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BRANCH-AND-CUT ALGORITHMS
FOR INTEGER PROGRAMMING,
Branch-and-cut

Branch-and-cut methods are exact algorithms
for integer programming problems . They consist
of a combination of a cutting plane method
with a branch-and-bound algorithm. These
methods work by solving a sequence of lin-
ear programming relaxations of the integer pro-
gramming problem. Cutting plane methods im-
prove the relaxation of the problem to more
closely approximate the integer programming
problem, and branch-and-bound algorithms pro-
ceed by a sophisticated divide and conquer ap-
proach to solve problems. The material in this
entry builds on the material contained in the
entries on cutting plane and branch-and-bound
methods.

Perhaps the best known branch-and-cut algo-
rithms are those that have been used to solve
traveling salesman problems . This approach is
able to solve and prove optimality of far larger
instances than other methods. Two papers that
describe some of this research and also serve as
good introductions to the area of branch-and-
cut algorithms are [21, 32]. A more recent work
on the branch-and-cut approach to the traveling
salesman problem is [1]. Branch-and-cut meth-
ods have also been used to solve other combina-
torial optimization problems; recent references
include [8, 10, 13, 23, 24, 26]. For these problems,
the cutting planes are typically derived from
studies of the polyhedral combinatorics of the
corresponding integer program. This enables the
addition of strong cutting planes (usually facet
defining inequalities), which make it possible to
considerably reduce the size of the branch-and-
bound tree. Far more detail about these strong
cutting planes can be found elsewhere in this en-
cyclopedia, for example in the entry on cutting
plane methods for integer programming.

Branch-and-cut methods for general integer
programming problems are also of great interest
(see, for example, the papers [4, 7, 11, 16, 17, 22,
28, 30]). It is usually not possible to efficiently
solve a general integer programming problem us-
ing just a cutting plane approach, and it is there-
fore necessary to also to branch, resulting in a
branch-and-cut approach. A pure branch-and-
bound approach can be sped up considerably by
the employment of a cutting plane scheme, ei-
ther just at the top of the tree, or at every node
of the tree.

For general problems, the specialized facets
used when solving a specific combinatorial opti-
mization problem are not available. Some use-
ful families of general inequalities have been
developed; these include cuts based on knap-
sack problems [17, 22, 23], Gomory cutting
planes [19, 20, 5, 12], lift and project cut-
ting planes [29, 33, 3, 4], and Fenchel cutting
planes [9]. All of these families of cutting planes
are discussed in more detail later in this entry.

The software packages MINTO [30] and
ABACUS [28] implement branch-and-cut algo-
rithms to solve integer programming problems.
The packages use standard linear programming
solvers to solve the relaxations and they have a
default implementation available. They also of-
fer the user many options, including how to add
cutting planes and how to branch.
A simple example.

Consider the integer programming problem

min −5x1 − 6x2

s.t. x1 + 2x2 ≤ 7
2x1 − x2 ≤ 3

x1, x2 ≥ 0, integer.

This problem is illustrated in the figure. The
feasible integer points are indicated. The lin-
ear programming relaxation (or LP relaxation)
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is obtained by ignoring the integrality restric-
tions; this is given by the polyhedron contained
in the solid lines.

The first step in a branch-and-cut approach
is to solve the linear programming relaxation,
which gives the point (2.6, 2.2), with value
−26.2. There is now a choice: should the LP re-
laxation be improved by adding a cutting plane,
for example, x1 +x2 ≤ 4, or should the problem
be divided into two by splitting on a variable?
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A branch-and-cut example

Assume the algorithm makes the second
choice, and further assume that the decision is
to split on x2, giving two new problems:

min −5x1 − 6x2

s.t. x1 + 2x2 ≤ 7
2x1 − x2 ≤ 3

x2 ≥ 3
x1, x2 ≥ 0, integer

and

min −5x1 − 6x2

s.t. x1 + 2x2 ≤ 7
2x1 − x2 ≤ 3

x2 ≤ 2
x1, x2 ≥ 0, integer.

The optimal solution to the original problem will
be the better of the solutions to these two sub-
problems. The solution to the linear program-
ming relaxation of the first subproblem is (1, 3),
with value −23. Since this solution is integral,
it solves the first subproblem. This solution be-
comes the incumbent best known feasible solu-
tion. The optimal solution for the linear pro-
gramming relaxation of the second subproblem
is (2.5, 2), with value −24.5. Since this point is
nonintegral, it does not solve the subproblem.
Therefore, the second subproblem must be at-
tacked further.

It is possible to branch using x1 in the sec-
ond subproblem; instead, assume the algorithm
uses a cutting plane approach and adds the in-
equality x1 + 2x2 ≤ 6. This is a valid inequal-
ity, in that it is satisfied by every integral point
that is feasible in the second subproblem. Fur-
ther, this inequality is a cutting plane: it is vi-
olated by (2.5, 2). Adding this inequality to the
relaxation and resolving gives the optimal solu-
tion (2.4, 1.8), with value −22.6. The subprob-
lem still does not have an integral solution. How-
ever, notice that the optimal value for this mod-
ified relaxation is larger than the value of the
incumbent solution. The value of the optimal in-
tegral solution to the second subproblem must
be at least as large. Therefore, the incumbent
solution is better than any feasible integral so-
lution for the second subproblem, so it actually
solves the original problem.

Of course, there are several issues to be re-
solved with this algorithm, including the ma-
jor questions of deciding whether to branch or
to cut and deciding how to branch and how to
generate cutting planes. Notice that the cutting
plane introduced in the second subproblem is
not valid for the first subproblem. This inequal-
ity can be modified to make it valid for the first
subproblem by using a lifting technique, which
is discussed later in this entry.

A standard form.

To fix notation, the following problem is re-
garded as the standard form mixed integer linear
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programming problem in this entry:

min cTx

subject to Ax ≤ b

x ≥ 0
xi integer, i = 1, . . . , p.

Here, x and c are n-vectors, b is an m-vector,
and A is an m × n matrix. The first p variables
are restricted to be integer, and the remainder
may be fractional. If p = n then this is an integer
programming problem. If a variable is restricted
to take the values 0 or 1 then it is a binary vari-
able. If all variables are binary then the problem
is a binary program.
Primal heuristics.

In the example problem, it was possible to
prune the second subproblem by bounds, once
an appropriate cutting plane had been found.
The existence of a good incumbent solution
made it possible to prune in this way. In this
case, the solution to the linear programming re-
laxation of the first subproblem was integral,
providing the good incumbent solution. In many
cases, it takes many stages until the solution
to a relaxation is integral. Therefore, it is of-
ten useful to have good heuristics for convert-
ing the fractional solution to a relaxation into
a good integral solution that can be used to
prune other subproblems. Primal heuristics are
discussed further in the entry on branch-and-
bound algorithms.
Preprocessing.

A very important component of a practi-
cal branch-and-cut algorithm is preprocessing
to eliminate unnecessary constraints, determine
any fixed variables, and simplify the problem
in other ways. Preprocessing techniques are dis-
cussed in the entry on branch-and-bound al-
gorithms.
Families of cutting planes.

Perhaps the first family of cutting planes for
general mixed integer programming problems

were Chvátal-Gomory cutting planes [19, 20, 15].
These inequalities can be derived from the final
tableau of the linear programming relaxation,
and they are discussed in more detail in the en-
try on cutting plane algorithms. These cuts
can be useful if they are applied in a computa-
tionally efficient manner [5, 12]. Gomory cuts
can contain a large number of nonzeroes, so
care is required to ensure that the LP relaxation
does not become very hard with large memory
requirements. The cuts are generated directly
from the basis inverse, so care must also be taken
to avoid numerical difficulties.

One of the breakthroughs in the develop-
ment of branch-and-cut algorithms was the pa-
per by H. P. Crowder, E. L. Johnson, and M.

Padberg [17]. This paper showed that it was pos-
sible to solve far larger general problems than
had previously been thought possible. The al-
gorithm used extensive preprocessing, good pri-
mal heuristics, and cutting planes derived from
knapsack problems with binary variables. Any
inequality in binary variables can be represented
as a knapsack inequality

∑
i∈N aixi ≤ b with

all ai > 0 for some subset N of the variables,
eliminating variables or replacing a variable xj

by 1 − xj as necessary. The facial structure
of the knapsack polytope can then be used to
derive valid inequalities for the problem. For
example, if R ⊆ N with

∑
i∈R ai > b then∑

i∈R xi ≤ |R|−1 is a valid inequality. Further, if
R is a minimal such set, so deleting any member
of R leaves the sum of coefficients smaller than
b, then the inequality defines a facet of the cor-
responding knapsack polytope. Other inequal-
ities can be derived from the knapsack poly-
tope. These inequalities have been extended to
knapsacks with general integer variables and one
continuous variable [11] and to binary problems
with generalized upper bounds [34].
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Another family of useful inequalities are lift-
and-project or disjunctive inequalities . These
were originally introduced by E. Balas [2], and
it is only in the last few years that the value
of these cuts has become apparent for general
integer programming problems [3, 4]. Given the
feasible region for a binary programming prob-
lem S := {x : Ax ≤ b, xi = 0, 1 ∀i}, each vari-
able can be used to generate a set of disjunctive
inequalities. Let S0

j := {x : Ax ≤ b, 0 ≤ xi ≤
1 ∀i, xj = 0} and S1

j := {x : Ax ≤ b, 0 ≤ xi ≤
1 ∀i, xj = 1}. Then S ⊆ S0

j ∪ S1
j , so valid in-

equalities for S can be generated by finding valid
inequalities for the convex hull of S0

j ∪S1
j . These

inequalities are generated by solving linear pro-
gramming problems. Because of the expense, the
cuts are usually only generated at the root node.
Nonetheless, they can be very effective compu-
tationally.

Other general cutting planes have been devel-
oped. The paper [16] describes several families
and discusses routines for identifying violated
inequalities. Fenchel cutting planes, which are
generated using ideas from Lagrangian duality
and convex duality, are introduced in [9].
When to add cutting planes.

The computational overhead of searching for
cutting planes can be prohibitive. Therefore, it is
common to not search at every node of the tree.
Alternatives include searching at every eighth
node, say, or at every node at a depth of a mul-
tiple of eight in the tree.

Generally, at each node of the branch-and-
bound tree, the linear programming relaxation
is solved, cutting planes are found, these are
added to the relaxation, and the process is re-
peated. Usually, there comes a point at which
the process tails off, that is, the solution to one
relaxation is not much better than the solutions
to the recent relaxations. It is then advisable to
stop work on this node and branch. Tailing off is
a function of lack of knowledge about the poly-
hedral structure of the relaxation, rather than a

fundamental weakness of the cutting plane ap-
proach [32]. In some implementations, a fixed
number of rounds of cutting plane searching
are performed at a node, with perhaps several
rounds performed at the root node, and fewer
rounds performed lower in the tree.

The cut-and-branch variant adds cutting
planes only at the root node of the tree. Usu-
ally, an implementation of such a method will
expend a great deal of effort on generating cut-
ting planes, requiring time far greater than just
solving the relaxation at the root. The benefits
of cut-and-branch include

• all generated cuts are valid throughout the
tree, since they are valid at the root.

• bookkeeping is reduced, since the relax-
ations are identical at each node.

• no time is spent generating cutting planes
at other nodes.

Cut-and-branch is an excellent technique for
many general integer programs, but it lacks the
power of branch-and-cut for some hard prob-
lems. See [16] for more discussion of the relative
computational performance of cut-and-branch
and branch-and-cut.
Lifting cuts.

A cut added at one node of the branch-and-
cut tree may well not be valid for another sub-
problem. Of course, it is not necessary to add
the cut at any other node, in which case the cut
is called a local cut. This cut will then only af-
fect the current subproblem and its descendants.
The drawback to such an approach is in the po-
tential memory requirement of needing to store
a different version of the problem for each node
of the tree. In order to make a cut valid through-
out the tree (or global ), it is necessary to lift it.

Lifting can be regarded as a method of ro-
tating a constraint. Returning to the example
problem once again, the constraint x1 +2x2 ≤ 6
is valid if x2 ≤ 2. To extend this constraint to

lift-and-project
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global→ global cuts
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be valid when x2 ≥ 3, consider the inequality

x1 + 2x2 + α(x2 − 2) ≤ 6.

It is desired to take α as large as possible while
ensuring that this is a valid inequality. If x2 = 3
then x1 ≤ 1, so the inequality is valid for x2 = 3
provided α ≤ −1. If x2 = 1, the inequality is
valid provided α ≥ −2. Finally, the inequal-
ity is valid when x2 = 0 provided α ≥ −2.5.
Combining these conditions gives that the valid
range is −2 ≤ α ≤ −1. The two extreme choices
α = −1 and α = −2 give the valid inequali-
ties x1 + x2 ≤ 4 and x1 ≤ 2, respectively. Other
valid choices for α give inequalities that are con-
vex combinations of these two. In this way, valid
inequalities for one node of the tree can be ex-
tended to valid inequalities at any node.

See [11] for more discussion of lifting in the
case of general mixed integer linear program-
ming problems. It is often not possible to lift
inequalities for such problems because the upper
and lower bounds on the coefficients conflict. Of
course, if an inequality is valid at the root node
then it is valid throughout the tree so there is no
need to lift. This is one of the reasons why gen-
eral inequalities such as Chvátal-Gomory cuts or
lift-and-project cuts are often more successfully
employed in a cut-and-branch approach.

The method of calculating coefficients in the
case of binary problems is now outlined —
see [31] for more details. The inequality gener-
ated at a node in the tree will generally only use
the variables that are not fixed at that node.
Lifting can be used to make the inequality valid
at any node of the tree. It is necessary to apply
the lifting process for each variable that has been
fixed at the node, examining the opposite value
for that variable. For example, if the inequality

∑

j∈J

ajxj ≤ h for some subset J ⊆ {1, . . . , n}

is valid at a node where xi has been fixed to
zero, the lifted inequality takes the form

∑

j∈J

ajxj + αixi ≤ h

for some scalar αi. This scalar should be maxi-
mized in order to make the inequality as strong
as possible. Now, maximizing αi requires solving
another integer program, so it may be necessary
to make an approximation. This process has to
be applied successively to each variable that has
been fixed at the node. The order in which the
variables are examined may well affect the final
inequality, and other valid inequalities can be
obtained by lifting more than one variable at a
time.

Implementation details.

Many details of tree management can be
found in the entry on branch-and-bound al-
gorithms. This includes node selection, branch-
ing variable selection, and storage requirements,
among other issues. Typically, a branch-and-
bound algorithm stores the solution to a node
as a list of the indices of the basic variables.
Branch-and-cut algorithms may require more
storage if cuts are added locally, because it is
then necessary to be able to recreate the current
relaxation at any active node with just the ap-
propriate constraints. If cuts are added globally,
then it suffices to store a single representation
of the problem.

It is possible to fix variables using information
about reduced costs and the value of the best
known feasible integral solution, as described in
the entry on cutting plane algorithms. Once
variables have been fixed in this way, it is often
possible to fix additional variables using logical
implications. In order to fully exploit the fixing
of variables, parent node reconstruction [32] is
performed as follows. Once a parent node has
been selected, it is not immediately divided into
two children, but is solved again using the cut-
ting plane algorithm. When the cutting plane
procedure terminates, the optimal reduced cost
vector has been reconstructed and this is used
to perform variable fixing.

Many branch-and-cut implementations use a
pool of cuts [32]. This is typically a set of con-
straints that have been generated earlier and

branch-and-bound algorithms

cutting plane algorithms
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either not included in the relaxation or sub-
sequently dropped because they no longer ap-
peared to be active. It is easy to check these
cuts for violation and this is usually done before
more involved separation routines are invoked.
The pool of cuts also makes it possible to recon-
struct the parent node more efficiently, partly
because difficulties with tailing off are reduced.

Solving large problems.

The difficulty of a particular integer program-
ming problem is not purely a function of the size
of the problem. There are problems in the MI-
PLIB test set [6] with just a few hundred vari-
ables that prove resistant to standard solution
approaches. The difficulty is caused by an ex-
plosion in the size of the tree.

For some problems, difficulties are caused
by the size of the LP relaxation, and interior
point methods may be useful in such cases. In-
terior point methods are superior to simplex
methods for many linear programming problems
with thousands of variables. However, restart-
ing is harder with an interior point method
than with a simplex method when the relaxation
is only slightly changed. Therefore, for very
large problems, the first relaxation at the top
node of the tree can be solved using an interior
point method, and subsequent relaxations can
be solved using the (dual) simplex method. For
some problems, the relaxations are just too large
to be handled with a simplex method. For exam-
ple, the relaxations of the quadratic assignment
problem given in [25] were solved using interior
point methods. Interior point methods also han-
dle degeneracy better than the simplex method.
Therefore, the branch-and-cut solver described
in [1] occasionally uses an interior point method
to handle some subproblems.

One way to enable the solution of far larger
problems is to use a parallel computer . The na-
ture of branch-and-cut and branch-and-bound
algorithms makes it possible for them to exploit
coarse grain parallel computers efficiently: typi-
cally, a linear programming relaxation is solved

on a node of the computer. It is possible to use
one node to manage the distribution of linear
programs to nodes. Alternatively, methods have
been developed where a common data struc-
ture is maintained and all nodes access this data
structure to obtain a relaxation that requires so-
lution, for example [18]. For a discussion of par-
allel branch-and-cut algorithms, see [7, 27]. It is
also possible to generate cutting planes in paral-
lel; see, for example, [14]. For more information
on the use of parallel computers, see the entry
on parallel mixed integer programming.
Conclusions.

Branch-and-cut methods have been success-
fully used to solve both specialized integer pro-
gramming problems such as the traveling sales-
man problem and vehicle scheduling, and also
general integer programming problems. In both
cases, these methods are the most promising
techniques available for proving optimality. For
specialized problems, cutting planes are derived
using the polyhedral theory of the underlying
problem. For general mixed integer linear pro-
gramming problems, important components of
an efficient implementation include preprocess-
ing, primal heuristics, routines for generating
cutting planes such as lift-and-project or Go-
mory’s rounding procedure or cuts derived from
knapsack problems, and also routines for lifting
constraints to strengthen them. This is an ac-
tive research area, with refinements and devel-
opments being continuously discovered.
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[25] Jünger, M., and Kaibel, V.: A basic study of the

QAP polytope, Tech. Rep. 96.215, Institut für Infor-

matik, Universität zu Köln, Pohligstraße 1, D-50969
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