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Abstract
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reason, this algorithm is computationally much more promising as well. This
algorithm can be of use in solving combinatorial optimization problems with
large numbers of constraints, such as the Traveling Salesman Problem.
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1 Introduction

The problem of interest is to solve

min cT x

s.t. Ax ≥ b (P )

where x and c are n-vectors, b is an m-vector, and A is an m × n matrix. We are

interested in instances where m is far larger than n, and our algorithm can handle

problems with infinitely many constraints, provided we have an oracle for finding

constraints as necessary. Its dual is:

max bTy

s.t. ATy = c (D)

y ≥ 0

where b and y are m-vectors.

Since m � n, it would be preferable to use a cutting plane approach to solve

(P), wherein only a promising set of constraints or hyperplanes are kept, with hyper-

planes being added/deleted at each iteration. Such an approach has been provided by

Atkinson and Vaidya [1]. These authors discuss a cutting plane algorithm for finding

a feasible point in a convex set. At each iteration, they maintain a polytope that is

guaranteed to contain the convex set, and use the analytic center of this polytope

as the test point. If this point is not contained in the convex set, an oracle returns

a hyperplane that separates the test point and the convex set. This hyperplane is

used to update the polytope. Further, hyperplanes currently in the polytope that are

deemed ‘unimportant’ according to some criteria are dropped.

Clearly, such an algorithm can be very useful in solving problems like (P ). Much

like the ellipsoid algorithm (see [9]), Atkinson and Vaidya’s algorithm can be applied

to linear programming problems by cutting on a violated constraint when the test

point is infeasible, and cutting on the objective function when the test point is fea-

sible but not optimal. (We explicitly include such an algorithm in the Appendix).

This would then somewhat resemble Renegar’s algorithm (see [24]). However, this is

somewhat like a ‘short step’ method — when cutting on the objective function, the

cut is placed such that the next iterate is in a small ellipsoid around the current point.

This suggests that the progress in objective function value cannot be too much.

Our interest is in a long step cutting plane algorithm that uses the barrier function

explicitly, partly because of the successful implementation of such algorithms for

linear programming. Such algorithms are not only polynomial in complexity, but

also exhibit superlinear [34] or quadratic [33] convergence asymptotically. Also, in
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extending Atkinson and Vaidya’s work through the use of such barrier functions, some

of their proofs become simplified and we show the links between their work and barrier

function methods. Another point is that by making use of the standard logarithmic

barrier function framework, we avoid having to increase the number of constraints

whenever we need to drive the objective function value down — instead of cutting

on the objective function, we just reduce the value of a scalar parameter. Finally,

since in such an algorithm we would maintain primal and dual variables, it allows for

early termination when the sub-optimality is deemed to be within allowable limits.

Thus, what we visualize is essentially a long step path-following algorithm that uses

only some of the constraints, and whenever infeasibility is encountered an Atkinson-

Vaidya-like scheme is used until the current iterate again becomes feasible.

Recently, there has been some work on cutting plane methods, especially in the

context of the convex feasibility problem. Most of these recent methods are “central

cutting” plane methods, where the test point is in the center of the polytope that

approximates the convex set at the current iteration. The most commonly used test

point is the analytic center of the polytope (see eg., [1, 31, 5, 15, 32]), since this is

fairly easy to compute. Other test points that have been used include the center of

the largest inscribed sphere [3] or ellipsoid [28] and the volumetric center [30]. The

analytic center is preferred because of computational reasons, and also because of its

nice properties (see eg., [27]).

Goffin et al. [5] described a fully polynomial column generation algorithm, which

does not drop any columns. This algorithm will find an optimal solution within ε

in time polynomial in ε, but not in time polynomial in ln(ε). This method has been

extended to add many cuts at once, and to show that cuts do not need to be weakened

but can be added right through the analytic center [15, 32, 6]. It should be noted

that none of these papers deal explicitly with optimization problems; instead, they

present results for the convex feasibility problem.

In particular, the recent work of Goffin and Vial [6] shows that the analytic center

can be recovered in O(p log(p)) Newton steps if p constraints are added through the

current iterate. Our analysis could be modified to consider adding multiple cuts

through the current iterate. The affected lemmas are Lemma 5 and Lemma 11; we

note the effect of multiple cuts immediately after these lemmas. If no more than p

cuts are added at any one time, then it should be possible to extend the results of [6]

to show that the total number of Newton steps in our algorithm is multiplied by a

factor of at most O(p log(p)).

In this paper, we present a long step algorithm (i.e., one where the factor by

which the barrier parameter is reduced is a constant and does not depend on the
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problem size) that traces the central trajectory of the current polytope. When an

iterate is infeasible in the ‘overall problem’, constraints are added until feasibility is

regained. Additionally, constraints are dropped whenever possible according to some

criterion. We prove a complexity of O(nL2) iterations for this algorithm. Going by

computational experience discussed in the literature, we would certainly expect the

long-step version to perform better in practice. This method has been extended to

the case where many cuts are added at once right through the analytic center [22],

and a similar method has been proposed using the volumetric center [23]. Luo et

al. [16] have extended the fully polynomial algorithm to a long-step method with

exponential complexity, although it does not require that constraints be dropped.

It is important to note the work of D. den Hertog et al. ([12, 13, 11]) and Kaliski

et al. ([14]). These papers discuss an algorithmic framework very similar to ours – the

“combination” of long steps in a barrier parameter with the addition and deletion of

cuts to yield a long step cutting plane algorithm. Indeed, the authors in [11] describe

an algorithm like this, and this algorithm is applied to semi-infinite programming

in [14]. However, these papers only prove complexity that is polynomial in the total

number of cuts that become active, and is not necessarily polynomial in the dimension

of the space. Indeed, in their conclusions, the authors of [11] mention that proving

possible polynomial complexity of their algorithm remains open. In [14], the authors

point out that results from [5] suggest that their algorithm is fully polynomial. Thus,

while our algorithm in this paper has a similar flavor to those just described, we

accomplish one other objective — we prove that our algorithm has complexity poly-

nomial in the dimension of the space, while also having the computationally appealing

characteristics of a long step logarithmic barrier algorithm.

Good computational results have been obtained with interior point cutting plane

methods. Recently, they have been used to solve stochastic programming problems [2],

multicommodity network flow problems [4], and integer programming problems [18],

as well as other forms of convex optimization problems [8, 7]. For some classes of

linear ordering problems, a cutting plane scheme that combines an interior point

method and a simplex method has been shown to be up to ten times faster than one

that just uses either of the methods individually [20]. For some max cut problems,

an interior point cutting plane method has been shown to considerably outperform a

simplex cutting plane method [19].

In the following section, we introduce some preliminaries and notation. In sec-

tion 3, the complete algorithm is described. Local convergence of the algorithm is

discussed in section 4, where we show that a new approximate analytic center can

be recovered in one Newton step when a constraint is added or dropped as speci-
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fied in the algorithm. (We note that in the case where a cut is neither added nor

dropped, the new approximate center cannot be recovered in one Newton step, but

we develop a bound for the number of Newton steps.) The overall number of Newton

steps required by the algorithm is bounded in section 5, where the maximum number

of constraints generated by the algorithm is also bounded. We offer our conclusions

in the final section.

2 Preliminaries

In order to simplify the exposition later, we will use m̂ from now on to denote the

number of constraints in the original, full problem. Similarly, we use Â and b̂ to

denote the full constraint matrix and right hand side. The dimension of the vector

x will remain n throughout the algorithm, and the objective vector c will remain

unchanged. The original problem of interest can be written:

min cT x

s.t. Âx ≥ b̂, (P̂ )

where Â is an m̂× n matrix. Its dual is:

max b̂Ty

s.t. ÂTy = c (D̂)

y ≥ 0.

We point out here that we do not actually require m̂ to be finite — we will never

work with the formulations (P̂ ) or (D̂) directly. We will just approximate them by

a finite number of linear constraints. We further assume, without loss of generality,

that the two-norms of c and the rows of Â are each equal to 1. We also assume that

there exists a problem dependent constant L such that

1. The set of optimal solutions to (P̂ ) is guaranteed to be contained in the n-

dimensional hypercube of half-width 2L given by {x ∈ <n̂ : |xi| ≤ 2L}.

2. The set of feasible solutions to (P̂ ) contains a full dimensional ball of radius 2−L.

3. Optimality criterion: It suffices to find a solution to (P̂ ) to within an accu-

racy 2−L.
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At any given iteration, we operate with a relaxation of (P̂ ). The algorithm is

initialized with the relaxation

min cTx

s.t. Ix ≥ (−2L)en (P0)

−Ix ≥ (−2L)en

cTx ≥ −2L
√

n

where, by our assumptions, the feasible set of this relaxation contains X , the set of

optimal solutions to (P̂ ). The vector of dimension n whose components are all equal

to one is denoted by en. The first 2n hyperplanes included in this initial relaxation

will be referred to as the box hyperplanes, and serve to ensure that the polytope we

have at any iteration is always bounded, and thus has a unique µ-center for any µ > 0.

(We use the term µ-center without defining it for now — it will be defined shortly.)

The final constraint does not affect the feasible region of the initial relaxation. As

the algorithm obtains better lower bounds on the optimal value of the full problem,

the right hand side of this lower bound constraint is updated.

At iteration k, we would have something like :

min cTx

s.t. Ix ≥ (−2L)en (Pk)

−Ix ≥ (−2L)en

cTx ≥ lk

Ākx ≥ b̄k

where Āk ∈ <m̄k×n, and lk is some lower bound on the optimal objective function

value. This can be written more simply as

min cT x

s.t. Akx ≥ bk (Pk)

with Ak ∈ <mk×n, so mk = 2n + 1 + m̄k. We refer to the feasible region of (Pk)

as Qk. Throughout most of the discussion, we may omit the subscripts k since that

causes no ambiguity.

We also need to define the so-called logarithmic barrier function :

f(x, µ) :=
cTx

µ
−

m∑
i=1

ln si (1)

where si is equal to aT
i x− bi , and aT

i is the ith row of A. We use si without explicitly

noting its functional dependence on x.
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It is easily seen that the gradient of the barrier function is given by

∇f(x, µ) =
c

µ
−

m∑
i=1

ai

si
=

c

µ
− ATS−1e (2)

and the Hessian by

∇2f(x, µ) =
m∑

i=1

aia
T
i

s2
i

= ATS−2A. (3)

For a given value of µ , x(µ) denotes the unique minimizer of this barrier function.

We refer to this unique point when we use the term (exact) µ-center.

A related function is defined as:

F (x) := −
m∑

i=1

ln si. (4)

We also define quantities that are analogous to the so-called variational quantities

used by Atkinson and Vaidya [1], and also studied in den Hertog et al. [12, 13]:

σj :=
aT

j (∇2f(x, µ))−1aj

s2
j

(5)

for j from 1 to m.

In our analysis, we refer to the polytope Q∗. Before defining Q∗, it is necessary to

define some more notation. The algorithm moves from one approximate µ-center to

another. If the approximate µ-center is feasible in (P̂ ) then we may decide to reduce

the barrier parameter. In this situation, we denote the current feasible approximate

µ-center as xprev, we let µprev denote the barrier parameter before it is reduced, and

we let mprev denote the number of constraints before the barrier parameter is reduced.

Note that xprev need not be the current iterate — it is actually the last iterate at

which no cuts were returned by the oracle. The polytope Q∗ is to be understood as

follows — if we have the current point x̃, then

Q∗ := Q ∩ {x ∈ <n : cTx ≤ ζ} (6)

where ζ is equal to max(cT x̃, cTxprev)+ 1.25mprevµprev. Thus, this polytope is certain

to contain the optimal set to the problem of interest and the current point. This

property is important, and enables us to decide termination criteria based on the vol-

ume and width of this polytope. This property would hold without the 1.25mprevµprev

term in the definition of ζ; this extra term is used in Lemma 10, where we relate the

width of Q∗ to the width of Q. It is important to note that the polytope Q∗ is used

only in the theoretical analysis — we do not explicitly add upper-bound constraints

that restrict subsequent iterates to be in the polytope Q∗, although we could.
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Note that the algorithm can be terminated before Q∗ becomes too small, in the

same way that the ellipsoid method can be terminated. In particular, if Q∗ can be

contained in an ellipsoid of volume no more than that of a ball of radius 2−L, then we

could round to an optimal solution using simultaneous diophantine approximation, as

described in Grötschel et al. [9]. We use this observation in the proof of Theorem 1. An

alternative method for rounding to an optimal solution is described in Megiddo [17].

2.1 Notation

We list some of our notation.

• m: the number of constraints in the current relaxation.

• m̄: the number of constraints in the current relaxation, excluding the box con-

straints and the lower bound constraint.

• m̂: the number of constraints in the complete formulation.

• mprev: the number of constraints in the relaxation immediately before the bar-

rier parameter µ was last reduced.

• µ: the barrier parameter.

• µprev: the value of the barrier parameter immediately before it was last reduced.

• x: the primal iterate.

• xprev: the iterate immediately before the barrier parameter was last reduced.

Note that this iterate must be feasible in the full problem (P̂ ), and it is the best

known feasible point.

• f(x, µ): barrier function, see equation (1).

• F (x): another barrier function, see equation (4).

• σj: a variational quantity, see equation (5).

• Q∗: a polytope defined in equation (6).

• ζ: a parameter used in the definition of Q∗.

• ν: a quantity related to the number of cutting planes. We show m̄ ≤ νnL in

Theorem 1, where it is shown that it suffices to take ν = 4093.
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• π: another quantity related to the number of cutting planes. We have π = ν +3

and show m ≤ πnL in Theorem 1.

• Φ(x): a measure of centrality defined in Lemma 1.

• δ(x, µ): the Roos-Vial measure of centrality, also defined in Lemma 1.

• E(M, z, r): an ellipsoid defined for any positive definite matrix M in equa-

tion (9).

• width(h): the maximum variation of hTx over Q∗.

• ∆(x, µ, l): a potential function defined in equation (10).

• Λ: the growth in ∆ at certain iterations. See Lemma 11.

• Θ(x, µ, l): a potential function defined in equation (12).

3 The Algorithm

For the purpose of initializing the algorithm, we assume that the origin is feasible in

problem (P̂ ). This is reasonable since if we know any feasible point in (P̂ ), we can

modify the problem to make the origin feasible. The algorithm may well produce

infeasible iterates, but we always keep a record xprev of the best feasible point found

so far.

The algorithm is shown in figure 1. It should be mentioned that where a lower

case letter denotes a vector, the corresponding upper case letter denotes a diagonal

matrix with this vector along the diagonal.

The basic idea of the algorithm is this: at any iteration, if a slack variable has

become large (according to some criterion), and the associated variational quantity is

small (as defined in (5)), that hyperplane is then dropped. Indeed, these quantities

measure the effect of dropping the cut in some sense. If the slack variables stay small,

and the current point is infeasible in (P̂ ), then there is a violated constraint, and the

polytope is updated with this constraint. (We assume that there is an ‘oracle’ that

can find this violated constraint.) If the current point is feasible in (P̂ ), then the

lower bound is updated and the barrier parameter is reduced. A sufficient condition

for termination is that we enter Subcase 2.2 of the algorithm with 1.25mµ < 2−L, as

we argue in Corollary 1.

Atkinson and Vaidya also include two criteria for termination in their algorithm

that would imply that the feasible set is empty. They show that if the number
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Figure 1: The Algorithm

Step 0 : Initialization

Set µ = 2L; k = 0; A =




In

−In

cT


 ; b =




−2Len

−2Len

−2L
√

n


 ; x = [0 · · · 0]T ; s = Ax − b;

κ(i) = 2L, i = 1 . . . 2n; κ(2n + 1) = 2L
√

n; xprev = x; mprev = m; µprev = µ;

y = µS−1e−µS−2A(ATS−2A)−1[ATS−1e− c
µ
]. Iterate, if necessary, to get approximate

µ-center. Set constants mmax := 4093nL, and smin := 2−(3L+3)/(24576n1.5L).

Step k : The Iterative step

If m ≥ mmax or mini{aT
i x − bi} < smin then STOP: the best feasible point found so

far is optimal.

We have a point x = xk, which is an approximate µ-center. H denotes the Hessian

∇2f(x, µ). Calculate γi(x) =
aT

i x−bi

κ(i)
for i=1 to m, except for the lowerbound con-

straints that get added in Case 2.2 . Define γi(x) := 1 if i indexes the lower bound

constraint. For a hyperplane indexed by j, if γj(x) > 2, calculate σj(x) as in equation

(5). Define Γ := maxi(γi(x)) .

Case 1 : Γ > 2

If for some j we have σj(x) < 0.04

then Subcase 1.1

Drop the hyperplane aj, resulting in polytope Qd. Take one Newton step to find

approximate µ-center xd. Get dual solution y.

else Subcase 1.2

Let j be an index such that γj(x) > 2. Reset κ(j) = aT
j x − bj.

Case 2 : Γ ≤ 2

Subcase 2.1 : x is not feasible in (P̂ )

Then ∃ j such that âT
j x < b̂j. Choose β such that

âT
j H−1âj

(âT
j x−β)2

= 1
16

and β < âT
j x.

Add âT
j x ≥ β to the polytope, getting new polytope Qa. Set m = m + 1. Set

κ(m) = âT
j x − β. Find new approximate µ-center xa in one Newton step.

Subcase 2.2 : x is feasible in (P̂ )

Test x for optimality (is 1.25mµ < 2−L?). If optimal, get dual solution y and STOP.

Else, set l = cTx− 5
4
mµ. Let lprev denote previous lower bound. If lprev ≥ l, the lower

bound cannot be improved upon. If lprev ≤ l, remove existing constraint cTx ≥ lprev,

add cTx ≥ l. Set µ = µρ where ρ ∈ (0.5, 1) is a constant independent of the problem.

Take Newton steps with linesearch to find new approximate µ-center.
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of hyperplanes at any iteration exceeds a certain level depending on the problem

instance, the volume of the current polytope would be too small to contain a small

enough ball (and therefore the convex set). Also, if the smallest slack is smaller than

a certain number (that depends on the problem size), then the polytope would be

too narrow to contain a small enough ball. By construction, our optimal set is non-

empty — we assume the existence of a feasible point, and the polytope is bounded.

We can be sure that Q∗ is small enough if these criteria are satisfied. We make use of

these criteria in showing the polynomial complexity of our algorithm, and therefore

summarize them here:

1. There exists a constant ν, independent of the problem, such that throughout

the algorithm we must have m̄ < νnL. (See Theorem 1.)

2. Given 1, if mini(si) ≤ 2−(3L+3)

6(ν+3)n1.5L
, then the polytope Q would have become too

narrow. (See Lemma 10 and Theorem 2.)

As in [1], we show polynomial complexity by showing that condition 2 is inevitable

after a polynomial number of iterations.

The term ‘approximate center’ has been used thus far without definition. This

will be discussed in the next section. We also observe that from the dual solution y,

a solution ŷ to (P̂ ) can be constructed easily as follows: first let I(j) = {k : kth row

of A is a copy of the jth row of Â}. (Note that polytope is defined at the current

iteration by Ax ≥ b.) Then,

ŷj =
∑

i∈I(j)

yi for j = 1 to m̂.

In much of the analysis of this algorithm, we have only assumed that the current

iterate is an approximate µ-center. However, for some of the proofs, we assume that

we have an exact µ-center. This helps in focusing attention on the key issue without

having to keep track of details that would arise from having only an approximate

µ-center.

The algorithm can be used without first finding an initial feasible point. In this

case, we would be unable to initialize xprev. If the problem is feasible, then the

algorithm would eventually find a feasible point, allowing xprev to be initialized. If

the problem is infeasible then the algorithm would eventually terminate because the

number of constraints became too large or one of the slacks became too small. In

order to simplify the exposition slightly, we don’t consider this more general case.
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4 Local Convergence Analysis

We first want to establish that each step in the algorithm doesn’t take too much

work. We do this by first defining a measure of the proximity to a µ-center, and then

bounding this measure at each iteration.

The first lemma provides us with this measure of how close a point is to the

µ-center corresponding to the current µ.

Lemma 1 The quantity

Φ(x) = ∇f(x, µ)T [∇2f(x, µ)]−1∇f(x, µ),

analogous to

Ψ(x) = ∇F (x)T [∇2F (x)]−1∇F (x)

used by Atkinson and Vaidya, is the square of the Roos-Vial measure of centrality (see

[25]) δ(x, µ), which is given by

δ(x, µ) = min
y

‖Sy

µ
− e‖

s.t ATy = c.

Proof: Consider the quadratic program with optimal value δ(x, µ)2:

min

(
Sy

µ
− e

)T (
Sy

µ
− e

)

s.t. ATy = c.

The KKT conditions for this problem are

S2y

µ2
− Se

µ
+ Aλ = 0

ATy = c.

Solving for λ, we obtain

λ =
1

µ2

(
ATS−2A

)−1 [
µAT S−1e − c

]
.

It follows that

y = µ2S−2

[
Se

µ
− 1

µ2
A
(
ATS−2A

)−1 [
µATS−1e − c

]]

= µS−1e − µS−2A
(
ATS−2A

)−1
[
ATS−1e − c

µ

]
,
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so,
Sy

µ
= e − S−1A

(
ATS−2A

)−1
[
ATS−1e − c

µ

]

and

‖Sy

µ
− e‖

2

=

[
ATS−1e − c

µ

]T (
ATS−2A

)−1
[
ATS−1e − c

µ

]

= ∇f(x, µ)T [∇2f(x, µ)]−1∇f(x, µ)

= Φ(x).

2

This lemma essentially relates the “Newton Decrement” as studied by Nesterov

and Nemirovskii [21] with the Roos-Vial measure of centrality. (Indeed, much more

general results regarding the application of Newton’s method to such functions may

be found in [21].) Having defined the Roos-Vial measure, we now need to define a

term used in the algorithm — a point x is referred to as an approximate µ-center if

δ(x, µ) < 1
4
. We now state some properties of the Roos-Vial measure.

Lemma 2 If we have a point x such that δ(x, µ) < 1, then

y? := arg{min
y

‖Sy

µ
− e‖ : ATy = c}

is feasible in (D̂) : ie., y? ≥ 0.

Proof: This lemma is clear from the form of y? given in the proof of Lemma 1

above, and from the fact that (Sy
µ

)i is between 0 and 2. (See also [10, 25].) 2

Lemma 3 If we have a point x such that δ(x, µ) < 1, then taking Newton steps

results in quadratic convergence to x(µ).

Proof: See [25, 10]. 2

The significance of these lemmas is clear — in order to show local convergence, we

now merely need to bound δ(x, µ) above at each step of the iteration. In Lemmas 4

and 5, we establish that the Roos-Vial measure does not change appreciably in Cases

1.1 and 2.1 of the algorithm. (Results very similar to the following two lemmas may

be found in Lemmas 9 and 12 of [13].)
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Lemma 4 If we have a point x which is an approximate µ-center of the current

polytope Q, and we drop a hyperplane a0 in Subcase 1.1, then δd(x, µ) < 1
2
, where the

subscript d denotes quantities after dropping the hyperplane a0.

Proof: Let there be m + 1 hyperplanes a0 · · · am defining the current polytope.

We have a point x, with δ(x, µ) < 1
4
. Call the gradient g := ∇f(x, µ) = c

µ
−∑m

i=0
ai

si
.

Then

∇fd(x, µ) = g +
a0

s0
and Hd = H − a0a

T
0

s2
0

.

Therefore, by the Sherman-Morrison-Woodbury formula,

H−1
d = H−1 +

H−1a0a
T
0 H−1

s2
0(1 − aT

0 H−1a0

s2
0

)
.

Therefore,

[δd(x, µ)]2 ≤ (g +
a0

s0
)TH−1(g +

a0

s0
) +

[(g + a0

s0
)T H−1a0]

2

s2
0(0.96)

= gT H−1g + 2
gT H−1a0

s0
+

aT
0 H−1a0

s2
0

+
[ gT H−1a0

s0
+

aT
0 H−1a0

s2
0

]2

0.96
. (7)

Also, we know that

|g
TH−1a0

s0
| = |[(H)−

1
2 g]T [(H)−

1
2
a0

s0
]| ≤ ‖(H)−

1
2 g‖‖(H)−

1
2
a0

s0
‖ =

1

4
.
1

5
= 0.05. (8)

Using (8) in (7), we clearly have

δd(x, µ)2 ≤ 1

16
+ 0.1 + 0.04 +

(0.04 + 0.05)2

0.96
<
(

1

2

)2

.

2

Lemma 5 If we have a point x which is an approximate µ-center of the current

polytope Q, and we add a hyperplane a0 in Subcase 2.1, then δa(x, µ) < 1
2
, where the

subscript a denotes quantities after adding the hyperplane a0.

Proof: We have x, with δ(x, µ) < 1
4
. Call the gradient g := ∇f(x, µ) = c

µ
−∑m

i=1
ai

si
.

Then

∇fa(x, µ) = g − a0

s0
and Ha = H +

a0a
T
0

s2
0

.

Therefore, by the Sherman-Morrison-Woodbury formula,

H−1
a = H−1 − H−1a0a

T
0 H−1

s2
0(1 +

aT
0 H−1a0

s2
0

)
.

13



Therefore,

[δa(x, µ)]2 ≤ (g − a0

s0
)TH−1(g − a0

s0
)

= gT H−1g − 2
gT H−1a0

s0
+

aT
0 H−1a0

s2
0

,

and, using (8) to bound the cross-product term,

≤ 1

16
+ 2(

1

20
) + 0.04 < (

1

2
)2.

2

Note that if we instead add p cuts directly through the current iterate, the results

of Goffin and Vial [6] can be used to show that a new approximate µ-center can be

recovered in O(p log(p)) Newton steps.

We now return to the case that only one cut is added at a time. From Lemmas 4

and 5, we can see that local convergence is not a problem in all but Case 2.2, which we

have not established yet. It follows from the lemmas that in Case 1.1 as well as 2.1,

all we need is one Newton step to find an approximate center [25]. As is well known

in the case of long step methods, it is generally not true that the next µ-center can

be found in O(1) iterations after reducing the barrier parameter by a constant factor.

In general, after the barrier parameter is reduced, Newton steps with a linesearch

are taken to find the next approximate µ-center. So we cannot establish a result for

Case 2.2 similar to the other cases. Instead, we show in the next section that the

number of inner steps necessary after a barrier parameter reduction is bounded above

by O(nL). We then use this to establish the complexity of the algorithm. But first,

however, we need to justify the lower bound that we use in Case 2.2, in the following

simple and classical lemma.

Lemma 6 Let x be an approximate µ-center of the current polytope Q.Then

l = cTx − 5

4
mµ

is a valid lower bound on the optimal value of problem P̂ .

Proof: Since x is an approximate µ-center, we have

‖Sy

µ
− e‖ ≤ 1

4
.

Therefore

sTy ≤ (1 +
1

4
)mµ =

5

4
mµ.

14



Also, it is easily seen that sT y = cT x− bTy, so

bT y ≥ cTx − 5

4
mµ.

Therefore cT x − 5
4
mµ is a valid lower bound on the optimal value of cT x over the

polytope Q. Since X ⊆ Q, the result holds. 2

It is interesting to note that the point x does not have to be feasible in (P̂ ).

This simple lemma is quite far-reaching, and we make significant use of it in the

forthcoming analysis. The proof of the lemma immediately implies the following

corollary:

Corollary 1 If x is feasible in (P̂ ) and if 1.25mµ < 2−L then the current duality gap

is smaller than 2−L, so the algorithm may be terminated with optimality. Further, we

must always have 1.25mprevµprev ≥ 2−L, otherwise the algorithm would have stopped

in Case 2.2.

5 Global Convergence

We prove global convergence and derive the complexity of our algorithm along the

lines of [1] — first, we bound the maximum number of hyperplanes that can be present

at any iteration by showing that if this upper bound is exceeded, the optimal set is

empty (which is not the case since we assume the existence of a feasible point, and the

feasible set is bounded). Then, using this limit on the number of hyperplanes, we show

that in O(nL2) iterations, the polytope would become too narrow to contain a small

enough ball around the optimal point(s), which again is not the case. Therefore,

our algorithm must terminate in polynomial time. Also in this section are results

pertaining to the number of innersteps necessary after a reduction of the barrier

parameter. These lemmas are included in this section rather than the previous one

(where they rightfully belong) because of the functions that need to be introduced.

We first state some propositions that we require in the analysis. These are to be

found in [1], and are stated here without proof. Of course, the proofs in [1] are not

exactly applicable, but the changes required are very slight. Let M be a positive

definite matrix. Let E(M, z, r) be the ellipsoid defined by

E(M, z, r) = {x ∈ <n : (x − z)T M(x − z) ≤ r2}. (9)

Proposition 1 Let x be a point such that δ(x, µ) ≤ 1. Let H denote the Hessian of

the barrier function at x, and let ω denote x(µ). Then,

ω ∈ E(H, x, α)

15



where

α ≤ δ(x, µ)

1 − δ(x, µ)
.

(See Lemma 7, [1].)

Proposition 2 If y ∈ E(H(z), z, α) ∩ intQ, and α < 1, then

(1 + α)2dT{H(z)}−1d ≥ dT{H(y)}−1d ≥ (1 − α)2dT{H(z)}−1d

for all d ∈ <n, where H(z) and H(y) denote the Hessian of f(x, µ) at z and y

respectively. (See Corollary 4, [1].)

The following proposition is useful in bounding linear terms over ellipsoids.

Proposition 3 Let w be any fixed vector in <n. Then we have

max {wT (x − z) : x ∈ E(M, z, r)} = r
√

wT M−1w.

(See eqn. (2), [1]).

We also include another proposition which deals with the error term in the Taylor

expansion of the barrier function. For a proof, see Lemma 5.1, [29].

Proposition 4 Let y ∈ E(∇2f(z, µ), z, α), where α < 1. We can expand f(y, µ)

around the point z as

f(y, µ) = f(z, µ) + ∇f(z, µ)T (y − z) +
1

2
(y − z)T∇2f(z, µ)(y − z) + error.

Then the error in using this quadratic approximation satisfies

|error| ≤ α3

3(1 − α)
.

We can now prove a lemma showing that the width of the polytope Q∗ can be

bounded, which will enable us to show that Q∗ is contained in an ellipsoid, and then

to bound the number of constraints in any relaxation.

Lemma 7 Let ω be a µ-center. Let hT x ≥ bh be any hyperplane used in defining the

current polytope Q. Define width(h) := maximum variation of hT x over Q∗. Let ρ be

the factor by which µ is reduced. Then,

width(h) ≤ (m + 2.5
mprev

ρ
)(hTω − bh)

16



Proof: Since ω is a µ-center, we know that at ω

cT

µ
=

m∑
i=1

aT
i

si

where si ≡ si(ω) = aT
i ω − bi. Therefore, for all x in Q, and in particular for all x

in Q∗,
cT (x − ω)

µ
=

m∑
i=1

aT
i (x − ω)

si
.

Adding m to both sides gives

m +
cT (x − ω)

µ
=

m∑
i=1

aT
i x − bi

si
.

Since ω ∈ Q, we have from Lemma 6 that

cTω ≥ cTxprev − 5

4
mprevµprev.

For all x ∈ Q∗, we also have

cTx ≤ max{cT ω, cTxprev} +
5

4
mprevµprev.

Combining these two gives cTx− cT ω ≤ 5
2
mprevµprev. Also, µprev = µ

ρ
because µprev is

simply the value of the barrier parameter before it was last reduced by a factor of ρ.

Therefore,
m∑

i=1

aT
i x − bi

si
≤ (m + 2.5

mprev

ρ
)

for all x ∈ Q∗. Now let xmax and xmin be the points that maximize and minimize hTx

over Q∗. Then

width(h) = hT xmax − hT xmin ≤ hTxmax − bh.

Therefore,

width(h)

hT ω − bh
≤ hTxmax − bh

hT ω − bh
≤

m∑
i=1

aT
i xmax − bi

si

≤ (m + 2.5
mprev

ρ
).

This completes the proof. 2

Now we can prove a lemma that allows us to contain the polytope Q∗ in an

ellipsoid.
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Lemma 8 Let ω be a µ-center. Then, we can say the following about the polytope

Q∗:

Q∗ ⊆ E(∇2f(ω, µ), ω,
√

m(m + 2.5
mprev

ρ
)).

Proof: Again, denoting ∇2f(ω, µ) by H,

∀x ∈ Q, (x − ω)T H(x − ω) = (x − ω)T
∑

i

aia
T
i

s2
i

(x − ω)

=
∑

i

[
aT

i (x − ω)

si

]2.

Now, |aT
i (x− ω)| ≤ width(ai). Therefore, for all x ∈ Q∗,

|aT
i (x− ω)|

si
≤ width(ai)

si
≤ (m + 2.5

mprev

ρ
).

From this, it follows that

∀x ∈ Q∗, (x − ω)TH(x − ω) ≤ m(m + 2.5
mprev

ρ
)2.

Therefore,

Q∗ ⊆ E(∇2f(ω, µ), ω,
√

m(m + 2.5
mprev

ρ
)).

2

We now use Atkinson and Vaidya’s lemma about the determinant of the Hessian.

The proof of this lemma requires that unimportant constraints be dropped, ensuring

that all remaining constraints have a significant impact on the Hessian.

Lemma 9 Suppose that Case 2 is about to occur in the algorithm. At this point, the

current polytope Q is determined by m̄ hyperplanes in addition to those of the box and

the lower-bound constraint of the form cT x ≥ l. Then,

det(∇2f(ω, µ)) > 2−n(2L+1)(1.01)m̄.

Proof: See [1], Theorem 13. The proof here very naturally extends to our algo-

rithm. We note that the lower-bound constraint contributes another positive-definite

term to the Hessian, and therefore can only increase the determinant. Therefore we

can afford to ignore that constraint here. 2

We are now in a position to demonstrate that the number of hyperplanes defining

the polytope at any iteration can never get arbitrarily large.
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Theorem 1 There exists a constant ν independent of m, n and L, such that m̄ < νnL

throughout the course of the algorithm.

Proof: First we recollect that m̄ is simply the number of hyperplanes in addition

to the box hyperplanes and the lower-bound hyperplane. We prove this theorem by

showing that if m̄ > νnL, then the volume of the polytope Q∗ must be too small to

contain a ball of radius 2−L.

We know from Lemma 8 that, for the current polytope Q∗,

vol(Q∗) ≤ 2n[
√

m(m + 2.5mprev

ρ
)]n√

det(H)
.

We may stop if

vol(Q∗) ≤ (
2−L

n
)n.

Thus, using the result of Lemma 9, and the fact that (1.01)m̄ > 20.014m̄, we just need

2
√

m(m + 2.5mprev

ρ
)

2−(L+0.5)20.007m̄/n
< (

2−L

n
).

Consider the first iteration with m̄ ≥ νnL. We thus have m̄ = νnL. We also have

m = 2n + 1 + m̄ ≤ (ν + 3)nL =: πnL

and also,

2.5
mprev

ρ
≤ 2.5

πnL

ρ
≤ 5πnL

since ρ is always greater than 1
2
. We now want

2
√

2
√

πnL6πn2L

2−2L
< 20.007νL.

Separating terms and taking logarithms (to the base 2), and dividing by L, we want

1.5

L
+ 2.5

log n

L
+

log 6

L
+ 1.5

log L

L
+ 2 < 0.007ν − 1.5

log(ν + 3)

L
.

By definition, L > log2 n > 1. Therefore, the term on the left is bounded above by

10. Thus, ν = 4093 is sufficient. 2

Now all that remains to be shown is that if the number of hyperplanes always

satisfies m ≤ πnL, then the polytope Q will become too narrow to contain a ball of

radius 2−L in O(nL2) iterations. This would contradict our assumption concerning

the width of the polytope, so the algorithm should have terminated earlier, with

1.25mprevµprev reaching a value smaller than 2−L.
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First, we examine the width of Q∗. If mini(si(x)) ≤ 2−(3L+3)

6(ν+3)n1.5L
, and x is an exact

µ-center, then, from Lemma 7, we can conclude that for some i,

width(ai) ≤ 2−(3L+3)/
√

n.

Since the hyperplanes are assumed to have norm 1, the width of the polytope Q∗

has become too small to contain a ball of radius 2−3L−2/
√

n. Notice that Q∗ is very

narrow along a line that includes the current point. The following lemma relates the

width of Q to the width of Q∗.

Lemma 10 If Q∗ has become too narrow to contain a ball of radius 2−3L−2/
√

n then

Q has become too narrow to contain a ball of radius 2−L.

Proof: We construct a cone K that contains Q \ Q∗ as follows. Consider any

point on the optimal face of Q, and take the origin of the cone to be this point. Call

this point x∗. Note that we do not need to know this point, we just need to know

that it exists. Construct the cone so that the extreme rays of the cone pass through

the extreme points of the intersection of Q∗ with its supporting hyperplane given by

cT x = ζ, where ζ is defined in equation (6). Thus, K is the cone generated by the

optimal point and the face of Q∗ given by the hyperplane cTx = ζ. Notice that any

point x̌ ∈ Q with cT x̌ > ζ must be in K, since there is a point on the line segment

joining x∗ and x̌ which has value ζ, and by convexity of the feasible region, this point

must be in Q∗, so the line segment is on a ray of K.

Because c has norm one, the largest possible value for cT x over {x : −2Le ≤ x ≤
2Le} is at most

√
n2L+1 more than the optimal value cTx∗. Let Kb := K ∩{x : cT x ≤

cT x∗ +
√

n2L+1}. Notice that we have Q ⊆ Q∗ ∪ Kb and that Kb is a scaled version

of K ∩ Q∗. The scale factor is
√

n2L+1/(ζ − cTx∗).

In order to bound the width of Kb, we need to compare ζ and cT x. We have

ζ − cT x∗ ≥ ζ − cTxprev because xprev is feasible

≥ 1.25mprevµprev from the definition of ζ

≥ 2−L from Corollary 1.

Assume si is the small slack in Q∗, so the width of Q∗ along the direction ai is

less than 2−3L−1/
√

n. We can now bound the width of Kb in the direction ai. This

width must be no larger than

(
√

n2L+1/2−L)(2−3L−1/
√

n) = 2−L.

Since Q ⊆ Q∗ ∪ Kb, the width of Q in any direction is no larger than the sum of the

widths of Q∗ and Kb. The result follows. 2
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Therefore, we may stop if any of the slacks become too small. We will show that

this must happen after a polynomial number of iterations if µ has not already been

reduced sufficiently to prove optimality.

We need to consider a potential function. In Lemma 11, we show that the potential

function increases by a constant amount in Case 1 or Subcase 2.1 of the algorithm.

In Lemma 12, we obtain an upper bound on the possible decrease of the potential

function at each Subcase 2.2 iteration. Lemmas 13, 14, and 15 then enable us to bound

the total number of inner steps in Subcase 2.2. We then combine these lemmas in

Theorem 2 to show that the potential function must increase and that if the potential

function reaches a certain value then the polytope Q is too narrow. Convergence

follows.

Lemma 11 The function

∆(x, µ, l) :=
cTx − l

µ
−∑

i

ln(
si

κ(i)
) (10)

grows by at least a constant (Λ) at each iteration of the algorithm that results in Case

1 or Subcase 2.1 .

Proof: Recall that l is the best lower bound. We observe that in the iterations

that we are concerned with in this lemma, this number l is not changed. Therefore,

we can instead guarantee an increase in the function

N(x, µ) :=
cT x

µ
−∑

i

ln(
si

κ(i)
). (11)

We can prove this by considering each individual case. In Case 1.2, where a kappa

value is merely reset, it is trivial to see that N(x, µ) increases by ln2, since x remains

unchanged. Now consider the case where a hyperplane is dropped. Here, since µ is

not modified, we suppress the dependence on µ, and simply write N(x). Assume we

have an exact µ-center ω, then, if we drop a hyperplane with index i,

Nd(ω) = N(ω) + ln
si

κ(i)
,

where the subscript d denotes quantities after dropping the hyperplane. Since the

criteria for dropping the hyperplane are satisfied, we know that

Nd(ω) ≥ N(ω) + ln 2.

Now we need to bound Nd(ω)−Nd(ωd). Since the kappas are unchanged within this

iteration, we may instead bound fd(ω) − fd(ωd). Firstly, we know from (7) that

δd(ω, µ)2 ≤ 0.04 +
(0.04)2

0.96
≤ 0.2052
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since g = 0. Therefore, we have δd(ω, µ) ≤ 0.205. Hence,

ωd ∈ E(∇2fd(ω), ω, α)

where, by Proposition 1,

α =
0.205

1 − 0.205
< 0.258.

Now, we have

fd(ωd) − fd(ω) = ∇fd(ω)T (ωd − ω) +
1

2
(ωd − ω)T∇2fd(ω)(ωd − ω) + error

≥ ∇fd(ω)T (ωd − ω) + error.

Using Proposition 3 to bound the linear term, and Proposition 4 to bound the error

term, we have

fd(ωd) − fd(ω) ≥ −α
√
∇fd(ω)T (∇2fd(ω))−1∇fd(ω) − α3

3(1 − α)
.

We also have

√
∇fd(ω)T [∇2fd(ω)]−1∇fd(ω) = δd(ω, µ) ≤ 0.205.

Therefore,

fd(ωd) − fd(ω) ≥ −(0.258)(0.205) − 0.2583

3(1 − 0.258)
≥ −0.060605.

Therefore, we can guarantee that

Nd(ωd) − N(ω) ≥ ln 2 − 0.060605 = 0.6325.

Now, assume that hyperplane aT
0 x ≥ β is being added. The analysis of this part

very closely follows the analysis of Atkinson and Vaidya [1], and need not be repeated

here. Thus, we can say that in all cases of the algorithm except Case 2.2, the function

∆(x, µ) increases by at least a constant. 2

Note that if p cuts are added directly through the current iterate then the increase

in the potential function is at least as great as that obtained when just one shallow

cut is added. Thus the approach of Goffin and Vial [6] can be used to regain an

approximate µ-center in this case, without jeopardising the global convergence proof.

It may be that many of the new constraints have λj greater than 2 at the new analytic

center, so it is conceivable that we will need to perform O(p) Newton steps to drop

these additional constraints. The only change in the other lemmas in this paper is

22



that we may have to increase the upper bound on the maximum number of constraints

in the problem by the maximum number of constraints added at any one time.

We return to the case of adding just one cut at a time. We now need to take care

of Subcase 2.2 . First, we note that there can be no more than O(L) executions of

this subcase, since after that the barrier parameter would have become sufficiently

small, leading to termination in Subcase 2.2. We then show that the number of inner

steps required after an occurrence of Case 2.2 is at most O(nL). It follows that there

are at most O(nL2) Newton steps arising from Case 2.2.

Within each iteration of this type, we need to analyze what happens to ∆(x).

Since the kappas remain unchanged in this iteration, we can instead work with the

function

Θ(x, µ, l) :=
cTx − l

µ
−

m∑
i=1

ln(si) =
cT x− l

µ
+ F (x). (12)

We have a lemma about this function.

Lemma 12 Assume we have a point x1, which is the exact µ-center corresponding

to a barrier parameter value µ1. Case 2.2 of the algorithm occurs, and we reduce µ

to µ2, and find the appropriate center x2. Let l1 and l2 denote the lower bounds that

are active at the beginning and at the end of iteration step 2.2 .

We then have

Θ(x2, µ2, l2) ≥ Θ(x1, µ1, l1) − 6νnL. (13)

Proof: Let there be m constraints. Let the index of the lower bound constraint

be m. Let l be the potentially better lower bound that arises in this iteration : ie.,

l = cTx1 − 5
4
mµ1. It is important to note that since the lower bound constraint

is used to define the polytope at any iteration, the function F (x) in fact depends

indirectly on the lower bound that is currently active. We make this explicit in this

proof by modifying notation and using F (x, l) instead of F (x) — i.e., if there are m

hyperplanes and the index of the lower bound constraint is m,

F (x, l) = −
m−1∑
i=1

ln si − ln(cT x− l).

Let x0(µ0) denote the µ-center at which Case 2.2 occurred previously, and let m0 be

the number of hyperplanes at that stage. We know that l1 ≥ cTx0 − 1.25m0µ0, since

the lower bound l1 was either adopted at this previous iteration, or was better than

the potential lower bound at this iteration. Therefore

cTx1 − l1 ≤ cT x1 − cT x0 + 1.25m0µ0.
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But since x0 was feasible in (P̂ ), we know that

cTx0 ≥ l = cT x1 − 1.25mµ1.

From these two and because 1
ρ

< 2, we can say that

cT x1 − l1
µ1

≤ 1.25(m +
m0

ρ
) < 3.75πnL ≤ 4νnL. (14)

Now,

Θ(x2, µ2, l2) −Θ(x1, µ1, l1) =
cTx2 − l2

µ2
−

m−1∑
i=1

ln si(x2) − ln(cT x2 − l2)

−cTx1 − l1
µ1

+
m−1∑
i=1

ln si(x1) + ln(cT x1 − l1).

Adding and subtracting ln(cT x2 − l1), we have

Θ(x2, µ2, l2) − Θ(x1, µ1, l1) ≥ −3.75πnL − ln(
cT x2 − l2
cT x2 − l1

) + F (x2, l1) − F (x1, l1).

The logarithmic term can be neglected since it works in our favour. But we need to

bound F (x2, l1) − F (x1, l1). Since x1 minimizes ∆(x, µ1, l1), we have

cT x1

µ1
+ F (x1, l1) ≤ cT x2

µ1
+ F (x2, l1).

Therefore we have

F (x2, l1) − F (x1, l1) ≥ cT x1 − cT x2

µ1

.

We can no longer say that cT x2 ≤ cT x1, since by changing the lower bound, we have

changed the polytope. However, since we know x1 is feasible in (P̂ ), we have from

Lemma 6

cT x2 − 1.25mµ2 ≤ cT x1.

Therefore, we have

cTx1 − cTx2

µ1
≥ −1.25mρ > −1.25m > −1.25πnL.

Thus, we have

Θ(x2, µ2, l2) −Θ(x1, µ1, l1) ≥ −5πnL ≥ −6νnL.

2
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Thus, we see that any Case 2.2 occurrence can set back the value of ∆(x, µ) by

at most O(nL). It is important to note that in equation (14) in this proof we merely

use the fact that 1
ρ

< 2 — i.e., µ is reduced by no more than a factor of half. This is

the reason we required ρ ∈ (0.5, 1) rather than the usual ρ ∈ (0, 1). Clearly though,

any value between zero and one may be used, and only the numerical details of some

proofs need to be changed.

Now, we need to establish that the next approximate µ-center can be found in a

reasonable number of iterations. To do this, we bound ∆(x1, µ2, l2) − ∆(x2, µ2, l2),

and then show that a constant decrease can be obtained at each inner step, thus

establishing what we need.

Lemma 13 Assume we have a point x1 that is the exact center corresponding to µ1,

and Case 2.2 occurs at this stage. Therefore, the lower bound may possibly have been

reset from l1 to l2, and µ2 = ρµ1. We can then say

Θ(x1, µ2, l2) ≤ Θ(x1, µ1, l1) + 5νnL.

Proof: Now

Θ(x1, µ2, l2) − Θ(x1, µ1, l1) =
cT x1 − l2

µ2
− cT x1 − l1

µ1
+ ln(

cTx1 − l1
cTx1 − l2

).

From the definition of l2, we have

cT x1 − l2
µ2

≤ 1.25mµ1

µ2

< 2.5m ≤ 2.5πnL.

We can ignore the second term since

cT x1 − l1
µ1

≥ 0.

We need to bound the logarithmic term above. If the lower bound has not been reset

and l2 = l1 then the logarithmic term is zero. Otherwise, first, we have from equation

(14),

cTx1 − l1 ≤ 3.75πnLµ1,

and then, since m ≥ 2n always,

cT x1 − l2 = 1.25mµ1 ≥ 2.5nµ1.
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Thus we can say

ln(
cTx1 − l1
cTx1 − l2

) ≤ ln(
3.75πnLµ1

2.5nµ1
)

= ln(1.5πL)

≤ 1.5πL.

Thus we have

Θ(x1, µ2, l2) −Θ(x1, µ1, l1) ≤ 2.5πnL + 1.5πL ≤ 4πnL ≤ 5νnL.

2

Lemma 14 Let each inner step at a Case 2.2 occurrence be taken based on a line-

search. We can then say that the function Θ(x, µ, l) is reduced at each inner step by

at least a constant amount.

Proof: Since neither µ nor l is modified at any of these inner steps, it suffices to

prove the above lemma for f(x, µ). For a proof of this, see [26], Lemma 3.3. 2

Lemma 15 The total number of inner steps needed at each occurrence of Case 2.2

is no more than O(nL).

Proof: Follows from Lemmas 12,13 and 14. 2

We can now complete the analysis.

Theorem 2 The algorithm terminates in at most O(nL2) iterations.

Proof: If we have the point x after p non-Case 2.2 iterations and q occurrences of

Case 2.2 of the algorithm, then

∆(x, µ) ≥ Λp − 6qνnL.

Because the norm of each constraint is equal to one, each κ(i) may be bounded above

by 3
√

n2L+1 (see [1]), so we have

F (x) = −∑
i

ln(si) ≥ Λp − 6qνnL − m ln(3
√

n2L+1) − cTx − l

µ
.
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From (14), we have

cTx − l

µ
≤ 5νnL.

Therefore, we have

F (x) ≥ Λp − 6qνnL − m ln(3
√

n2L+1) − 5νnL.

Also, it can be seen that if

F (x) ≥ (ν + 3)nL[3L + 3 + ln(6(ν + 3)n1.5L)],

then stopping condition 2 will be met, since −F (x) is the sum of the logs of the slacks,

so at least one of the slacks must be smaller than

exp(−(3L + 3 + ln(6(ν + 3)n1.5L))) <
2−3L−3

6(ν + 3)n1.5L
,

which is sufficiently small. Since q can be no more than O(L), it can be seen that

F (x) will definitely satisfy this in O(nL2) non-Case 2.2 iterations. Also, we note that

the O(L) Case 2.2 occurrences, each of which requires no more than O(nL) inner

steps, lead to a total of O(nL2) iterations. Consequently, the algorithm terminates

in O(nL2) iterations. 2

It is worth noting that in an actual implementation of this algorithm, we could

add the cut right through the current point itself, as shown in, for example, [6, 22],

and the new center can still be found easily enough. The basic idea is to first take an

affine step to increase the slack associated with this new hyperplane from its current

zero value, and then take centering steps to find the next approximate center. Details

may be found in [6, 22].

6 Conclusions

We have extended the work of Atkinson and Vaidya to yield a column generation

algorithm for linear programming that directly uses the logarithmic barrier function,

and allows addition and deletion of columns. This improves upon their algorithm

when applied to linear programs in that it is a long step method — potentially, much

greater progress in objective function value will be achieved with a long step method

than with a direct application of Atkinson and Vaidya’s algorithm. Also, making

progress in objective function value does not require the addition of constraints.
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7 Appendix

In this section, we show how Atkinson and Vaidya’s algorithm [1] can be applied

directly to linear programming problems.

The Algorithm

Step 0 : Initialization

k = 0 A =


 In

−In


 b =


 −2Len

−2Len




x = [0 · · · 0]T ; s = Ax− b ; κ(i) = 2L, i = 1 to 2n

Step k : The Iterative step

Have point x, which is an approximate analytic center.

H denotes the Hessian ∇2F (x). Calculate γi(x) =
aT

i x−bi

κ(i)
for i=1 to m . For a hyper-

plane indexed by j, if γj(x) > 2, calculate σj(x) as in equation (5).

Define Γ := maxi(γi(x)) .

Case 1 : Γ > 2

If for some j we have σj(x) < 0.04

then Subcase 1.1

Drop the hyperplane aj, resulting in polytope Qd.

Take primal-dual steps to find approximate analytic center xd.

else Subcase 1.2

Let j be an index such that γj(x) > 2.

Reset κ(j) = aT
j x − bj.

Case 2 : Γ ≤ 2

Subcase 2.1 : x is not feasible in (P̂ )

Then ∃ j such that âT
j x < b̂j.

Choose β such that
âT

j H−1âj

(âT
j x−β)2

= 1
16

.

Add âT
j x ≥ β to the polytope, getting new polytope Qa.

Find new approximate analytic center xa.

Subcase 2.2 : x is feasible in (P̂ )

Test x for optimality. If optimal, get dual solution y and STOP.

Else, Choose β such that cT H−1c
(−cT x−β)2

= 1
16

.

Add −cTx ≥ β to the polytope, getting new polytope Qa.
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Find new approximate analytic center xa.

Stopping Criteria

1. If m > νnL, STOP.

2. If mini si ≤ 2−(L+1)

νnL
, STOP.
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