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Cutting plane methods provide the means to solve large scale semidefinite programs (SDP) cheaply and
quickly. They can also conceivably be employed for the purposes of re-optimization after branching
or the addition of cutting planes. We give a survey of various cutting plane approaches for SDP in this
paper. These cutting plane approaches arise from various perspectives, and include techniques based
on interior point cutting plane approaches, non-differentiable optimization, and finally an approach
which mimics the simplex method for linear programming (LP).

We present an accessible introduction to various cutting plane approaches that have appeared in
the literature. We place these methods in a unifying framework which illustrates how each approach
arises as a natural enhancement of a primordial LP cutting plane scheme based on a semi-infinite
formulation of the SDP.

Keywords: Semidefinite programming; Non-differentiable optimization; Interior point cutting plane
methods; Active set approaches

1. Introduction

Semidefinite programming (SDP) has been one of the most exciting and active areas in opti-
mization recently. Some excellent references for SDP include the survey papers by Todd [1]
and Vandenberghe and Boyd [2], the SDP handbook edited by Wolkowicz et al. [3], and the
web site maintained by Helmberg [4]. The tremendous activity in SDP was spurred by the
discovery of efficient interior point algorithms for solving (SDP), and its important appli-
cations in control, in developing approximation algorithms for combinatorial optimization
problems, finance, and statistics. However, these applications require effective techniques for
solving large SDPs quickly. Although interior point algorithms are a great theoretical tool,
they are fairly limited in the size of problems they can handle. Another drawback of interior
point methods is that no good warm start techniques are available for re-optimization, after
branching, or the addition of cutting planes. We discuss cutting plane approaches for SDP in
this paper, which address these shortcomings. Our aim is to provide a unifying framework for
the cutting plane approaches for SDP which have appeared in the literature.
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Consider the SDP problem

min C · X

s.t. A(X) = b (SDP)

X ! 0,

with dual
max bTy

s.t. ATy + S = C (SDD)

S ! 0

where X, S ∈ Sn the space of real symmetric n × n matrices, b ∈ Rm. Here m denotes the
number equality constraints in the primal problem (SDP). Also,

C · X =
n∑

i, j=1

CijXij

is the Frobenius inner product of matrices in Sn. The linear operator

A: Sn → Rm,

and its adjoint

AT: Rm → Sn

are of the form:

A(X) =




A1 · X

...

Am · X



 and ATy =
m∑

i=1

yiAi,

where the matrices Ai, C ∈ Sn are the given problem parameters. Here m denotes the number
of primal constraints. The matrix X ∈ Sn is constrained to be positive semidefinite (psd)
expressed as X ! 0. This is equivalent to requiring that dTXd ≥ 0, ∀d ∈ Rn. On the other
hand, X ' 0 denotes a positive definite (pd) matrix, i.e., dTXd > 0, for all nonzero vectors
d ∈ Rn. Hereafter, we use Sn

+ and Sn
++ to denote the space of symmetric psd and pd, matrices,

respectively. A good reference source is Horn and Johnson [5].
We will make the following assumptions.

ASSUMPTION 1 The matrices Ai , i = 1, . . . , m are linearly independent in Sn.

ASSUMPTION 2 Both (SDP) and (SDD) have strictly feasible points, namely the sets {X ∈
Sn: A(X) = b, X ' 0} and {(y, S) ∈ Rm × Sn: ATy + S = C, S ' 0} are nonempty.

Assumption 2 guarantees both (SDP) and (SDD) attain their optimal solutions X∗ and (y∗, S∗),
and their optimal values are equal, i.e., C · X∗ = bTy∗. Thus, the duality gap X∗ · S∗ = 0 at
optimality.

ASSUMPTION 3 The equality constraints A(X) = b in (SDP) imply trace(X) = a, for some
constant a ≥ 0.

Assumption 3 enables one to rewrite (SDD) as an eigenvalue optimization problem and also
ensures the existence of the following ŷ.
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PROPOSITION 1 Under Assumption 3, there exists a unique ŷ ∈ Rm satisfying

ATŷ = I.

Moreover this ŷ satisfies bTŷ = a.

Proof Since trace(X) = a is satisfied for every feasible X in (SDP), it can be expressed as
a linear combination of the other primal constraints Ai · X = bi , i = 1, . . . , m. Letting the
components of ŷ to be the coefficients in this linear combination we get the desired result.
Uniqueness follows from Assumption 1. !

We can write down the Lagrangian dual to (SDP) transferring all the equality constraints
into the objective function via Lagrangian multipliers yi , i = 1, . . . , m, to give the following
problem

max
y

bTy + min
X:trace(X)=a, X!0

(

C −
m∑

i=1

yiAi

)

· X. (1)

Assumption 2 ensures that this problem is equivalent to SDP. Using the variational charac-
terization of the minimum eigenvalue function, the quantity in the inner minimization can be
expressed as aλmin(C − ATy). We can then rewrite equation (1) as

max
y

bTy + aλmin(C − ATy). (2)

This is an eigenvalue optimization problem. We shall return to the formulation (2), when we
discuss cutting plane approaches for the SDP. Without loss of generality, and for the ease of
exposition, we shall assume that a = 1 in the succeeding sections. We must also emphasize
that although we are dealing with λmin(S) which is a concave function, we shall continue to
use terms like subgradients, subdifferential, etc. These terms should be understood to mean
the corresponding analogues for a concave function. Consider the function

f (y) = bTy + λmin(C − ATy)

= λmin

(

C −
m∑

i=1

yi(Ai − biI )

)

.

This function is non-differentiable, precisely at those points, where the smallest eigenvalue of
(C − ATy) has a multiplicity greater than one. Let us consider a point y, where λmin(C − ATy)

has a multiplicity r . Let pi , i = 1, . . . , r be an orthonormal set of eigenvectors at this point.
Also, P ∈ Rn×r with P TP = Ir is the matrix, whose ith column is pi . Any normalized eigen-
vector p corresponding to λmin(C − ATy) can be expressed as p = Px, where x ∈ Rr , with
xTx = 1. The subdifferential of f (y) at this point is then given by

∂f (y) = conv{b − A( ppT): p = Px, xTx = 1}
= {b − A(PV P T): V ∈ Sr , trace(V ) = 1, V ! 0}

(3)

where conv denotes the convex hull operation. The equivalence of the two expressions in (3)
can be found in Overton [6]. Each member of ∂f (y) is called a subgradient. The cutting plane
approaches for SDP fall in the following categories:

• Interior point cutting plane methods: The SDP is a convex optimization problem with a
weak polynomial time separation oracle [7], and hence can be solved within an interior
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point cutting plane framework. Good surveys of such methods appear in refs. [8,9]. In
particular, Algorithms 1 and 3 discussed in this survey fall within this framework.

• Bundle methods for non-differentiable optimization: An SDP with some additional restric-
tions (see Assumption 3) can be written as an eigenvalue optimization problem. These are
convex but non-smooth optimization problems that can be handled by bundle methods for
non-differentiable optimization. A survey on bundle methods appears in Lemarechal [25].
In particular, Algorithms 2 and 4 discussed in the survey fall in this class.

• Active set approaches for SDP: These approaches generate iterates which are on the bound-
ary of the SDP feasible region. In particular, the simplex-like approach developed in
Pataki [35] is a special case of such an approach. Algorithm 5 discussed in this survey
belongs to this class.

We are interested in cutting plane methods which deal directly with the dual problem (SDD);
in particular, the eigenvalue optimization problem (2). In this regard, at the time of writing,
we are aware of at least four distinct cutting plane approaches namely: an linear programming
(LP) cutting plane scheme for (SDD) due to Krishnan and Mitchell [10] (see, also, ref. [11]), a
variant of analytic center cutting plane methods (ACCPM) incorporating semidefinite cuts due
to Oskoorouchi and Goffin [12], the spectral bundle method due to Helmberg and Rendl [13],
and a non-polyhedral primal active set approach due to Krishnan et al. [14]. These approaches
are discussed in this survey.

We must also mention that there are two ACCPM schemes for SDP due to Toh et al. [15] and
Sun et al. [16], but these deal with the SDP problem, with a large number of linear constraints,
in the primal formulation. The methods use a cutting plane method to approximate the linear
constraints, whereas the SDP constraint is always explicitly included in the relaxations. We
will not discuss these approaches in this paper.

2. Cutting plane models for SDP

In this section, we shall discuss polyhedral and non-polyhedral cutting plane models for SDP.
Consider the following semi-infinite formulation of (SDD).

max bTy

s.t. ddT · ATy ≤ ddT · C ∀||d||2 = 1. (LDM)

We consider (SDD) instead of (SDP) because this gives a problem with m variables. In contrast,
a semi-infinite formulation of SDP would involve

(
n+1

2

)
= n(n + 1)/2 = O(n2) variables.

Note that if m = O(n2) it may be advantageous to proceed in the following manner. Let
q = n(n + 1)/2 − m. It is possible to reformulate (SDP) as a semi-infinite programming
problem in q variables. This is advantageous if q is smaller than m, in particular if q = O(n).
Let B: Sn → Rq be the null space operator corresponding to A, so the kernel of BT is exactly
the range of A. From Assumption 1, we can regard B as being composed of q linear functions,
each represented by a matrix Bi ∈ Sn, and these matrices are linearly independent in Sn. Let
X0 be a feasible solution to A(X) = b. The set of feasible solutions to A(X) = b is the set of
all matrices of the form X = X0 − BT(u) for some u ∈ Rq . The problem (SDP) can then be
written equivalently as

minu, X C · X0 − C · BT(u)

s.t. BT(u) + X = X0

X ! 0.
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This problem is exactly in the form of (SDD), so we can construct a linear programming
relaxation (LPR) of it in the form (LDR) (see below) with q variables.

We consider a discretization of (LDM). Given a finite set of vectors {di, i = 1, . . . , k}, we
obtain the relaxation

max bTy

s.t. did
T
i · ATy ≤ did

T
i · C for i = 1, . . . , k. (LDR)

The LP dual to (LDR) can be written

min C ·
(

k∑

i=1

xidid
T
i

)

s.t. A
(

k∑

i=1

xidid
T
i

)

= b (LPR)

x ≥ 0.

The problem (LPR) is a constrained version of (SDP); this is reflected in the following
proposition.

PROPOSITION 2 Any feasible solution x to LPR will give a feasible solution X to (SDP).

The optimality conditions for (SDP) can be summarized in the following theorem [17]:

THEOREM 1 Let X and (y, S) be primal and dual feasible, respectively. Then they are optimal
if and only if there exists Q ∈ Rn×r , R ∈ Rn×(n−r), with QTQ = Ir , RTR = In−r , QTR = 0,

and #, $, diagonal matrices in Sr
+, and Sn−r

+ , such that

X = [Q R]
[
# 0
0 0

] [
QT

RT

]
, and (4)

S = [Q R]
[

0 0
0 $

] [
QT

RT

]
(5)

hold.

The diagonal matrices #, $ contain the non-zero eigenvalues of X and S in the spectral
decompositions (4) and (5), respectively. In addition, P = [Q R] is an orthogonal matrix
that contains the common set of eigenvectors.

We get an upper bound on r , using Theorem 2, due to Pataki [18] (also see, ref. [17]), on
the rank of extreme matrices X in SDP.

THEOREM 2 There exists an optimal solution X∗ with rank r satisfying the inequality
r(r + 1)/2 ≤ m, where m is the number of constraints in (SDP).

It follows that
√

2m is an overestimate of the upper bound on the rank of at least one optimal
solution. We now present the perfect constraints that are needed in the LP relaxations if the
optimal solution to (SDP) is unique with distinct positive eigenvalues.

THEOREM 3 Let X∗ = Q#QT be an optimal solution to (SDP), and let qi, i = 1, . . . , r be
the columns of Q. If the constraints of (LDR) include the constraints qiq

T
i · ATy ≤ qiq

T
i · C
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for i = 1, . . . , r then any optimal solution x∗ to (LDR) gives an optimal solution to (SDP) by
taking X = ∑k

i=1 x∗
i did

T
i .

Proof Re-ordering the constraints if necessary, we can assume that di = qi for i = 1, . . . , r .
We have X∗ = Q#QT = ∑r

i=1 λiqiq
T
i , where λi > 0, i = 1, . . . , r , and qi , i = 1, . . . , r are

the corresponding eigenvectors. This gives a feasible solution to (LPR) with xi = λi for i =
1, . . . , r and xi = 0 otherwise. Further, this feasible solution is optimal, since (LPR) is a
constrained version of (SDP). Thus the optimal values of (LPR) and (SDP) are identical, so
any optimal solution to (LPR) gives an optimal solution to (SDP). !

We note that (LPR) can be rewritten as

min C · (DMDT)

s.t. Aj · (DMDT) = bj j = 1, . . . , m

M ! 0

M diagonal.

(6)

Here M ∈ Sm and D ∈ Rn×m with j th column dj . Theorem 3 suggests that if the columns
of D contain eigenbases for all the strictly positive eigenvalues of X∗, then the solution to
equation (6) is an exact solution to SDP. In other cases, a solution provides an upper bound on
this objective value. This polyhedral cutting plane model is the basis for Algorithms 1 and 2
of section 4.

We can consider alternate non-linear models, which are simple extensions of this polyhedral
cutting plane model in the following manner. Consider the following relaxation of equation (6)
dropping the requirement that M be diagonal.

min C · (DMDT)

s.t. Aj · (DMDT) = bj j = 1, . . . , m

M ! 0,

(7)

with M ∈ Sm and D ∈ Rn×m. If m = n, then equation (7) is essentially SDP. In fact, if
Range(D) ⊃ Range(X∗), then a solution to equation (7) is an exact solution to SDP. This
is a less stringent requirement than the polyhedral cutting plane model, where we require the
exact eigenvectors of X∗ and forms the basis of Algorithms 4 and 5 in section 5.

Finally, another relaxation of equation (6) which is more restrictive than equation (7) is the
following.

min C · (DMDT)

s.t. Aj · (DMDT) = bj j = 1, . . . , m

M ! 0

M block diagonal.

(8)

This is the cutting plane model employed in Algorithm 3 in section 5.

3. Generic cutting plane approach for SDP

Having considered the various cutting plane models, we now subsequently present the generic
cutting plane approach. These approaches work directly with the eigenvalue optimization
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model (2), i.e., we assume the redundant constraint trace(X) = 1 is added to the formulation
(SDP). A generic cutting plane approach can be stated as follows:

1. Choose an initial point ŷ, an initial finite set D = {Di}, and a scalar u ≥ 0.
2. Solve the following subproblem

max λ + bTy − u

2
||y − ŷ||2

s.t. DT
i (C − ATy)Di ! λI, i ∈ D

(9)

to get (y∗, λ∗).
3. If S∗ = (C − ATy∗) ! 0, we are optimal; STOP. Else find D ∈ Rn×r , with r ≤ √

2m such
that DT(C − ATy∗)D -! 0.

4. Either add D to D or aggregate D into D.
5. Set ŷ = y∗, and return to step 2.

The five methods to be discussed in sections 4 and 5 can then be distinguished as in table 1.
Note that the variableλ in equation (9) corresponds to the redundant constraint trace(X) = 1.
Algorithms 1 and 2 are polyhedral because only D ∈ Rn×1 appear in D so the constraints

are actually linear inequalities of the form DT
i (C − ATy)Di ≥ 0, ∀i. Likewise, Algorithm 3

is non-polyhedral, because not all the constraints DT
i (C − ATy)Di ! 0 can be reduced to a

finite set of linear inequalities. Finally, Algorithms 4 and 5 have just one semidefinite block
of constraints.

For Algorithms 1, 3 and 5, the weight u = 0. In these cases, the dual to the subproblem
being solved in each iteration is

min C ·
(

∑

i∈D
DiViD

T
i

)

s.t. A
(

∑

i∈D
DiViD

T
i

)

= b

∑

i∈D
trace(Vi) = 1

Vi ! 0, i ∈ D.

This takes the forms (6), (7) and (8), which correspond to Algorithms 1, 3 and 5, respectively.
Hence, these algorithms are solving a relaxation of (SDD) in every iteration.

Table 1. Cutting plane methods for SDP.

Algorithm Model u Form of D Add or aggregate?

1 Polyhedral Zero D ∈ Rn×1 only Add, letting |D| grow
2 Polyhedral bundle Positive D ∈ Rn×1 only Add, letting |D| grow
3 Non-linear block-diag Zero D ∈ Rn×r with r ≤

√
2m Add, letting |D| grow

4 Spectral bundle Positive D ∈ Rn×r Aggregate, keeping |D| = 1
5 Primal active set Zero D ∈ Rn×r Aggregate, keeping |D| = 1



64 K. Krishnan and J. E. Mitchell

For Algorithms 2 and 4, the weight u > 0, since the proximal bundle idea is being used. In
this case, the Lagrangian dual to the subproblem is a quadratic SDP and has the form

min
1

2u

∥∥∥∥∥b − A
(

∑

i∈D
DiViD

T
i

)∥∥∥∥∥

2

− bTŷ

−(C − ATŷ) ·
(

∑

i∈D
DiViD

T
i

)

s.t.
∑

i∈D
trace(Vi) = 1

Vi ! 0, i ∈ D

Owing to proximal bundle term in Algorithms 2 and 4, these algorithms may not always be
solving a relaxation of (SDD).

4. Polyhedral cutting plane algorithms for SDP

We present two polyhedral cutting plane algorithms for SDP in this section. A discussion
on Algorithm 1 appears in section 4.1, while Algorithm 2 appears in section 4.2. Both these
algorithms are based on the polyhedral model (6).

4.1 Algorithm 1: polyhedral cutting plane algorithm

The method is originally due to Cheney and Goldstein [19] and Kelley [20]. It was introduced
by Krishnan and Mitchell [10] and Goldfarb [11] in the context of SDP. The complete algorithm
appears in figure 1.

An initial set of constraints is obtained by requiring that the diagonal entries of S be non-
negative. This amounts to setting d = ei , i = 1, . . . , n.

Figure 1. Algorithm 1: polyhedral cutting plane algorithm.
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There are several choices for an appropriate approximate optimality criterion for the solution
of (LDR) and (LPR) in step 2 ofAlgorithm 1. The simplest is to require that the linear programs
are solved to optimality, i.e., to within a relative duality gap of 10−8, at each stage; in this case,
the query point yk for the oracle is a solution to (LDR). Alternatively, a dynamically modified
tolerance on the duality gap could be used, with the tolerance being tightened as k increases, so
that an optimal solution to SDP is eventually obtained. There are two noteworthy advantages
to solving the relaxations approximately using an interior point cutting plane method: there is
less oscillation in the sequence of iterates, and the cutting planes are generated at points that
are more central so they tend to be deeper.

The algorithm employs the weak polynomial separation oracle for SDP in step 3. Typically,
the most negative eigenvalue λmin(S), and its associated eigenvector are estimated by an
iterative method like the Lanczos scheme. This oracle can be implemented in O(n3 + mn2)

arithmetic operations [21,22]. When the algorithm converges, both optimality criteria in step 3
will eventually be satisfied; one may be preferred to the other in certain situations.

There is another way to motivate this cutting plane approach, which is based on the eigen-
value optimization model (2). Assume that we have a set of points y = y1, . . . , yk , and we
know the function values f (yi), i = 1, . . . , k, and subgradients (b − A(did

T
i )), i = 1, . . . , k

(where di is a normalized eigenvector corresponding to λmin(C − ATyi)) at these points. We
can construct the following overestimate f̂m(y) for f (y).

f̂m(y) = min
i=1,...,k

did
T
i · (C − ATy) + bTy ≥ f (y).

To see that f̂m(y) is an overestimate note that since the di are normalized, we have

λmin(C − ATy) ≤ dT
i (C − ATy)di, i = 1, . . . , k

= did
T
i · (C − ATy), i = 1, . . . , k

We now maximize this overestimate instead, i.e.,

max
y

f̂k(y) = max
y

{bTy + min
i=1,...,k

{did
T
i · (C − ATy)}},

which can be recast as the following linear program

max bTy + v

s.t. did
T
i · ATy + v ≤ did

T
i · C, i = 1, . . . , k,

(10)

with dual

min C ·
(

k∑

i=1

xidid
T
i

)

s.t. A
(

k∑

i=1

xidid
T
i

)

= bj , j = 1, . . . , m

k∑

i=1

xi = 1

x ≥ 0.

(11)
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This is exactly the problem obtained by considering a discretization of (SDD). Here, v is
the dual variable corresponding to the redundant constraint

∑k
i=1 xi = 1, which is implicitly

satisfied by any solution x to (LPR). Thus, we can set v = 0 without any loss of generality.
The solution (v, y) with v = 0 is the one corresponding to (LDR).

Unfortunately, Algorithm 1 has a very poor rate of convergence in practice. For instance,
we observed that a simplex implementation that solved each linear program to optimality
performed very badly [10,21]. Here, the query points yk are extreme points of the constraint
set for (LDR). Primarily, minimizing f̂k to find yk+1 makes sense only if f̂k ≈ f , near yk , this
is one of the reasons for the slow convergence for the cutting plane scheme. Lemarechal [25]
discusses some convergence estimates for such an algorithm.

An alternative is to solve a feasibility problem in lieu of (LDR) in step 2 of Algorithm 1;
here yk is the approximate analytic or volumetric center for the polyhedron that includes
the constraints and multiple copies of a constraint corresponding to the objective function in
(LDR). These centers can be found using interior point algorithms, and the approaches are
analogues to the ellipsoid algorithm [7], where the new iterate yk is the updated center of
the new ellipsoid. A formal discussion of such approaches including termination criteria and
the definitions of analytic and volumetric centers can be found in the surveys by Krishnan
and Terlaky [23] and Mitchell [9]. In this case, the number of copies of the objective function
constraint and the depth of this constraint are modified in order to push the solution to optimality
as k is increased. The volumetric center algorithm for the convex feasibility problem [24] is
such an approach; using this framework for the cutting plane approach of Algorithm 1 gives an
algorithm that requires O(m log(1/ε)) calls to the oracle and O(m4 log(1/ε)) other arithmetic
operations. The overall complexity is better than employing the ellipsoid method for SDP and
also compares favourably with interior point methods for SDP [21,22].

4.2 Algorithm 2: polyhedral bundle scheme

One way to improve the convergence of the algorithm is to utilize the proximal bundle idea
discussed in Lemarechal [25], Kiwiel [26], Hiriart-Urruty and Lemarechal [27], and Makela
and Neittaanmaki [28]. This leads naturally to Algorithm 2.

Before discussing the actual algorithm, we present a short discussion on the proximal bundle
scheme. The rough idea here is to maximize f̂k(y) − u/2||y − yk||2 (for some chosen u > 0).
The second term acts as a regularization term which penalizes us from going too far from the
current iterate yk . The idea is to lower u if we are making progress, i.e., taking serious steps,
and actually increase u if we perform a null step. As Lemarechal [25] remarks, choosing this
parameter u is an art in itself. The regularization penalty term u

2 ||y − yk||2 acts as a trust region
constraint ||y − yk||2 ≤ σk and helps to keep the solution bounded. Thus, we can dispense with
choosing an initial set of constraints to keep the subproblems bounded, as in Algorithm 1. For
numerical reasons, it is better to introduce the regularization term into the objective function,
rather than as a trust region constraint. This keeps the feasible region polyhedral, but we now
have a quadratic objective.

Consider adding this quadratic term in the objective function of equation (10) giving

max bTy + v − u

2
||y − ŷ||2

s.t. v ≤ did
T
i · (C − ATy), i = 1, . . . , k,

(12)
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with Lagrangian dual

min
1

2u
||b − A(X))||2 − bTŷ

−(C − ATŷ) · X

s.t. X =
k∑

i=1

xidid
T
i

k∑

i=1

xi = 1

xi ! 0, i = 1, . . . , k.

(13)

Setting u = 0 in equation (12) gives equation (10). Owing to strong duality, equations (12)
and (13) have the same objective value. Their solutions y and X satisfy

y = ŷ + 1
u

(b − A(X)). (14)

The complete algorithm appears in figure 2. The formal proof of convergence of the algorithm
can be found in Kiwiel [29].

Let

Ŵ =
{

k∑

i=1

xidid
T
i |

k∑

i=1

xi = 1, xi ≥ 0, i = 1, . . . , k

}

, (15)

which is the feasible region of equation (13). It appears that the size of Ŵ grows indefinitely
with iteration count in the earlier algorithm. We can, however, choose to keep the number of
subgradients no larger than an a priori bound l. We retain the earlier l − 2 subgradients did

T
i

corresponding to the largest values of x, along with the new subgradient pk+1p(k+1)T in the

Figure 2. Algorithm 2: polyhedral bundle method for (SDP).
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bundle and aggregate the rest of the subgradients in a subgradient matrix W̄ l . The set Ŵ k+1 is
then the convex hull of W̄ l and the l − 1 subgradients in the bundle, i.e.,

Ŵ k+1 =
{

αW̄ l +
l−1∑

i=1

xidid
T
i |α +

l−1∑

i=1

xi = 1, α ≥ 0, xi ≥ 0, i = 1, . . . , r

}

, (16)

and so the feasible region of equation (13) is modified to require that X be in this set Ŵ k+1.
Alternatively, in the kth iteration, we can choose Ŵ k+1 to be the convex hull of Xk+1 and
pk+1p(k+1)T, in which case l = 2. It can be shown that the algorithm converges in these
situations too.

5. Non-polyhedral cutting plane algorithms for SDP

In this section, we discuss three non-polyhedral cutting plane algorithms for SDP. The three
algorithms appear in sections 5.1, 5.2, and 5.3, respectively. The first algorithm is based on
the non-polyhedral block diagonal model (8), whereas the latter two schemes work with the
model (7).

5.1 Algorithm 3: non-polyhedral block diagonal cutting plane scheme

The next algorithm we consider is based on the non-polyhedral, block-diagonal SDP model.
This is employed in Oskoorouchi and Goffin [12]; see also Oskoorouchi [30]. This algorithm
is identical to Algorithm 1 except when the multiplicity of λmin(C − ATy) is greater than one.
Since we are essentially minimizing this quantity in (SDD), during the course of Algorithm 1,
the smaller eigenvalues generally tend to coalesce together thereby increasing the multiplicity
of this eigenvalue. In fact at optimality, this multiplicity is bounded by

√
2m (from Theorems 1

and 2).
When this number is r (say), we could instead add the following semidefinite constraint

m∑

i=1

yi(D
TAiD) / (DTCD),

where D ∈ Rn×r , with DTD = Ir , whose columns form an eigenbasis for the eigenspace of
C − ATy with eigenvalue λmin(C − ATy). We note that this is much stronger than

m∑

i=1

yi(d
T
j Aidj ) ≤ (dT

j Cdj ), j = 1, . . . , r.

This leads to the following subproblem to be solved in every iteration.

max bTy

s.t.
m∑

i=1

yi(D
T
j AiDj ) / (DT

j CDj), j = 1, . . . , k,
(17)
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whose dual is

min C ·
(

k∑

i=1

DiViD
T
i

)

s.t. A
(

k∑

i=1

DiViD
T
i

)

= b

Vi ! 0, i = 1, . . . , k,

(18)

where the number of columns in Dj , j = 1, . . . , k reflect the multiplicities of λmin(C − ATyi),
i = 1, . . . , k and some of these could conceivably be 1.

The entire algorithm is detailed in figure 3.
Instead of solving equation (17) in step 2 of Algorithm 3, one can choose the query point

yk to be the approximate analytic center of the convex set that includes the feasible region
of equation (17) and multiple copies of the objective function for this problem as inequality
constraints. The ACCPM of Oskoorouchi and Goffin [12] is such an approach, which solves
SDP in fully polynomial time; in particular, this can be done in O(r2m3/µ2ε2) calls to the
oracle, where r is an upper bound on the number of columns in Di , µ > 0 is a condition
number on the cuts, and ε > 0 is the tolerance to which one wants to solve the SDP.

5.2 Algorithm 4: spectral bundle scheme

We now discuss the spectral bundle method for SDP due to Helmberg and Rendl [13]. Other
references include Helmberg [31], Helmberg and Kiwiel [32], Helmberg and Oustry [33], and
Oustry [34].

We will motivate the spectral bundle scheme in this section, by considering the second aggre-
gation scheme employed by the polyhedral bundle method of section 4.2, as in equation (16).
The spectral bundle instead chooses the following expression for Ŵ :

Ŵ = {αW̄ + PV P T|α + trace(V ) = 1, α ≥ 0, V ! 0},

where P ∈ Rn×r , with P TP = Ir , whose columns are the pi , i = 1, . . . , r . The columns of
the matrix P constitute the bundle. Here r refers to the size of the bundle, and inspired by

Figure 3. Algorithm 3: non-polyhedral cutting plane algorithm for SDP.
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Theorem 2, this number is chosen to be no greater than
√

2m. It is clear from these two
expressions for Ŵ that the spectral bundle method does a better job in approximating the
subdifferential of λmin(S).

The spectral bundle method solves the following pair of subproblems in every iteration.

max λ + bTy

−u

2
||y − ŷ||2

s.t. P T(C − ATy)P ≥ λI

(C − ATy) · W̄ ≥ λ,

(19)

with dual

min
1

2u
||b − A(X)||2 − (C − ATyk) · X − bTŷ

s.t. X = αW̄ + PV P T

α + trace(V ) = 1

α ≥ 0

V ! 0.

(20)

The problem (20) is a quadratic (SDP) and can be solved efficiently for X using interior
point methods, if r is small. More details can be found in Helmberg and Rendl [13] and
Helmberg [31]. The solution y to equation (19) is then given by

y = ŷ + 1
u

(b − A(X)). (21)

The algorithm can be found in figure 4.
We present a short discussion on update rules for W̄ and P . Other updates are possible,

and these are discussed in length in Helmberg [31]. In the kth iteration, one solves (20) for V k

and computes its spectral decomposition V k = Q#QT. We then split Q = [Q1, Q2], where
Q1 and Q2 contain the eigenvectors corresponding to the large (#1) and small (#2) eigenvalues

Figure 4. Algorithm 4: the spectral bundle method for SDP.
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of V k , respectively. This distinction is based on keeping the size of the bundle P below the
earlier mentioned bound of

√
2m. Finally, P and W̄ are updated as follows:

P k+1 = orth([P kQ1, v
k+1]),

W̄ k+1 = 1
αk + trace(#2)

(αkW̄ k + P kQ2#2(P
kQ2)

T).
(22)

The proof of convergence of the spectral bundle scheme is along the same lines as the polyhe-
dral bundle method and can be found in Helmberg and Rendl [13], and Helmberg [31]. In the
extreme case of aggregation, i.e., when there are two subgradients in the bundle, as considered
in section 4.2, the two methods are exactly the same. The spectral bundle method is only a
first order method, but variants of the proximal bundle scheme which converge, and enjoy
asymptotically a quadratic rate of convergence, were recently developed by Oustry [34].

5.3 Algorithm 5: primal active set approach

The final algorithm is a primal active set approach due to Krishnan et al. [14], which solves
an SDP as a sequence of smaller SDPs in an active set framework. The method relies on the
notions of extreme point solutions and non-degeneracy in SDP. The notion of extreme point
solutions in SDP, and a crossover algorithm to generate them can be found in Pataki [35]. A
good overview of non-degeneracy in the context of SDP can be found in Alizadeh et al. [17],
whereas an alternative characterization appears in Pataki [36].

The method generates extreme point solutions X. The ranks r of these extreme point solu-
tions satisfy the inequality r(r + 1)/2 ≤ m (Theorem 2). There are two steps performed in
each iteration, analogous to the primal simplex method for LP.

1. Construct a complementary dual solution (y, S). If S ! 0, then we are optimal.
2. Else if the previous extreme point solution was non-degenerate, we construct another

extreme point solution, whose objective value is strictly lower than the previous one.

Given an extreme point iterate X = [P1 P2]
[
# 0
0 0

] [
P T

1
P T

2

]
of rank r , a complementary

dual solution (y, S) satisfies XS = 0. This requires

S̄11 := P T
1 (C − ATy)P1 = 0,

S̄12 := P T
1 (C − ATy)P2 = 0.

(23)

Setting the symmetric matrix S̄11 to zero gives r(r + 1)/2 equations in y and requiring S̄12 =
0 gives another r(n − r) equations. If X is non-degenerate, then the coefficient matrix in
equation (23) has full column rank, so it is typically overdetermined. Since X is also an extreme
point, the first r(r + 1)/2 equations in equation (23) are linearly independent. Since m ≥ r(r +
1)/2, one can choose m linearly independent equations from equation (23), including the first
r(r + 1)/2. The resulting system is hereafter denoted as S̄B = 0, whose unique solution is y∗.
We update P to include all the columns pj present in S̄B = 0; in particular, this contains all the
columns in P1. If S∗ = (C − ATy∗) is not yet psd, we also add the eigenvector corresponding
to λmin(S

∗), suitably orthonormalized, to P .
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Figure 5. Algorithm 5: primal active set method for SDP.

The update of X is based on the non-polyhedral cutting plane model (7). The new X = PVPT

is obtained by solving the following pair of subproblems.

min (P TCP) · V

s.t. (P TAiP ) · V = bi, i = 1, . . . , m

V ! 0,

(24)

with dual
max bTy

s.t. P T(C − ATy)P ! 0.
(25)

If the resulting X is not an extreme point, one can use the crossover algorithm in ref. [35]
(Algorithm 1 in section 4.1) to generate an extreme point iterate, whose objective value is no
worse than X.

The proof for strict decrease under non-degeneracy conditions can be found in Krishnan
et al. [14]. The columns of P contain bases for the positive eigenspaces of the extreme point
iterates X. This constitutes the active set in the algorithm and is analogous to the basis matrix in
the simplex method for LP. Once the active set contains the eigenspace of the optimal solution
X∗, the algorithm terminates.

The complete algorithm appears in figure 5. The size of P grows in step 3 and diminishes in
steps 4 and 5 of the algorithm. The latter two steps can be regarded as constituting the necessary
aggregation in the algorithm. We must mention that the convergence and computational aspects
of Algorithm 5 are currently under investigation.

6. Conclusions

We present an accessible and unified introduction to various cutting plane methods that have
appeared in the literature. These five methods are all roughly solving relaxations of the dual
semidefinite program (SDD). Each of the algorithms arise as natural enhancements of the
primordial LP cutting plane algorithm (Algorithm 1).

Algorithm 1 can be implemented in polynomial time, if one employs the volumetric cen-
ter method to approximately solve the LP relaxations. In fact, this complexity compares
favourably with interior point methods for SDP. Similarly, Algorithm 3 can be implemented in
the ACCPM framework with SDP cuts in fully polynomial time. Some computational results
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with Algorithm 1 can be found in Krishnan [21] and Krishnan and Mitchell [10]. We have
also employed a variant of Algorithm 1 in a cut and price algorithm [37] designed to solving
the maxcut problem to optimality.

On the other hand, the spectral bundle method (Algorithm 4) appears to be the most effi-
cient of all the algorithms described in this survey. Excellent computational results have been
obtained using the method [13,38] for problems that are inaccessible to IPMs due to the high
demand for computer time and storage requirements.

The primal active set approach (Algorithm 5) mimics the primal simplex method for LP,
and, like the dual simplex method for LP, dual variants of these approaches could be used for
re-optimization after the addition of cutting planes. The computational performance of this
algorithm is currently under investigation.

Highlighting these conclusions, one can say that there are variants of cutting plane methods
with good polynomial complexity, warm start capabilities, and ones that are very efficient in
practice especially on large SDPs.
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