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CUTTING PLANE ALGORITHMS
FOR INTEGER PROGRAMMING,
Cutting plane algorithms

Cutting plane methods are exact algorithms
for integer programming problems. They have
proven to be very useful computationally in the
last few years, especially when combined with a
branch and bound algorithm in a branch
and cut framework. These methods work by
solving a sequence of linear programming relax-
ations of the integer programming problem. The
relaxations are gradually improved to give bet-
ter approximations to the integer programming
problem, at least in the neighborhood of the op-
timal solution. For hard instances that cannot
be solved to optimality, cutting plane algorithms
can produce approximations to the optimal solu-
tion in moderate computation times, with guar-
antees on the distance to optimality.

Cutting plane algorithms have been used to
solve many different integer programming prob-
lems, including the traveling salesman prob-
lem [16, 34, 1], the linear ordering problem [17,
30, 31], mazimum cut problems [4, 10, 27], and
packing problems [19, 32]. M. Jiinger et al. [23]
contains a survey of applications of cutting plane
methods, as well as a guide to the successful im-
plementation of a cutting plane algorithm. The
book [33] by G.L. Nemhauser and L. Wolsey
provides an excellent and detailed description of
cutting plane algorithms and the other material
in this entry, as well as other aspects of integer
programming. The book [35] by A. Schrijver
and also the more recent article [36] are excellent
sources of additional material.
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Cutting plane algorithms for general integer
programming problems were first proposed by
R.E. Gomory in [13, 14]. Unfortunately, the cut-
ting planes proposed by Gomory did not ap-
pear to be very strong, leading to slow conver-
gence of these algorithms, so the algorithms were
neglected for many years. The development of
polyhedral theory and the consequent introduc-
tion of strong, problem specific cutting planes
led to a resurgence of cutting plane methods in
the eighties, and cutting plane methods are now
the method of choice for a variety of problems,
including the traveling salesman problem. Re-
cently, there has also been some research show-
ing that the original cutting planes proposed by
Gomory can actually be useful. There has also
been research on other types of cutting planes
for general integer programming problems. Cur-
rent research is focused on developing cutting
plane algorithms for a variety of hard combi-
natorial optimization problems, and on solving
large instances of integer programming problems
using these methods. All of these issues are dis-
cussed below.

A simple example.

Consider, for example, the integer program-

ming problem

min —2r; — T2
S.t. 1 + 209 < 7
2{12‘1 — i) S 3
r1,r2 > 0, integer.

This problem is illustrated in the figure. The
feasible integer points are indicated. The lin-
ear programming relazation (or LP relazation)
is obtained by ignoring the integrality restric-
tions; this is given by the polyhedron contained
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in the solid lines. The boundary of the convex
hull of the feasible integer points is indicated by
dashed lines.

If a cutting plane algorithm were used to solve
this problem, the linear programming relaxation
would first be solved, giving the point z; = 2.6,
x9 = 2.2, which has value —7.4. The inequalities
x1 4+ 22 < 4 and z; < 2 are satisfied by all the
feasible integer points but they are violated by
the point (2.6, 2.2). Thus, these two inequalities
are valid cutting planes. These two constraints
can then be added to the relaxation, and when
the relaxation is solved again, the point x; = 2,
T = 2 results, with value —6. Notice that this
point is feasible in the original integer program,
so it must actually be optimal for that problem,
since it is optimal for a relaxation of the integer
program.

T2

0 1 2 X1
A cutting plane example

If, instead of adding both inequalities, just the
inequality z; < 2 had been added, the optimal
solution to the new relaxation would have been
r1 = 2, xo = 2.5, with value —6.5. The relax-
ation could then have been modified by adding
a cutting plane that separates this point from

convex hull

cutting planes

separates — separating hyperplane
totally unimodular

date: September 15, 1998 2

the convex hull, for example x1 + o < 4. Solv-
ing this new relaxation will again result in the
optimal solution to the integer program. This il-
lustrates the basic structure of a cutting plane
algorithm:

e Solve the linear programming relaxation.

e If the solution to the relaxation is feasi-
ble in the integer programming problem,
STOP with optimality.

e Otherwise, find one or more cutting planes
that separate the optimal solution to the
relaxation from the convex hull of feasible
integral points, and add a subset of these
constraints to the relaxation.

e Return to the first step.

Typically, the first relaxation is solved using the
primal simplex algorithm. After the addition of
cutting planes, the current primal iterate is no
longer feasible. However, the dual problem is
only modified by the addition of some variables.
If these extra dual variables are given the value 0
then the current dual solution is still dual feasi-
ble. Therefore, subsequent relaxations are solved
using the dual simplex method.

Notice that the values of the relaxations pro-
vide lower bounds on the optimal value of the in-
teger program. These lower bounds can be used
to measure progress towards optimality, and to
give performance guarantees on integral solu-
tions.

Totally unimodular matrices.

Consider the integer program min{c’x
Az = b,0 < x < u,x integer}, where A is an
m X n matrix, ¢, x, and u are n-vectors, and b is
an m-vector. A cutting plane method attempts
to refine a linear programming relaxation until
it gives a good approximation of the convex hull
of feasible integer points, at least in the region of
the optimal solution. In some settings, the solu-
tion to the initial linear programming relaxation
min{c’z : Az = b,0 < x < u} may give the op-
timal solution to the integer program. This is
guaranteed to happen if the constraint matrix
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A is totally unimodular, that is, the determi-
nant of every square submatrix of A is either 0
or +1. Examples of totally unimodular matrices
include the node-arc incidence matrix of a di-
rected graph, the node-edge incidence matrix of
a bipartite undirected graph, and interval matri-
ces (where each row of A consists of a possibly
empty set of zeroes followed by a set of ones fol-
lowed by another possibly empty set of zeroes).
It therefore suffices to solve the linear program-
ming relaxation of maximum flow problems and
shortest path problems on directed graphs, the
assignment problem, and some problems that in-
volve assigning workers to shifts, among others.
Chvatal-Gomory cutting planes.

One method of generating cutting planes in-
volves combining together inequalities from the
current description of the linear programming
relaxation. This process is known as integer
rounding, and the cutting planes generated are
known as Chwvdtal-Gomory cutting planes. Inte-
ger rounding was implicitly described by R.E.
Gomory in [13, 14], and described explicitly by
V. Chvatal in [7].

Consider again the example problem given
earlier. The first step is to take a weighted com-
bination of the inequalities. For example,

0.2(.2:‘1 4+ 229 < 7) + 0.4(2{12‘1 —x9 < 3)
gives the valid inequality for the relaxation:
T < 2.6.

In any feasible solution to the integer program-
ming problem, the left hand side of this inequal-
ity must take an integer value. Therefore, the
right hand side can be rounded down to give
the following valid inequality for the integer pro-
gramming problem:

512‘1§2.

This process can be modified to generate addi-
tional inequalities. For example, taking the com-
bination 0.5(x; + 2z2 < 7) 4+ 0(221 — 22 < 3)

mazimum flow problems
shortest path

assignment problem

integer rounding
Chvdtal-Gomory cutting planes
R.E. Gomory

V. Chvatal
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gives 0.5x1 4+ x9 < 3.5, which is valid for the re-
laxation. Since all the variables are constrained
to be nonnegative, rounding down the left hand
side of this inequality will only weaken it, giv-
ing zo < 3.5, also valid for the LP relaxation.
Now rounding down the right hand side gives
x2 < 3, which is valid for the integer program-
ming problem, even though it is not valid for the
LP relaxation.

Gomory originally derived constraints using
the optimal simplex tableau. The LP relaxation
of the simple example above can be expressed in
equality form as:

min —2r; — X9
S.t. r1 + 2x9 + a3 =7
2rx1 — o + x4 = 3

>0, i=1,...,4

Notice that if 1 and xo take integral values then
so must x3 and x4. Solving this LP using the
simplex algorithm gives the optimal tableau

7410 0 0.8 0.6
2210 1 04 -0.2
26|1 0 0.2 0.6

The rows of the tableau are linear combina-

tions of the original objective function and con-
straints, and cutting planes can be generated
using them. The objective function row implies
that 0.8x3 4+ 0.6z4 > 0.4 in any integral feasible
solution. It can be seen that this is equivalent
to requiring that 2z; + zo < 7, by substitut-
ing for z3 and z4 from the equality form given
above. It is also possible to generate constraints
from the other rows of the tableau. For example,
the first constraint row of the tableau is equiv-
alent to the equality 2.2 = x5 + 0.4z3 — 0.224.
The fractional part of the right hand side of this
equation is 0.4x3 + 0.8z4. This must be at least
as large as the fractional part of the left hand
side in any feasible integral solution, giving the
valid cutting plane 0.4z3 + 0.8x4 > 0.2, which
is equivalent to x1 < 2.5. Similarly, the final
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row of the tableau can be used to generate the
constraint 0.2x3 4+ 0.6x4 > 0.6, or equivalently
Tx1 — x9 < 13. In practice, the cut added to
the tableau should be expressed in the nonbasic
variables, here x3 and x4, since the tableau will
then be in standard form for the dual simplex
algorithm.

Gomory’s cutting plane algorithm solves an
integer program by solving the LP relaxation
to optimality, generating a cutting plane from
a row of the tableau if necessary, adding this
additional constraint to the relaxation, solving
the new relaxation, and repeating until the so-
lution to the relaxation is integral. It was shown
in [14] that if a cutting plane is always gener-
ated from the first possible row then Gomory’s
cutting plane algorithm will solve an integer pro-
gram in a finite number of iterations.

Unfortunately, this finite convergence appears
to be slow. However, it was shown in [3, 6] that
Gomory’s cutting plane algorithm can be made
competitive with other methods if certain tech-
niques are used, such as adding many Chvétal-
Gomory cuts at once.

It follows from the finite convergence of Go-
mory’s cutting plane algorithm that every valid
inequality for the convex hull of feasible integral
points is either generated by repeated applica-
tion of integer rounding or is dominated by an
inequality generated in such a way. There are
many different ways to generate a given inequal-
ity using integer rounding. The Chwvdtal rank of
a valid inequality is the minimum number of
successive applications of the integer rounding
procedure that are needed in order to generate
the inequality; it should be noted that a rank
2 inequality can be generated by applying the
integer rounding procedure to a large number of
rank 1 and rank 0 inequalities, for example.

It was shown in [28] that Gomory cutting
planes can be generated even when an interior
point method is used to solve the LP relaxations,

Gomory’s cutting plane algorithm
Chvdtal rank

polyhedral combinatorics

facets

NP-Complete

strong cutting plane

Separation routines
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because much of the information in the simplex
tableau can still be obtained easily.

Strong cutting planes from polyhedral
theory.

The resurgence of interest in cutting plane al-
gorithms in the 1980’s was due to the develop-
ment of polyhedral combinatorics and the con-
sequent implementation of cutting plane algo-
rithms that used facets of the convex hull of in-
tegral feasible points as cuts. A facet is a face
of a polytope that has dimension one less than
the dimension of the polytope. Equivalently, to
have a complete linear inequality description of
the polytope, it is necessary to have an inequal-
ity that represents each facet.

In the example above, the convex hull of the
set of feasible integer points has dimension 2,
and all of the dashed lines represent facets. The
valid inequality z1 + 2x2 < 7 represents a face
of the convex hull of dimension 0, namely the
point (1, 3).

If a complete description of the convex hull of
the set of integer feasible points is known, then
the integer problem can be solved as a linear pro-
gramming problem by minimizing the objective
function over this convex hull. Unfortunately, it
is not easy to get such a description. In fact,
for an NP-Complete problem [12], such a de-
scription must contain an exponential number
of facets, unless P=NP.

The paper [23] contains a survey of problems
that have been solved using strong cutting plane
algorithms. Typically in these algorithms, first a
partial polyhedral description of the convex hull
of the set of integer feasible points is determined.
This description will usually contain families of
facets of certain types. Separation routines for
these families can often be developed; such a
routine will take as input a point (for example,
the optimal solution to the LP relaxation), and
return as output violated constraints from the
family, if any exist.
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The prototypical combinatorial optimization
problem that has been successfully attacked us-
ing cutting plane methods is the traveling sales-
man problem. In this problem, a set of cities is
provided along with distances between the cities.
A route that visits each city exactly once and re-
turns to the original city is called a tour. It is
desired to choose the shortest tour. This prob-
lem has many applications, including printed
circuit board (PCB) production: a PCB needs
holes drilled in certain places to hold electronic
components such as resistors, diodes, and inte-
grated circuits. These holes can be regarded as
the cities, and the objective is to minimize the
total distance traveled by the drill.

The traveling salesman problem can be rep-
resented on a graph, G = (V, E), where V is
the set of vertices (or cities) and E is the set
of edges (or links between the cities). Each edge
e € E has an associated cost (or length) c.. If
the incidence vector x is defined by

S 1 if edge e is used
“ | 0 otherwise

then  the
can be

traveling salesman  problem

min{) c.ze

x is the incidence vector of a tour}. Notice that
for a tour, at each vertex the sum of the edge
variables must be two; this is called a degree
constraint. This leads to the relaxation of the
traveling salesman problem:

> Cee

Zeeé(v) xe =2 for all vertices v

formulated as

min
s.t.

e =0o0r1  for all edges e.

Here, d(v) denotes the set of all edges incident
to vertex v. All tours are feasible in this for-
mulation, but it also allows infeasible solutions
corresponding to subtours, consisting of several
distinct unconnected loops. To force the solution
to be a tour, it is necessary to include subtour
elimination constraints of the form

Z Te > 2
)

ecd(U

traveling salesman problem
subtour elimination constraints
G.B. Dantzig

J. Edmonds
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for every subset U C V with cardinality 2 <
Ul < |V|/2, where §(U) denotes the set of
edges with exactly one endpoint in U. Any
feasible solution to the relaxation given above
which also satisfies the subtour elimination con-
straints must be the incidence vector of a tour.
Unfortunately, the number of subtour elimina-
tion constraints is exponential in the number of
cities. This led G.B. Dantzig et al. to propose
a cutting plane algorithm in [9], where the sub-
tour elimination constraints are added as cutting
planes as necessary.

The degree constraints and the subtour elim-
ination constraints, together with the simple
bounds 0 < z, < 1, are still not sufficient to de-
scribe the convex hull of the incidence vectors of
tours. This approach of [9] has been extended in
recent years by the incorporation of additional
families of cutting planes — see, for example,
[1, 16, 34].

Thus, cutting plane algorithms can be used
even when the integer programming formulation
of the problem has an exponential number of
constraints. Similar ideas are used in papers on
the matching problem [11, 15], maximum cut
problems [4, 10, 27], and the linear ordering
problem [17, 31], among others. The pioneer-
ing work of J. Edmonds on the matching prob-
lem gave a complete description of the matching
polytope, and this work was used in subsequent
algorithms; it was also an inspiration to future
work on many other problems and even to the
formulation of complexity theory and the con-
cept of a “good” algorithm.

Alternative general cutting planes.

A knapsack problem is an integer program-
ming problem with just one linear inequality
constraint. A general integer programming prob-
lem can be regarded as the intersection of sev-
eral knapsack problems, one for each constraint.
This observation was used in [8, 20, 21] to solve
general integer programming problems. The ap-
proach consists of finding facets and strong cut-
ting planes for the knapsack problem and adding
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these constraints to the LP relaxation of the in-
teger program as cutting planes.

There has been interest recently in other fam-
ilies of cutting planes for general integer pro-
gramming problems. Two such families of cuts
are lift-and-project cuts [2] and Fenchel cuts [5].
To find a cut of this type, it is generally neces-
sary to solve a linear programming problem.

These alternative general cutting planes are
not usually strong enough on their own to solve
an integer programming problem, and they are
most successfully employed in branch and cut
algorithms for integer programming; they
are discussed in more detail in that entry.

Fixing variables.

If the reduced cost of a nonbasic variable is
sufficiently large at the optimal solution to an
LP relaxation, then that variable must take its
current value in any optimal solution to the in-
teger programming problem. To make this more
precise, suppose the binary variable z; takes
value zero in the optimal solution to an LP relax-
ation and that the reduced cost of this variable
is ;. The optimal value of the relaxation gives a
lower bound z on the optimal value of the inte-
ger programming problem. The value zy g of the
best known feasible integral solution provides an
upper bound on the optimal value. Any feasi-
ble point in the relaxation with z; = 1 must
have value at least z + r;, so such a point can-
not be optimal if r; > zyyp — z. Similar tests can
be derived for nonbasic variables at their upper
bounds. It is also possible to fix variables when
an interior point method is used to solve the re-
laxations [28].

Once some variables have been fixed in this
manner, it is often possible to fix further vari-
ables using logical implications. For example, in
a traveling salesman problem, if x. has been set
equal to one for two edges incident to a particu-
lar vertex, then all other edges incident to that
vertex can have their values fixed to zero.

Solving large problems.

lift-and-project cuts
Fenchel cuts

branch and cut algorithms for integer programming

reduced cost — reduced cost fixing
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It is generally accepted that interior point
methods are superior to the simplex algorithm
for solving sufficiently large linear programming
problems. The situation for cutting plane algo-
rithms for large integer programming problems
is not so clear, because the dual simplex method
is very good at reoptimizing if only a handful of
cutting planes are added. Nonetheless, it does
appear that interior point cutting plane algo-
rithms may well have a role to play, especially for
problems with very large relaxations (thousands
of variables and constraints) and where a large
number of cutting planes are added simultane-
ously (hundreds or thousands). LP relaxations
of integer programming problems can experience
severe degeneracy, which can cause the simplex
method to stall. Interior point methods suffer
far less from the effects of degeneracy.

In [29], an interior point cutting plane algo-
rithm is used for a maximum cut problem on a
sparse graph, and the use of the interior point
solver enables the solution of far larger instances
than with a simplex solver, because of both the
size of the problems and their degeneracy.

A combined interior point and simplex cut-
ting plane algorithm for the linear ordering
problem is described in [31]. In the early stages,
an interior point method is used, because the lin-
ear programs are large and many constraints are
added at once. In the later stages, the dual sim-
plex algorithm is used, because just a few con-
straints are added at a time and the dual sim-
plex method can then reoptimize very quickly.
The combined algorithm is up to ten times faster
than either a pure interior point cutting plane
algorithm or a pure simplex cutting plane algo-
rithm on the larger instances considered.

The polyhedral combinatorics of the qua-
dratic assignment problem are investigated
in [22]. It was found necessary to use an interior
point method to solve the relaxations, because
of the size of the relaxations.

Provably good solutions.
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Even if a cutting plane algorithm is unable
to solve a problem to optimality, it can still be
used to generate good feasible solutions with a
guaranteed bound to optimality. This approach
for the traveling salesman problem is described
n [24]. The value of the current LP relaxation
provides a lower bound on the optimal value of
the integer programming problem. The optimal
solution to the current LP relaxation (or a good
feasible solution) can often be used to generate a
good integral feasible solution using a heuristic
procedure. The value of an integral solution ob-
tained in this manner provides an upper bound
on the optimal value of the integer programming
problem.

For example, for the traveling salesman prob-
lem, edges that have z. close to one can be set
equal to one, edges with x. close to zero can
be set to zero, and the remaining edges can be
set so that the solution is the incidence vector
of a tour. Further refinements are possible, such
as using 2-change or 3-change procedures to im-
prove the tour, as described in [26].

This has great practical importance. In many
situations, it is not necessary to obtain an op-
timal solution, and a good solution will suf-
fice. If it is only necessary to have a solution
within 0.5% of optimality, say, then the cutting
plane algorithm can be terminated when the gap
between the lower bound and upper bound is
smaller than this tolerance. If the objective func-
tion value must be integral, then the algorithm
can be stopped with an optimal solution once
this gap is less than one.

Equivalence of separation and optimiza-
tion.

The separation problem for an integer pro-
gramming problem can be stated as follows:

Given an instance of an integer pro-
gramming problem and a point =z,
determine whether z is in the con-
vex hull of feasible integral points.
Further, if it is not in the convex
hull, find a separating hyperplane
that cuts off x from the convex hull.

guaranteed bound to optimality
separation problem
ellipsoid algorithm
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An algorithm for solving a separation problem
is called a separation routine, and it can be used
to solve an integer programming problem.

The ellipsoid algorithm [18, 25] is a method
for solving linear programming problems in
polynomial time. It can be used to solve an inte-
ger programming problem with a cutting plane
method, and it will work in a polynomial num-
ber of stages, or calls to the separation routine. If
the separation routine requires only polynomial
time then the ellipsoid algorithm can be used
to solve the problem in polynomial time. It can
also be shown that if an optimization problem
can be solved in polynomial time then the corre-
sponding separation problem can also be solved
in polynomial time.

There are instances of any NP-hard prob-
lem that cannot be solved in polynomial time
unless P=NP. Therefore, a cutting plane al-
gorithm cannot always generate good cutting
planes quickly for NP-hard problems. In prac-
tice, fast heuristics are used, and these heuris-
tics may occasionally be unable to find a cutting
plane even when one exists.

Conclusions.

Cutting plane methods have been known for
almost as long as the simplex algorithm. They
have come back into favor since the early 1980’s
because of the development of strong cutting
planes from polyhedral theory. In practice, cut-
ting plane methods have proven very success-
ful for a wide variety of problems, giving prov-
ably optimal solutions. Because they solve relax-
ations of the problem of interest, they make it
possible to obtain bounds on the optimal value,
even for large instances that cannot currently be
solved to optimality.
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