
Interior point methods for large-scale linear
programming1

John E. Mitchell, Kris Farwell, and Daryn Ramsden
Mathematical Sciences

Rensselaer Polytechnic Institute

Troy, NY 12180

{mitchj,farwek,ramsdd}@rpi.edu

August 16, 2004

Abstract

We discuss interior point methods for large-scale linear programming, with
an emphasis on methods that are useful for problems arising in telecommuni-
cations. We give the basic framework of a primal-dual interior point method,
and consider the numerical issues involved in calculating the search direction
in each iteration, including the use of factorization methods and/or precon-
ditioned conjugate gradient methods. We also look at interior point column
generation methods which can be used for very large scale linear programs or
for problems where the data is generated only as needed.

Keywords: Interior point methods, preconditioned conjugate gradient
methods, network flows, column generation.

1Research supported in part by NSF grant numbers DMS-0317323 and CMS-0301661. The
research of the second author was supported by the NSF through the VIGRE program, grant number
DMS-9983646.

1 Introduction

The performance of solvers for linear programming problems has improved dramat-

ically in recent years. A user of linear programming packages now has available the

option of using sophisticated interior point methods developed in the last twenty

years. In addition, the development of interior point methods has spurred consider-

able successful research into efficient implementations of the simplex algorithm. It

appears that different methods are better for different problems, with interior point

methods possibly becoming a better choice as problem size grows. In addition to

size, the structure of the linear programming problem is a major determinant as to

which algorithm should be chosen. The simplex algorithm is discussed elsewhere in

this book, so we focus on interior point methods.

The use of an interior point method is a good choice for general large-scale linear

programming problems. We introduce interior point algorithms in §2, and discuss the

computational issues that arise in §3.
For problems with well-defined structure, it is often true that an algorithm can

be developed which will successfully exploit the structure. For example, the net-

work simplex algorithm exploits the nature of basic feasible solutions to network flow

problems. Interior point methods can also be refined to solve network flow prob-

lems efficiently, and we survey preconditioned conjugate gradient approaches to these

problems in §4. The structure of multicommodity network flow problems can also be

exploited in a carefully designed interior point method, as discussed in §5.
Linear programming problems often arise as subproblems of other problems. For

example, integer programming problems can be solved using branch-and-cut, and

multicommodity problems can be formulated with a huge number of variables and

then attacked using a column generation approach. We survey the use of interior

point methods in column generation and constraint generation settings in §6.
Conclusions are offered in §7.

2 Primal-dual interior point methods

Several excellent textbooks on interior point methods were published in the 1990’s,

all of which discuss the material in this section in far greater detail. In particular, the

reader is referred to Roos et al. [47], Vanderbei [50], Wright [51], and Ye [54]. Several

papers also surveyed primal-dual interior point methods, and our presentation is

closest to that in Andersen et al. [2].

1

We take the following to be our standard primal-dual LP pair:

min cTx

subject to Ax = b (P)

x + s = u

x, s ≥ 0

and

max bTy − uTw

subject to ATy + z − w = c (D)

z, w ≥ 0

Here, A is an m× n matrix, c, x, z, and w are n-vectors, and b and y are m-vectors.

We assume that the rank of A is m, that the feasible region of (P) is bounded, and

that (P) and (D) each have a bounded set of optimal solutions.

An interior point method is an iterative scheme for solving (P) and (D) with each

iterate strictly satisfying the nonnegativity restrictions. The primal-dual interior

point barrier method can be motivated by setting up the subproblem

min cT x − µ(
∑n

i=1 ln(xi) +
∑n

i=1 ln(si))

subject to Ax = b (P (µ))

x + s = u

where µ is a positive scalar. As µ is varied, the solution to (P (µ)) traces out the

central path. The limiting solution to (P (µ)) as µ → ∞ is the analytic center of the

feasible region of (P). The algorithm finds an approximate solution to (P (µ)) for a

particular µ, reduces µ, and repeats until a sufficiently accurate solution to (P) is

found. As µ → 0, the solution to (P (µ)) converges to the analytic center of the set

of optimal solutions to (P).

The Karush-Kuhn-Tucker optimality conditions for (P (µ)) can be written

Ax = b (1)

x + s = u (2)

ATy + z − w = c (3)

Zx = µe (4)

Ws = µe (5)

x, s, z, w ≥ 0 (6)

where Z and W denote diagonal matrices containing the entries of z and w respec-

tively on the diagonal, and e denotes the vector of all ones of the appropriate dimen-

sion. The matrices S and X are defined similarly to Z and W .

2

Given an iterate (x̄, s̄, ȳ, z̄, w̄) strictly satisfying the nonnegativity constraint (6),

one approach to Newton’s method for finding a solution to the barrier problem is to

solve the following system to find a direction (∆x, ∆s, ∆y, ∆z, ∆w):




A 0 0 0 0

0 0 AT I −I

I I 0 0 0

Z 0 0 X 0

0 W 0 0 S







∆x

∆s

∆y

∆z

∆w




=




rb

rc

ru

τµe −XZe

τµe − SWe




(7)

where τ is a scalar between 0 and 1, the diagonal matrices X, Z, S, and W are defined

at the current iterate, and

rb = b − Ax̄ (8)

rc = c − AT ȳ − z̄ + w̄ (9)

ru = u − x̄− s̄ (10)

Choosing different values of τ gives different directions. Taking τ = 0 corresponds

to a pure descent direction with no centering component, and this is known as the

affine direction or the predictor direction. Choosing τ = 1 and µ = 1
2n

(x̄T z̄ + s̄T w̄)

is a pure centering direction, and it results in a direction that leaves the duality gap

xTz + sT w unchanged.

The system (7) can be converted into an equivalent system of equations with the

making of the following eliminations:

∆z = X−1(τµe −XZe − Z∆x) (11)

∆s = u − x − s −∆x (12)

∆w = S−1(τµe − SWe − Wru + W∆x) (13)

the system becomes
 −D−2 AT

A 0





 ∆x

∆y


 =


 rc − X−1(τµe −XZe) + S−1(τµe − SWe − Wru)

rb




(14)

where

D2 = (X−1Z + S−1W)−1. (15)

Equation (14) is known as the augmented system of equations. All interior point

methods have to solve a system essentially of this form, possibly with a different diag-

onal matrix and with a different right hand side vector. The system can be reduced

3

further to give the normal equations, through the elimation of ∆x. In particular,

multiplying the first set of equations by AD2 and adding the second set gives:

(AD2AT)∆y = rb + AD2(rc − X−1(τµe − XZe) (16)

+S−1(τµe − SWe − Wru)) =: g.

Note that we define g to represent the right hand side of the normal equations.

The augmented system and the normal equations lend their names to the two main

approaches to solving for the vector of Newton directions. These approaches are

discussed in the next section.

Once this vector of directions has been computed, a new feasible point can be

found by scaling each of the steps down (to maintain feasibility) before adding them

to the current feasible solution. At this point µ is updated and the procedure is

repeated. Predictor-corrector algorithms are the current methods of choice. These

methods alternate between a predictor step with τ = 0 and a corrector step with

τ = 1. The algorithm can be implemented in such a way that the work of calculating

both steps is not much greater than the work of calculating either step individually

— see the next section.

3 Computational considerations for general linear

programs

Computational considerations can intuitively be divided up into three categories,

namely 1) those related to initialization, 2) those related to finding and scaling the

vector of newton directions and 3) those related to termination. As in the preceding

section, we will adhere most closely to Andersen et al. [2].

Initialization of an implementation consists of a presolving stage and finding an

initial point. Presolving is the process by which the matrix A is examined to see if

there are any straightforward measures that can be taken to make the problem easier

to solve. For instance, the process may unearth duplicate rows or columns, in which

case the corresponding dual or primal variables respectively can be combined, or it

may find, with minimal effort, that certain variables should have fixed values or that

some constraints are redundant. Also it is possible that inefficient formulation of the

problem may result in zero columns, meaning we can simply push the corresponding

variable to its upper or lower bound depending on whether or not its coefficient in

the objective function is negative or positive. Measures such as these drastically

reduce the workload in the body of the algorithm and overall it can be said that a

4

preprocessing stage is well worth the work required. A comprehensive treatment of

presolving has been done by Andersen and Andersen. [1].

Finding an initial point can be done by solving the quadratic program below,

which has a solution given by an explicit formula:

min cT x − σ
2
(xTx + sTs)

subject to Ax = b

x + s = u

The formula may result in values for x and s that may be negative and as such

they can be pushed toward positivity. Parallel to this a solution (y, z, w) for the dual

can be constructed with y = 0.

As mentioned before there are two approaches to solving for the vector of Newton

directions, namely the augmented systems approach and the normal equations ap-

proach. The choice of approach is based on the relative density of the matrix AD2AT

when compared to the matrix A. If the former is relatively dense in comparison to

the latter, formulation and usage of the normal equations is unnecessarily expensive.

We can now look at the solving of the normal equations. If we let C be the coeffi-

cient matrix in equation (16) after a possible symmetric permutation of its rows and

columns, under the assumption that A is of full row rank, we have that C is positive

definite and we can use Cholesky factorization to find a lower triangular matrix L

such that C = PAD2ATP T = LLT where P is a permutation matrix. Systems of

equations of the form C∆y∗ = r can then be solved (y∗ representing an appropriate

renumbering of the components of y to correspond with the permutations made to

AD2AT), by solving the following systems in turn :

Lγ = ν

LT ∆y∗ = γ

The stability of the calculation is independent of the choice of permutation and

thus much of the task at hand is the choice of an appropriate permutation which

makes L reasonably sparse. There are two main ordering heuristics 1) the minimum

degree and 2) minimum local fill-in heuristics [51].

Using the minimum degree ordering involves looking at the remaining matrix and

choosing as the pivot element, the diagonal element that has the least number of

nonzeroes (we call this its degree, d) in its row/column as the new pivot element at

each step of the Cholesky algorithm. This is motivated by the fact that the algorithm

5

generates d2 nonzeroes in the update matrix and as such d should be kept as small

as possible.

Minimum local fill-in is the main competing heuristic and is motivated by the

fact that the minimum degree figures out how many elements are actually changed

in the elimination steps as opposed to figuring out how many go from being zero

to nonzero (a subset of the former category). Many times it is possible to choose a

pivot element that results in a more sparse factorization at the expense of carrying

out more analytical work beforehand. Choosing the right variant of minimum local

fill-in can possibly lead to results that are competitive with that using the minimum

degree heuristic.

The normal equations approach is particularly susceptible to weak performance in

situations where A has dense columns and thus generates dense blocks in the AD2AT

matrix. One simple possible remedy is to examine both of the factorizations, AAT

and ATA. In situations that A has both columns and rows which are dense, this

trick loses its effectiveness. At this point in the implementation more sophisticated

methods can be employed, but it is often more appropriate to resort to working with

the augmented system.

The augmented system approach utilizes the Bunch-Parlett factorization algo-

rithm to get the following: 
 −D−2 AT

A 0


 = LΛLT (17)

where Λ is a block diagonal matrix. This formulation is more robust as far as coping

with the effects of dense columns of A. Also while the matrix is prone to being ill-

conditioned it is relatively easy to make judgements on the quality of the solution

vector.

Once a solution vector has been found it is important to scale it before adding it

to the current iterate. Conventionally the maximum value of a multiplier of the solu-

tion vector that allows for maintained feasibility is scaled down by a predetermined

constant between 0 and 1 to obtain the size of the step taken in the direction of the

solution vector.

There are many possible predictor-corrector variants. One possibility is to first

solve (7) with τ = 0, then modify the right hand side of (7) as if the predictor step had

been taken to the boundary of the feasible region, and then calculate the corrector

step with τ = 1 and with a guess for the new value of µ. If µ0 denotes the old value

of µ and µaff denotes the value obtained at the boundary of the feasible region after

the affine step, Mehrotra [33] suggests taking (µaff
µ0)3µ0 as the guess for the new value

6

of µ in the calculation of the corrector step. The direction taken from the current

iterate is the solution to this corrector system of equations. Note that the diagonal

scaling matrices in the calculation of the corrector step are the same as those in

the predictor step, so it is only necessary to factorize the matrix AD2AT once for

each pair of a predictor and corrector step. This idea of calculating two vectors ∆y

with the same factorization of AD2AT can be extended naturally to finding multiple

corrections to the affine direction, giving higher order methods. These higher order

methods may reduce the number of iterations required to solve the problem slightly,

with each iteration marginally more expensive, and they can lead to considerable

overall reductions in computational time.

As far as termination criteria are concerned, we have only to monitor the dual-

ity gap and feasibility at each iterate until they are sufficiently small to meet the

prescribed required precision. For a required precision of 8 digits, (a very common

standard), the conditions are as follows:

||Ax− b||
1 + ||b|| ≤ 10−8 and

||x + s − u||
1 + ||u|| ≤ 10−8 (18)

||ATy + z − w − c||
1 + ||c|| ≤ 10−8 (19)

|cTx − (bTy − uT w)|
1 + |bTy − uTw| ≤ 10−8 (20)

The last of these conditions is often the most stringent and difficult to satisfy and

consequently in most cases it is adequate simply to check only its validity. Some im-

plementations may even feature a termination phase in which an optimal vertex/basis

is recovered. This is most notably implemented in CPLEX and is comparable to O(m)

simplex iterations in terms of complexity. A strongly polynomial algorithm for the

recovery of a primal-dual optimal basis given optimal solutions to both the primal

and dual problems was provided by Megiddo [32].

4 Preconditioned conjugate gradient methods for

network flow problems

A standard implementation of an interior point method, using a complete factor-

ization of AD2AT , is not competitive with the network simplex method for solving

7

network flow problems. An alternative is to use a preconditioned conjugate gradient

algorithm to find ∆y in (16). The structure of the problem allows the construction

of preconditioners that work very well.

In the set of equations (16) for interior point methods

AD2AT∆y = g (21)

multiplying by the preconditioner M−1 gives

M−1AD2AT∆y = M−1g (22)

where M is a symmetric and positive definite matrix. The matrix M should be chosen

appropriately so that equation (22) can be solved more easily than (21). It should

also make the matrix M−1AD2AT well-conditioned, with few extreme eigenvalues.

These two requirements for M are somewhat in conflict. For example, taking M =

AD2AT makes M−1AD2AT = I , so it minimizes the condition number of M−1AD2AT ;

however, determining the right hand side of (22) is as hard as solving the original

system. It has been observed in practice that the number of conjugate gradient steps

depends on the number of distinct eigenvalues, in fact typically on the number of

distinct clusters of eigenvalues. Thus, it is desirable to pick M in order to cluster

the eigenvalues of M−1AD2AT . The Preconditioned Conjugate Gradient Algorithm

for solving (21) is summarized in Figure 1. (Far more information on preconditioned

conjugate gradient methods and related topics in numerical linear algebra can be

found in the texts by Demmel [14] and Trefethen and Bau [49].)

For the minimum cost network flow problem on a graph G = (V ,A) with vertices

V and arcs A, A is the node-arc incidence matrix (after deleting one row for each

component, to ensure A has full row rank). At an interior point, the matrix AD2AT

has nonzeroes on the diagonal and in position (i, j) for each (i, j) ∈ A, assuming

no numerical cancellation. With a preconditioned conjugate gradient algorithm, it is

typically sufficient to solve (16) approximately as part of an infeasible interior point

algorithm. The desired accuracy of the conjugate gradient algorithm can be chosen

to depend on the primal residual rb, defined in (8).

At a nondegenerate basic feasible solution, the elements of D corresponding to

nonbasic variables are zero, so we have

AD2AT = BD2
BBT

where B denotes the columns of A corresponding to the basic variables and DB the

corresponding elements of D. At such a point, M = BD2
BBT would be a perfect

8

1. Take ∆y0 equal to some initial guess.

2. r0 := g −AD2
kA

T∆y0.

3. z0 := M−1r0.

4. p0 := z0.

5. i = 0.

6. While stopping criteria is not met

7. qi := ADkATpi.

8. αi := zi
Tri/pi

T qi.

9. ∆yi+1 := ∆yi + αipi.

10. ri+1 := ri − αiqi.

11. Solve Mzi+1 := ri+1.

12. βi := zi+1
T ri+1/zi

T ri.

13. pi+1 := zi+1 + βipi.

14. i = i + 1.

15. End While

16. ∆y := ∆yi.

Figure 1: Preconditioned conjugate gradient algorithm for solving AD2AT∆y = g.

preconditioner, in the sense that the conjugate gradient method would require just

one step. Further, determining the right hand side of (22) is also straightforward:

the basic feasible solutions are spanning trees, so finding M−1g requires only linear

time. Therefore, once the interior point method gets close to an optimal solution, it is

hoped that a preconditioner based on a nearby spanning tree would be a good choice,

so preconditioners that use spanning trees are the most relevant. Some examples of

the possible choices for preconditioners are the diagonal, the maximum spanning tree,

or the diagonally compensated maximum spanning tree preconditioner.

The Diagonal Preconditioner was used by Resende and Veiga [45] in a dual

affine algorithm for network flow problems. It is defined as:

M = diag(AD2AT) (23)

This particular preconditioner is commonly used in the first few iterations of the

preconditioned conjugate gradient algorithms, when it is most effective, an empirical

observation somewhat supported by theoretical results in [24]. The diagonal precon-

ditioner is known as the Jacobi preconditioner in numerical linear algebra, and it

reduces the condition number of M−1AD2AT to within a factor of |V| of its minimum

9

value.

The Maximum Spanning Tree preconditioner is determined by using the

current solution to select weights for the arcs of the graph and then finding a maximum

spanning tree. It is defined as

M = AT DT
2AT

T (24)

where AT contains the columns of A corresponding to the edges of the maximum

spanning tree of G = (V ,A) with

DT = diag(dt1, ..., dtm−1) (25)

where t1, ..., tm−1 are the edge indices of the maximum spanning tree and D is de-

fined in (15). The edge weights for the spanning tree problem need to be defined

appropriately. Portugal et al [42] suggest using the edge weight vector:

w = D2
T e (26)

where e is a vector of ones.

The Diagonally Compensated Maximum Spanning Tree preconditioner

uses the matrix M defined as follows

M = AT D2
T AT

T + φ diag(AT̃ D2
T̃ AT̃

T) (27)

where G′ = (V , T) is maximum spanning tree of G = (V ,A), T̃ = A − T and φ

is a nonnegative parameter. The diagonally compensated maximum spanning tree

preconditioner is reduced to the maximum spanning tree preconditioner when φ = 0.

Some suggestions for φ used by Mehrotra and Wang in [34] are φ = 1, φ = 0.1· min(Dk)
max(Dk)

,

and φ = 10 · min(Dk)
max(Dk)

.

Judice et al. [24] state and prove many theorems regarding the condition numbers

of these preconditioners. They show that the condition number of AD2AT is bounded

above by a function of the condition number of D2
T , where DT consists of the elements

of D corresponding to the edges of a maximum spanning tree for G = (V ,A) with edge

weights D. If the algorithm is converging to a primal nondegenerate basic feasible

solution, then this gives a bound on the condition number of AD2AT . They are able

to obtain stronger bounds on the condition number of M−1AD2AT with the use of

the two tree-based preconditioners than the bound they obtain for either AD2AT

itself or M−1AD2AT with the diagonal preconditioner. Further, they show that even

in the presence of primal degeneracy of the optimal solution, the condition number

10

of M−1AD2AT is uniformly bounded using the tree preconditioners, once the duality

gap becomes small.

There are two stopping criteria for the Conjugate-Gradient Method suggested

by Portugal et al in [42]. The first stopping criteria works well for the beginning

iterations:

‖ ri ‖ ≤ β0rb (28)

where ri is the residual at the ith iteration, xk is the kth interior point solution and

β0 is suggested to be 0.0999 in [42]. This stopping criterion may be too conservative

in later iterations, once rb is small, requiring too many conjugate gradient iterations.

The second stopping criteria exploits the fact that ∆y is a direction, and that a

dual steplength is still to be chosen. Therefore the magnitude of ∆y is unimportant;

what is important is that ∆y point in approximately the right direction, that is, the

angle θ between

AD2AT∆yi and g (29)

should be small. This leads to the criterion:

| 1 − cos θ | < εk
cos (30)

where εk
cos is the tolerance for the interior point iteration k. Also, εk

cos can be tightened

by multiplying by ∆εcos < 1 at each iteration. The angle θ can be computed

cos θ =
| gT (AD2AT)∆yi |

‖ g ‖ · ‖ (AD2AT)∆yi ‖
(31)

or approximated (since calculating (31) is as expensive as a conjugate gradient iterate)

by

cos θ ≈ | gT (g − ri) |
‖ g ‖ · ‖ (g − ri) ‖

(32)

where ri is the residual at the ith iteration. This approximation works well when

solving network linear programs.

The stopping criteria for the interior point method has two types of conditions.

The first is the primal-basic (PB) stopping rule and the second the maximum flow

(MF) stopping criterion; both are summarized in [42] and [44]. Both criteria use basis

identification techniques, with the (PB) method exploiting the spanning tree found

in the calculation of the preconditioner and the (MF) method using a method from

the interior point literature. For a survey of basis identification techniques in interior

point methods, see El-Bakry et al [16].

11

The PB stopping rule uses the tree found in the preconditioner and takes the

edges of the tree to be the basic variables. Let T be the index set of the edges of the

maximum spanning tree used in the creation of (25). Let

Ω+ =
{
i ∈ {1, 2, ..., n}\T :

xi

zi
>

si

wi

}
(33)

and set these nonbasic edges of the tree to their upper bounds. The basic variables

must satisfy

AT x∗
T = b −

∑
i∈Ω+

uiAi (34)

If this set of equations has a solution 0 ≤ x∗
T ≤ u then x∗

T is a basic feasible solution.

Let

F = {i ∈ T : 0 < x∗
i < ui}. (35)

be the set of edges where the dual slacks are zero. By orthogonally projecting the

current dual solution onto the set F , we preserve complementary slackness by solving

min
y∗∈IRm

{‖ y∗ − yk ‖: AT
Fy∗ = cF } (36)

which can be solved efficiently for network flow problems.

A feasible dual solution (y∗, z∗, w∗) can be found by changing the dual slacks

w∗
i =




−δi if δ < 0

0 otherwise

z∗
i =




0 if δ < 0

δi otherwise

where δi = ci − AT
·iy

∗. We can stop when cT x∗ − bTy∗ + uTw∗ = 0 because (x∗, s∗)

is a primal feasible solution and (y∗, w∗, z∗) is a dual feasible solution. The idea of

projecting an interior point onto the boundary in this manner was proposed by Ye [53]

as a means to get finite convergence of interior point algorithms.

The other stopping criteria (MF) involves a different edge indicator, namely let

edge i be inactive at its lower bound when

xi

zi
< ξ and si

wi
> ξ−1

and edge i be inactive at its upper bound when

xi

zi
> ξ−1 and si

wi
< ξ

12

The other edges are then active. Using these active edges, we can form the max-

imum weighted spanning forest. Like before we can project to find y∗ as in (36).

However now we must also build a primal feasible x∗. The forest is extended slightly

to F = {i ∈ {1, 2, ..., n} : |ci −AT
·iy

∗| < εr} for some small tolerance εr (eg, εr = 10−8)

and then the nonbasic variables are set:

x∗
i =




0 if i ∈ Ω− =
{
j ∈ {1, 2, ..., n}\F : cj − AT

·jy
∗ > 0

}
ui if i ∈ Ω+ =

{
j ∈ {1, 2, ..., n}\F : cj − AT

·jy
∗ < 0

}

Flow on the edges in F produces a restricted network which must satisfy

AFxF = b −
∑

i∈Ω+

uiAi (37)

and

0 ≤ xi ≤ ui, i ∈ F (38)

If a feasible primal solution exists on the restricted network then it is also complemen-

tary to y∗. As the algorithm proceeds, more edges will be declared inactive, resulting

in a sparser spanning forest if the optimal solution is degenerate. In the limit, the

algorithm will identify edges with flow strictly between the bounds, but some of these

edges might not be included in the spanning forest if multiple primal optimal solu-

tions exist. The expansion to F is necessary to recover these edges. Finding a feasible

flow in the restricted network requires solving a maximum flow problem.

In summary, when using interior point methods to solve network flow problems,

a preconditioned conjugate gradient algorithm can be used to approximately solve

the direction finding subproblem at each iteration. It is recommended to start with

the diagonal preconditioner, since it is easy to compute for beginning iterations, and

then switch to a more complicated preconditioner based on spanning trees. The latter

preconditioners have nice theoretical properties as the optimal solution is approached.

The primal-dual infeasible interior point method for network flow problems, PDNET,

is available online at

http://www.research.att.com/˜mgcr/pdnet/

Much of this code is written in FORTRAN, and is described in detail in Patŕicio et

al [41].

5 Multicommodity network flow problems

In this section, we consider multicommodity problems. These problems are considered

in more detail in two other chapters of this book. In a multicommodity problem, the

13

resources of the network are shared among several different competing commodities.

For example, multiple different calls must be routed in a telephone network, and each

call can be regarded as a commodity. It is not appropriate to aggregate the calls

from a particular customer, rather the calls between each pair of customers must be

considered separately. Similarly, in a traffic network, the set of vehicles moving from

a particular origin to a particular destination should be considered a commodity.

If there are no capacity restrictions on the nodes and arcs of the graph then the

multicommodity problem separates into several single commodity problems which

can be solved independently. We will assume in this section that each arc e has

capacity ue. For simplicity, we will not assume capacities on the nodes. Let K
denote the set of commodities. Let bk and ck denote the demand and cost vectors,

respectively, for commodity k. For simplicity, we assume that the node-arc incidence

matrix A is identical for each commodity. The basic minimum cost multicommodity

network flow problem can be formulated as follows, with variables xk
e equal to the

amount of commodity k flowing along arc e:

min
∑

k∈K ckT
xk

subject to Axk = bk ∀k ∈ K∑
k∈K xk

e ≤ ue ∀e ∈ A
xk ≥ 0 ∀k ∈ K

(39)

In contrast with the single commodity case, the constraint matrix in this formu-

lation is not totally unimodular, so the optimal solution may not be integral. This

formulation may have a huge number of variables for even a reasonably realistic mul-

ticommodity problem, since the number of variables is the product of the number

of arcs and the number of commodities. Nonetheless, the constraint matrix has a

structure that can be exploited to devise efficient interior point solvers, with better

complexity bounds than with a naive invocation of an interior point method; see, for

example, Kapoor and Vaidya [28, 29] and Kamath and Palmon [27]. As with single

commodity problems, preconditioned conjugate gradient approaches have been used

successfully for multicommodity problems. See, for example, Choi and Goldfarb [12],

Yamakawa et al [52], Júdice et al [25], and Castro et al [9, 10]. Resende and Veiga [46]

survey interior point approaches to multicommodity network flow problems.

We consider the algorithm of Castro [9] in a little more detail, in order to give a

flavor of the numerical linear algebra techniques that can be used to speed up solution

of multicommodity network flow problems. The crucial issue is the solution of (16).

14

For the formulation (39), (16) takes the block form

 B C

CT F





 ∆y1

∆y2


 =


 g1

g2


 (40)

where B is a block diagonal matrix, F is a symmetric matrix, C is a matrix, and

∆y1, ∆y2, g1 and g2 are vectors. This system can be solved by forming the Schur

complement

H := F − CTB−1C, (41)

solving

H∆y2 = g̃2 (42)

for an appropriate g̃2, and then solving

B∆y1 = g̃1 (43)

for an appropriate g̃1. For a general network, H has the same nonzero structure as

AT (AAT)−1A, so it is dense and (42) is hard to solve directly. Thus, Castro proposes

solving (42) using a preconditioned conjugate gradient approach, with preconditioners

based on a power series expansion.

An alternative approach to multicommodity network flow problems is a column

generation method involving a path decomposition. This is useful when there is

a large number of commodities; typically, the direct approach is better when the

number of commodities is limited [9]. Without loss of generality, we assume that

each commodity has a single source and a single sink (otherwise, the commodities

can be disaggregated). Further, we assume that no two commodities have the same

source and sink (otherwise the commodities can be aggregated). A set Pk of paths

for each commodity k ∈ K are generated. Flow xp is routed along these paths, and

we let wp be the cost of routing one unit along path p. The multicommodity network

flow problem can then be written as

min
∑

k∈K
∑

p∈Pk
wpxp

subject to
∑

p∈Pk
xp = dk ∀k ∈ K∑

p∈Pk,k∈K:e∈p xp ≤ ue ∀e ∈ A
xp ≥ 0 ∀e ∈ A

(44)

where dk denotes the demand for commodity k. If the sets Pk contain all possible paths

then this is an exact formulation, but of course this is typically not computationally

feasible due to the number of paths. Thus, this formulation is used in a column

generation approach, with paths generated as needed in a subproblem. The path

15

generation subproblem is a shortest path problem, with edge weights coming from

the dual problem. This column generation approach has been used with the linear

programs (44) solved using simplex (for example, Chardaire and Lisser [11]) and when

the linear programs have been solved with an interior point method (for example, [11]

and Goffin et al [19]). We discuss interior point column generation methods in more

detail in §6.

6 Interior point column generation methods

Solving very large linear programming problems directly is sometimes computation-

ally intractable. In this case, a column generation approach may be attractive, and

we describe interior point column generation methods in this section. Integer pro-

gramming problems can be solved using cutting plane methods. Adding a cutting

plane in the primal linear programming problem is equivalent to adding a column

in the dual problem, so the methods discussed in this section are also applicable to

cutting plane algorithms.

6.1 Motivation

As already mentioned in §5, path-based formulations of multicommodity network

flow problems are typically solved using column generation methods. Goffin et al [19]

and Chardaire and Lisser [11] have both investigated interior point column genera-

tion methods for the solution of such problems. Gondzio and Kouwenberg [21] have

solved large problems in financial optimization using interior point column generation

methods; these problems involve assets that flow from one class to another over time,

and hence the problem formulation has similarities with network flow problems and

hence with problems in telecommunications.

Other applications of interior point column generation approaches to problems on

networks and to integer programming problems include the solution of crew schedul-

ing problems by Bixby et al [8], max cut problems by Mitchell [35] and linear ordering

problems by Mitchell and Borchers [37]. Further, Goffin et al have solved Lagrangian

relaxations of various problems, including integer programming problems, using inte-

rior point column generation methods; see, for example, Elhedhli and Goffin [17].

In telecommunications, many integer programming and / or column generation

formulations of network design problems have been posed in the literature. See, for

example, Atamtürk [3], Barahona [4], Bienstock and Muratore [6], Dahl and Stoer [13],

Grötschel et al [22, 23], Myung et al [40], Raghavan and Magnanti [43], and Sherali

16

et al [48]. Frequency assignment problems for cellular networks can also be cast as

integer programming problems, as in, for example, Eisenblätter [15].

The introduction of stochasticity into linear telecommunications problems leads

to growth in the size of the linear programs, so again a column generation approach

may well be necessary. The classical L-shaped method for stochastic programs is

a column generation method, of course. See Birge and Louveaux [7] and Kall and

Wallace [26] for more information on stochastic programming. Robust optimization is

another approach to handling uncertainty, and many robust optimization models are

constructed as second order cone programs or semidefinite programming problems,

and then solved using interior point methods; see Ben-Tal and Nemirovskii [5] for

example.

6.2 Mechanics

Interior point column generation methods differ from simplex-based column gener-

ation approaches in one crucial respect: the linear programming subproblems are

not solved to optimality at each stage, but solved approximately. This leads to the

generation of dual cuts that cut off a larger proportion of the dual space, at least

theoretically (see Goffin and Vial [20] and Mitchell [36] for recent surveys of the

theoretical performance of interior point column generation methods).

When columns are added, it is desirable to return to the interior of the feasible

region in order to allow fast convergence to the next approximate solution. This can

be done by using a direction originally proposed in Mitchell and Todd [39], which can

be motivated through consideration of Dikin ellipsoids.

The current relaxation can be written

min cTx max bTy

subject to Ax = b subject to ATy ≤ c

x ≥ 0

(45)

The complete problem can be written

min cTx + hTz max bTy

subject to Ax + Hz = b subject to ATy ≤ c

x, z ≥ 0 HTy ≤ h

(46)

The number of columns in H may be very large, possibly infinite. As the algorithm

proceeds, the current relaxation is modified by adding columns from H to A (and

dropping columns from A also, if the columns no longer appear to be useful). Any

17

dual point y that is feasible in the complete problem (46) provides a lower bound on

the optimal value. Any point x feasible in the current primal relaxation (45) is also

feasible in (46) and so provides an upper bound on the optimal value. The column

generation process can be stopped once these two bounds are close enough.

An interior point column generation algorithm approximately solves the current

relaxation (45), calls an oracle to search for violated dual constraints, adds a subset

of the primal columns / dual constraints found by the oracle, finds a new interior

point to restart, and repeats the process. If the oracle is unable to find violated dual

constraints, another interior point iteration is taken, and the oracle is called again.

There are two disadvantages to the use of interior point column generation meth-

ods. First, it is harder to exploit a warm start with an interior point method than

with simplex. For smaller problems, when only a few columns are generated, the

simplex algorithm can reoptimize far faster than an interior point method. However,

this disadvantage is reduced for larger problems and when large numbers of columns

are generated at once. In such a situation, the stronger columns generated by the

interior point method can lead to faster convergence than when using the simplex

method; see, in particular, [8, 37].

The second disadvantage is that the attempt to generate columns from more

central points may fail to find violated dual constraints, so time is wasted in the calls

to the oracle. This failure to find a violated dual constraint doesn’t imply that the

problem has been solved (as would be the case if the oracle was always accurate and

if the current relaxation was solved to optimality). The remedy is to take another

interior point iteration and try again. The required accuracy for the subproblem

can be tightened as the algorithm proceeds in order to reduce the occurrence of this

situation. Further, the failure of the oracle to find a violated dual constraint does

provide some useful information: the dual solution must be feasible in the complete

problem, so a bound on the optimal value is obtained, provided the oracle is correct

in stating that there are no violated dual constraints.

It is of interest to note two ideas that appear both here and in §4, in totally

different contexts. In particular, in both interior point column generation methods

and in interior point algorithms for network flows, it suffices to solve the current

problem approximately. Secondly, the accuracy to which the subproblem is solved is

updated dynamically, depending on the progress of the algorithm, with more accurate

solutions desired as the solution to the overall problem is approached.

More details of the implementation of interior point column generation methods

can be found in Mitchell et al [38], as well as in the references given above.

18

7 Conclusions and Extensions

Interior point algorithms have found broad applicability in large scale linear programs

arising in telecommunications, including successful implementations of interior point

methods using preconditioned conjugate gradient algorithms for network flow prob-

lems. The use of interior point methods in column generation settings allows the

possibility of solving very large linear programming problems. Interior point meth-

ods have been extended to other optimization problems such as semidefinite pro-

gramming problems, second order cone programming problems, and general convex

programming problems and these will allow the solution of more sophisticated mod-

els of problems in telecommunications. For example, network design problems have

been solved by Lisser and Rendl using a semidefinite programming approach [30], and

robust optimization problems such as antenna array design can be modeled as second

order cone programs (for example, Lobo et al [31], Ben-Tal and Nemirovskii [5]). As

a final note, interior point methods for nonlinear programming problems are surveyed

by Forsgren et al [18].

References

[1] E. D. Andersen and K. D. Andersen. Presolving in linear programming. Mathematical
Programming, 71:221–245, 1996.

[2] E. D. Andersen, J. Gondzio, C. Mészáros, and X. Xu. Implementation of interior
point methods for large scale linear programming. In T. Terlaky, editor, Interior Point
Methods in Mathematical Programming, chapter 6, pages 189–252. Kluwer Academic
Publishers, 1996.

[3] A. Atamtürk. On capacitated network design cut-set polyhedra. Mathematical Pro-
gramming, 92(3):425–452, 2004.

[4] F. Barahona. Network design using cut inequalities. SIAM Journal on Optimization,
6:823–837, 1996.

[5] A. Ben-Tal and A. Nemirovski. Robust optimization — methodology and applications.
Mathematical Programming, 92(3):453–480, 2003.

[6] D. Bienstock and G. Muratore. Strong inequalities for capacitated survivable network
design problems. Mathematical Programming, 89(1):127–147, 2000.

[7] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, New
York, 1997.

19

[8] R. E. Bixby, J. W. Gregory, I. J. Lustig, R. E. Marsten, and D. F. Shanno. Very
large-scale linear programming: a case study in combining interior point and simplex
methods. Operations Research, 40:885–897, 1992.

[9] J. Castro. A specialized interior point algorithm for multicommodity flows. SIAM
Journal on Optimization, 10(3):852–877, 2000.

[10] J. Castro and A. Frangioni. A parallel implementation of an interior-point algorithm
for multicommodity network flows. In Vector and Parallel Processing VECPAR 2000,
volume 1981 of Lecture Notes in Computer Science, pages 301–315. Springer-Verlag,
2001.

[11] P. Chardaire and A. Lisser. Simplex and interior point specialized algorithms for solving
nonoriented multicommodity flow problems. Operations Research, 50(2):260–276, 2002.

[12] I. C. Choi and D. Goldfarb. Solving multicommodity network flow problems by an
interior point method. In T. F. Coleman and Y. Li, editors, Large-Scale Numerical
Optimization, pages 58–69. SIAM, Philadelphia, PA, 1990.

[13] G. Dahl and M. Stoer. A cutting plane algorithm for multicommodity survivable
network design problems. INFORMS Journal on Computing, 10:1–11, 1998.

[14] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

[15] A. Eisenblätter. Frequency Assignment in GSM Networks: Models, Heuristics, and
Lower Bounds. PhD thesis, TU-Berlin and Konrad-Zuse-Zentrum für Information-
stechnik, Berlin, 2001.

[16] A. S. El–Bakry, R. A. Tapia, and Y. Zhang. A study of indicators for identifying zero
variables in interior–point methods. SIAM Review, 36:45–72, 1994.

[17] S. Elhedhli and J.-L. Goffin. The integration of interior-point cutting plane meth-
ods within branch-and-price algorithms. Mathematical Programming, 100(2):267–294,
2004.

[18] A. Forsgren, P. E. Gill, and M. H. Wright. Interior methods for nonlinear optimization.
SIAM Review, 44(4):525–597, 2002.

[19] J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial. Solving nonlinear multicommod-
ity network flow problems by the analytic center cutting plane method. Mathematical
Programming, 76:131–154, 1997.

[20] J.-L. Goffin and J.-P. Vial. Convex nondifferentiable optimization: a survey focussed
on the analytic center cutting plane method. Optimization Methods and Software,
17(5):805–867, 2002.

20

[21] J. Gondzio and R. Kouwenberg. High-performance computing for asset-liability man-
agement. Operations Research, 49(6):879–891, 2001.

[22] M. Grötschel, C. L. Monma, and M. Stoer. Computational results with a cutting plane
algorithm for designing communication networks with low-connectivity constraints.
Operations Research, 40(2):309–330, 1992.

[23] M. Grötschel, C. L. Monma, and M. Stoer. Polyhedral and computational investi-
gations for designing communication networks with high survivability requirements.
Operations Research, 43(6):1012–1024, 1995.

[24] J. J. Júdice, J. M. Patŕicio, L. F. Portugal, M. G. C. Resende, and G. Veiga. A study
of preconditioners for network interior point methods. Computational Optimization
and Applications, 24:5–35, 2003.

[25] J. J. Júdice, L. F. Portugal, M. G. C. Resende, and G. Veiga. A truncated interior point
method for the solution of minimum cost flow problems on an undirected multicom-
modity network. In Proceedings of the First Portuguese National Telecommunications
Conference, pages 381–384, 1997. In Portuguese.

[26] P. Kall and S. W. Wallace. Stochastic Programming. John Wiley, Chichester, UK,
1994. Available online from the authors’ webpages.

[27] A. P. Kamath and O. Palmon. Improved interior point algorithms for exact and approx-
imate solution of multi-commodity flow problems. In Proceedings of the Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 502–511, January 1995.

[28] S. Kapoor and P. Vaidya. Fast algorithms for convex programming and multicommod-
ity flows. Proceedings of the 18th annual ACM symposium on the theory of computing,
pages 147–159, 1988.

[29] S. Kapoor and P. Vaidya. Speeding up Karmarkar’s algorithm for multicommodity
flows. Mathematical Programming, 73:111–127, 1996.

[30] A. Lisser and F. Rendl. Graph partitioning using linear and semidefinite programming.
Mathematical Programming, 95(1):91–101, 2003.

[31] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order
cone programming. Linear Algebra and its Applications, 284(1–3):193–228, 1998.

[32] N. Megiddo. On finding primal- and dual-optimal bases. ORSA Journal on Computing,
3:63–65, 1991.

[33] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM
Journal on Optimization, 2(4):575–601, 1992.

21

[34] S. Mehrotra and J.-S. Wang. Conjugate gradient based implementation of interior
point methods for network flow problems. In L. Adams and J. L. Nazareth, editors,
Linear and nonlinear conjugate gradient-related methods, pages 124–142. AMS/SIAM,
1996.

[35] J. E. Mitchell. Computational experience with an interior point cutting plane algo-
rithm. SIAM Journal on Optimization, 10(4):1212–1227, 2000.

[36] J. E. Mitchell. Polynomial interior point cutting plane methods. Optimization Methods
and Software, 18(5):507–534, 2003.

[37] J. E. Mitchell and B. Borchers. Solving linear ordering problems with a combined
interior point/simplex cutting plane algorithm. In H. L. Frenk et al., editor, High
Performance Optimization, chapter 14, pages 349–366. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2000.

[38] J. E. Mitchell, P. M. Pardalos, and M. G. C. Resende. Interior point methods for
combinatorial optimization. In D.-Z. Du and P. M. Pardalos, editors, Handbook of
Combinatorial Optimization, volume 1, pages 189–297. Kluwer Academic Publishers,
1998.

[39] J. E. Mitchell and M. J. Todd. Solving combinatorial optimization problems using
Karmarkar’s algorithm. Mathematical Programming, 56:245–284, 1992.

[40] Y.-S. Myung, H.-J. Kim, and D.-W. Tcha. Design of cummunication networks with
survivability constraints. Management Science, 45(2):238–252, 1999.

[41] J. Patŕicio, L. F. Portugal, M. G. C. Resende, G. Veiga, and J. J. Júdice. Fortran
subroutines for network flow optimization using an interior point algorithm. Technical
Report TD-5X2SLN, AT&T Labs, Florham Park, NJ, March 2004.

[42] L. Portugal, M. Resende, G. Veiga, and J. Júdice. A truncated primal-infeasible dual-
feasible network interior point method. Networks, 35:91–108, 2000.

[43] S. Raghavan and T. L. Magnanti. Network connectivity. In M. Dell’Amico, F. Maffioli,
and S. Martello, editors, Annotated bibliographies in combinatorial optimization, pages
335–354. John Wiley, Chichester, 1997.

[44] M. G. C. Resende and G. Veiga. An efficient implementation of a network interior point
method. In D.S. Johnson and C.C. McGeogh, editors, Network Flows and Matching:
First DIMACS Implementation Challenge,, pages 299–348. American Mathematical
Society, 1993. DIMACS Series on Discrete Mathematics and Theoretical Computer
Science, vol. 12.

22

[45] M. G. C. Resende and G. Veiga. An implementation of the dual affine scaling algo-
rithm for minimum cost flow on bipartite uncapacitated networks. SIAM Journal on
Optimization, 3:516–537, 1993.

[46] M. G. C. Resende and G. Veiga. An annotated bibliography of network interior point
methods. Networks, 42:114–121, 2003.

[47] C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Linear Optimization:
An Interior Point Approach. John Wiley, Chichester, 1997.

[48] H. D. Sherali, J. C. Smith, and Y. Lee. Enhanced model representations for an intra-
ring synchronous optical network design problem allowing demand splitting. INFORMS
Journal on Computing, 12(4):284–298, 2000.

[49] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

[50] R. J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer Academic
Publishers, Boston, 1996. Second Edition: 2001.

[51] S. Wright. Primal-dual interior point methods. SIAM, Philadelphia, 1996.

[52] E. Yamakawa, Y. Matsubara, and M. Fukushima. A parallel primal-dual interior point
method for multicommodity flow problems with quadratic costs. Journal of the Oper-
ations Reseach Society of Japan, 39(4):566–591, 1996.

[53] Y. Ye. On the finite convergence of interior-point algorithms for linear programming.
Mathematical Programming, 57(2):325–335, 1992.

[54] Y. Ye. Interior Point Algorithms: Theory and Analysis. John Wiley, New York, 1997.

23

