correlation matrices in statistics [26], the so-
lution of systems of quadratic equations [42], computing a sum of squares representation of a
polynomial function [28], minimum-order controller design in control theory, and model or-
der reduction in system identification [9]. For a description of some other rank minimization
problems in engineering applications, see the survey article [9].

The convex relaxation to the rank is the nuclear norm, which is defined as the sum of its
singular values:

||X||∗ =

min(m,n)∑
i=1

σi = trace(
√
XTX)

for a matrix X ∈ Rm×n. In the relaxed problem, the objective is to find a matrix with the
minimal nuclear norm

minimize
X ∈Rm×n

||X||∗

subject to X ∈ C
(3)

The nuclear norm is convex and continuous. Many algorithms have been developed previ-
ously to find the optimal solution to the nuclear norm minimization problem, including inte-
rior point methods [23], singular value thresholding [2], Augmented Lagrangian method [20],
proximal gradient method [22], subspace selection method [15] and so on. These methods
have been shown to be efficient and robust in solving large scale nuclear norm minimization
problems in some applications. Previous works have provided an explanation for the good
performance for convex approximation by showing that nuclear norm minimization and rank
minimization are equivalent under certain assumptions. Let M ∈ Rn×n be a rank r matrix.
Consider the matrix completion problem defined as

minimize
X ∈Rn×n

||X||∗

subject to PΩ(X) = PΩ(M)
(4)

where Ω ⊆ {0, .., n} × {0, .., n} and the projection operator PΩ : Rn×n → Rn×n is defined as

[PΩ(X)]ij =

{
Xij (i, j) ∈ Ω

0 (i, j) /∈ Ω

It has been shown that unique minimizer of (4) is M with high probability if |Ω| ≥
Cnr log(n), for an absolute constant C, under the assumption that the M is incoherent
and the entries in Ω are uniformly sampled from {0, .., n} × {0, .., n} [4].

While a very strong result, it should be noted the approach can fail, as in the coun-
terexample in [40] and as noted in [26]. Several different approaches have been proposed
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to solve the nuclear norm minimization problem, including [14, 24, 25]. A generalization to
nonnegative rank can be found in [7].

In order to more closely approximate the rank of a matrix, Fazel et. al. proposed the
LogDet heuristic for positive semidefinite rank minimization [8]. Instead of a convex function,
the authors use the following smooth, concave function as a surrogate for the rank function:

log(det(X + γI)) =
n∑
i=1

log(λi(X) + γ)

where λi(X) denotes the ith largest eigenvalue of X, and γ is a fixed parameter. While
nonconvex, the authors put forwards a Majorize-Minimization (MM) algorithm to find a
local optimum. At each iteration, the first order Taylor expansion centered at the previous
iterate is solved as a surrogate function. The algorithm is simplified to solving the following
reweighted nuclear norm minimization problem at each iteration.

X(k+1) =argmin
X

〈W (k), X〉

subject to A(X) = b

X � 0

where W (k) = (X(k−1) +δI)−1. With this reweighting, smaller eigenvalues are weighted more
heavily than larger ones.

Other nonconvex regularizers for rank minimization have been explored in recent years,
such as the truncated nuclear norm [39], the Schatten p norm [27], and the Minimax Concave
Penalty regularizer [35]. By minimizing functions closely estimating the rank, these methods
are more successful in obtaining a low rank matrix from noisy measurements in many rank
minimization applications.

Another popular technique is to constrain the rank of the matrix by using the low rank
factorization. If we are trying to find a low rank matrix X, we work with matrices U
and V and define X = UV T ; the number of columns of U and rows of V are chosen to
be no greater than some parameter r, so the rank of X can then be no larger than r.
Alternating minimization approaches to rank minimization problems include [17, 19, 33, 34];
see also [36]. While the iteration complexity solving the nuclear norm relaxation can be
O(n3) for n × n matrices, alternating direction methods run in near linear time; however,
the overall complexity depends on the condition number of the matrix.

2 Semidefinite Cone Complementarity Formulations

2.1 Mathematical Program with Semidefinite Cone Complemen-
tarity Constraints

A mathematical program with semidefinite cone complementarity constraints (SDCMPCC)
is a special case of a mathematical program with complementarity constraints (MPCC). In
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SDCMPCC problems the constraints include complementarity between matrices rather than
vectors. When the complementarity between matrices is replaced by the complementarity
between vectors, the problem turns into a standard MPCC. The general SDCMPCC program
takes the following form:

minimize
z ∈Rn

f(z)

subject to g(z) ≤ 0
h(z) = 0
Sn+ 3 G(z) ⊥ H(z) ∈ Sn+

(5)

where S+
n denotes the cone of n × n positive semidefinite matrices. The notation G(z) ⊥

H(z) means the matrices G(z) and H(z) are perpendicular to each other. For matrices
G(z), H(z) ∈ S+

n , this is equivalent to saying that the Frobenius inner product of G(z)
and H(z) is equal to 0, where the Frobenius inner product of two matrices A ∈ Rm×n and
B ∈ Rm×n is defined as:

〈A,B〉 = trace(ATB)

SDCMPCC can be written as a nonlinear semidefinite program. Nonlinear semidefinite pro-
grams recently received much attention because of their wide application. Yamashita [37]
surveyed numerical methods for solving nonlinear SDP programs, including Augmented La-
grangian methods, sequential SDP methods and primal-dual interior point methods. These
methods still have much room for research in both theory and practice, especially when the
size of problem goes large. SDCMPCC is special case of a nonlinear SDP program. It is
hard to solve in general. Despite the difficulties in general nonlinear semidefinite program-
ming, the complementarity constraints pose challenges to finding the local optimal solutions
since the KKT condition may not hold at the local optima. Previous works showed that
optimality conditions in MPCC, such as M-stationary, C-Stationary and Strong Stationary,
can be generalized into SDCMPCC. Ding et al. [6] discussed various kinds of first order opti-
mality conditions of SDCMPCC and their relationship with each other. Zhang [41] provided
analysis on second order optimality condition of SDCMPCC.

Example 1. An SDCMPCC where the KKT conditions do not hold at any local optimum:

minx∈IR3 x3

subject to 0 �
[
x1 x3

x3 x2

]
⊥
[
x2 0
0 x1

]
� 0

Optimal solutions are all points with x3 = 0 and either x1 = 0 or x2 = 0. Note that the Slater
constraint qualification holds if the orthogonality condition is not imposed. The problem can
be written equivalently as

minx∈IR3 x3

subject to x2
3 − x1x2 ≤ 0
x1, x2 ≥ 0
2x1x2 ≤ 0
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where the last constraint expresses the requirement that the Frobenius product of the matrices
must be nonpositive, and the other constraints are equivalent to requiring the matrices to be
positive semidefinite. There is no solution to the KKT conditions when x3 = 0.

2.2 Complementarity Formulation

In this section we’ll present an exact reformulation of rank minimization problem using
semidefinite cone constraints. This variational formulation was due to Li and Qi [18], with
important work on optimality conditions derived by Ding et al. [6]. Other recent work on
this formulation includes [21, 31, 38]. We begin with a special case of (1), in which the matrix
variable X ∈ Rn×n is restricted to be symmetric and positive semidefinite. The special case
takes the form:

minimize
X ∈ Sn

rank(X) + φ(X)

subject to X ∈ C̃, X � 0.
(6)

Assumption 1. Assume

C̃ = {X | 〈Ai, X〉 = bi, ∀i = 1, . . . ,m2}

where each gi(x), i = 1, . . . ,m1 is convex. We assume the Slater CQ holds for C̃ ∩ Sn+, so
there exists a point Xc ∈ Sn++ satisfying 〈Ai, X〉 = bi for i = 1, . . . ,m2.

From now on, when we discuss problem (6), we assume the feasible region satisfies Assump-
tion 1.

By introducing an auxiliary variable U ∈ Rn×n, we can model Problem (6) as a mathe-
matical program with semidefinite cone complementarity constraints:

minimize
X ∈ Sn

φ(X) + n − 〈I, U〉

subject to X ∈ C̃, X � 0

0 � X ⊥ U � 0

0 � U � I

(7)

The equivalence between Problem (6) and Problem (7) can be verified by a proper assignment
of U for given feasible X. Suppose X has the eigenvalue decomposition:

X = P TΣP (8)

Let P0 be the matrix composed of columns in P corresponding to zero eigenvalues. We can
set:

U = P0 P
T
0 (9)

It is obvious that
rank(X) = n − 〈I, U〉 (10)
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It follows that:
Opt(6) ≥ Opt(7)

The opposite direction of the above inequality can be easily validated by the complementarity
constraints. If there exists any matrix U with the rank of U greater than n− rank(X), the
complementarity constraints would be violated.

We proved the following results regarding the SDCMPCC (7) in [31]:

Proposition 1. [31] Assume φ(X) ≡ 0. Each (X,U) with X feasible and U given by (9) is
a local optimal solution in Problem (7)

The KKT conditions for problem (7) are:

0 � U ⊥ −I + µX + Y � 0

0 � X ⊥ ∇φ(X) +
∑
λiAi + µU � 0

0 � Y ⊥ I − U � 0

(11)

where λ, µ and Y are Lagrangian multipliers corresponding to the constraints A(X) = b,
〈X,U〉 = 0 and I − U � 0 respectively.

Proposition 2. [31] The KKT conditions hold at local optima of Problem (7).

Proposition 3. [31] Assume φ(X) ≡ 0. Any feasible pair (X,U) with U given by (9) is a
KKT stationary point of problem (7).

The above results shows that when φ(X) ≡ 0, similar to the problem of `0 minimiza-
tion [11], there are too many KKT stationary points in the exact SDCMPCC Formulation,
and it is very likely that algorithms will terminate at a stationary point that might be far
from a global optimal. As we have shown in the complementarity formulation for the `0

minimization problem, a possible approach to overcome this drawback is to relax the com-
plementarity constraints. In the following sections we would like to investigate whether
this approach works for the SDCMPCC formulation. We investigated a penalty method for
Problem (7) in [31].

The complementarity formulation can be extended to cases where the matrix variableX ∈
Rm×n is neither positive semidefinite nor symmetric. One way to deal with nonsymmetric
X is to introduce an auxiliary variable Z:

Z =

[
G XT

X B

]
� 0

Liu et al. [23] has shown that for any matrix X, we can find matrices G and B such that
Z � 0 and rank(Z) = rank(X). The objective is to minimize the rank of the matrix Z
instead of X.

A drawback of the above extension is that it might introduce too many variables. An
alternative approach utilized by Mohan and Fazel to extend the LogDet heuristic to rectan-
gular matrices is to instead minimize the rank of the matrix XTX [27]. The n × n matrix
XTX is both symmetric and positive semidefinite and we have the following modified com-
plementarity constraint: 〈U,XTX〉 = 0 where U ∈ Sn×n.
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3 Relaxation Schemes for SDCMPCC Formulation

In this section and following sections, we present two kinds of relaxation schemes for the
original SDCMPCC formulation. The first relaxation scheme has the following form:

minimize
X ∈ Sn

φ(X) + n − 〈I, U〉

subject to X ∈ C̃, X � 0

〈X,U〉 ≤ ε

0 � U � I

(12)

We denote the above problem as SDCNLP (ε). In the relaxed problem, instead of restricting
the Frobenius product of X and U to be 0, we allow it to take a value no greater than ε. Since
it bounds the trace, or the sum of eigenvalues of XTU , we call this the aggregate relaxation
scheme.

When the matrices X and U are both positive semidefinite, 〈X,U〉 = 0 is equivalent to
XU +UX = 0. In the other relaxation scheme, we don’t force the matrix product of X and
U to be the zero matrix. Instead, we require the maximum eigenvalue of their product to
be no larger than a positive parameter δ:

minimize
X ∈ Sn

φ(X) + n − 〈I, U〉

subject to X ∈ C̃, X � 0

(X + γI)U + U (X + γI) � 2δI

0 � U � I

(13)

Here, the parameter γ satisfies 0 ≤ γ ≤ δ. The terms in γI serve to tighten the relaxation.
We denote the above problem as SDCNLP1(γ, δ). Since we allow the matrix product to
have maximum eigenvalue δ, we call this relaxation scheme the matrix relaxation of the
original SDCMPCC formulation..

3.1 Global Convergence of Relaxed Formulations

We can establish global convergence results for both formulations.

Proposition 4. Let {εk} be a sequence that converges to 0 and (Xk, Uk) be a global optimal
solution to SDCNLP (ε). If C̃ is closed, then any limit point of the sequence {(Xk, Uk)} is
a global optimal solution to the exact SDCMPCC formulation (7).

Proof. Let (X̄, Ū) be any limit point of the sequence {(Xk, Uk)}. It is obvious that X̄ ∈ C̃
since C̃ is closed. By a similar argument, we can show that I � Ū � 0. Since 〈Xk, Uk〉 → 0,
〈X̄, Ū〉 = 0 and (X̄, Ū) is feasible to the SDCMPCC formulation.
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Suppose (X̄, Ū) is not global optimal, i.e, there’s another matrix X̃ ∈ C̃ with φ(X̃) +
rank(X̃) < φ(X̄) + rank(X̄). Then, we can construct (X̃, Ũ) with Ũ assigned by (9), and
(X̃, Ũ) is feasible to the exact SDCMPCC formulation. It follows that (X̃, Ũ) is feasible to
SDCNLP (εk). For sufficiently small εk, the objective value at (X̃, Ũ) will be smaller than
that at (Xk, Uk) as (Xk, Uk) converges to (X̄, Ū), which contradicts the assumption that
(Xk, Uk) is the global optimal solution to SDCNLP (εk).

Proposition 5. Let {γk, δk} be a sequence that converges to (0, 0) and (Xk, Uk) be a global
optimal solution to SDCNLP1(γk, δk). If C is closed, then any limit point of the sequence
{(Xk, Uk)} is a global optimal solution to the exact SDCMPCC formulation (7).

Proof. Since (Xk, Uk) satisfies (X + γI)U + U(X + γI) � 2δI, we have

2〈Xk, Uk〉 = trace(XT
k Uk) + trace(UT

k Xk) ≤ trace (2δI − γUk − γXk) ≤ 2nδ

Thus (Xk, Uk) is a feasible solution to the problem SDCNLP (nδ). As δ → 0 we have
〈Xk, Uk〉 → 0, it follows that 〈X̄, Ū〉 = 0 and (X̄, Ū) is feasible to the SDCMPCC formula-
tion.

Because we have:

Opt(7) ≥ Opt(SDCNLP1(δk)) ≥ Opt(SDCNLP (2nδk))

by Proposition, 4 (X̄, Ū) must be global optimal solution to the SDCMPCC formulation.

3.2 Constraint Qualification of Relaxed Formulations

The relaxed formulations for Rank Minimization problem are nonlinear semidefinite pro-
grams. As with the exact SDCMPCC Formulation, we would like to investigate whether
algorithms for general nonlinear semidefinite programming problems can be applied to solve
the relaxed formulations. As far as we know, most algorithms in nonlinear semidefinite
programming use first order KKT stationary conditions as the criteria for terminilation.

Our relaxations (12) and (13) of (7) are examples of nonlinear conic optimization problems
of the form

minz∈Q⊆IRn f(z)
subject to G(z) ∈ K

(14)

where Q is a closed convex set, K ⊆ IRm is a closed convex cone, f : IRn → IR, and
G : IRn → IRm, and f and G are differentiable. The first order necessary conditions for (14)
at a point z0 ∈ Q can be written

G(z0) ∈ K, λ ∈ K+, 〈λ, z0〉 = 0 (15)

where K+ is the dual cone to K. Robinson’s constraint qualification [29] for problem (14)
can be written

0 ∈ int{G(z0) + DG(z0)(Q− z0) − K} (16)
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where DG(z0) denotes the Gateaux derivative of G(z) evaluated at z0. Very informally,
Robinson’s CQ holds if there exists a direction Q−z0 leading to a point that strictly satisfies
the linearization of the constraints. As shown in Bonnans and Shapiro [1], the first order
necessary conditions must hold at a local minimizer z0 of (14) if Robinson’s constraint
qualification (16) holds.

We show below that if Assumption 1 holds then the feasible regions of both (12) and (13)
satisfy the Robinson CQ (16), so any local minimizer must satisfy the first order optimality
conditions.

3.2.1 Robinson’s CQ for the aggregate relaxation

Let (X̄, Ū) be a feasible solution to (12). Robinson’s CQ holds at this point if we can find
symmetric matrices (Xd, Ud) satisfying

X̄ +Xd ∈ Sn++ (17a)

〈Ai, Xd〉 = 0, i = 1, . . . ,m2 (17b)

gi(X̄ +Xd) < 0, i = 1, . . . ,m1 (17c)

0 ≺ Ū + Ud ≺ I (17d)

〈X̄, Ū〉 + 〈Xd, Ū〉 + 〈X̄, Ud〉 < ε (17e)

From Assumption 1, there exists Xc satisfying Slater for C̃ ∩ Sn+, so (17a)–(17c) hold for
Xd = αX(Xc − X̄) for 0 < αX ≤ 1. Since Ū ∈ Sn+, it has an eigendecomposition

Ū = QDQT :=
[
Q0 Q1 Q2

]  0 0 0
0 I 0
0 0 Λ

  QT
0

QT
1

QT
2

 (18)

where Λ is a diagonal matrix, with entries strictly between 0 and 1. Our direction Ud is
obtained by modifying the diagonal blocks of D. In particular, we construct symmetric
matrices U0, U1, and U2 so that

Ud =
[
Q0 Q1 Q2

]  U0 0 0
0 U1 0
0 0 U2

  QT
0

QT
1

QT
2

 . (19)

The matrix U0 must be positive definite and U1 must be negative definite. The construction
first requires a factorization of X̄:

let M := QT X̄Q, so X̄ =
[
Q0 Q1 Q2

]  M0 . .
. M1 .
. . M2

  QT
0

QT
1

QT
2

 (20)

where M0, M1, and M2 are the diagonal blocks of M .

10



Proposition 6. Robinson’s CQ holds for the aggregate relaxation (12) for any ε > 0 at any
feasible point (X̄, Ū).

Proof. We choose
U0 = αU0 I, U1 = −αU1 I, U2 = −αU2 M2

with αU0 , α
U
1 , α

U
2 > 0. Note that

〈Xd, Ū〉 + 〈X̄, Ud〉 = αX〈Xc − X̄, Ū〉 + 〈M0, U0〉 + 〈M1, U1〉 + 〈M2, U2〉
= αX〈Xc − X̄, Ū〉 + αU0 trace(M0) − αU1 trace(M1) − αU2 〈M2,M2〉.

We have three cases.

1. 〈M2,M2〉 > 0: In this case, we first select αU2 > 0 while ensuring that Λ − αU2 M2 is
positive definite. It is then straightforward to select 0 < αX , αU0 , α

U
1 < 1 so that

〈Xd, Ū〉 + 〈X̄, Ud〉 < 0

and so (17) is satisfied.

2. 〈M2,M2〉 = 0, trace(M1) > 0: We take αU2 = 0 and choose 0 < αU1 < 1. It is then
straightforward to select 0 < αX , αU0 < 1 and the result follows as in the first case.

3. 〈M2,M2〉 = 0, trace(M1) = 0: In this case, M1 = 0 and M2 = 0 so

〈X̄, Ū〉 = 0 < ε.

Thus, we can pick αU2 = 0 and small positive values for αX , αU0 , and αU1 so that (17)
is satisfied.

3.2.2 Robinson’s CQ for the matrix relaxation

Let (X̄, Ū) be a feasible solution to (13). Robinson’s CQ holds at this point if we can find
symmetric matrices (Xd, Ud) satisfying

X̄ +Xd ∈ Sn++ (21a)

〈Ai, Xd〉 = 0, i = 1, . . . ,m2 (21b)

gi(X̄ +Xd) < 0, i = 1, . . . ,m1 (21c)

0 ≺ Ū + Ud ≺ I (21d)(
X̄ + γI

)
Ū + Ū

(
X̄ + γI

)
+ XdŪ + ŪXd +

(
X̄ + γI

)
Ud + Ud

(
X̄ + γI

)
≺ 2δI (21e)

Note that (X̄, νŪ) is feasible in (13) for 0 ≤ ν ≤ 1. We can exploit this in construction of a
feasible solution to (21).
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Proposition 7. Robinson’s CQ holds for the matrix relaxation (13) for any δ > 0 at any
feasible point (X̄, Ū).

Proof. In the notation of (18) and (19), we construct the direction Ud by taking

U0 = αU0 I, U1 = −0.5I, U2 = −0.5Λ,

for an appropriate small positive constant αU0 . Note that from (18), we have

Ud = αU0 Q0Q
T
0 − 0.5Ū .

We take the X-direction as Xd = αX(Xc − X̄) for some αX . Requirements (21a)–(21d) are
satisfied provided 0 < αX ≤ 1 and 0 < αU0 < 1. Note that(

X̄ + γI
)
Ū + Ū

(
X̄ + γI

)
+ XdŪ + ŪXd +

(
X̄ + γI

)
Ud + Ud

(
X̄ + γI

)
=
(
X̄ + γI

)
Ū + Ū

(
X̄ + γI

)
+ αX

(
(Xc − X̄)Ū + Ū(Xc − X̄)

)
+ αU0

((
X̄ + γI

)
Q0Q

T
0 + Q0Q

T
0

(
X̄ + γI

))
− 0.5

(
X̄ + γI

)
Ū + Ū

(
X̄ + γI

)
= 0.5

((
X̄ + γI

)
Ū + Ū

(
X̄ + γI

))
+ αX

(
(Xc − X̄)Ū + Ū(Xc − X̄)

)
+ αU0

((
X̄ + γI

)
Q0Q

T
0 + Q0Q

T
0

(
X̄ + γI

))
� δI + αX

(
(Xc − X̄)Ū + Ū(Xc − X̄)

)
+ αU0

((
X̄ + γI

)
Q0Q

T
0 + Q0Q

T
0

(
X̄ + γI

))
from the feasibility of (X̄, Ū) in (13)

≺ 2δI

for sufficiently small positive values for αX and αU0 .

4 Local Optimality Condition of Relaxed Formulations

Bonnans and Shapiro [1] gave a description of first order optimality condition in semidefinite
programming. Since Robinson’s CQ holds at any feasible solution of problem (12) under
Assumption 1, the first order KKT conditions must hold at any local optimum. Let (X̄, Ū)
be a local minimizer to either of the relaxations. We show in this section that either the
matrices X̄ and Ū are simultaneously diagonalizable, or there exists another feasible solution
that is at least as good as (X̄, Ū) which is simultaneously diagonalizable. Further, we explore
the structure of the KKT points arising in each relaxation.

4.1 The aggregate relaxation

Proposition 8. Let (X̄, Ū) be a local minimizer of the aggregate relaxation (12). If X̄ and
Ū are not simultaneously diagonalizable then there exists another matrix Û satisfying

1. (X̄, Û) is feasible in (12).
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2. X̄ and Û are simultaneously diagonalizable.

3. 〈I, Û〉 = 〈I, Ū〉.
Proof. The matrix Ū must be a global minimizer to the convex SDP

minU −〈I, U〉
subject to 〈X̄, U〉 ≤ ε

0 � U � I
(22)

Since X̄ ∈ Sn+, we can diagonalize it, so X̄ = PDP T for a diagonal matrix D and an
orthogonal matrix P . Note that 〈X̄, U〉 = 〈D,P TUP 〉 so problem (22) is equivalent to the
problem

minV −〈I, V 〉
subject to 〈D, V 〉 ≤ ε

0 � V � I
(23)

with the correspondence V ↔ P TUP , and exploiting the orthogonality of P . Since I and D
are both diagonal matrices, there exists an optimal solution V̂ to (23) that is diagonal. The
matrix Û := PV̂ P T is then optimal to (22) and satisfies the three listed criteria.

The KKT condition in the aggregate relaxed formulation (12) works in a similar way
with some thresholding methods. The objective function not only counts the number of 0
eigenvalues, but also the number of eigenvalues whose sum is below a certain threshold. Let
X ∈ C be feasible in the aggregate relaxation problem, with eigendecompostion

X =
n∑
i=1

σXi viv
T
i with σX1 ≤ . . . ≤ σXn . (24)

Let l be the index such that
∑l

i=1 σ
X
i ≤ ε, and

∑l+1
i=1 σ

X
i > ε. An optimal solution U to

problem (22) has the same eigenvectors as X and eigenvalues given by

σUj =


1 j ≤ l
ε−

∑l
i=1 σi

σX
l+1

j = l + 1

0 j > l + 1

(25)

The optimal solution V to (23) corresponding to this solution U is to take Vjj = σUj for
1 ≤ j ≤ n. Note that 0 ≤ σUl+1 < 1 and that 0 ≤ l ≤ n− 1.

Note that we must have if Vjk = 0 for all 1 ≤ j < k ≤ l + 1, since otherwise the largest
eigenvalue of V would be strictly larger than one. If either j > l + 1 or k > l + 1 then we
must have Vjk = 0 from the requirement that V � 0. It follows that when the eigenvalue
σXl+1 has multiplicity 1, this choice of V is the unique solution to (23). In particular, it is
clear from linear programming that the diagonal entries of V must be as specified.

When the eigenvalue σXl+1 has multiplicity > 1, there are multiple optimal solutions to
(23) and (22). However, they all correspond to taking different eigenbases for the eigenspace
corresponding to σXl+1, so again X and U are simultaneously diagonalizable. Hence we have
the following theorem.
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Theorem 1. If (X̄, Ū) is a local minimizer to (12) then X̄ and Ū are simultaneously diag-
onalizable.

The KKT local optimality conditions take the following form for the aggregate relaxed
formulation:

0 � U ⊥ −I + µX + Y � 0

0 � X ⊥ ∇φ(X) +
∑
λiAi + µU � 0

0 � Y ⊥ I − U � 0

0 ≤ µ ⊥ ε− 〈U, X〉 ≥ 0

(26)

for X ∈ C̃, where λ, µ and Y are Lagrangian multipliers corresponding to the constraints
A(X) = b, 〈X,U〉 ≤ ε and I − U � 0 respectively. If V is not an optimal solution to (23)
then there exists a feasible direction in the U variables which strictly improves the linear
part of the objective function for (12). The following proposition then follows.

Proposition 9. If (X̄, Ū) is a stationary point to (12) then X̄ and Ū are simultaneously
diagonalizable. Further, if the eigenvalue σUl+1 > 0 then the KKT multiplier in (26) is µ =
1/σXl+1.

Proof. The complementarity in KKT condition (26) implies both that vTl+1Y vl+1 = 0 and
(since σUl+1 > 0) also vTl+1(−I + µX̄ + Y )vl+1 = 0. It follows that vTl+1X̄vl+1 = 1

µ
, which is

to say that µ = 1
σX
l+1

.

4.2 The matrix relaxation

Proposition 10. Let (X̄, Ū) be a local minimizer of the matrix relaxation (13). If X̄ and
Ū are not simultaneously diagonalizable then there exists another matrix Û satisfying

1. (X̄, Û) is feasible in (13).

2. X̄ and Û are simultaneously diagonalizable.

3. 〈I, Û〉 = 〈I, Ū〉.

Proof. The matrix Ū must be a global minimizer to the convex SDP

minU −〈I, U〉
subject to

(
X̄ + γI

)
U + U

(
X̄ + γI

)
� 2δI

0 � U � I
(27)

Since X̄ ∈ Sn+, we can diagonalize it, so X̄ = PDP T for a diagonal matrix D and an
orthogonal matrix P . Let

D̃ := D + γI, (28)
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so for γ > 0 we have the diagonal entries D̃ii > 0 for i = 1, . . . , n, and D̃ is invertible. Note
that problem (27) is equivalent to the problem

minV −〈I, V 〉
subject to D̃V + V D̃ � 2δI

0 � V � I
(29)

with the correspondence V ↔ P TUP , and exploiting the orthogonality of P . The diagonal
entries of the matrix product D̃V + V D̃ are(

D̃V + V D̃
)
ii

= 2D̃iiVii for i = 1, . . . , n.

Hence any feasible solution to (29) must satisfy

Vii ≤ min

{
1,

δ

D̃ii

}
, for i = 1, . . . , n,

so the optimal value of (27) and (29) is bounded below by

−〈I, V 〉 ≥ −
n∑
i=1

min

{
1,

δ

D̃ii

}
.

This value is achieved by the diagonal matrix V̂ , where

V̂ii = min

{
1,

δ

D̃ii

}
, for i = 1, . . . , n. (30)

Hence problem (27) is solved by the matrix

Û := PV̂ P T (31)

which satisfies the requirements of the proposition.

We can eliminate U from the matrix relaxation (13) when γ = δ > 0. In particular, we
can set U = δ (X + δI)−1:

Corollary 1. Let (X̄, Ū) be a feasible solution to (13) with γ = δ > 0. Then
(
X̄, δ

(
X̄ + δI

)−1
)

is also feasible in (13) and 〈I, Ū〉 ≤ 〈I, δ
(
X̄ + δI

)−1〉.

Proof. Note that from (28) we have D̄ii ≥ δ, so from (30) we have V̂ii = δ/D̄ii for i = 1, . . . , n,
so V̂ = δD̄−1. From (31), we then obtain

Û = PV̂ P T = δPD̄−1P T = δ
(
X̄ + δI

)−1
,

as required.
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It follows from this corollary that we can eliminate the variable U from the matrix
relaxation (13) when γ = δ > 0, obtaining the equivalent nonlinear nonconvex SDP:

minimize
X ∈ Sn

φ(X) + n − 〈I, δ (X + δI)−1〉

subject to X ∈ C̃, X � 0.
(32)

Corollary 2. Assume γ = δ > 0. If there exists an optimal solution (X̄, Ū) to (13) then
there exists an optimal solution to the problem

minimize
X ∈ Sn

φ(X) + n − 〈I, U〉

subject to X ∈ C̃, X � 0

(X + γI)U + U (X + γI) � 2δI

0 � U

(33)

that satisfies U � I.

Proof. When γ = δ > 0, the proof of Proposition 2 does not require the constraint U � I.

Hence the solution
(
X̄, δ

(
X̄ + δI

)−1
)

also solves the problem without the constraint U �
I.

It is straightforward to construct examples where there exist optimal solutions to the
matrix relaxation that are not simultaneously diagonalizable.

Example 2. Let

C̃ ∩ S3
+ =


 3 0 0

0 1 0
0 0 0

 and Ū =

 1
4

Ū12 0
Ū12

1
2

0
0 0 1

 , with Ū12 unspecified.

Let γ = δ = 1. The set of optimal solutions U to (13) includes all symmetric matrices of the
form Ū satisfying 0 � Ū � I. Note that this example shows that the constraint U � I is not
redundant even if δ = γ. For example, taking U12 = 2

3
satisfies (X + I)U + U(X + I) � 2I,

X � 0, and U � 0, but does not satisfy U � I. From Corollary 2, there exists an optimal
solution to (33) where U and X are simultaneously diagonalizable (namely, set all the off-
diagonal entries to zero), and for that solution we do obtain U � I.

We now consider KKT stationary points of the matrix relaxation (13). Under Assump-
tion 1, any local optimum to the matrix relaxation (13) must satisfy the following KKT
conditions:

0 � U ⊥ −I + Ω (X + γI) + (X + γI) Ω + Y � 0

0 � X ⊥ ∇φ(X) +
∑
λiAi + ΩU + U Ω � 0

0 � Y ⊥ I − U � 0

0 � Ω ⊥ 2δI − U (X + γI)− (X + γI)U � 0

(34)
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for X ∈ C̃, where λ and Y corresponds to the same constraints as in the formulation (12)
and Ω corresponds to the constraint 2δI −U (X + γI)− (X + γI)U � 0. Given X̄ ∈ C̃ ∩Sn+
with eigenvalue decomposition

X̄ =
∑

σXi vi v
T
i , (35)

it follows from Proposition 10 that we can construct a feasible U =
∑
σUi viv

T
i where σU

takes the value:

σUi =


δ

σXi + γ
, if σXi + γ ≥ δ

1, if σXi + γ < δ

(36)

Further, this choice of U is a global optimal solution to the problem (27), where X̄ is fixed.
We then have the following result for the first order optimality condition for the matrix
relaxation formulation (13).

Proposition 11. Let X̄ ∈ C ∩ Sn+. Let Û be set by the assignment (36). If (X̄, Û) is KKT
stationary point then the Lagrangian multipliers Ω and Y take the form:

Ω =
∑

i:σX
i +γ 6=δ

σΩ
i viv

T
i +

∑
j,k:σX

j =σX
k =δ−γ

MΩ
jkvjv

T
k ,

Y =
∑

i:σX
i +γ 6=δ

σYi viv
T
i +

∑
j,k:σX

j =σX
k =δ−γ

MY
jkvjv

T
k

where the coefficients satisfy:

• If σXi + γ > δ then σΩ
i = 1

2(σX
i +γ)

, σYi = 0.

• If σXi + γ < δ then σΩ
i = 0, σYi = 1.

•
∑

j,k:σX
j =σX

k =δ−γ
(
2δMΩ

jk +MY
jk

)
vjv

T
k only has eigenvalues 0 and 1.

Proof. Let
P =

[
P 1, P 2, P 3

]
be an orthogonal matrix whose columns are the eigenvectors of X̄, with the columns assigned
as follows:

P 1 : eigenvalues satisfying σXi + γ > δ
P 2 : eigenvalues satisfying σXi + γ = δ
P 3 : eigenvalues satisfying σXi + γ < δ

Let
XD = P T

(
X̄ + γI

)
P, UD = P T ÛP, ΩD := P TΩP, Y D = P TY P.

Note that XD and UD are diagonal matrices, from Proposition 10. In particular, with respect
to the partition given above for the eigenvalues of X̄, we have

XD =

 σX
1

+ γI 0 0
0 δI 0

0 0 σX
3

+ γI

 , UD =

 δ
(
σX

1
+ γI

)−1

0 0

0 I 0
0 0 I
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The first, third, and fourth conditions in (34) can then be stated equivalently as

0 � UD ⊥ −I + ΩDXD + XD ΩD + Y D � 0

0 � Y D ⊥ I − UD � 0

0 � ΩD ⊥ 2δI − UDXD −XDUD � 0

By construction, we have

2δI − UDXD −XDUD =

 0 0 0
0 0 0
0 0 � 0

 ,
so from the final condition in (34) we have

ΩD =

 ΩD
1 ΩD

12 0
ΩD

21 ΩD
2 0

0 0 0

 .
We also obtain from the third condition in (34) that

Y D =

 0 0 0
0 Y D

2 Y D
32

0 Y D
23 Y D

3

 .
Note that UD � 0, so we must have

0 = −I + ΩDXD + XD ΩD + Y D

=

 −I + ΩD
1 X

D
1 +XD

1 ΩD
1 ΩD

12

(
δI +XD

1

)
0

ΩD
21

(
XD

1 + δI
)

−I + 2δΩD
2 + Y D

2 Y D
32

0 Y D
23 −I + Y D

3

 .
Therefore, we must have

Ω1 = 1
2

(
XD

1

)−1
, Ω12 = 0, Ω21 = 0, Y D

23 = 0, Y D
32 = 0, Y D

3 = I,

and finally 2δΩD
2 + Y D

2 = I as required.

5 Local Convergence of KKT Stationary Points

In this section, we show that limit points of KKT stationary points of the relaxation scheme
are KKT stationary points of the SDCMPCC formulation. We first consider the aggregate
relaxation (12). Given a sequence of relaxation parameters εk → 0, we obtain a sequence
of KKT points (Xk, Uk) with KKT multpliers µk. As we show below in Proposition 12,
any limit point of the sequence where the multipliers do not diverge is a KKT point of (7).
However, Proposition 9 opens up the possibility that the KKT multipliers might diverge
while the iterates (Xk, Uk) converge.
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Proposition 12. Let (Xk, Uk) be a local optimum of the relaxed formulation (12) with relax-
ation parameter {εk} and with KKT multipliers (Yk, µk) in the conditions (26). As εk → 0,
any limit point of a subsequence {(Xk, Uk, Yk, µk)} is a KKT stationary point of the exact
SDCMPCC formulation (7).

Proof. Since the multipliers converge, the KKT conditions (11) are satisfied in the limit.

Convergence of KKT stationary point can be established for the matrix relaxation for-
mulation (13).

Proposition 13. Let (Xk, Uk) be a local optimum of the relaxed formulation (13) with re-
laxation parameter {δk}, and (λk,Ωk, Yk) be the corresponding Lagrangian multipliers. As
δk → 0, any limit point (X̄, Ū , λ̄) of the sequence {(Xk, Uk, λk)} is a KKT stationary point
of the exact SDCMPCC Formulation.

Proof. The feasibility of the limit point can be verified by the continuity of the function
XU + UX.

Since the limit point of {(Xk, Uk, λk)} is bounded, by Proposition 11, Ωk and Yk are
bounded and there is a convergent subsequence with the limit point (Ω̄, Ȳ ). By the closedness
of the semidefinite cone we have:∑

λ̄iAi + Ω̄ Ū + Ū Ω̄ � 0

By continuity the complementarity constraints in KKT condition holds. Thus (X̄, Ū , λ̄) is a
KKT stationary point of the SDCMPCC formulation.

We further investigate the property of the limit points of local optima of the positive
semidefinite relaxation. In the complementarity formulation for `0 minimization, we showed
in [11] that any limit point of local optimal solutions of the complementarity formulation
has to be nondominated. We defined a feasible point x∗ to be nondominated if there is no
other feasible point x̄ with

|x̄i| ≤ |x∗i | ∀i, with strict inequality for at least one component.

Equivalently, there is no other vector x̄ with the same support as x∗ with |x̄| smaller than |x∗|.
Note that the convergence proof does not require an assumption of the restricted isometry
property.

We extend this concept to the semidefinite case by working with eigenvalues instead of
components. In semidefinite programming, we define nondominated points as:

Definition 1. Given a polyhedral subset of the cone of semidefinite matrices C = {X ∈
Sn+|〈Ai, X〉 ≥ bi, i = 1, . . . ,m}, a matrix X ∈ C is called nondominated in C if there does
not exist Y ∈ C such that Y � X and Y 6= X.

We show that the sequence of solutions to the matrix relaxation converges to a nondom-
inated solution to the original complementarity formulation (7).
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Proposition 14. Assume the feasible region of X is the intersection of a polyhedron and
the cone of positive semidefinite matrices. Assume φ(X) = 0 ∀X ∈ C̃. Let γ = δ in (13).
The limit point (X̄, Ū) of local optimal solutions (Xk, Uk) to the matrix relaxation formula-
tion (13) as δ → 0 must be nondominated.

Proof. The proposition can be validated by contradiction. Assume that the limit point is
dominated, then there exists a nontrivial direction dX � 0 such that X̄−dX is feasible. We
can start with showing that when k is large enough, Xk is dominated.

Suppose X̄ has the eigenvalue decomposition:

X̄ = P T

 D 0 0
0 0 0
0 0 0

P
where D is a diagonal matrix with strictly positive diagonal entries. Since X̄ − dX � 0 and
dX � 0, there exists a positive semidefinite matrix M with

X̄ − dX = P T

 M 0 0
0 0 0
0 0 0

P
where 0 � M � D. By scaling dX, we can assume M is positive definite and for any
constraint with 〈Ai, X̄〉 > bi we have 〈Ai, X̄ − dX〉 > bi. Let βk∆Xk = Xk − X̄, with
||∆Xk|| = 1 and βk → 0. The matrix ∆Xk can be written as:

∆Xk = P T

 Gk Hk 0
HT
k Λk 0

0 0 0

P
where Λk is positive definite. The matrix X̄ − dX + βk∆Xk can be written as:

X̄ − dX + βk∆Xk = P T

 M + βkGk βkHk 0
βkH

T
k βkΛk 0

0 0 0

P
which is p.s.d since the Schur complement βkΛk − β2

kH
T
k (M + βkGk)

−1Hk is p.s.d when
k is large enough. It can also be easily verified that all the linear constraints hold at
X̄ − dX + βk∆Xk when k is large enough.

Note that Xk−dX = X̄−dX+βk∆Xk � 0, so Xk is dominated by Xk−dX. From (36),
the eigenvalues of the auxiliary matrix Ũk corresponding to the feasible matrix Xk − dX are

σŨk
i =

δ

σXk−dX
i + γ

≥ δ

σXk
i + γ

= σUk
i with strict inequality for at least one eigenvalue.

Given the assignment of Ũk, the objective value in (7) corresponding to Xk − dX must be
strictly less than that given by Xk, which contradicts the local optimality of (Xk, Uk).

Note that we cannot extend the nondominated results to the aggregate relaxed formula-
tion. The limit point of the local optima of the aggregate formulation might be dominated.
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6 Conclusions

We’ve investigated two relaxations of the SDCMPCC approach to rank minimization prob-
lems. The first relaxation imposes a positive upper bound on the Frobenius inner product
of two matrices that must be complementary in the exact solution. The second relaxation
exploits the PSD structure more fully through a matrix inequality, which ties together the
eigenspaces of the matrices. We showed that Robinson’s constraint qualification holds for
both relaxations, and hence any local minimizer satisfies the first order necessary conditions.
Limit points to the second relaxation have a nondominated structure. The matrix relax-
ation also allows an equivalent reformulation (32) without the complementarity variables,
and computational results with a variant of this reformulation are contained in a forthcoming
paper [30].
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