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Dedication. It is our great pleasure to dedicate this work to Professor Richard W. Cottle on the
occasion of his 75th birthday in 2009. Professor Cottle is the father of the linear complementarity
problem (LCP) [16]. The linear program with linear complementarity constraints (LPCC) treated
in this paper is a natural extension of the LCP; our hope is that the LPCC will one day become as
fundamental as the LCP, thereby continuing Professor Cottle’s legacy, bringing it to new heights,
and extending its breadth.

Abstract

The paper is a manifestation of the fundamental importance of the linear program with linear
complementarity constraints (LPCC) in disjunctive and hierarchical programming as well as
in some novel paradigms of mathematical programming. In addition to providing a unified
framework for bilevel and inverse linear optimization, nonconvex piecewise linear programming,
indefinite quadratic programs, quantile minimization, and `0 minimization, the LPCC provides
a gateway to a mathematical program with equilibrium constraints, which itself is an important
class of constrained optimization problems that has broad applications. We describe several
approaches for the global resolution of the LPCC, including a logical Benders approach that can
be applied to problems that may be infeasible or unbounded.

Keywords: linear programs with linear complementarity constraints; inverse programming; hierar-
chical programming; piecewise linear programming; quantile minimization; cross-validated support
vector regression.

1 Introduction

A mathematical program with complementarity constraints (MPCC) is a constrained optimization
problem subject to certain complementarity conditions on pairs of variables. The latter conditions
classify the MPCC as a nonconvex, disjunctive program. A linear program with complementarity
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constraints (LPCC) is a special case of the MPCC in which the objective function and all constraints
are linear, except for the complementarity conditions. Complementarity constraints are very natural
in describing certain logical relations. An early occurrence of these constraints is in piecewise linear
optimization, wherein the complementarity condition expresses the simple fact that a linear segment
of the function should not be invoked until its immediate predecessor is fully utilized. This condition
is not needed in the minimization of a convex piecewise linear function, but cannot be removed in
a nonconvex minimization problem.

With the goal of establishing the MPCC as a fundamental class of disjunctive programs of
practical significance, the present paper documents a number of novel optimization models in
which complementarity occurs naturally in the algebraic and/or logical description of the model
objectives and/or constraints in §3, §4, and §5. Such models include hierarchical, inverse, quantile,
and `0 optimization, as well as optimization problems with equilibrium constraints. In turn, with
its linear structures, the LPCC occupies a central niche in these nonconvex problems, playing the
same role as a linear program does in the domain of convex programming. Thus, the LPCC provides
an important gateway to a large class of nonlinear disjunctive programs; as such, it is imperative
that efficient algorithms be developed to facilitate the global resolution of the LPCC. An effort
along this line is described in [25] and two algorithms are discussed in §6. Methods for improving
relaxations of LPCCs are given in §7 and computational results are described in §8.

2 Problem Formulation

Since this paper focuses on the LPCC and the emphasis is on the complementarity constraints, we
restrict the presentation of the models to linear ones. We begin by giving a general formulation of
the LPCC in the form suggested by Scheel and Scholtes [45]. Given vectors and matrices: c ∈ Rn,
d ∈ Rm, e ∈ <m, b ∈ Rk, A ∈ Rk×n, B ∈ Rk×m, and C ∈ Rk×m, the LPCC is to find a triple
(x, y, w) ∈ Rn × Rm × Rm in order to globally

minimize
(x,y,w)

cTx+ dT y + eTw

subject to Ax+By + Cw ≥ b

and 0 ≤ y ⊥ w ≥ 0,

(1)

where the ⊥ notation denotes the perpendicularity between two vectors. Thus, without the orthog-
onality condition: y ⊥ w, the LPCC is a linear program (LP). With this condition, the LPCC is
equivalent to 2m LPs, each called a piece of the problem and defined by a subset I of {1, · · · ,m}:

minimize
(x,y,w)

cTx+ dT y + eTw

subject to Ax+By + Cw ≥ b

yi = 0 ≤ wi, i ∈ I
and yi ≥ 0 = wi, i 6∈ I.

The global resolution of the LPCC means the generation of a certificate showing that the problem
is in one of its 3 possible states: (a) it is infeasible, (b) it is feasible but unbounded below, or (c) it
attains a finite optimal solution. Needless to say, linear equations (in addition to linear inequalities
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as stated above) connecting the variables (x, y, w) are allowed in the constraints of the LPCC; for
convenience of presentation, such equality constraints are omitted.

A frequently occurred special case of (1) is the following:

minimize
(x,y)

cTx+ dT y

subject to Ax+By ≥ b

and 0 ≤ y ⊥ q +Nx+My ≥ 0,

(2)

in which N ∈ Rm×n and M ∈ Rm×m. Generalizing the standard linear complementarity problem
(LCP): 0 ≤ y ⊥ q + Nx + My ≥ 0, affine variational constraints also lead to the problem (1). In
particular, consider the problem:

minimize
(x,y)

cTx+ dT y

subject to Ax+By ≥ b

y ∈ K and ( y ′ − y )T ( q +Nx+My ) ≥ 0, ∀ y ′ ∈ K,

(3)

where K , {y : Ey ≤ h} is a given polyhedron, with E ∈ R`×m and h ∈ R`. By letting λ ∈ R` be
the multipliers of the inequalities defining K, the problem (3) has the equivalent formulation:

minimize
(x,y,λ)

cTx+ dT y

subject to Ax+By ≥ b

0 = q +Nx+My + ETλ

0 ≤ λ ⊥ h− Ey ≥ 0.

(4)

In turn, the affine variational inequality of finding y ∈ K such that (y ′−y)T (q+Nx+My) ≥ 0 for
all y ′ ∈ K provides a unified formulation for convex quadratic programs and a host of equilibrium
problems with affine structures [19].

Since the LPCC is a generalization of the linear complementarity problem, it is NP-hard. We
also show explicitly in §5.1 how an integer program can be reduced to an LPCC. Analogously to
integer programming, there does not appear to be a simple way to characterize a priori instances
of LPCC that are hard computationally. Of course, the number of complementarities is important,
as to a lesser degree are the dimensions of the other variables. Looking at formulation (2), the
structure of B and of M may play a role. For example, if B = 0 and M is copositive plus then it
follows from results for LCPs that for any given x a pivoting algorithm can be used to determine
whether a feasible y exists.

3 Complementarity Constraints Enforcing KKT Conditions

Beginning in this section, we present various applications of the LPCC (1) and its special cases.
These applications show that the complementarity constraints often arise in practical modeling.
In this section, we consider applications where the complementarity conditions are used to model
KKT optimality conditions that must be satisfied by some of the variables. The KKT conditions
can either be those of a subproblem or of the problem itself. The applications in this section
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demonstrate multiple modeling paradigms, from heirarchical optimization to inverse optimization
to data fitting and even to quadratic programming.

In subsequent sections, we look at applications where the complementarity conditions are used
to model nonconvex piecewise linear functions in §4, and other applications are discussed in §5.

3.1 Hierarchical optimization

In a bilevel optimization problem, feasible solutions are constrained to correspond to optimal so-
lutions to a lower level problem. If the lower level problem is convex and satisfies a constraint
qualification then it can be replaced by its KKT optimality conditions [18]. Hence such problems
naturally lead to MPCCs. If the upper level problem is linear and if lower level problem is a linear
program or a convex quadratic program then the problem can be reformulated as an LPCC.

A hierarchical optimization problem may have more than one lower level problem, and these
lower level problems may have subproblems of their own. In order to be able to formulate the prob-
lem as an LPCC, we restrict attention to hierarchical problems with a single layer of subproblems.
In particular, we consider the following problem:

minimize
(x,y)

cTx+
r∑
i=1

hi
T
yi

subject to Ax+

r∑
i=1

Biyi ≥ b

and yi ∈ argmin
vi

di
T
vi + 1

2 ( vi )TQivi

subject to Civi ≥ gi − Fx−
r∑

j 6=i,j=1

Gjyj ,

(5)

where x ∈ <n, yi, vi ∈ <pi , b ∈ <m, gi ∈ <qi , each Qi is symmetric and positive semidefinite,
and c, di, hi, A, Bi, Ci, F , Gi and Qi are all dimensioned appropriately. This problem arises in
Stackelberg games, where there is a single leader with decision variables x and there are r followers
with decision variables yi, and each follower is optimizing its own subproblem.

Since each subproblem is convex with linear constraints, an optimal solution must satisfy the
KKT conditions. If a subproblem is infeasible or unbounded then formally the argmin of the
subproblem is empty. Hence, (5) can be reformulated as the following equivalent LPCC:

minimize
(x,y)

cTx+

r∑
i=1

hi
T
yi

subject to Ax+

r∑
i=1

Biyi ≥ b

Fx+ Ciyi +

r∑
j 6=i,j=1

Gjyj − wi = gi for i = 1, . . . , r

di +Qiyi − (Ci )Tλi = 0 for i = 1, . . . , r

and 0 ≤ wi ⊥ λi ≥ 0 for i = 1, . . . , r

(6)
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where wi, λi ∈ <qi . If we assume that the dual feasible region of the ith subproblem given by

{(vi, πi) ∈ <pi+qi : di +Qvi − (Ci)Tπi = 0, πi ≥ 0}

is nonempty for each i, then the subproblem is either infeasible or achieves its minimum at a KKT
point.

Surveys of bilevel optimization problems include [15, 17], and hierarchical optimization problems
are surveyed in [3]. The next two sections give examples of the LPCC formulation of bilevel
optimization problems.

3.2 Inverse convex quadratic programming

Inverse convex quadratic programming pertains to the inversion of the inputs to a convex quadratic
program (QP) so that a secondary objective function is optimized; when the latter is linear, then
we obtain an LPCC. Inverse optimization problems are surveyed in [2]. Inverse quadratic pro-
grams are investigated in [54, 55]. Inverse conic programs are considered in [26] and inverse linear
complementarity problems in [46].

To illustrate, consider a standard convex quadratic program:

minimize
x∈Rn

cTx+ 1
2 x

TQx

subject to Ax ≤ b,
(7)

where Q is a symmetric positive semidefinite matrix. Solving this program for a given tuple
(Q,A, b, c) is the forward problem. An inverse problem is as follows. Given a target triple (b̄, c̄, x̄),
which could represent historical data or empirical observations, and a given pair of matrices (Q,A)
that identifies the forward optimization model, we want to construct a pair (b, c) and an optimal
solution x of the forward QP so that (b, c, x) is least deviated from (b̄, c̄, x̄). Using a polyhedral (say,
the `1 or `∞) norm ‖ • ‖ to measure the deviation, we obtain the bilevel optimization formulation
for this inverse program:

minimize
(x,b,c)

‖ (x, b, c )− ( x̄, b̄, c̄ ) ‖

subject to ( b, c ) ∈ F (a polyhedron)

and x ∈ argmin
x ′

cTx ′ + 1
2 (x ′ )TQx ′

subject to Ax ′ ≤ b.

(8)

A variant of this inverse problem is the following: given the constraint matrix A, the positive
semidefinite matrix Q, a positive scalar ε > 0, and the triple (x̄, b̄, c̄), we want to find a triple
(x, b, c) so that the pair (b, c) is least deviated from (b̄, c̄) and that x̄ is at a distance of at most ε
from an optimal solution of the convex QP (Q,A, b, c).

Writing out the Karush-Kuhn-Tucker (KKT) conditions of the inner-level QP in (8), we arrive
at the following LPEC formulation of the above inverse quadratic program:

minimize
(x,b,c)

‖ (x, b, c )− ( x̄, b̄, c̄ ) ‖

subject to ( b, c ) ∈ F
and c+Qx+ATλ = 0

0 ≤ b−Ax ⊥ λ ≥ 0.

(9)
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A noteworthy point about the above inverse problem is that the pair of matrices (Q,A) is fixed. If
they are part of the inversion process, then we obtain a nonlinear program with complementarity
constraints instead.

The notion of inverting an optimization problem provides an illustration of the process of model
selection in the presence of historical data and/or empirical observations. Similar inversions arise
in many related contexts pertaining to the parameter identification in a forward optimization or
equilibrium problem, for the purpose of optimizing a prescribed performance function. Such an
inverse process is very common in the field of partial differential equations wherein the forward
process is defined by these equations. When the forward process is a continuous optimization
problem with inequality constraints, the inverse optimization problem is an instance of a bilevel
program, which leads to an MPCC when the forward (i.e., the inner) optimization problem is
formulated in terms of its KKT conditions, and to an LPCC in particular cases.

3.3 Cross-validated support vector regression

The support vector machine (SVM) is a well-known statistical learning method for data mining [51].
Mathematically, the SVM is formulated as a convex quadratic program with 2 hyper-parameters —
the regularization constant C and the tube width ε, which are typically selected by cross validation
based on the mean square error (MSE) or mean absolute deviation (MAD) measured on certain
out-of-sample data. Traditionally, such a selection is done in an ad hoc manner. Several recent
papers in machine learning [12, 13, 14] have suggested embedding the SVM in a bilevel optimization
framework for the choice of (C, ε) via the minimization of an outer-level out-of-sample error. In
what follows, we present a bilevel programming formulation for a cross-validated support vector
regression problem with (C, ε) as the design variables. Further discussion of this problem can be
found in the references [9, 25, 30, 31].

Suppose that the regression data are described by the ` points {(x1, y1), . . . , (x`, y`)} in the
Euclidean space Rn+1 for some positive integers ` and n. We partition these points into N mutually

disjoint subsets, Ωt for t = 1, . . . , N , such that

N⋃
t=1

Ωt = {1, . . . , `}. Let Ωt ≡ {1, . . . , `} \ Ωt be the

subset of the data other than those in groups Ωt. Our goal is to fit a hyperplane y = xTw + b to
the given data points based on their partitioning. This is accomplished by solving a bilevel model
selection problem, which is to find the parameters (C, ε) and (wt, bt) for t = 1, · · · , N in order to

minimize
C,ε,wt,bt

1

N

N∑
t=1

1

|Ωt |
∑
i∈Ωt

|xTi wt + bt − yi |

subject to C, ε ≥ 0

and for t = 1, . . . , N,

(10)

(wt, bt ) ∈ argmin
w,b

C ∑
j∈Ωt

max
(
|xTj w + b− yj | − ε, 0

)
+

1

2
‖w ‖22

 , (11)

where the argmin in the last constraint denotes the set of optimal solutions to the convex optimiza-
tion problem (11) in the variable w for given hyper-parameters (C, ε). Note that the inner problem
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is strictly convex in w, so each wt will be the same. Clearly, the inner problem (11) is equivalent
to the convex quadratic program:

minimize
w,b,ej

C
∑
j∈Ωt

ej +
1

2
‖w ‖22

subject to


ej ≥ xTj w + b− yj − ε
ej ≥ −xTj w − b+ yj − ε
ej ≥ 0

 j ∈ Ωt.

Thus the overall bilevel cross-validated support vector regression is an instance of an LPCC after
we write out the KKT conditions of the above QP. The complete LPCC formulation is as follows:

minimize
C,ε,wt,bt,et,ηt±

1

N

N∑
t=1

1

|Ωt |
∑
i∈Ωt

|xTi wt + bt − yi |

subject to C, ε ≥ 0

0 ≤ ηt+j ⊥ etj − xTj w
t − bt + yj + ε ≥ 0 ∀ j ∈ Ωt, for t = 1, . . . , N

0 ≤ ηt−j ⊥ etj + xTj w
t + bt − yj + ε ≥ 0 ∀ j ∈ Ωt, for t = 1, . . . , N

0 ≤ etj ⊥ C − ηt+j − η
t−
j ≥ 0 ∀ j ∈ Ωt, for t = 1, . . . , N∑

j∈Ωt

(ηt−j − η
t+
j ) = 0 for t = 1, . . . , N

wt =
∑
j∈Ωt

(ηt−j − η
t+
j )xj for t = 1, . . . , N.

(12)

The last constraint can be used to substitute for wt elsewhere in the problem.
The cross-validated support vector regression approach could be embedded in another level

of cross-validation. In particular, the cross-validation support vector regression model could be
applied to a subset of the data, and the resulting model tested on the remaining data. This might
improve the generalizability of the resulting model.

The recent paper [36] has studied the first-order sensitivity properties of an optimal solution
(wt, bt) to the inner-level convex (but not strictly convex) quadratic program (11).

3.4 Indefinite quadratic programs

In this application, the KKT conditions are imposed on the problem itself rather than on a sub-
problem, and the objective function value of a KKT point is given by a linear function. Consider
the QP (7) where the matrix Q is symmetric and indefinite. We assume that the program is feasi-
ble but not necessarily bounded. The problem of deciding by a finite algorithm whether (7) has a
finite optimal solution or is unbounded was not fully resolved until the recent paper [24] in which an
LPCC is introduced whose global resolution provides the answer to this decision problem. Previous
approaches were based on the assumption that the QP is known to have a finite optimal solution.
Indeed, an early result of Giannessi and Tomasin [20] states under the solvability assumption, the
QP (7) is equivalent to the LPCC of minimizing a certain linear objective function (involving the
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constraint multipliers) over the set of KKT conditions of the QP. This equivalence breaks down for
an unbounded QP.

In what follows, we present the equivalent LPCC formulation for the QP (7) assuming only its
feasibility. We refer the reader to the cited reference for the derivation details of this LPCC. Since
(7) is obviously equivalent to

minimize
x±∈R2n

1
2 (x+ − x− )TQ(x+ − x− ) + cT (x+ − x− )

subject to A(x+ − x− ) ≤ b

and x± ≥ 0,

we may assume, to simplify the notation, that the recession cone D ≡ {d ∈ Rn : Ad ≤ 0} of the
feasible set is contained in the nonnegative orthant Rn+. It is then shown in [24] that the QP (7) is
unbounded below if and only if the LPCC below has a feasible solution with a negative objective
value:

minimize
(x,d,ξ,λ,µ,t,s)∈R2n+3m+2

−t

subject to 0 = c+Qx+AT ξ + t1n

0 = Qd+ATλ−ATµ+ s1n

0 ≤ ξ ⊥ b−Ax ≥ 0

0 ≤ µ ⊥ b−Ax ≥ 0

0 ≤ λ ⊥ −Ad ≥ 0

0 ≤ ξ ⊥ −Ad ≥ 0

0 ≤ µ ⊥ −Ad ≥ 0

0 ≤ s, 1Tnd ≥ 1.

(13)

If Q is copositive on D, then the QP (7) is unbounded below if and only if the following somewhat
simplified LPCC:

minimize
(x,d,ξ,λ,t)∈R2(n+m)+1

−t

subject to 0 = c+Qx+AT ξ + t1n

0 = Qd+ATλ

0 ≤ ξ ⊥ b−Ax ≥ 0

0 ≤ λ ⊥ −Ad ≥ 0

0 ≤ ξ ⊥ −Ad ≥ 0

1 ≤ 1Tnd

(14)

has a feasible solution with a negative objective value. Detailed investigation of how to solve (13) or
(14) has yet to be undertaken. Some preliminary computational results with unbounded problems
can be found in [24]. These results exploit constraints that require that the second order optimality
conditions be satisfied at a solution. Theoretically, this class of constraints enables the solution of
certain classes of nonconvex quadratic constraints to be solved in polynomial time — see the cited
reference for details.
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4 Complementarity Constraints Enforcing Piecewise Linearity

A piecewise linear function can be modeled using disjunctive constraints, even if the function is
nonconvex. In §4.1, we derive an LPCC formulation for a problem where the piecewise linear
function is given explicitly. Piecewise linear functions occur implicitly in quantile minimization,
and LPCC formulations of such problems are discussed in §4.2.

4.1 Piecewise linear programming

The classical problem of a separable, piecewise linear program can be written:

minimize
x

n∑
i=1

fi(xi)

subject to Ax ≥ b,

(15)

where each fi(xi) is a (possibly nonconvex) piecewise linear function given as:

fi(xi) ,



αi,1 + βi,1 xi if −∞ < xi ≤ γi,1

αi,2 + βi,2 xi if γi,1 ≤ xi ≤ γi,2

...
...

αi,p + βi,p xi if γi,p−1 ≤ xi ≤ γi,p

αi,p+1 + βi,p+1 xi if γi,p ≤ xi < ∞,

for some constants αi,j , βi,j , and γi,j with γi,1 < · · · < γi,k and αi,j + βi,jγi,j = αi,j+1 + βi,j+1γi,j
for all j = 1, · · · , p. While the latter equations ensure the continuity of fi at the breakpoints γi,j ,
there is no guarantee that fi is a convex function. To formulate (15) as an LPCC, let yi,j denote
the portion of xi in the interval [γi,j−1, γi,j ], where γi,0 = −∞ and γi,p+1 , ∞. The variables yi,j
satisfy the following conditions:

0 ≤ γ̂i,j − yi,j ⊥ yi,j+1 ≥ 0, ∀ j = 1, . . . , p, (16)

where

γ̂i,j ≡

{
γi,1 if j = 1

γi,j − γi,j−1 if j = 2, . . . , p.

In terms of the auxiliary variables yi,j , we can write

xi =

p+1∑
j=1

yi,j , and fi(xi) = αi,1 + βi,1 yi,1 +

p+1∑
j=2

βi,j yi,j (17)
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Substituting the expression of xi into the constraint Ax ≥ b, we obtain the following LPCC formu-
lation of (15):

minimize
yi,j

n∑
i=1

αi,1 + βi,1 yi,1 +

p+1∑
j=2

βi,j yi,j


subject to

n∑
i=1

a` i

p+1∑
j=1

yi,j ≥ b`, ` = 1, · · · , k

and the complementarity conditions (16).

(18)

Note that the complementarity constraints (16) cannot be dropped from the above formulation if
the functions fi are not convex. A simple 1-dimensional counter-example is given by: maximize |t|
subject to t ∈ [−1, 1]. The LPCC formulation of this problem is:

maximize −t1 + t2

subject to t1 ≥ −1, t2 ≤ 1

and 0 ≤ −t1 ⊥ t2 ≥ 0.

Without the complementarity constraint, the optimal solution is (t1, t2) = (−1, 1), yielding t =
t1 + t2 = 0 that is not optimal for the original absolute-value maximization problem.

It is useful to note how the complementarity constraints arise from this problem versus the
previous hierarchical optimization problem. Previously, these constraints were needed to describe
the optimality of an inner-level quadratic program, whereas here they are needed to express a
logical relation between the linear segments of a piecewise linear function. Another noteworthy
remark about the LPCC (18) is that (18) is equivalent to pn LPs, which compares well with the
exponential 2np LP pieces in this LPCC with np complementarities. Finally, we mention that
the complementarity representation (16) and (17) of a piecewise linear function allows the latter
to appear in the constraints of an optimization problem; thus piecewise linear constraints can be
modeled as linear complementarity constraints.

Nonconvex piecewise linear optimization has a long history. The common approach for treating
this problem is to formulate it as a mixed integer program using special ordered sets. The Ph.D.
thesis [27] and the subsequent references [28, 29, 52, 53] study this problem and its extensions
extensively and investigate branch and cut algorithms that are based on valid inequalities for special-
ordered sets of type 2. An advantage of this contemporary approach is that the 0-1 variables are
handled implicity by special branching rules. The LPCC formulation offers an alternative approach
to these existing approaches; the detailed investigation of this complementarity formulation is
regrettably beyond the scope of this paper.

4.2 Quantile minimization

Quantiles are fundamental statistical quantities. They have recently been used in risk analysis to
assess probabilities of investment losses and as criteria for portfolio management. In what follows,
we first give an LPCC formulation for a general quantile minimization problem and then examine
the global minimization of the value-at risk (VaR) associated with a portfolio of risky assets using
a scenario approach.
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In order statistics, we are given m linear functions bi−aTi x and wish to choose x to minimize the
kth largest. We assume x is constrained to lie in a polyhedron P (possibly IRn). Here, bi a scalar
and ai an n-vector. This problem can arise, for example, in chance constrained programming [39].
In particular, consider the problem

min
α,x
{α : Pξ[α ≥ f(x, ξ)] ≥ 1− γ, x ∈ P} (19)

where 0 < γ < 1, ξ is a random parameter and P is a polyhedron. Assume the uncertainty can
be represented by m equally likely scenarios and if f(x, ξ) is a linear function of x in each of these
scenarios. If γ is not an integer multiple of 1/m then the problem can be represented as minimizing
the kth largest of these m linear functions, with k = dγme.

Minimizing the maximum function can be formulated as a linear program. For other choices of
k this is a nonconvex problem that can be expressed as the following LPCC:

minimize
α,β,x,s

α

subject to α+ βi ≥ bi − aTi x i = 1, . . . ,m

0 ≤ β ⊥ s ≥ 0

1T s = m − k + 1

0 ≤ s ≤ 1, x ∈ P,

(20)

where x ∈ Rn, s and β are m-vectors, and α is a scalar. If βi > 0 then α is smaller than the function
value at the current x. The complementarity condition allows no more than k − 1 components of
β to be strictly positive. Given x, the values of βi are nonnegative for the k − 1 largest values of
fi(x) and are equal to zero for the smallest m − k + 1 functions, so α gives the value of the kth
largest function for this x. Minimizing α leads to the minimum of the kth largest function.

We now consider the situation where the uncertainty in the chance constrained program (19)
is represented by m scenarios where the scenarios are no longer assumed to be equally likely. The
LPCC (20) can be generalized to handle this situation. Let pi be the probability of the ith scenario,
where f(x, ξi) = bi − aTi x. The resulting formulation is

minimize
α,β,x,s

α

subject to α + βi ≥ bi − aTi x i = 1, . . . ,m

0 ≤ β ⊥ s ≥ 0

pT s ≥ 1 − γ

0 ≤ s ≤ 1, x ∈ P.

(21)

Any feasible solution to this formulation satisfies

Pξ[α ≥ f(x, ξ)] =
∑

i:α≥bi−aTi x

pi ≥
∑
i:βi=0

pi ≥
∑
i:si>0

pi

≥
∑
i

pisi = pT s ≥ 1− γ,
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so it is feasible in (19). It can be shown similarly that a feasible solution to (19) gives a feasible
solution to (21).

One application of quantile minimization arises in financial optimization. In a nutshell, the
VaR minimization problem in portfolio selection is to choose, for a prescribed confidence level
ζ ∈ (0, 1) of risk, an investment portfolio that is characterized by a deterministic vector x ∈ Rn,
where n is the number of financial instruments, so as to minimize the VaR of the portfolio subject
to various restrictions on x; in turn, the VaR is the threshold of loss so that the probability of
loss not exceeding this value is at least the given confidence level. To formulate this optimization
problem mathematically, let r denote an n-dimensional random vector whose components represent
the random losses of some financial instruments. Let X ⊆ Rn be a polyhedron representing the set
of feasible investments. Adopting a scenario approach, let {r1, · · · , rk} be the finite set of scenario
values of r, and {p1, · · · , pk} be the associated probabilities of the respective scenarios. As shown
in [38], the portfolio selection problem of minimizing the VaR can be stated as the following LPCC:

minimize
m,x,τ,w,λ

m

subject to 0 ≤ τi ⊥
pi

1− ζ
− λi ≥ 0 i = 1, . . . , k

0 ≤ λi ⊥ wi , m+ τi − xT ri ≥ 0 i = 1, . . . , k

and x ∈ X and 1 =

k∑
i=1

λi.

(22)

The formulation (22) constrains 0 ≤ λi ≤
pi

1− ζ
. On any piece of the LPCC, the bounded

variables λ only appear in one constraint, namely
n∑
i=1

λi = 1. Thus, in any basic feasible solution

at most one component λi will be basic; all other components will be nonbasic at either their upper

or lower bounds. If λi = 0 then τi = 0; if λi =
pi

1− ζ
then wi = 0; if 0 < λi <

pi
1− ζ

then both

τi = 0 and wi = 0. Thus, τ and s are complementary. The possible pieces of the LPCC can be
enumerated by considering the various cases for λ. The number of pieces where every component
of λ is at a bound is no larger than 2k. The number of pieces of the LPCC formulation of VaR
where exactly one component of λ is not at a bound is no larger than k2k−1: one component is
basic and each of the remaining k−1 variables is at one of its bounds. Hence, the number of pieces
of the LPCC formulation of VaR is no larger than (k + 2)2k−1.

Note that the complementarity restrictions impose additional limits on the number of compo-
nents of τ and of s that can be positive. For example, if each pi = 1/k then exactly r := dk(1− ζ)e
components of λ are positive, so enforcing complementarity requires fixing r components of s to
zero and k − r (if k(1 − ζ) is integer) or k − r + 1 components of τ to zero. Hence the number of

pieces is only

(
k
r

)
if k(1− ζ) is integer and r

(
k
r

)
otherwise.

The VaR can also be modeled as a chance-constrained program [1, 34]. The corresponding
formulation (21) can be related to (22) through the change of variables pi(1 − si) = (1 − ζ)λi.
It should also be noted that formulation (22) follows from the result that Value-at-Risk can be
expressed as the optimal solution to a bilevel program where the inner problem is to minimize the
Conditional Value-at-Risk (CVaR) [41, 42].
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5 Other Applications

An LPCC is a representation of a problem with linear constraints together with some disjunctions.
Any problem that is linear together with some either/or constraints can be naturally formulated as
an LPCC. These either/or constraints can arise from combinatorial restrictions, and we consider a
fundamental example of such a problems in §5.1. Linear programs with complementarity constraints
can arise as approximations of more general problems. They can also arise in testing optimality of
more general problems, as we discuss in §5.2.

Disjunctive constraints can be modeled as integer programs if a “Big-M” is introduced. This
parameter depends on approximations of upper bounds on constraints or variables. The advantage
of the LPCC approach to disjunctive constraints is that it does not require knowledge of bounds
on constraints, so it is not necessary to introduce a “big-M” into the model.

5.1 Binary integer programming

In this subsection, we formally show that the general LPCC is NP-hard. One simple example of a
combinatorial disjunction is in binary integer programming: a variable is either equal to one or to
zero. A generic binary integer program can be written

minimize
x∈{0,1}n

cTx

subject to Ax ≥ b.

This is equivalent to the LPCC

minimize
x

cTx

subject to Ax ≥ b

and 0 ≤ x ⊥ 1− x ≥ 0,

where 1 denotes the vector of ones. Binary integer programming is NP-hard, so this reduction
shows that the general LPCC is NP-hard. Of course, in practice, one would usually choose to solve
the integer program directly rather than transform it into an LPCC.

5.2 B-stationarity of MPCCs

Consider an extension of the LPCC in which the objective function is nonlinear:

minimize
(x,y,w)

f(x, y, w)

subject to Ax+By + Cw ≥ b

and 0 ≤ y ⊥ w ≥ 0.

(23)

The concept of a B-stationary optimal point for an MPCC was formulated in the text [35] and
named in the survey paper [45]. It was investigated further in [37]. A B-stationary point (x̄, ȳ, w̄)
is one that is an optimal solution to the problem obtained by linearizing the original problem at
the point (x̄, ȳ, w̄).
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Let I denote the indices of the constraints Ax + By + Cw ≥ b that are active at the point
(x̄, ȳ, w̄). The point is B-stationary if and only if the optimal value of the following LPCC is equal
to zero:

minimize
(dx,dy ,dw)

∇xf(x̄, ȳ, w̄)Tdx + ∇yf(x̄, ȳ, w̄)Tdy + ∇wf(x̄, ȳ, w̄)Tdw

subject to Aidx +Bidy + Cidw ≥ 0 for i ∈ I
and 0 ≤ dyj ⊥ dwj ≥ 0 ∀j with ȳj = w̄j = 0

dyj ≥ 0 ∀j with ȳj = 0 and w̄j > 0

dwj ≥ 0 ∀j with ȳj > 0 and w̄j = 0

(24)

where Ai, BI and Ci denote the ith rows of A, B, and C, respectively. The directions dx, dy, and
dw have the same dimensions as the original variables. This problem determines whether a certain
type of improving direction exists. This is a homogeneous LPCC since it is concerned with the
existence of a direction, so it either has optimal value zero or it has unbounded optimal value.

6 Algorithms

In this section we discuss two algorithms for finding a global optimum of an LPCC. The first
approach can be used when simple bounds are available for all components of y and w. The second
algorithm is a logical Benders decomposition approach [25] which can also determine if an LPCC
is unbounded or infeasible.

6.1 Branch-and-cut

When upper bounds y ≤ ȳ and w ≤ w̄ are known, problem (1) is equivalent to the following integer
programming problem:

minimize
(x,y,w,z)

cTx+ dT y + eTw

subject to Ax+By + Cw ≥ b

and 0 ≤ yi ≤ ziȳi for i = 1, . . . ,m

0 ≤ wi ≤ (1− zi)w̄i for i = 1, . . . ,m

z binary

(25)

where z ∈ IBm. This formulation can then be solved with any standard integer programming
solver. Relaxations of this formulation can be made tighter using the techniques discussed below
in Section 7. The bounds ȳ and w̄ should be chosen as small as possible in order to make LP
relaxations tighter.

If the complementary pair of variables yi and wi are both basic and strictly positive in a basic
feasible solution to an LP relaxation of (1) then the rows of the simplex tableau corresponding to
the basic variables yi and wi can be used to generate a valid linear constraint that is violated by the
current point. This derivation is called a simple cut by Audet et al. [4], and is based on intersection
cuts for 0-1 programming [5], and has also been investigated by Balas and Perregaard [8].

A branch-and-cut approach can be used even if explicit bounds on the variables are not available.
Disjunctive cuts (including simple cuts) can be used to tighten the relaxation, as discussed in §7.
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The complementarities can be branched on. The relaxation at each node is a linear program,
obtained by relaxing all unfixed complementarities. We have conducted preliminary computational
testing of such an algorithm using a strong branching scheme, with very encouraging results, and
some results are included in §8.

6.2 Logical Benders decomposition

We developed a logical Benders decomposition approach [25] to handle the situation when simple
upper bounds are not available on all the variables y and w. The existence of this algorithm makes
it possible to formulate and solve various classes of problems as LPCCs; these problem classes
could not be solved directly using integer programming because of the lack of bounds on at least
some of the variables. Classical Benders decomposition can be used to solve (25) when bounds
on the variables are available. In this subsection, we show the relationship between the classical
Benders cutting planes and the cuts derived in the logical Benders decomposition approach. This
relationship can be exploited when bounds are available for a proper subset of the y and w variables.

In the logical Benders decomposition approach, we first introduce a conceptually large scalar
parameter Θ and construct the integer program:

minimize
(x,y,w,z)

cTx+ dT y + eTw

subject to Ax+By + Cw ≥ b

and 0 ≤ yi ≤ ziΘ for i = 1, . . . ,m

0 ≤ wi ≤ (1− zi)Θ for i = 1, . . . ,m

z binary

(26)

The LPCC is equivalent to the limiting case of this integer program as Θ→∞. For a fixed value
of z = z̄, (26) is a linear program. The limiting dual linear program is

maximize
(λ,u,v)

bTλ

subject to ATλ = c

BTλ− v ≤ d

CTλ− u ≤ e

z̄Tu+ (1− z̄ )T v = 0

(λ, u, v ) ≥ 0

(27)

where (λ, u, v) ∈ Rk × Rm × Rm. We define ϕ(z̄) to the value of this limiting dual LP. Let

Ξ ≡ {(λ, u, v) ∈ Rk+ × Rm+ × Rm+ : ATλ = c, BTλ− v ≤ d, CTλ− u ≤ e}. (28)

If Ξ = ∅ then the LPCC is either infeasible or unbounded.
The algorithm initializes with a master problem where every binary vector z ∈ IBm feasible. This

corresponds to considering every possible assignment of the complementarities. As satisfiability
constraints on z are added, various complementarity assignments are ruled out, either because
the assignment is infeasible, or because the assignment cannot give a value better than a known
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feasible solution. A feasible z̄ is chosen and subproblem (27) is solved with this z̄. The solution
to the subproblem provides information about the master problem and allows the generation of
constraints to shrink the feasible region of the master problem. There are several cases:

• If (27) has a finite optimal value ϕ(z̄) then we obtain a feasible solution to the LPCC. Let
( λ̄, ū, v̄ ) be the optimal solution. Any z for which ( λ̄, ū, v̄ ) is feasible must have value at
least ϕ(z̄), so such a z cannot be better than z̄ and need not be considered further. A valid
constraint can be added to the master problem so that such z are cut off. This constraint is
called a point cut.

• If (27) is unbounded then the choice of z̄ is infeasible in the original LPCC, so a ray cut is
added to the master problem to ensure that subsequent choices of z do not allow the same
ray.

• If (27) is infeasible then either z̄ leads to an unbounded solution to the original LPCC, or the
choice of z̄ is infeasible. In the latter case, a ray exists in the homogeneous version of (27) and
so a ray cut is added to the master problem. In the former case, the homogeneous version has
optimal value 0 and this leads to confirmation that the corresponding primal piece is feasible
and hence the original LPCC is unbounded.

The algorithm is summarized below:

1. Initialize the Master Problem with all binary z feasible.

2. Find a feasible z̄ for the Master Problem.

3. Solve the subproblem (27).

• (27) finite: Add a point cut to Master Problem.

• (27) unbounded: Add a ray cut to the Master Problem.

• (27) infeasible: Either LPCC is unbounded so STOP, or add a ray cut to the Master
Problem.

4. If the Master Problem is infeasible, STOP with determination of the solution of LPCC:
either it is infeasible, or the best feasible solution found is optimal.

5. Return to Step 2.

Given the optimal dual solution ( λ̄, ū, v̄ ) to (27), the point cut has the form∑
i:v̄i>0

(1− zi) +
∑
i:ūi>0

zi ≥ 1. (29)

If we abuse notation and allow ( λ̄, ū, v̄ ) to represent the ray when z̄ is infeasible then the ray cut is
also of the form (29). These point and ray cuts should be sparsified if possible, in order to strengthen
them: the fewer terms that appear in the constraint, the larger the number of binary vectors that
violate it. From the structure of (29), it is clear that the Master Problem is a satisfiability problem.
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Benders decomposition can also be used to solve problem (25) when bounds are available on y
and w. The approach constructs a subgradient approximation to the function ϕ(z). The extended
real valued function ϕ(.) is convex provided Ξ 6= ∅. For fixed z̄, the dual to the LP relaxation of
(25) can be written

maximize
(λ,u,v)

bTλ−
∑m

i=1 ȳi(1− z̄i)vi −
∑m

i=1 w̄iz̄iui

subject to (λ, u, v ) ∈ Ξ
(30)

If (λ̄, ū, v̄) solves (30) for z = z̄ then ξ ∈ Rm with ξi = ȳiv̄i − w̄iūi is a subgradient of ϕ(z) at z̄.
The corresponding subgradient inequality is

ϕ(z) ≥ bT λ̄−
m∑
i=1

ȳi(1− zi)v̄i −
m∑
i=1

w̄iziūi (31)

= ϕ(z̄) +
m∑
i=1

(zi − z̄i)(ȳiv̄i − w̄iūi)

Inequality (31) is the standard inequality used in Benders decomposition, specialized to prob-
lem (25). Note that the validity of this inequality only requires that (λ̄, ū, v̄) be feasible in (30).
Thus, lower bounding inequalities on ϕ(z) can be created from any feasible solution to (30). Note
that this subgradient inequality is related to the point cut (29). In particular, we have the following
theorem:

Theorem 1. Let (λ̄, ū, v̄) solve (30) for z = z̄ ∈ IBm. Any z ∈ IBm with ϕ(z) < ϕ(z̄) must satisfy∑
i:v̄i>0,z̄i=1

(1− zi) +
∑

i:ūi>0,z̄i=0

zi ≥ 1 (32)

Proof. The proof is by contraposition. Assume (32) is violated by z, so if v̄i > 0 then zi ≥ z̄i and
if ūi > 0 then zi ≤ z̄i. The point (λ̄, ū, v̄) is feasible in (30) for any z, so

ϕ(z) ≥ bT λ̄−
m∑
i=1

ȳi(1− zi)v̄i −
m∑
i=1

w̄iziūi

≥ bT λ̄−
m∑
i=1

ȳi(1− z̄i)v̄i −
m∑
i=1

w̄iz̄iūi

= ϕ(z̄)

giving the desired result.

A similar result can be derived when (30) is unbounded:

Theorem 2. Assume ϕ(z̄) = +∞. Let (λ̄, ū, v̄) be an optimal ray for (30) for z = z̄ ∈ IBm. Any
z ∈ IBm with finite optimal value must satisfy∑

i:v̄i>0,z̄i=1

(1− zi) +
∑

i:ūi>0,z̄i=0

zi ≥ 1 (33)
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Proof. The proof is by contraposition. Assume (33) is violated by z, so if v̄i > 0 then zi ≥ z̄i and
if ūi > 0 then zi ≤ z̄i. The triple (λ̄, ū, v̄) is a ray in (30) for any z, and

bT λ̄−
m∑
i=1

ȳi(1− zi)v̄i −
m∑
i=1

w̄iziūi ≥ bT λ̄−
m∑
i=1

ȳi(1− z̄i)v̄i −
m∑
i=1

w̄iz̄iūi > 0.

It follows that ϕ(z) = +∞.

Thus, the standard subgradient cut implies the corresponding point or ray cut when bounds are
available on all components of y and w. If bounds are available on only some of the components,
a dual problem can be constructed that is a combination of (27) and (30). If the optimal dual
solution only has positive components of ui and vj for the bounded variables then the subgradient
cut (31) can be used; otherwise the point cut (29) can be added to the master problem.

7 Tightening the Relaxation

The linear programming relaxation of the LPCC can be tightened by using disjunctive cuts or
lift-and-project (see Balas et al. [6, 7], Lovasz and Schrijver [33], and Sherali and Adams [47]).
A tightened relaxation helps directly in an integer programming formulation of an LPCC. It also
helps in the logical Benders decomposition approach when trying to sparsify the cuts (29), because
the sparsification approach requires relaxing some of the complementarity restrictions.

Lift-and-project approaches involve forming products of variables and then linearizing the prod-
ucts. For example, the following quadratic inequalities are valid in the LPCC:

n∑
j=1

Aijxjyq +
m∑
l=1

Bikylyq +
m∑

p 6=q,p=1

Cipwpyq ≥ biyq for i = 1, . . . , k, q = 1, . . . ,m

n∑
j=1

Aijxjwq +

m∑
l 6=q,l=1

Bikylwq +

m∑
p=1

Cipwpwq ≥ biwq for i = 1, . . . , k, q = 1, . . . ,m,

as are the equalities yiwi = 0 for i = 1, . . . ,m. These quadratic constraints can be linearized by
introducing matrices of variables. To simplify notation, we let

γ :=

 x
y
w

 ∈ Rn+2m. (34)

Let

M :=

 X ζT ΛT

ζ Y ΥT

Λ Υ W

 :=

 x

y

w

 [ xT yT wT
]

= γγT . (35)

The diagonal entries of Υ must be zero in any feasible solution to the LPCC. The quadratic terms in
the inequalities can be replaced by appropriate entries of the matrices defined in (35). The nonlinear
equality (35) can itself be relaxed. For example, we could construct valid linear inequalities by using
quadratic inequalities of the form (

α+
n+2m∑
i=1

βiγi

)2

≥ 0 (36)
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for constants α ∈ R and β ∈ Rn+2m, and then replacing quadratic terms by the appropriate entries
in M to give the valid linear constraint

α2 + 2α

n+2m∑
i=1

βiγi +

n+2m∑
i=1

β2
iMii + 2

n+2m−1∑
i=1

n+2m∑
j=i+1

βiβjMij ≥ 0. (37)

The vector β can be chosen to be sparse. It can also be chosen as a cutting plane based on
eigenvectors of M , which could then be sparsified if desired. Approximating a semidefiniteness
constraint using linear constraints is discussed in, for example, [32, 40, 48]. Any inequality derived
in this way is implied by the positive semidefiniteness of the matrix

M̂ :=

[
1 γT

γ M

]
, (38)

as shown in the following standard lemma.

Lemma 3. The set of γ and M which satisfy (37) for every α ∈ R, β ∈ Rn+2m is equal to{
( γ,M ) :

[
1 γT

γ M

]
� 0

}
=
{

( γ,M ) : M − γγT � 0
}
.

Proof. Constraint (37) can be written as

[
α βT

] [ 1 γT

γ M

] [
α
β

]
≥ 0.

showing the first part of the lemma. The Schur complement result states that the matrix[
1 γT

γ M

]
is positive semidefinite if and only if M − γγT � 0 [22].

In this way, a semidefinite programming relaxation of an LPCC can be constructed, with many
potential linear constraints to tighten the relaxation. In certain applications, ideas of matrix com-
pletion [21] can be exploited, where positive semidefiniteness of M̂ can be guaranteed by ensuring
an appropriate submatrix of M̂ is positive semidefinite. From a practical point of view, it may be
useful to work with just a submatrix of M̂ even when matrix completion is not available.

The semidefiniteness constraint only enforces one side of the matrix equality M = γγT . Re-
cently, the reference [43, 44] has discussed methods for generating disjunctive cuts to enforce the
nonconvex constraint γγT −M � 0. Disjunctive cuts can also be enforced as an algorithm proceeds,
and used to cut off points that are not in the convex hull of the set of feasible solutions. See [7] for
more details.

8 Computational Experience

The logical Benders decomposition method of Hu et al [25] has been used to find global optimal
solutions of general LPCCs effectively. It has also been used to identify infeasible LPCCs and
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unbounded LPCCs. For more details, see the cited reference and also the doctoral thesis of Hu [23].
This method has been used to solve nonconvex global optimal solutions [24].

Vandenbussche and Nemhauser [50, 49] developed an integer programming approach to solving
the LPCC formulation of nonconvex quadratic programming problems with box constraints. Burer
and Vandenbussche [10, 11] used a semidefinite programming approach within a branch-and-bound
algorithm to solve the LPCC formulation of box-constrained nonconvex quadratic programs, with
impressive results.

Recently, we have experimented with a specialized branching algorithm for solving the cross-
validated support vector regression problem described in §3.3. Branching is performed to fix the
complementarities. Multiple linear programming relaxations of the problem are solved at each node
of a tree, with branching decisions based on the solutions of these linear programs. The algorithm
hence has similarities to strong branching rules in algorithms for integer programming. Preliminary
computational results with this algorithm are contained in Table 1.

In the notation of §3.3, the test problems have N = 1, the number of test points is equal to |Ω|,
the number of training points is |Ω|, and the dimension of the vectors w and xi is equal to five.
The table gives the optimal value of the LP relaxation, the optimal value of the LPCC formulation,
the number of linear programming subproblems solved, the size of the branch and bound tree, and
the runtime for the branch-and-cut approach, and the size of the branch-and-bound tree and the
runtime for CPLEX. An upper bound of 18000 seconds was imposed on the runtime. The runtimes
are in seconds on an AMD Phenom II X4 955 4 core CPU @3.2GHZ with 4 gb of memory, using
a 64 bit windows operating system, and running on a single core. The tolerance for optimality
is 10−6 and for complementarity is 10−5. The CPLEX result is from solving an MIP formulation
of the LPCC, using the CPLEX 11.0 callable library with indicator constraints, with the default
CPLEX settings. The branch-and-cut algorithm used CPLEX 11.0 to solve the LP subproblems.
A performance profile of these results is contained in Figure 1. Note that the scale of the time
axis in the figure is logarithmic. It is clear that our algorithm dramatically outperforms a default
application of CPLEX for these problems.

9 Concluding Remarks

Disjunctive constraints arise in many settings. For example, they arise when constructing optimality
conditions for nonlinear programs; when these nonlinear programs appear as constraints in an
optimization problem, a natural formulation for the complete problem is often a mathematical
program with complementarity constraints, of which the LPCC is the simplest instance. An LPCC
is an NP-hard nonconvex nonlinear program so finding a global optimum is non-trivial. The
importance and breadth of applications of LPCCs make further research on methods for determining
global optimality imperative. Multiple alternative approaches are possible, and several have been
investigated. Determining efficient methods (or combination of methods) for particular applications
is an intriguing challenge that requires sustained investigation. By presenting a host of realistic
contexts where the LPCC arises, we hope to have established the fundamental significance of this
class of global optimization problems and have motivated its further research.

20



Problem Values Branch-and-Cut CPLEX

train test RelaxLP LPCCmin LP Nodes Time Nodes Time

10 10 3.2191 8.9582 594 87 0.11 1487 0.58
10 10 5.4535 15.2389 640 102 0.14 1348 0.41
10 10 5.7514 10.4474 1138 150 0.22 2978 0.94

20 20 12.1247 15.7522 8556 754 4.3 270796 211.2
20 20 10.3882 16.3427 5746 492 3.4 29901 23.8
20 20 12.4111 18.3917 1680 158 1.0 9102 8.6

30 30 19.5499 23.6281 8430 451 11.1 99893 169.1
30 30 18.4676 24.2991 11030 656 13.3 64938 84.6
30 30 15.7274 18.6622 3048 208 3.6 34328 54.3

40 40 31.3081 39.3843 24886 1184 51.8 539128 1407.9
40 40 34.9672 42.6682 39080 2312 75.7 719346 2145.5
40 40 30.0506 34.0263 6478 373 14.1 81957 205.1

50 50 33.5479 36.7149 14004 729 51.9 172908 981.0
50 50 37.3623 39.3964 19508 1132 63.1 422080 1699.7
50 50 41.7643 50.9952 90258 5109 288.9 — —

60 60 37.6553 50.3336 136708 6569 707.4 — —
60 60 49.1863 51.5881 26772 1296 143.9 348278 2522.7
60 60 40.8572 47.6830 59118 2439 347.4 — —

70 70 47.4771 55.1966 62670 2118 542.1 — —
70 70 45.6660 56.0318 133786 6793 1178.3 — —
70 70 46.7967 54.3473 45546 2097 400.0 — —

80 80 64.3488 69.2778 41852 1724 550.0 — —
80 80 69.2562 74.0414 46624 1571 586.5 — —
80 80 55.5947 59.9417 60956 1741 866.4 — —

90 90 75.5819 77.4303 43332 1626 644.0 — —
90 90 64.6352 76.0012 196554 7870 2962.5 — —
90 90 74.2927 78.9140 68278 2259 1052.3 — —

100 100 85.2575 87.154 48526 1432 1085.2 — —
100 100 81.3640 84.1875 49998 1534 1069.9 — —
100 100 69.3205 75.2687 302730 11001 5672.2 — —

Table 1: Computational experience with cross-validated support vector regression problems of
dimension 5.

21



Figure 1: Performance profile of runtimes on the thirty cross-validated support vector regression
problems. The left axis gives the number of problems solved, and the plot indicates the number of
problems solved within a given ratio of the best time for that problem. Ratios for the branch-and-
cut code and for CPLEX are given.
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