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Abstract

We analyze the properties of an interior point cutting plane algorithm that is based

on a semi-infinite linear formulation of the dual semidefinite program. The cutting plane

algorithm approximately solves a linear relaxation of the dual semidefinite program in

every iteration and relies on a separation oracle that returns linear cutting planes. We

show that the complexity of a variant of the interior point cutting plane algorithm is

slightly smaller than that of a direct interior point solver for semidefinite programs where

the number of constraints is approximately equal to the dimension of the matrix. Our

primary focus in this paper is the design of good separation oracles that return cutting

planes that support the feasible region of the dual semidefinite program. Furthermore,

we introduce a concept called the tangent space induced by a supporting hyperplane that

measures the strength of a cutting plane, characterize the supporting hyperplanes that

give higher dimensional tangent spaces, and show how such cutting planes can be found

efficiently. Our procedures are analogous to finding facets of an integer polytope in

cutting plane methods for integer programming. We illustrate these concepts with two

examples in the paper. We present computational results that highlight the strength of

these cutting planes in a practical setting. Our technique of finding higher dimensional

cutting planes can conceivably be used to improve the convergence of the spectral bundle

method of Helmberg et al. [9, 10], and the non-polyhedral cutting surface algorithms

of Sivaramakrishnan et al. [36] and Oskoorouchi et al. [26, 27].

Keywords: Semidefinite programming, interior point methods, regularized cutting

plane algorithms, maximum eigenvalue function, cone of tangents.
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1 Introduction

A semidefinite programming problem requires minimizing a linear objective function in sym-

metric matrix variables subject to linear equality constraints together with a convex con-

straint that these variables be positive semidefinite. The tremendous activity in semidefinite

programming was spurred by the discovery of efficient interior point algorithms for solving

semidefinite programs; and important applications of semidefinite programming in combina-

torial optimization, control, robust optimization, and polynomial optimization (see Laurent

and Rendl [18], for example).

Primal-dual interior point methods (IPMs) (see the surveys by de Klerk [6] and Monteiro

[22]) are currently the most popular techniques for solving semidefinite programs. However,

current semidefinite solvers based on IPMs can only handle problems with dimension n and

number of equality constraints k up to a few thousands (see, for example, Toh et al. [38]).

Each iteration of a primal-dual IPM solver needs to form a dense Schur matrix, store this

matrix in memory, and finally factorize and solve a dense system of linear equations of

size k with this coefficient matrix. Several techniques have been developed to solve large

scale SDPs; these include: the low rank factorization approach of Burer and Monteiro [5];

the spectral bundle methods of Helmberg et al. [9, 10]) and Nayakkankuppam [23]; parallel

implementations of primal-dual IPMs on shared memory (see Borchers and Young [4]) and

distributed memory (see Yamashita et al. [40]) systems; and interior point cutting plane

algorithms (see Sivaramakrishnan et al. [35, 36], Oskoorouchi et al. [26, 27], and Sherali and

Fraticelli [34]).

In this paper, we investigate the properties of the interior point cutting algorithms pre-

sented in Krishnan et al. [14, 15, 36]. The methods are based on a semi-infinite linear

formulation of a semidefinite program and they use an interior point cutting framework

to approximately solve the underlying semidefinite program to 2-3 digits of accuracy. Re-

cently Qualizza et al. [32] have employed a variant of this algorithm to solve semidefinite

relaxations of quadratically constrained quadratic problems. We introduce the semi-infinite

formulation in section 2 and give a brief description of the algorithm in section 3. The algo-

rithm uses a primal-dual interior point method to approximately solve the linear relaxations

that arise at each iteration of the cutting plane algorithm. Theoretically, it is possible to use

a volumetric interior point method to solve the relaxations. We show in section 4 that the

complexity of a volumetric interior point cutting plane algorithm for solving a semidefinite

program to a prescribed tolerance ε > 0 is slightly less than that of a primal-dual IPM, at

least for a semidefinite program where the number of constraints is approximately equal to

the dimension of the matrix.

Our interior cutting plane algorithm solves a linear relaxation of the dual semidefinite

program. In every iteration, the algorithm calls a separation oracle that adds cutting planes

to strengthen the current relaxation. The convergence of the cutting plane algorithm can be
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improved by adding strong cutting planes. We show that we can always find a hyperplane

that supports the feasible region of the semidefinite program. In cutting plane methods

for integer programming (see Nemhauser and Wolsey [24]), the strongest cutting planes

are facet inequalities that describe the higher dimensional faces of the integer polytope.

Each supporting hyperplane induces a corresponding tangent space (we define the notion

in section 5). The dimension of the tangent space is one measure of the strength of this

hyperplane. When the primal semidefinite program has k constraints and the nullity of the

dual slack matrix at the support point is 1, we show that the dimension of the tangent space

defined by the hyperplane is k − 1. Further, if the nullity of the active dual slack matrix is

r, we describe how to generate a cutting plane that gives a tangent space of dimension at

least k− r. We illustrate these concepts with two representative examples in section 6, and

some computational results can be found in section 7.

Notation: The set of n×n symmetric matrices is denoted Sn. The set of positive semidef-

inite n× n matrices is denoted Sn+. The requirement that a matrix be positive semidefinite

is written X � 0. Matrices are represented using upper case letters and vectors using lower

case letters. Given an n-vector v, the diagonal n × n matrix with the ith diagonal entry

equal to vi for i = 1, . . . , n is denoted Diag(v). The n × n identity matrix is denoted In;

when the dimension is clear from the context, we omit the subscript. The Frobenius inner

product of two m × n matrices A and B is denoted A • B; if the matrices are symmetric

this is equal to the trace of their product, denoted trace(AB).

2 Semi-infinite formulations for semidefinite programming

Consider the semidefinite programming problem

min C •X
s.t. A(X) = b (SDP)

X � 0

with dual
max bT y

s.t. AT y + S = C (SDD)

S � 0

where X,S ∈ Sn+, C ∈ Sn, b and y are vectors in IRk, and A is a linear function mapping

Sn to IRk. We can regard A as being composed of k linear functions, each represented

by a matrix Ai ∈ Sn, so the constraint A(X) = b is equivalent to the k linear constraints

Ai •X = bi, i = 1, . . . , k. The expression AT y is equivalent to
∑k
i=1 yiAi.

We make the following two assumptions.

Assumption 1 The matrices Ai, i = 1, . . . , k are linearly independent in Sn.
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Assumption 2 There exists a constant a ≥ 0 such that every X satisfying AX = b also

satisfies trace(X) = a.

Helmberg [8] shows that every semidefinite program whose primal feasible set is bounded

can be rewritten to satisfy Assumption 2. The following lemma is a consequence of this

assumption.

Lemma 1 [8] There exists a unique vector ŷ satisfying AT ŷ = I, the identity matrix.

Consider any feasible point y in (SDD). The point (y− µŷ) is strictly feasible in (SDD)

for µ > 0. Indeed, the dual slack matrix at this new point is S = (C − AT (y − µŷ)) =

(C −AT y + µI) � 0. So, Assumption 2 ensures that (SDD) has a strictly feasible (Slater)

point. This assumption ensures that we have strong duality at optimality, i.e. the optimal

objective values of (SDP) and (SDD) are equal. Moreover, the primal problem (SDP)

attains its optimal solution.

Note that the convex constraint X � 0 is equivalent to

ηTXη = ηηT •X ≥ 0 ∀η ∈ B (1)

where B is a compact set, typically {η : ||η||2 ≤ 1} or {η : ||η||∞ ≤ 1}. These constraints

are linear inequalities in the matrix variable X, but there is an infinite number of them.

Thus, a semidefinite program is a semi-infinite linear program in IR
n(n+1)

2 variables.

We now consider two semi-infinite linear programs (PSIP)

min C •X
s.t. A(X) = b (PSIP)

ηTXη ≥ 0, ∀η ∈ B

max bT y

s.t. AT y + S = C (DSIP)

ηTSη ≥ 0, ∀η ∈ B

for (SDP) and (SDD), respectively. Note that X is n × n and symmetric, so (PSIP) has(n+1
2

)
= n(n+1)

2 = O(n2) variables. In contrast, there are k variables in (DSIP). We have

k ≤
(n+1

2

)
(from Assumption 1). Therefore, it is more efficient to deal with (DSIP), since

we are dealing with smaller linear programs (but see also the discussion at the end of this

section).

We discuss the finite linear programs (LDR) and (LPR) and some of their properties

below. Given a finite set of vectors {ηi, i = 1, . . . ,m}, we obtain the following relaxation

max bT y

s.t.
k∑
j=1

yj(η
T
i Ajηi) ≤ ηTi Cηi, i = 1, . . . ,m (LDR)
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of (SDD). The dual to (LDR) can be expressed as follows:

min C • (
m∑
i=1

xiηiη
T
i )

s.t. A(
m∑
i=1

xiηiη
T
i ) = b (LPR)

xi ≥ 0, i = 1, . . . ,m.

The convex constraint S � 0 is also equivalent to

P TSP � 0, ∀P ∈ IRn×r, r < n, and P TP = Ir. (2)

This allows one to develop a semi-infinite semidefinite formulation for (SDD) where the

semidefinite cone of size n in (SDD) is replaced with an infinite number of semidefinite

cones of size r < n. An overview of various techniques to update relaxations involving

finite subsets of these cones in interior cutting plane algorithms can be found in Krishnan

and Mitchell [16]. In particular, in Krishnan and Mitchell [15] the relaxations are linear

programs; in Sivaramakrishnan et al. [36] and Oskoorouchi and Goffin [26], the relaxations

are conic programs over a linear cone and several semidefinite cones of small size; and in the

spectral bundle algorithm of Helmberg and Rendl [10], the relaxations are conic programs

over one linear cone and one semidefinite cone.

Theorem 1 Let y∗ and x∗ be optimal solutions to (LDR) and (LPR), respectively.

1. The matrix X∗ =
m∑
i=1

x∗i ηiη
T
i is feasible in (SDP).

2. Let S∗ = (C −AT y∗). We have X∗ • S∗ = 0. Furthermore, if S∗ � 0 then X∗S∗ = 0,

and X∗ is an optimal solution to (SDP).

Proof: The primal conic program (LPR) is a constrained version of (SDP). Therefore,

any feasible solution x∗ in (LDR) gives a X =
m∑
i=1

x∗i ηiη
T
i that is feasible in (SDP). We have

X∗ • S∗ = (
m∑
i=1

x∗i ηiη
T
i ) • (C −AT y∗)

=
m∑
i=1

x∗i η
T
i (C −AT y∗)ηi

= 0

from the complementary slackness at optimality for (LPR) and (LDR). If S∗ = (C−AT y∗)
is positive semidefinite, then it is feasible in (SDD). Moreover, X∗ � 0, S∗ � 0, and

X∗ • S∗ = 0 together imply X∗S∗ = 0 (see Alizadeh et al. [1]).

The following theorem is due to Pataki [29] (also see Alizadeh et al. [1]):
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Theorem 2 There exists an optimal solution X∗ with rank r satisfying the inequality
r(r+1)

2 ≤ k, where k is the number of constraints in (SDP ).

The theorem suggests that an upper bound on the rank of an optimal solution X∗ is

r∗ = b
√

2kc, where k is the number of equality constraints in (SDP). Suppose S∗ is the dual

slack matrix at an optimal solution y∗ to (SDD). The complementary slackness conditions

X∗S∗ = 0 at optimality suggest that X∗ and S∗ share a common eigenspace. Moreover,

the positive eigenspace of X∗ corresponds to the null space of S∗ (see Alizadeh et al. [1]).

Therefore, Theorem 2 also provides an upper bound on the dimension of the null space of

S∗.

Let q =
n(n+ 1)

2
− k. It is possible to use a nullspace representation to reformulate

(SDP) as a semi-infinite programming problem with q variables. This is advantageous if q

is smaller than k, in particular if q is O(n). Let B : Sn → IRq be the null space operator

corresponding to A, so the range of BT is exactly the kernel of A. From Assumption 1,

we can regard B as being composed of q linear functions, each represented by a matrix

Bi ∈ Sn, and these matrices are linearly independent in Sn. Let X0 be a feasible solution

to the linear equality constraints A(X) = b. The set of feasible solutions to A(X) = b is

the set of all matrices of the form X = X0 − BT (u) for some u ∈ IRq. The problem (SDP)

can then be written equivalently as

min
u,X

C •X0 − C • BT (u)

s.t. BT (u) +X = X0 (SDPN)

X � 0.

The problem (SDPN) is in exactly the form of (SDD), so we can construct a linear program-

ming relaxation of it in the form (LDR), with q variables. We return to this alternative

representation when discussing the complexity of the algorithm in section 4. (A similar

nullspace representation of linear programming problems has been analyzed in the interior

point literature; see, for example, Todd and Ye [37] and Zhang et al. [41].)

3 Cutting plane algorithms for semidefinite programming

Let

Y = {y ∈ IRk : S = (C −AT y) � 0}
= {y ∈ IRk : λmax(AT y − C) ≤ 0}

(3)

be the convex set containing the feasible solutions to (SDD). The goal of cutting plane

methods that solve (SDD) is to find an optimal point that maximizes bT y over Y . There

are three important ingredients in this algorithm:

1. The technique used to update the relaxations (LPR) and (LDR) in every iteration.
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2. The choice of the query point ȳ.

3. Given a query point ȳ, a separation oracle that either (a) tells us that ȳ ∈ Y in

which case we try to improve the objective function bT y, or (b) returns a separating

hyperplane that separates ȳ from the set Y .

Choosing an optimal solution ȳ to (LDR) as the next query point is a bad idea (see Example

1.1.2 on page 277 of Hiriart-Urruty and Lemaréchal [12]). Instead, one adopts strategies

where the idea is to choose a more central point ȳ in the feasible region of (LDR) as the

next query point. These strategies include using a quadratic penalty term as in a bundle

method (see Helmberg and Rendl [10]), using an analytic center with objective function

cuts used to push the iterates towards an optimal solution (see Oskoorouchi and Goffin

[26], for example), and only solving (LDR) approximately with an interior point method

(see Sivaramakrishnan et al. [36], for example).

The main contribution of this paper is to design an efficient separation oracle that can

be utilized within a cutting plane algorithm for solving (SDD). We discuss the choice of

good cutting planes in section 5 and illustrate these choices with examples in section 6.

We first introduce several separating hyperplanes for the feasible set Y . The maximum

eigenvalue function λmax(AT y − C) is a convex non-smooth function, with a discontinuous

gradient whenever this eigenvalue has a multiplicity greater than one. The subdifferential

to λmax(AT y − C) at y = ȳ (see Hiriart-Urruty and Lemaréchal [12]) is given by

∂λmax(AT ȳ − C) = conv{A(ppT ) : pT (AT ȳ − C)p = λmax(AT ȳ − C), pT p = 1} (4)

where conv denotes the convex hull operation. There is also an alternate description

∂λmax(AT ȳ − C) = {A(PV P T ) : trace(V ) = 1, V � 0} (5)

where P ∈ IRn×r is an orthonormal matrix containing the eigenspace of λmax(AT ȳ − C)

(see Overton [28]). We note that (5) does not involve the convex hull operation. We will

use the second expression (5) in Theorem 5 to derive an expression for the normal cone for

the maximum eigenvalue function. Any subgradient from (4) gives the valid inequality

λmax(AT y − C) ≥ λmax(AT ȳ − C) +A(ppT )T (y − ȳ) ∀y. (6)

Now given the query point ȳ, we first check for feasibility, i.e. λmax(AT ȳ − C) ≤ 0. If ȳ is

not feasible, then we can construct a cut

λmax(AT ȳ − C) +A(ppT )T (y − ȳ) ≤ 0 (7)

To motivate this consider (7) with the reversed inequality. This would imply λmax(AT y −
C) > 0 from (6), and so y also violates the convex constraint. It follows that any feasible y
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satisfies (7). Using the fact that p is a normalized eigenvector corresponding to λmax(AT ȳ−
C), we can rewrite (7) as

pT (C −AT y)p ≥ 0 (8)

which is a valid cutting plane which is satisfied by all the feasible y. From linear algebra

(see Horn and Johnson [13]), we have

λmax(AT ȳ − C) = max {ηT (AT ȳ − C)η : ||η||2 = 1}. (9)

Moreover, any eigenvector η corresponding to positive eigenvalue of the matrix (AT ȳ − C)

gives a valid cutting plane ηT (C − AT y)η ≥ 0. However, these cutting planes are weaker

than the cutting plane (8) that corresponds to the most positive eigenvalue of (AT ȳ − C).

Cutting planes can also be found using the ∞-norm; for details, see Krishnan and Mitchell

[17].

Algorithm 1 presents the overall interior point cutting plane algorithm for solving

semidefinite programs. For the implementation details of a more sophisticated algorithm

similar to Algorithm 1 see Sivaramakrishnan et al. [36]. Procedures to warm-start the new

relaxations with strictly feasible starting points are discussed in Sivaramakrishnan et al.

[36]. These are extensions of techniques given in Mitchell and Todd [21]. The relaxations

are only solved approximately in Step 3 because the iterates are then more centered, which

leads to stronger cutting planes and improved warm starting. We show later in theorem 4

that the vector y̌ = ym − λŷ constructed in Step 6 is on the boundary of Y and provides a

lower bound. The algorithm can be refined to drop unimportant constraints; for details see

Sivaramakrishnan et al. [36]. We illustrate two iterations of the cutting plane algorithm in

figure 1.

Computational results with Algorithm 1 can be found in Sivaramakrishnan et al. [36].

Moreover, computational results obtained with the related spectral bundle and ACCPM

algorithms can be found in Helmberg et al. [9, 10] and Oskoorouchi et al. [26, 27], respec-

tively.
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Algorithm 1 (Interior point cutting plane algorithm)

1. Initialize: Set m = 1. Choose an initial LP relaxation (LDR) that has a bounded

optimal solution. Let xm and ym be feasible solutions in (LPR) and (LDR),

respectively. Choose a tolerance parameter β > 0 and a termination parameter

ε > 0.

2. Warm start the current relaxation: Generate strictly feasible starting points

for (LPR) and (LDR).

3. Solve the current relaxation: Solve the current relaxations (LPR) and (LDR)

with the strictly feasible starting points from Step 3 to a tolerance β. Let xm and

ym be the current solutions to (LPR) and (LDR), respectively. Update the upper

bound using the objective value to (LPR).

4. Separation Oracle: Call the separation oracle at the point ym. If the oracle

returns a cutting plane, update (LPR) and (LDR).

5. Optimality check: If the oracle reported feasibility in Step 4 then reduce β by

a constant factor. Else, β is unchanged. If β < ε, we have an optimal solution,

STOP.

6. Update lower bound: If the oracle reported feasibility in Step 4 then bT ym

provides the current lower bound on the optimal objective value. Else, Sm =

(C − AT ym) is not psd. Perturb Sm (using the vector ŷ from Lemma 2) to

generate y̌, that is on the boundary of Y and whose objective value bT y̌ provides

a lower bound. Update the lower bound.

7. Loop: Set m = m+ 1 and return to Step 2.

4 Complexity of the interior point cutting plane algorithm

It must be mentioned that a semidefinite program was known to be solvable in polynomial

time, much before the advent of interior point methods. In fact we can use the polynomial

time oracle for a semidefinite program mentioned in section 3 in conjunction with the

ellipsoid algorithm to solve this problem in a polynomial number of arithmetic operations.

It is interesting to compare the worst case complexity of such a method, with that of interior

point methods.

The ellipsoid algorithm (for example, see Grötschel et al. [7]) can solve a convex pro-

gramming problem of size k with a separation oracle to an accuracy of ε, in O(k2 log(1ε ))
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FEASIBLE REGION
OF DUAL LP RELAXATION

y(m−1)

y(m+1)

ystart(m)

DUAL
SDP

REGION
IN

y SPACE

y(m) ystart(m+1)

ycheck(m)

ycheck(m+1)

Figure 1: Solving the SDP via a cutting plane algorithm: In the (m − 1)th iteration,

the point y(m − 1) is outside the feasible region of (SDD). The oracle returns the unique

hyperplane that supports the dual SDP feasible region at ycheck(m) and cuts off y(m−1). A

strictly feasible restart point ystart(m) is found. The new LP relaxation is approximately

solved using an interior point method, giving y(m), that is inside the feasible region of

(SDD). In this case, we tighten the tolerance to which the LP relaxation is solved, while the

feasible region of the relaxation is unchanged. The LP is solved with starting point y(m),

giving y(m + 1) that is outside the feasible region of (SDD). The oracle returns a cutting

plane that supports the dual feasible region at ycheck(m + 1). Note that the boundary of

(SDD) has a kink at ycheck(m + 1), and there are several supporting hyperplanes at this

point. The separation oracle returns the tightest hyperplane at ycheck(m + 1) that cuts

off y(m + 1). Note that this hyperplane corresponds to a higher dimensional face of SDP

feasible region.
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calls to this oracle and in O(k2 log(1ε )T + k4 log(1ε )) arithmetic operations, where T is the

number of operations required for one call to the oracle. Each iteration of the ellipsoid

algorithm requires O(k2) arithmetic operations.

The interior point cutting plane algorithm with the best complexity is a volumetric

barrier method, due to Vaidya [39] and refined by Anstreicher [2] and Ramaswamy and

Mitchell [33]. The volumetric center minimizes the determinant of the Hessian of the

standard potential function −
∑
i ln si, where s is the vector of dual slacks in the linear

programming relaxation. This is closely related to finding the point where the volume of

the inscribing Dikin ellipsoid is largest. (See Mitchell [20] for a survey of interior point

polynomial time cutting plane algorithms). This algorithm requires O(k log(1ε )) iterations,

with each iteration requiring one call to the oracle and O(k3) other arithmetic operations.

Thus, the overall complexity is O(k log(1ε )T + k4 log(1ε )) arithmetic operations. Note that

the number of calls to the oracle required by the volumetric algorithm is smaller than the

corresponding number for the ellipsoid algorithm. This complexity of O(k log(1ε )) calls to

the separation oracle is optimal — see Nemirovskii and Yudin [25].

The oracle for semidefinite programming requires the determination of an eigenvector

corresponding to the smallest eigenvalue of the current dual slack matrix. Let us examine

the arithmetic complexity of this oracle. Let us assume that our current iterate is ȳ ∈ IRk.

1. We first have to compute the dual slack matrix S̄ = (C −
k∑
i=1

ȳiAi), where C, S̄, and

Ai, i = 1, . . . , k are in Sn. This can be done in O(kn2) arithmetic operations.

2. We then compute λmin(S̄), and an associated eigenvector η. This can be done in

O(n3) arithmetic operations using the QR algorithm for computing eigenvalues, and

possibly in O(n2) operations using the Lanczos scheme, whenever S is sparse.

3. If λmin(S̄) ≥ 0, we are feasible, and therefore we cut based on the objective function.

This involves computing the gradient of the linear function, and this can be done in

O(k) time.

4. On the other hand if λmin(S̄) < 0, then we are yet outside the SDP cone; we can now

add the valid constraint
k∑
i=1

yi(η
TAiη) ≤ ηTCη, which cuts off the current infeasible

iterate ȳ. The coefficients of this constraint can be computed in O(kn2) arithmetic

operations.

It follows that the entire oracle can be implemented in T = O(n3 + kn2) time.

We summarize this discussion in the following theorem.

Theorem 3 A volumetric cutting plane algorithm for a semidefinite programming problem

of size n with k constraints requires O((kn3 + k2n2 + k4) log(1ε )) arithmetic operations. An
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ellipsoid algorithm cutting plane method requires O((k2n3 + k3n2 + k4) log(1ε )) arithmetic

operations.

Let us compare this with a direct interior point approach. Interior point methods (see

Monteiro [22] for more details) can solve an SDP of size n, to a precision ε, in O(
√
n log(1ε ))

iterations (this analysis is for a short step algorithm). As regards the complexity of an

iteration :

1. We need O(kn3 + k2n2) arithmetic operations to form the Schur matrix M . This can

be brought down to O(kn2 + k2n) if the constraint matrices Ai are rank one as in the

semidefinite relaxation of the maxcut problem (see Laurent and Rendl [18]).

2. We need O(k3) arithmetic operations to factorize the Schur matrix, and compute the

search direction. Again, this number can be brought down if we employ iterative

methods.

The overall scheme can thus be carried out in O(k(n3 + kn2 + k2)
√
n log(1ε )) arithmetic

operations. (We may be able to use some partial updating strategies to factorize M and

improve on this complexity). Thus, if k = O(n) then the complexity of the volumetric

cutting plane algorithm is slightly smaller than that of the direct primal-dual interior point

method. Thus we could in theory improve the complexity of solving an SDP using a cutting

plane approach.

Note also that if q =
n(n+ 1)

2
− k is O(n), we can use the nullspace representation

(SPDN) to improve the complexity estimate given in theorem 3. In particular, the problem

(SDPN) is in exactly the form of (SDD), so the cutting plane approach of section 3 can

be applied to it directly. It follows from theorem 3 that (SDP) can be solved in O((qn3 +

q2n2 + q4) log(1ε )) arithmetic operations using a volumetric barrier cutting plane algorithm.

This is again superior to the complexity derived above for a direct interior point method

for solving (SDP) if q = O(n).

5 Properties and generation of good cutting planes

The practical convergence properties of the interior point cutting plane algorithm could be

strengthened by developing a better separation oracle. In this section, we investigate the

valid inequalities returned by the separation oracle in the cutting plane algorithm. Given

a point ȳ /∈ Y , the cutting plane algorithm with the 2-norm oracle generates constraints

of the form ηT (AT y)η ≤ ηTCη, where η is an eigenvector of the current dual slack matrix

S̄ = (C − AT ȳ) with a negative eigenvalue. These constraints separate ȳ from Y . We

focus on the most negative eigenvalue. We show that the constraint corresponding to any

eigenvector coming from the most negative eigenvalue is tight in Theorem 4. When the

minimum eigenvalue has multiplicity one, we show that this constraint defines a facet of
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the tangent space in Theorem 7. Furthermore, we construct a method for deciding between

eigenvectors when the multiplicity is greater than one in section 5.3, culminating in the

strong lower bound on the dimension of a cutting plane in Theorem 9.

We show first that there is a point y̌ on the boundary of Y that satisfies the cutting

plane constraint at equality. Let η be an eigenvector of S̄ of norm one corresponding to the

most negative eigenvalue of S̄, and let λ denote this eigenvalue. Define

y̌ = ȳ − λŷ (10)

where ŷ is the vector in Lemma 1. The dual slack matrix at y̌ is Š = S̄ + λI, which is

positive semidefinite, so y̌ ∈ Y . Further, η is in the nullspace of Š.

Theorem 4 Let η be an eigenvector of the current dual slack matrix S̄ with minimum

eigenvalue. The constraint ηT (C−AT y)η ≥ 0 is satisfied at equality by the feasible point y̌.

Proof: We have Š = C − AT y̌ and η is in the nullspace of this matrix. Thus we have

ηTSη = 0 and so this feasible y̌ ∈ Y satisfies the new constraint at equality.

We let r denote the nullity of Š. Let Š have the eigendecomposition

Š = [Q1 Q2]

[
Λ 0

0 0

] [
Q1

T

Q2
T

]
, (11)

where Q = [Q1 Q2] is an orthonormal matrix and Λ is a (n− r)× (n− r) positive diagonal

matrix. This eigendecomposition is used to characterize the cone of tangents at y̌ in section

5.1. Further analysis of the cases where r = 1 and r > 1 can be found in sections 5.2 and

5.3, respectively.

5.1 Cone of tangents and the normal cone

A valid linear inequality for a convex set gives a face of the convex set, namely the in-

tersection of the set with the hyperplane defined by the inequality. For a full-dimensional

polyhedron, the only inequalities that are necessary are those describing the facets of the

polyhedron (see Nemhauser and Wolsey [24]). A more general convex set may not have

any facets, but the dimension of a face can be a useful indicator of the strength of a linear

constraint. The face of interest is the intersection of the cone of tangents with the support-

ing hyperplane defined by the linear constraint. We call this intersection the tangent space

defined by the hyperplane, and we define it formally in the following definition.

Definition 1 Let Y be a nonempty closed convex set in IRk. For any point ȳ ∈ IRk, the

distance from ȳ to Y is defined as the distance from ȳ to the unique closest point in Y and

12



is denoted dist(ȳ, Y ). Let y̌ be a point on the boundary of Y . The cone of feasible directions,

the tangent cone, and the normal cone at y̌ are defined as

dir(y̌, Y ) = {d : y̌ + td ∈ Y for some t > 0}

tcone(y̌, Y ) = cl(dir(y̌, Y )) (closure of dir(y̌, Y ))

= {d : dist(y̌ + td, Y ) = O(t2)}

ncone(y̌, Y ) = {v : dT v ≤ 0, ∀d ∈ tcone(y̌, Y )}.

Given a supporting hyperplane H for Y , the tangent space defined by H at y̌ is

tpl(y̌, Y,H) = {d ∈ tcone(y̌, Y ) : y̌ + d ∈ H}.

A convex subset F of Y is a face of Y if

x ∈ F , y, z ∈ Y , x ∈ (y, z) implies y, z ∈ F ,

where (y, z) denotes the line segment joining y and z. Note that {u : u = y̌ + d, d ∈
tpl(y̌, Y,H)} contains the face H ∩ Y of Y .

The equivalence of the two definitions of tcone follows from page 135 of Hiriart-Urruty and

Lemaréchal [11]. The geometry of semidefinite programming is surveyed by Pataki [30].

Conceptually, the idea of a tangent space defined by a hyperplane will be used as an analogue

of the idea of a face of a polyhedron. In sections 5.2 and 5.3, we show that if Y is full-

dimensional and if the inequality arises from an eigenvector of S̄ with smallest eigenvalue

then the dimension of the tangent space is related to the dimension of the corresponding

eigenspace. We will illustrate these concepts with the following example:

Example 1 Consider

Y =

y ∈ IR2 : S =


y1 y2 0

y2 y1 − 3 0

0 0 y1 − 4

 � 0

 .
Consider the point ȳ = [3 2]T and let S̄ = (C − AT ȳ). We have λ = λmin(S̄) = −1

with multiplicity 2 and so ȳ 6∈ Y . One can easily verify that ŷ = [1 0]T . The point

y̌ = (ȳ − λŷ) = [4 2]T ∈ Y . This example is illustrated in figure 2. We have

tcone(y̌, Y ) = {d ∈ IR2 : 5d1 − 4d2 ≥ 0, d1 ≥ 0} and

ncone(y̌, Y ) = {v ∈ IR2 : 4v1 + 5v2 ≤ 0, v2 ≥ 0}.

The extreme rays of ncone(y̌, Y ) are [−5 4] and [−1 0], respectively. The first ray gives the

linear constraint 5y1 − 4y2 ≥ 12 and the tangent space defined by this constraint at y̌ is the

halfline generated by d2. Similarly, the second ray gives the linear constraint y1 ≥ 4 whose

tangent space is the halfline generated by d1. It is desirable to add constraints corresponding

13
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Figure 2: The tangent cone and normal cone for Example 1
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to higher dimensional faces of tcone(y̌, Y ), rather than weaker constraints that are active at

y̌, such as 2y1 − y2 ≥ 6. The latter constraint is obtained from the internal ray [−2 1] in

ncone(y̌, Y ).

We will now derive an expression for ncone(y̌, Y ).

Theorem 5 Assume that y̌ satisfies λmax(AT y̌ −C) = 0 and there exists a Slater point ys

such that λmax(AT ys − C) < 0. Then

ncone(y̌, Y ) = cone(∂λmax(AT y̌ − C))

= {A(Q2V Q
T
2 ) : V � 0}

(12)

where cone(X) = {γx : x ∈ X, γ ≥ 0} and Q2 is the nullspace of of (AT y̌ − C).

Proof: The proof for the first expression for ncone(y̌, Y ) can be found in theorem 1.3.5

on page 245 of Hiriart-Urruty and Lemaréchal [11]. Using the second expression (5) for the

subdifferential ∂λmax(AT y̌ − C), we have

ncone(y̌, Y ) = {γA(Q2V Q
T
2 ) : trace(V ) = 1, V � 0, γ ≥ 0}

= {A(Q2V Q
T
2 ) : V � 0}.

In general, the cone {A(Q2V Q
T
2 ) : V � 0} may not be closed, as in the following example

drawn from Pataki [31]:

Example 2 Take k = n = 2. Let

QT2A1Q2 =

[
1 0

0 0

]
, QT2A2Q2 =

[
0 1

1 0

]
.

It can be easily verified that the ray [0 1]T is not in the cone {A(Q2V Q
T
2 ) : V � 0}, but

it is in its closure. It should be noted that the matrices A1 and A2 in this example do not

satisfy Assumption 2.

A sufficient condition (see Pataki [31]) to guarantee the closure of the cone {A(Q2V Q
T
2 ) :

V � 0} is the existence of a y ∈ IRk such that QT2 (AT y)Q2 � 0, which is guaranteed by

Assumption 2. From Lemma 1, the vector ŷ satisfies QT2 (AT ŷ)Q2 = I � 0.

We will now derive an expression for tcone(y̌, Y ).

Theorem 6 Assume that y̌ satisfies λmax(AT y̌ −C) = 0 and there exists a Slater point ys

such that λmax(AT ys − C) < 0. Then

tcone(y̌, Y ) = {d ∈ IRk : QT2 (ATd)Q2 � 0} (13)

where Q2 is the nullspace of (AT y̌ − C).
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Proof: We have

tcone(y̌, Y ) = {d ∈ IRk : dT v ≤ 0, ∀v ∈ ncone(y̌, Y )}
= {d ∈ IRk : dT (AT (Q2V Q

T
2 )) ≤ 0, ∀V � 0} (from Theorem 5)

= {d ∈ IRk : (QT2 (ATd)Q2) • V ≤ 0, ∀V � 0}
= {d ∈ IRk : QT2 (ATd)Q2 � 0}.

We note that an alternative derivation for the tangent cone for the cone of positive semidef-

inite matrices can be found in Bonnans and Shapiro [3].

5.2 When the nullity of the dual slack matrix equals one

If the nullity of Š is equal to one, then the dimension of the tangent space is k − 1, as we

show in the next theorem. This is as large as possible, of course.

Theorem 7 If the minimum eigenvalue of S̄ has multiplicity of one with corresponding

eigenvector η, then the constraint ηT (C − AT y)η ≥ 0 defines a tangent space of Y of

dimension k − 1 at y̌.

Proof: The matrix Š has an eigendecomposition

Š = [Q1 η]

[
Λ 0

0 0

] [
Q1

T

ηT

]
(14)

where Q = [Q1 η] is an orthogonal matrix and Λ is a (n − 1) × (n − 1) positive diagonal

matrix. For any point y, define the direction d = y − y̌. The constraint can be written

ηT (Š −ATd)η ≥ 0, or equivalently as

k∑
i=1

diη
TAiη ≤ 0

since η is in the nullspace of Š. The supporting hyperplane H is defined by the equation

k∑
i=1

diη
TAiη = 0, (15)

so H = {y̌ + d : d satisfies (15)}. Moreover from theorem 6, d ∈ tcone(y̌, Y ) and hence

d ∈ tpl(y̌, Y ). So, tpl(y̌, Y,H) has dimension k − 1.

When the multiplicity of the maximum eigenvalue is one, λmax(AT y−C) is differentiable

at y = y̌. So, ncone(y̌, Y ) = A(ηηT ) (singleton set). Moreover, tcone(y̌, Y ) is the half space∑k
i=1 diη

TAiη ≤ 0 whose boundary is the only supporting hyperplane at y = y̌ given by

(15). For an illustration of this result, see figure 3.
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5.3 General values for the nullity

An upper bound on the nullity of an optimal dual slack matrix S∗ is given by Theorem 2,

and this nullity is typically greater than one. In exact arithmetic, the nullity of Š may be one

as Algorithm 1 converges to an optimal solution to (SDD), but there are likely to be several

very small eigenvalues. Computationally, the effective nullity of Š may be greater than one.

We will generalize Theorem 7 for the case where the nullity of Š is greater than one, to get

a lower bound on the dimension of the tangent space. Let Š have an eigendecomposition

that is given by (11). We let r denote the nullity of Š, and η denotes any vector of norm

one in the nullspace of Š. We now obtain a lower bound on the dimension of the tangent

space.

Proposition 1 The dimension of the tangent space to Y at y̌ defined by the valid constraint

ηT (C −AT y)η ≥ 0 is at least k −
(
r + 1

2

)
.

Proof: The columns of Q2 give a basis for the nullspace of Š; denote these columns as

p1, . . . , pr. There are at least k−
(
r + 1

2

)
linearly independent directions d satisfying the(

r + 1

2

)
equations

pTi (ATd)pj = 0, 1 ≤ i ≤ j ≤ r. (16)

Note that η is a linear combination of the columns of Q2, so any d satisfying (16) is on the

hyperplane ηT (ATd)η = 0. From Theorem 6, any direction d satisfying (16) is also in the

cone of tangents to Y at y̌. The result follows.

In section 6, we give examples where the tangent space has dimension far greater than

that implied by Proposition 1. Eigenvectors η that make the dimension of the corresponding

tangent plane as large as possible give the best linear approximation to the cone of tangents.

We now characterize the vectors η which will do this, leading to the strengthened result

of Theorem 9. Any element v ∈ ncone(y̌, Y ) gives a valid cutting plane vT y ≤ vT y̌. The

strongest constraints for tcone(y̌, Y ) are those where v is an extreme ray of ncone(y̌, Y ).

We can find the extreme rays of ncone(y̌, Y ) by finding the extreme points of slices through

ncone(y̌, Y ). We use ŷ to define one particular slice as

Π = {v ∈ ncone(y̌, Y ) : ŷT v = 1}. (17)

We first show that Π is a closed and bounded set and that every nonzero v ∈ ncone(y̌, Y )

can be scaled to give a point in Π.

Proposition 2 For any nonzero v ∈ ncone(y̌, Y ), the inner product ŷT v is strictly positive.

Further, the set Π is compact.
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Proof: Using Theorem 5, if v ∈ ncone(y̌, Y ) then we have v = A(Q2V Q
T
2 ) for some

V � 0, so

ŷT v = ŷTA(Q2V Q
T
2 )

= (QT2 (AT ŷ)Q2) • V
= trace(V ).

Therefore,

Π = {A(Q2V Q
T
2 ) : trace(V ) = 1, V � 0}.

We note that Π is the image under a linear transformation of the closed and bounded set

{V � 0 : trace(V ) = 1}, so Π must also be closed and bounded.

It follows from Proposition 2 that we can find all the extreme rays of ncone(y̌, Y ) by

solving the semidefinite program min{gT v : v ∈ Π} for various values of g. Further, if the

solution for a particular g is unique then the optimal v is an extreme ray of ncone(y̌, Y ).

This SDP is easy to solve, requiring just the calculation of the minimum eigenvalue of an

r × r matrix.

Theorem 8 The extreme rays of ncone(y̌, Y ) are vectors of the form v = A(Q2uu
TQT2 ),

where u is an eigenvector of minimum eigenvalue of the matrix QT2 (AT g)Q2 for some vec-

tor g.

Proof: Each extreme ray is the solution to a semidefinite program of the form

min gT v

subject to A(Q2V Q
T
2 ) − v = 0 (SP8)

ŷT v = 1

V � 0

for some vector g. The dual of this problem is

max z

subject to QT2 (AT y)Q2 � 0

ŷz − y = g.

Substituting y = ŷz − g into the first constraint and exploiting the facts that AT ŷ = I and

QT2Q2 = I, we obtain the eigenvalue problem

max z

subject to zI � QT2 (AT g)Q2. (SD8)

It follows that the optimal value z is the smallest eigenvalue of QT2 (AT g)Q2. By comple-

mentary slackness, the optimal primal matrix V must be in the nullspace of the optimal
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dual slack matrix, giving the result stated in the theorem.

We can use the characterization of the extreme rays given in this theorem to determine

explicitly the dimension of the corresponding tangent space of Y .

Theorem 9 Let v be an extreme ray found by solving (SP8), and assume the nullity of

the optimal slack matrix in (SD8) is one. The tangent space defined by the constraint

vT y ≤ vT y̌ has dimension at least k − r.

Proof: Let u be a basis for the null space of the optimal slack matrix for (SD8). From

complementary slackness for the (SP8) and (SD8) pair, we have v = A(Q2uu
TQT2 ), rescal-

ing u if necessary. For a direction d to be on the tangent space defined by the constraint,

we need vTd = 0 and QT2AT (d)Q2 � 0. The equality condition can be restated in terms of

u as requiring uTQT2AT (d)Q2u = 0, or equivalently as requiring d be such that u is in the

nullspace of QT2AT (d)Q2.

Take z to be the optimal value of (SP8) and let d̃ = ŷz − g. From complementary

slackness in the pair of semidefinite programs in theorem 8 we have vT d̃ = 0. Also

QT2AT (d̃)Q2 = (zI − QT2AT (g)Q2) � 0. Hence it is clear that d̃ is in the tangent space

defined by the constraint. The vector u is in the null space of QT2AT (d̃)Q2. We now ex-

ploit the hypothesis on the nullity of QT2AT (d̃)Q2. Without loss of generality, consider the

eigendecomposition

QT2AT (d̃)Q2 = [U u]

[
Λ 0

0 0

] [
UT

uT

]

where Λ ≺ 0. We choose any vector of the form d = d̃ + αd′, where d′ is chosen so that u

is in the nullspace of QT2AT (d′)Q2 and α > 0 is a sufficiently small parameter determined

below. It is clear such a choice of d′ will guarantee that u is in the nullspace of QT2AT (d)Q2.

Now

QT2AT (d)Q2 = [U u]

[
Λ + αV 0

0 0

] [
UT

uT

]

where V = UTQT2AT (d′)Q2U . Since Λ ≺ 0, it is clear that the matrix QT2AT (d)Q2 � 0 for

an appropriate choice of α > 0.

The matrix QT2AT (d′)Q2 is r× r, so d′ ∈ IRk must satisfy r homogeneous equations for

u to be in the nullspace of QT2AT (d)Q2. It follows that the dimension of the set of possible

d′ is at least k − r, giving the result.

This theorem is useful in that it gives us an easy method to distinguish between different

vectors Q2u in the nullspace of the dual slack matrix Š. Algorithmically, we could randomly

generate vectors g and check whether the smallest eigenvalue of QT2AT (g)Q2 has multiplicity

equal to one. If so, then we obtain a strong inequality. Note that the matrix QT2AT (g)Q2
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is full rank, almost surely, since the columns of Q2 are linearly independent and since

Assumption 2 holds. It follows that the minimum eigenvalue will have multiplicity one

almost surely.

Our idea of choosing the extreme points of the subdifferential in constructing the sepa-

rating hyperplane is complementary to the notion of choosing the minimum norm subgra-

dient from the subdifferential (see Chapter IX in Hiriart-Urruty and Lemaréchal [12]). The

negative of the minimum norm subgradient gives the steepest descent direction and it is

commonly employed in subgradient and bundle methods for nonsmooth optimization. The

problem of finding the minimum norm subgradient can be written as

min vT v

subject to v = A(Q2XQ
T
2 )

ŷT v = 1

X � 0.

(18)

The solution v to (18) usually occurs at an interior point of the feasible region, i.e., at

an internal ray of ncone(y̌, Y ). Consequently, as we show in example 6.2, the generated

hyperplane defines a tangent space of low dimension.

6 Examples of the tangent space

In this section, we look at examples of the tangent spaces for some semidefinite programs.

The first example in section 6.1 considers a simple second order cone constraint of size 2.

Our aim is to use this example to illustrate the power of Theorem 8 in generating stronger

cutting planes. A more complicated non-polyhedral example with a large value of r is the

subject of section 6.2.

6.1 SOCP example

The second order cone constraint y21 ≥ y22, y1 ≥ 0, can be represented as the SDP constraint

y1

[
1 0

0 1

]
+ y2

[
0 1

1 0

]
� 0.

Consider the point ȳ = [−1, 0]. The dual slack matrix S =

[
y1 y2

y2 y1

]
has a negative

eigenvalue −1 with multiplicity 2 at ȳ. Moreover, the eigenvector corresponding to this

eigenvalue is not unique. Note that ŷ from Lemma 1 is [1, 0]T , and y̌ from (10) is [0, 0]T .

One choice for a cutting plane would be to choose any eigenvector corresponding to the

minimum eigenvalue at S̄. Applying the QR algorithm gives the following two choices for

the eigenvector: (1) η1 = [1, 0]T that gives the cutting plane y1 ≥ 0, and (2) η2 = [0, 1]T

that again gives the cutting plane y1 ≥ 0. Note that the tangent space defined by this
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constraint at this origin is the origin itself, that has dimension 0. Incidentally, these are the

eigenvectors returned by the eig routine in our implementation of the cutting plane method

in MATLAB.

The cone of tangents at the origin is

tcone = {d ∈ IR2 : d1 ≥ |d2|}

and the normal cone is

ncone = {d ∈ IR2 : d1 ≤ −|d2|}.

At the origin, we have Q2 = I. Given a vector u ∈ IR2 with ||u||22 = 1, we obtain

A(Q2uu
TQT2 ) =

[
−1

−2u1u2

]

and the extreme rays of the normal cone are obtained by taking u1 = ± 1√
2

and u2 = ± 1√
2
.

By Theorem 8, we can obtain the extreme rays by first picking a vector g ∈ IR2 and

then finding an eigenvector of minimum eigenvalue of the matrix

AT g := g1

[
−1 0

0 −1

]
+ g2

[
0 −1

−1 0

]
=

[
−g1 −g2
−g2 −g1

]
.

The eigenvalues of this matrix are −g1 ± g2. We have two cases:

g2 > 0: The minimum eigenvalue is −g1 − g2 and the corresponding eigenvector is u =

[1, 1]T , normalized. Then

A(Q2uu
TQT2 ) =

[
−1

−1

]
,

one of the extreme rays of the normal cone. This gives the cutting plane y1 + y2 ≥ 0.

The tangent space defined by this constraint at the origin is the ray y1 + y2 = 0 that

has dimension 1.

g2 < 0: The minimum eigenvalue is −g1 + g2 and the corresponding eigenvector is u =

[1, −1]T , normalized. Then

A(Q2uu
TQT2 ) =

[
−1

1

]
,

the other extreme ray of the normal cone. This gives the cutting plane y1 − y2 ≥ 0.

The tangent space defined by this constraint at the origin is the ray y1 = y2 that has

dimension 1.
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Hence, almost every choice of g leads to an extreme ray of the normal cone. The exception

is to take g2 = 0. This returns the weaker cutting plane y1 ≥ 0, which as we discussed

before, defines a tangent space of dimension 0.

The result of Theorem 9 may underestimate the dimension of the tangent space defined

by the constraint. For this example, we have k − r = 0, and the dimension of the tangent

space is 1.

6.2 Non-polyhedral example

Take

C = eeT − I, Ai = −eieTi , i = 1, . . . , n.

This is a non-polyhedral example with k = n and ŷ = −e. We take y̌ = e, so Š = eeT and

r = nullity(Š) = n− 1. Thus, k − r = 1.

Any η = ei−ej with i 6= j is in the nullspace of Š. The constraint becomes di+dj ≥ 0 for

any direction d from y̌. If n = 2, then r = 1 and by theorem 7 the hyperplane d1 + d2 = 0

defines a tangent space of dimension 1. In this case, we have tcone(y̌, Y ) = {d ∈ IR2 :

d1 + d2 ≥ 0}.
Suppose, n = 3. In this case r = 2. Moreover, using MAPLE we find that

tcone(y̌, Y ) =

{
d ∈ IR3 :

[
d1 + d2 + 4d3

√
3(d1 − d2)√

3(d1 − d2) 3(d1 + d2)

]
� 0

}
,

ncone(y̌, Y ) =

{
v ∈ IR3 :

[
−3

2v3
√
3
2 (−v1 + v2)√

3
2 (−v1 + v2) −v1 − v2 + v3

2

]
� 0

}
,

and the feasible region of (SP8) is

Π =

{
v ∈ IR3 : v1 + v2 + v3 = −1,

[
−3

2v3
√
3
2 (−v1 + v2)√

3
2 (−v1 + v2) −v1 − v2 + v3

2

]
� 0

}
.

Consider the hyperplane d1 + d2 = 0. The tangent space defined by this hyperplane is the

half-line {d ∈ IR3 : d1 = 0, d2 = 0, d3 ≥ 0}, that is of dimension 1. More importantly,

there are no facet defining hyperplanes of dimension 2 due to the non-polyhedral nature

of tcone(y̌, Y ). The choice of g = [1 1 0] in (SP8) gives the hyperplane d1 + d2 = 0.

The minimum norm subgradient obtained from the solution to (18) gives the hyperplane

d1 + d2 + d3 = 0, that intersects tcone(y̌, Y ) at [0 0 0] and defines a tangent space of

dimension 0. Similarly, for n ≥ 3 every hyperplane di + dj = 0, i 6= j defines a tangent

space of dimension n − 2, since we can increase the values of dl, l 6= i, j and stay on the

hyperplane as well as tcone(y̌, Y ). This is strictly larger than k − r for n ≥ 4.

Now consider n = 3 and the hyperplane d1 + d2 + 4d3 = 0. The tangent space defined

by this hyperplane is the halfline {d ∈ IR3 : d1 ≥ 0, d2 = d1, d3 = −2d1}, that is of
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dimension 1. For n = 4, we have

tcone(y̌, Y ) =

d ∈ IR4 :


6(d1 + d2) 2

√
3(d1 − d2)

√
6(d1 − d2)

2
√

3(d1 − d2) 2(d1 + d2 + 4d3)
√

2(d1 + d2 − 2d3)√
6(d1 − d2)

√
2(d1 + d2 − 2d3) (d1 + d2 + d3 + 9d4)

 � 0


and the hyperplane d1 + d2 + 4d3 = 0 defines the tangent space {d ∈ IR4 : d1 = 0, d2 =

0, d3 = 0, d4 ≥ 0}, that is again of dimension 1. For n ≥ 4, the hyperplane di+dj+4dk ≥ 0,

i 6= j 6= k defines a tangent space of dimension n− 3.

Now assume n ≥ 4. We give a supporting hyperplane that defines a tangent space of

dimension 0. Let η be the following vector in the nullspace of Š:

ηi =

{
bn2 c for i = 1, . . . , dn2 e
−dn2 e for i = dn2 e+ 1, . . . , n

Since n ≥ 4, at least two components of η are equal to bn2 c and at least two are equal to

−dn2 e. The constraint for the tangent plane becomes
∑n
i=1 diη

2
i = 0. For instance for n = 4,

we have η = [1 1 − 1 − 1] which gives the hyperplane d1 + d2 + d3 + d4 = 0. Moreover,

this is the hyperplane returned by the minimum norm subgradient that is the solution to

(18). It can be shown that this hyperplane defines a tangent space of dimension 0 which is

strictly smaller than k − r.

7 Computational Results

In this section, we compare the effect of adding a cutting plane corresponding to the mini-

mum eigenvalue of S̄ = (C −AT ȳ) with adding other cutting planes. We test the approach

on Ising spin glass MaxCut problems with 10000 vertices, taken from [19]. We use CPLEX

12 to solve the LP relaxations on one core of an Apple Mac Pro with a 2x2.8 GHz Quad-Core

Intel Xeon processor. The most negative eigenvalue was found using the power method,

applied first to find the largest eigenvalue and then applied to a shifted version of S̄ to find

the most negative eigenvalue and a corresponding eigenvector. The tested alternative to

adding this eigenvector was to sparsify it, ensuring that it still gave a violated constraint.

This is a similar approach to that in [32]. We investigated adding either 10 or 20 sparse

constraints at each iteration.

In Table 1, we compare the average improvement in the lower bound on the SDP relax-

ation for three instances, after 20 iterations and after 100 iterations. The lower bound is

obtained using two sets of dual constraints: (i) the diagonal entries of S are nonnegative,

and (ii) for each 2 × 2 principal minor M of S with nonzero off-diagonal, we impose the

constraint that dTMd ≥ 0, where d = (1,−1)T . For our test problems, the optimal solution

to this relaxation results in each M being positive semidefinite.

It is clear that the single eigenvector is giving better bounds than 10 or 20 sparse con-

straints. The linear programs with the sparse constraints solve more quickly than the LPs
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Eigenvector 10 sparse constraints 20 sparse constraints

20 iterations 6.1 2.7 3.0

100 iterations 26.9 11.5 12.4

10 secs CPLEX improv 4.7 14.2 14.2

10 secs CPLEX iters 17 133 117

Table 1: Percentage improvement in lower bound when adding a constraint corresponding

to the most negative eigenvalue or adding constraints corresponding to sparse versions of

this eigenvector. The last row notes the number of iterations performed while using a total

of 10 seconds of CPU time solving LPs.

with dense constraints, so we also compare the two approaches when equalizing for the time

used by CPLEX. In this comparison, the sparse approaches are better. However, this com-

parison ignores the time required to find the sparse constraints, which is far greater than

the CPLEX time for these instances; in terms of total time, the dense eigenvector approach

is far faster. After 500 iterations, the approach of adding just the constraint coming di-

rectly from the most negative eigenvalue improves the lower bound by approximately 78%,

while using total time comparable to 100 iterations of the methods adding 10 or 20 sparse

constraints at a time.

8 Conclusions

The results of section 4 show that interior point cutting plane approaches to the solution of

semidefinite programming problems have attractive theoretical complexity. Such algorithms

are more attractive for larger scale problems where standard interior point methods become

impractical. Further computational results with the interior point cutting plane algorithm

described in this paper can be found in Sivaramakrishnan et al. [36].

Our primary focus in this paper is the design of good separation oracles that return

cutting planes that support the feasible region of the dual semidefinite program. Further-

more, we introduce a concept called the tangent space induced by a supporting hyperplane

that measures the strength of a cutting plane. The results of section 5 show that a facet

defining cutting plane can always be found if the nullity of the dual slack matrix is one.

This cutting plane is constructed from the unique eigenvector corresponding to the most

negative eigenvalue of the dual slack matrix. The computational results in section 7 show

that this cutting plane is stronger than other valid cutting planes that are generated from

sparse versions of the eigenvector. Further, for higher values of the nullity, cutting planes

that induce a higher dimensional tangent space can be found by determining the smallest

eigenvalue and corresponding eigenvector of the matrix given in Theorem 8. When the

nullity is larger, it is of interest to determine a set of cutting planes that work well together
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to give a good approximation to the cone of tangents.

Finally, the results in section 5.3 can also be used in other cutting plane algorithms

such as the spectral bundle method of Helmberg [10, 9], and the non-polyhedral cutting

surface algorithms of Sivaramakrishnan et al. [36] and Oskoorouchi et al. [26, 27]; when the

most negative eigenvalue of the dual slack matrix during the course of the algorithm has

multiplicity greater than 1. In this case, one can generate vectors that are extreme rays of

the normal cone in order to update the cutting plane model by solving the simple eigenvalue

problem in Theorem 8. This will improve the convergence of these algorithms, since these

vectors provide stronger cutting planes than a naive black-box that simply computes an

eigenvector corresponding to the minimum eigenvalue of the dual slack matrix.
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