
Polynomial interior point cutting plane methods
John E. Mitchell1

Department of Mathematical Sciences,

Rensselaer Polytechnic Institute,

Troy, NY 12180.

mitchj@rpi.edu

http://www.rpi.edu/˜mitchj

July 16, 2001

Revised: April 1, 2003

Abstract

Polynomial cutting plane methods based on the logarithmic barrier function
and on the volumetric center are surveyed. These algorithms construct a linear
programming relaxation of the feasible region, find an appropriate approximate
center of the region, and call a separation oracle at this approximate center to
determine whether additional constraints should be added to the relaxation.
Typically, these cutting plane methods can be developed so as to exhibit poly-
nomial convergence. The volumetric cutting plane algorithm achieves the the-
oretical minimum number of calls to a separation oracle. Long-step versions of
the algorithms for solving convex optimization problems are presented.

1 Introduction

Let C be a convex subset of IRm. Cutting plane methods can be used to solve convex

feasibility problems of the form:

Find y ∈ C ⊆ IRm.

Any convex set can be represented as the intersection of a (possibly infinite) collection

of halfspaces. Therefore, the convex feasibility problem is equivalent to the (possibly

semi-infinite) linear programming problem

Find y satisfying ÂTy ≤ ĉ

where Â is a m× n̂ matrix and ĉ is an n̂-vector, and n̂ may be infinite.

We assume we have available a separation oracle. Given a point ȳ ∈ IRm, such

an oracle will either confirm that ȳ ∈ C, or it will return an m-vector a and a scalar

c0 such that the constraint aTy ≤ c0 is satisfied by all y ∈ C but aT ȳ > c0. A typical

cutting plane algorithm can then be described as follows:

1Research partially supported by NSF Grant number CCR–9901822.

1

1. Choose ȳ ∈ IRm.

2. Present ȳ to the oracle.

3. If ȳ is in C, STOP: we have solved the convex feasibility problem.

4. Otherwise, use the constraint returned by the separation oracle to modify the

choice ȳ and return to Step 2.

Of course, it is necessary to describe Step 4 in more detail to really define an algorithm.

The principal objective of this paper is to describe algorithms that use the logarithmic

potential function or the volumetric barrier function to choose the iterate ȳ. The

methods will set up linear programming approximations to C of the form

C ⊆ {y : ATy ≤ c}

where A is an m× n matrix and c is an n-vector. This approximation will be refined

at each iteration by the addition of the cutting plane returned by the oracle; earlier

cuts may also be dropped. The methods will then use an interior point method to find

the next trial point ȳ. Such an algorithm will be said to have polynomial complexity

if the complexity is polynomial under the assumption that each call to the oracle

requires unit time.

In order to discuss the number of iterations required by these algorithms, we

need to refine what we mean by a solution. For example, assume C is contained in

the hyperplane pT y = q, where p is an m-vector and q is a scalar. For worst case

analysis, we always assume that the oracle returns as unhelpful a cutting plane as

possible. Thus, if pT ȳ = q + α for some α > 0, the oracle could return the constraint

pT ȳ ≤ q + α
2
. It can be seen that no algorithm will then be able to guarantee finding

a trial point ȳ satisfying pT ȳ = q in a finite number of iterations.

Therefore, we assume that if C is nonempty then it contains a ball of radius ε for

some tolerance ε > 0. (An alternative remedy would be to redefine the oracle so that

it checks whether the trial point is within ε of some point in C. This is equivalent

to moving all the boundaries out by ε. These issues are discussed in more detail

in Grötschel et al. [15].) Further, we assume that such a ball is contained in the

m-dimensional hypercube of half-width 1
ε

given by {y ∈ IRm : |yi| ≤ 1
ε
}. We define

L := log2

(
1

ε

)
, (1)

the amount of storage required to store ε. In terms of L, the hypercube can be written

as {y ∈ IRm : |yi| ≤ 2L}.

2

Cutting plane methods based on the logarithmic potential function and on the

volumetric center can be constructed so as to require a number of iterations that is

bounded by a polynomial in m and L, so they exhibit polynomial convergence. Note

that, implicitly, the number of calls to the separation oracle must also be polynomial

in m and L. The analysis used to construct such a bound typically has the flavour of

a proof-by-contradiction: if more iterations are taken then it must be the case that

C is actually empty, in which case the algorithm can stop.

The ellipsoid algorithm can also be used to solve the convex feasibility problem

in polynomial time. So far, the analytic center cutting plane method (ACCPM) of

Goffin and Vial [10, 11, 12] has only been shown to be fully polynomial, that is,

polynomial in m and ε.

The polynomial potential reduction cutting plane algorithm of Atkinson and

Vaidya [7] is the subject of §2. At each iteration, their algorithm maintains a poly-

tope that is guaranteed to contain C, and uses the analytic center of this polytope

as the trial point. If this point is not contained in the convex set, the oracle returns

a hyperplane that separates the trial point and the convex set. This hyperplane is

used to update the polytope. Further, hyperplanes currently in the polytope that are

deemed ‘unimportant’ according to some criteria are dropped. Dropping constraints

is crucial for the complexity analysis of the algorithm, and is the major difference

between this algorithm and the ACCPM.

Vaidya [35] proposed a cutting plane algorithm that uses an approximation to the

volumetric center as the trial point. Anstreicher [2] has examined this algorithm and,

in [5], he refined some of the analysis in order to improve some of the constants in

the complexity bound of the algorithm. Volumetric cutting plane algorithms are the

subject of §3.
Consider now the optimization problem max{bTy : y ∈ C}, where b ∈ IRm.

These feasibility algorithms can be used to solve this optimization problem. Much

like the ellipsoid algorithm (see [15]), they can be applied to linear programming

problems by cutting on a violated constraint when the trial point is infeasible, and

cutting on the objective function when the trial point is feasible but not optimal. This

would then resemble Renegar’s algorithm [34] for linear programming. However, this

is somewhat like a ‘short step’ method — when cutting on the objective function, the

cut is placed such that the next iterate is in a small ellipsoid around the current point.

This suggests that the progress in objective function value cannot be too much.

In §4, we discuss long-step variants of the algorithms described in §2 and §3, due to

Mitchell and Ramaswamy [28, 33]. These methods incorporate the objective function

3

into a barrier function explicitly, motivated in part by the successful implementation

of such algorithms for linear programming. Long step linear programming algorithms

are not only polynomial in complexity, but can also be designed to exhibit superlinear

[37] or quadratic [36] convergence asymptotically.

Good computational results have been obtained with interior point cutting plane

methods. They have been used to solve stochastic programming problems [8], multi-

commodity network flow problems [9], and integer programming problems [25], as well

as other forms of convex optimization problems [14, 13]. For some classes of linear

ordering problems, a cutting plane scheme that combines an interior point method

and a simplex method has been shown to be up to ten times faster than one that just

uses either of the methods individually [26]. For some max cut problems, an interior

point cutting plane method has been shown to outperform considerably a simplex

cutting plane method [25]. For more information on the use of interior point cutting

plane methods for integer programming problems, see §5.

1.1 Notation

We let e denote a vector of ones of the appropriate dimension. If s denotes an n-

vector, then S denotes a diagonal n× n matrix, with Sii = si. Given a matrix A, we

let aj denote the jth column of A. The determinant of a square matrix M is denoted

by det(M). The natural logarithm of a positive number x is denoted ln(x) and the

logarithm in base 2 of x is denoted log(x).

We define an ellipsoid E(M, z, r) for any positive definite m×m matrix M , any

m-vector z, and any scalar r as

E(M, z, r) := {y ∈ IRm : (y − z)TM(y − z) ≤ r2}. (2)

If the symmetric matrix M is positive semidefinite then this is represented as

either M � 0 or 0 � M . Given two symmetric matrices M and R, where R−M is a

positive semidefinite matrix, we write R �M or M � R.

2 The Atkinson-Vaidya logarithmic potential func-

tion algorithm

Analytic center cutting plane algorithms construct a relaxation

Q := {y : ATy ≤ c} ⊇ C, (3)

4

where A is an m× n matrix and c is an n-vector, and then find an approximation to

the analytic center of Q. We assume without loss of generality that the columns aj

of A all have norm equal to one. The analytic center is defined as follows. Let

s := c− ATy (4)

and define

ϕD(s) := −
n∑

i=1

log(si). (5)

The analytic center of Q is the point ỹ that minimizes the logarithmic barrier

function

F (y) := ϕD(c− ATy). (6)

It is easily seen that the gradient of the barrier function is given by

∇F (y) = AS−1e, (7)

and the Hessian by

∇2F (y) = AS−2AT . (8)

Since the analytic center ỹ is the unconstrained minimizer of this function F , it follows

that ∇F (ỹ) = 0. We call y an approximate analytic center if

Ψ(y) := ∇F (y)T(∇2F (y))−1∇F (y) ≤ 1

16
, (9)

that is, if the gradient of the barrier function is small in the norm defined by the

Hessian of the barrier function.

As shown by Nesterov and Nemirovskii [32], if y is an approximate analytic center

then taking Newton steps will give quadratic convergence to the analytic center.

Further, if Ψ(y) ≤ 0.25 then an approximate analytic center can be recovered in one

Newton step. When taking a Newton step, y is updated to

y ← y − (∇2F (y))−1∇F (y). (10)

Global convergence analysis requires examination of the value of both the loga-

rithmic barrier function F (y) and its Hessian ∇2F (y). If the value of the logarithmic

barrier function at the analytic center becomes large, the polyhedron has become

narrow, that is, one of the slack variables has become small. If it is too narrow

to contain a ball of radius ε then we can conclude that C is empty. The value of

log(det(∇2F (y))) at the analytic center is related to the volume of the polyhedron,

and this is used explicitly in volumetric barrier algorithms. As this value grows, the

5

volume of the polyhedron is shrinking. It follows that if log(det(∇2F (y))) becomes

sufficiently large, we can conclude that C is empty. We discuss this further in §2.5.
We also define variational quantities:

σj :=
aT

j (∇2F (y))−1aj

s2
j

(11)

for j from 1 to n. These variational quantities give an indication of the relative impor-

tance of the inequality aT
j y ≤ cj — the larger the value of σj, the more important the

inequality. Note that the variational quantities are scale invariant for each constraint

aT
j y ≤ cj . In particular, if this constraint is replaced by the equivalent constraint

kaT
j y ≤ kcj for some positive scalar k, then both aj and sj are rescaled by the same

amount; further, the contribution of the constraint to the Hessian matrix AS−2AT is

unchanged by this rescaling.

The variational quantities σ are equal to the diagonal of the projection matrix

P̄ (y) := S−1AT (AS−2AT)−1AS−1. (12)

Given a vector v ∈ IRn, the product P̄ (y)v is the projection of v onto the range

of S−1AT . Since P̄ (y) is a projection matrix, it follows immediately that 0 ≤ σi ≤ 1

for each component i = 1, . . . , m. Further,

eTσ = trace(P̄ (y))

= trace((AS−2AT)−1AS−2AT) from properties of trace

= m.

2.1 An example of the variational quantities

The principal algorithmic difference between the algorithm of Atkinson and Vaidya [7]

and the ACCPM of Goffin and Vial [11, 12] is that the former drops constraints that

become unimportant. The variational quantities are used as one indicator for deciding

whether to drop a constraint. A constraint may be dropped if its variational quantity

falls below a certain threshold.

Let Q = {y ∈ IR2 : −1 ≤ y1 ≤ 1,−k ≤ ky2 ≤ k for k = 1, . . . , 100}. Geometri-

cally, this is just the box with the simple bounds that each yi must be no larger than

1 in absolute value. Algebraically, there are 100 copies of the bounds on y2. The

analytic center of Q is ỹ = 0. The gradient of the barrier function is zero at ỹ. The

Hessian at this point is

(AS−2AT)−1 =

 1

2
0

0 1
200

 .

6

In this example, we would expect that the constraints corresponding to the bounds

on y2 are less important than those corresponding to bounds on y1, and this is indeed

reflected in the values of the variational inequalities. In particular, the variational

quantities σj are equal to 1
2

for the constraints corresponding to bounds on y1 and

they are equal to 1
200

for the constraints corresponding to bounds on y2.

Now consider the polytope Q with two additional constraints, namely−δ ≤ y1 ≤ δ

for some positive scalar δ. In this case, we obtain the variational quantities

σj =

δ2

2(1+δ2)
for constraints − 1 ≤ y1 ≤ 1

1
2(1+δ2)

for constraints − δ ≤ y1 ≤ δ
1

200
for constraints on y2.

In this situation, we can see that the weaker bound constraint on y1 has a smaller

variational quantity than the stronger bound.

2.2 The importance of the variational quantities

The variational quantities σ are used to decide whether to drop a constraint: if the

value is very small then the constraint is a candidate to be dropped. See §2.3 for

details. In this subsection, we attempt to give some intuition for why this is a good

criterion.

Given the current strictly feasible iterate ȳ with slack values s, the system of

equations ATy ≤ c can be stated equivalently as S−1ATy ≤ S−1c. Every constraint

then has slack equal to one at ȳ.

The ellipsoid E(AS−2AT , ȳ, 1) is contained in the feasible region Q. See Lemma 1

and §3 for more discussion of this ellipsoid. Assuming the ellipsoid provides a reason-

able approximation to Q, if a constraint is important, there should be a point in the

inscribing ellipsoid that comes close to violating the constraint. To find the point in

the ellipsoid that comes closest to violating the constraint, we can maximize aT
i z over

points in the ellipsoid. Equivalently, we can rescale and translate, and then maximize
1
si
aT

i (z − ȳ). This gives the following quadratic optimization problem:

maxz
1
si
aT

i (z − ȳ)
s.t. z ∈ E(AS−2AT , ȳ, 1).

The optimal value of this problem gives the proportion by which the slack can be

reduced while still remaining in the ellipsoid. Solving the KKT conditions for this

problem shows that the optimal solution is z = ȳ + (AS−2AT)−1(siai), with value

equal to σi. The maximum possible value is one, when the ellipsoid touches the ith

7

constraint. Thus, small values of σi correspond to constraints i which are far from

the inscribing ellipsoid E(AS−2AT , ȳ, 1).

Therefore, a constraint that is dropped is one that is easily satisfied by every point

in the inscribing ellipsoid E(AS−2AT , ȳ, 1).

&%
'$

ȳr
(((((((((((((((

hhhhhhhhhhhhhhh �-�

A

B

-�
d1

-� d2

�������������

B
BM
B

B
BBM

N

C

D

Figure 1: Dropping constraints. The variational quantity σ for the constraint given

by the line AB is equal to 1− d2

d1
.

The variational quantities σ are illustrated in Figure 1. The inscribing ellipsoid

E(AS−2AT , ȳ, 1) is shown. For this example, it is drawn as a sphere. The ellipsoid

touches three constraints, so for these constraints the value of σi is one. Note that

in general the ellipsoid might not touch any of the constraints. For the constraint

illustrated by the line AB, the value of σi is approximately equal to 0.2. This is

calculated by comparing the distance d1 from AB to ȳ and the distance d2 from AB

to the closest point in the ellipsoid to AB. The distance d2 is about 80% of the distance

d1, so σi ≈ 1 − 0.8 = 0.2. Because the ellipsoid is drawn as a sphere, the two lines

giving d1 and d2 are collinear; in general, they need not be so. The value of σi for the

constraint illustrated by the line CD can be found in a similar manner, leading to a

value of approximately 0.5.

2.3 The algorithm

At each iteration, we have a polytope Q = {y : ATy ≤ c}. The algorithm finds an

approximate analytic center ỹ of Q. It first determines whether it is appropriate to

drop a constraint. If not, it submits the approximate analytic center to the oracle,

which either confirms that ỹ ∈ C or returns a hyperplane separating ỹ from C. In

the latter case, the hyperplane is added to the polyhedron, perhaps after weakening

it slightly. A new approximate analytic center is then determined and the process is

repeated. If the algorithm dropped a constraint, again a new analytic center would

be determined and the process repeated. The algorithm is detailed in Figure 2.

8

1. Initialize:

Set n = 2m, A = [I, −I], and c = 1
ε
e. Set y = 0 and s = c. Set

κi = 1
ε

for i = 1, . . . , n. Initialize the iteration counter k = 0. Go

to Step 5.

2. Check to drop constraints:

Let Λ := max{ si

κi
: i = 2m + 1, . . . , n}. If Λ ≤ 2, go to Step 5.

Otherwise, if there is an index ī with sī

κī
> 2 and σī < 0.04, go to

Step 3, else let ī be any index with si

κi
> 2 and go to Step 4.

3. Drop constraint:

Drop the īth row from [AT , c]. Update n← n− 1. Go to Step 7.

4. Update κ:

Set κī = sī. Go to Step 2.

5. Call oracle:

Call the oracle with y as the trial point. If the oracle does not

return a violated constraint, STOP with feasibility.

6. Update relaxation:

Let a and c0 denote the constraint returned by the oracle. Set

β = aTy. Add the constraint aTy ≤ β to [AT , c] and update

n ← n + 1. If n ≥ 2700mL, STOP, with the conclusion that C
is empty.

7. Update y:

Find a new approximate analytic center y in O(1) Newton steps.

Update s = c − ATy. Set κn = cn − aT y if we came here from

Step 6. If si ≤ ε
5400mL

for some i, STOP, with the conclusion

that C is empty. Otherwise, return to Step 2.

Figure 2: A polynomial potential reduction cutting plane algorithm

9

We have already discussed the termination tolerance ε. The algorithm initializes

with Q equal to the box defined by the 2m simple bounds −1
ε
≤ yi ≤ 1

ε
. These con-

straints are never dropped in the course of the algorithm, and they always correspond

to indices 1, . . . , 2m. The analytic center of this box is the origin, of course.

The decision to drop a constraint i is based on two values: κi and σi. If σi is

small then the constraint is far from an inscribed ellipsoid centered at the current

iterate. The κ values are initialized to be the slacks of the corresponding constraints.

If the slack doubles then the constraint becomes a candidate to be dropped. A κ

value can be reset to the current slack if it is decided to not drop a constraint based

on examination of the values of σ; this slack then has to double again before the

constraint can once more become a candidate to be dropped.

The κ values of the box constraints are set equal to the initial slack values and

never reset. Note that the slack variables for these constraints cannot increase by

more than a factor of two over the course of the algorithm, so the ratio si

κi
is always

smaller than 2.

When a constraint is added, it is weakened so that the current iterate y satisfies it

exactly. In their original presentation, Atkinson and Vaidya [7] weakened the added

constraint further, setting β = aTy + 4
√
aT (AS−2AT)−1a; note that this sets the

variational quantity for this added constraint equal to 1/16. With this weakening, a

new approximate analytic center can be recovered in one step. It follows from the

work of Goffin , Luo, and Ye [10] and Mitchell and Todd [29] that the constraint can

be added right through the current iterate and a new approximate analytic center

found in O(1) Newton steps.

We show in §2.4 that the new analytic center can be recovered in one Newton

step when a constraint is dropped. The termination criteria used in steps 6 and 7

are justified in §2.5, where we show that these criteria result in a polynomial time

algorithm, under the assumption that the oracle requires unit time. We sketch the

principal ideas of the proofs of local and global convergence; details can be found

in [7].

2.4 Local convergence analysis

In this section, we show that a new approximate analytic center can be obtained

quickly when a constraint is added or dropped. These are the inner iterations of the

algorithm. A bound on the number of outer iterations will then lead to a proof of

convergence of the algorithm.

10

2.4.1 Adding a constraint

Recovering a new analytic approximate center after the addition of a cut through the

current approximate center in O(1) steps is discussed in the recent survey paper by

Goffin and Vial [12]. Goffin and Vial also show that it is possible to add p constraints

simultaneously, and recover a new approximate analytic center in O(p log(p)) Newton

steps.

2.4.2 Dropping a constraint

A constraint ī is dropped only if its slack has doubled since κī was last reset and its

variational quantity is small. The iterate y was an approximate analytic center before

the constraint was dropped. Because the constraint was not very important at y, it

also wasn’t very important at the analytic center. Therefore, the new analytic center

is close to the old one, and it can be shown that, after dropping the constraint, we

have Ψ(y) ≤ 0.25, so one Newton step gives a new approximate analytic center. For

details, see [7].

2.5 Global convergence analysis

The logarithmic barrier function F (y) is used to prove global convergence of the

algorithm. This proof uses both volume and width arguments. In order to simplify

the presentation, we assume that the algorithm works with exact analytic centers. The

results presented can be extended to show convergence when approximate analytic

centers are calculated instead.

2.5.1 Volume arguments

The volume arguments require relating the value of the Hessian of the potential

function to the size of certain ellipsoids. The function F (y) is strictly convex, so its

Hessian matrix ∇2F (y) is positive semidefinite. Therefore, we can use it to define

ellipsoids — such ellipsoids are called Hessian ellipsoids. Now, at the analytic center

ỹ, the gradient of F (ỹ) is zero. It will follow that if y is in a small Hessian ellipsoid

centered at the analytic center, then F (y) will be close to its minimum value F (ỹ).

The following can be shown:

Lemma 1 The polytope Q satisfies

E(∇2F (ỹ), ỹ, 1) ⊆ Q ⊆ E(∇2F (ỹ), ỹ, n),

11

where n is the number of constraints in the description of Q.

Thus, we can obtain inscribing and circumscribing ellipsoids for Q.

Now, the volume of the ellipsoid E(M, z, r) is

vol(E(M, z, r)) =
rmvol(E(I, 0, 1))√

det(M)
, (13)

where E(I, 0, 1) denotes the unit ball centered at the origin. It follows that as the

determinant of the logarithmic barrier increases, the volume of Q decreases, if we

keep the number of constraints approximately constant. Atkinson and Vaidya [7]

prove the following crucial theorem, showing that that the determinant of ∇2F (ỹ)

grows exponentially in the number of constraints, n. The proof of the theorem requires

that unimportant constraints, as measured by the slack values s and the variational

quantities σ, be dropped.

Theorem 1 If si

κi
≤ 2 for all the constraints, then

det∇2F (ỹ) > 2−mε2m(1.01)n−2m.

It follows as a straightforward corollary to this theorem that the number of con-

straints n defining Q must be bounded, or otherwise the volume of C would be smaller

than a ball of radius ε. The proof requires combining the result of the theorem

with (13).

Corollary 1 If the algorithm adds sufficiently many constraints that n ≥ 2700mL

then C is empty.

This corollary justifies the termination criterion in Step 6 of the algorithm.

2.5.2 Width arguments

The width arguments require showing that eventually the polytope Q becomes too

narrow to contain a ball of radius ε, even if the number of constraints remains bounded

by 2700mL. This is shown by demonstrating that if the value of the logarithmic

potential function at the analytic center becomes large then a slack variable has

become small, indicating that the width of Q has also become small. If a slack

variable becomes sufficiently small then the feasible region for the current relaxation

is no longer large enough to contain a ball of radius ε, so C must be empty.

12

Other things being equal, as the slack variables become smaller, the logarithmic

potential function becomes larger. As we will see, the cutting plane algorithm in

Figure 2 causes the value of the logarithmic barrier function to increase each time

Step 7 is completed.

Thus, the width argument requires three components:

1. The value of the logarithmic barrier function at the approximate analytic center

increases as the algorithm proceeds.

2. An increase in the value of the barrier function correlates with a decrease in the

slack of some variable.

3. The number of constraints is bounded; this follows from the volume arguments

in §2.5.1.

Define width(ai) to be the variation in aT
i y over the current polytope. We have

the following lemma.

Lemma 2 The width of Q in the direction ai is bounded by width(ai) ≤ n(ci − aT
i ỹ)

for i = 1, . . . , n.

Proof: The gradient of the logarithmic barrier function is zero at the analytic

center ỹ, so we have

0 = ∇F (ỹ) = −
n∑

i=1

ai

ci − aT
i ỹ
.

Taking the inner product of this with ỹ − x and rearranging gives

n =
n∑

i=1

aT
i (ỹ − x) + ci − aT

i ỹ

ci − aT
i ỹ

=
n∑

i=1

ci − aT
i x

ci − aT
i ỹ

which holds for all x. Each term in the summand is nonnegative for any feasible

point x. Choose x to be the feasible point that minimizes aT
i x, so width(ai) = ci−aT

i x.

We obtain
width(ai)

ci − aT
i ỹ
≤ n.

Rearranging gives the required result.

Note that if F (ỹ) ≥ n(L + log(n)) then we must have ci − aT
i ỹ ≤ ε

n
for some

constraint i. It follows from this lemma that we have width(ai) ≤ ε if the logarithmic

13

barrier function is sufficiently large. Therefore, C cannot contain a ball of radius ε,

so it must be empty.

It remains to be shown that F (ỹ) grows as the algorithm proceeds. This requires

consideration of a normalized version of F (y). Thus, given a point y and the corre-

sponding slacks s = c− ATy, we define

G(y) := −
n∑

i=1

log(
si

κi
) = −

n∑
i=1

log(si) +
n∑

i=1

log(κi) = F (y) +
n∑

i=1

log(κi). (14)

Now, κi can be no larger than the largest possible value of the ith slack term. Because

||ai||2 = 1, the slack can be no larger than the diagonal distance across the cube, so

κi ≤ 2
√
m

ε
. (15)

Thus,

F (y) = G(y)−
n∑

i=1

log(κi) ≥ G(y)− n(1 + 0.5 log(m)− log(ε)). (16)

The volume arguments show that n is bounded, so it suffices to show that G(y)

increases sufficiently. There are three cases to consider:

• Step 3 of the algorithm, a constraint is dropped:

Dropping a constraint causes the analytic center to change. Because the ratio
si

κi
> 2, the value of G at the old analytic center increases by at least log(2). It

can be shown that the new analytic center ỹnew is sufficiently close to the old

analytic center ỹold that G(ỹnew) ≥ G(ỹold) + 0.65, because σi is sufficiently

small.

• Step 4 of the algorithm, one of the κi is increased:

In this case, κi is set equal to the value of si, so κi is at least doubled. The

analytic center is unchanged, so G(ỹ) increases by at least log(2).

• Step 6 of the algorithm, a constraint is added:

The analytic center changes. The new analytic center lies outside a sufficiently

large ellipsoid centered at the old analytic center so that it can be shown that

there is a guaranteed increase in the the old G(y) (that is, G(y) calculated

without the new constraint). Note that we chose κi for the new constraint so

that it contributes zero to the new normalized function G(ỹ). Thus, even after

adding in the term for the new constraint, we still haveG(ỹnew) ≥ G(ỹold)+0.01.

Initially, the only constraints are the box constraints, and the origin is the analytic

center. The κi are chosen so that G(ỹ) = 0 for this initial step. Since G(ỹ) increases

14

by at least γ for some fixed constant γ > 0 at each iteration, we have that G(ỹ) ≥ γp

after p iterations.

2.6 Conclusions and future research

It follows from (16) and from the boundedness of n that after p iterations we have

F (ỹ) ≥ γp−ψ for a constant ψ. Eventually, F (ỹ) will be sufficiently large that some

si will be small enough to indicate that the polytope is too flat to contain a ball of

radius ε. The following theorem makes this more precise:

Theorem 2 The algorithm will stop in O(mL2) iterations, either because a feasible

point has been found, or because the polyhedron cannot contain a ball of radius ε.

It can be determined that the polyhedron does not contain such a ball either because

its volume has shrunk (indicated by the presence of a large number of constraints)

or because it has become very flat (indicated by a very small slack value and a large

potential function value).

The constant term hidden in the “big-O” analysis is quite large. It is of interest

to reduce this constant, in order to develop a more practical algorithm. It is also of

interest to try to reduce the exponent on L, obtaining perhaps a bound on the number

of iterations of the form O(mL), similar to the bound shown for many interior point

algorithms for linear programming. One extension of this algorithm is to solve the

optimization problem using a long-step approach; this is the subject of §4.1.

3 A volumetric cutting plane algorithm

Vaidya [35] introduced the volumetric barrier function and proved several interesting

properties of a volumetric barrier cutting plane algorithm. His ideas were developed

further by Anstreicher [2, 5], and Ramaswamy and Mitchell [33]. In particular, Ra-

maswamy and Mitchell showed that cutting planes could be added right through the

current point and that the optimization problem could be solved using these tech-

niques, and Anstreicher introduced a number of refinements in the proof techniques

that considerably improved the constants involved in the complexity analysis, making

the algorithm more practical.

As in §2, we approximate the convex set C using a finite set of inequalities, so

C ⊆ {y : ATy ≤ c} =: Q, where A is an m×n matrix and c is an n-vector. Let y be a

strictly feasible point in Q and let s = c− ATy > 0. The volumetric barrier function

15

for Q at the point y is

V (y) :=
1

2
ln det(AS−2AT). (17)

The volumetric center ω of Q is the point that minimizes V (y). For any strictly

feasible point y with corresponding slacks s, the ellipsoidE(AS−2AT , y, 1) is contained

within Q. It follows from (13) that minimizing V (y) is equivalent to choosing y to

maximize the volume of the inscribing ellipsoid E(AS−2AT , y, 1) centered at y.

Recall the variational quantities σj defined in (11)

σj :=
aT

j (AS−2AT)−1aj

s2
j

for j from 1 to n. These quantities are the diagonal terms of the matrix P̄ (y) defined

in (12). It can be shown that the gradient of the volumetric barrier function is

∇V (y) = −AS−1σ (18)

and the Hessian is

∇2V (y) = AS−1(3Σ − 2P̄ (y)(2))S−1AT , (19)

where Σ is the diagonal matrix with entries equal to the components of σ and P̄ (y)(2)

is the Hadamard product of P̄ (y) with itself. It is expensive to calculate the entries

of this Hessian matrix. The principal cost is due to the dense nature of P̄ (y)(2): first,

it is expensive to calculate all the entries in P̄ (y), and then it is expensive to include

the resulting dense matrix in a sequence of matrix-matrix multiplications. Vaidya

exploited the properties of σ given above to motivate using an approximation to the

diagonal of 3Σ− 2P̄ (y)(2). In particular, Vaidya [35] defined the matrix

P (y) := ATS−2ΣA. (20)

He was then able to show that

P (y) � ∇2V (y) � 3P (y). (21)

A polynomial time approximate Newton’s method can be used to find the volu-

metric center ω of a polyhedron. The direction d used at each step is found by solving

the system of equations P (y)d = −∇V (y).

An appropriate multiple of V (y) is an O(m
√
n)-self-concordant barrier for the

polyhedron, so, in principal, properties of self concordant barrier functions [32] can

be used to construct algorithms. However, most of the proofs of the results for

volumetric center algorithms are derived directly, exploiting the dependence of V (y)

on σ.

16

3.1 Comparing the volumetric center and the analytic center

The volumetric barrier function is related to the Hessian of the logarithmic barrier

function. In particular, if ȳ strictly satisfies the constraints ATy ≤ c, then the Hes-

sian of the logarithmic barrier function at ȳ is ∇2F (ȳ) = AS−2AT with S defined

appropriately, and

V (y) =
1

2
ln det(∇2F (ȳ)). (22)

The complexity bound proved for the volumetric barrier cutting plane method is

smaller than that for the analytic center cutting plane method. This is in part because

the volumetric center is closer to a geometrical center (for example, the center of mass)

than the analytic center, at least for some problems.

For example, consider the following polyhedron. Let Q := {y ∈ IR : y ≥ −1, py ≤
p for p = 1, . . . , 100} = [−1, 1]. Geometrically, the center of this region is the origin.

The logarithmic barrier function is

F (y) = − log(1 + y)− 100 log(1− y)−
100∑
p=1

log(p)

with gradient
dF

dy
= − 1

1 + y
+

100

1− y .
Setting the gradient equal to zero shows that the analytic center is

y = − 99

101
.

The volumetric barrier function is

V (y) =
1

2
ln

(
1

(1 + y)2
+

100

(1− y)2

)
.

The diagonal entries of the projection matrix P̄ (y) are

σi =

1
(1+y)2

1
1

(1+y)2
+ 100

(1−y)2
for constraint y ≥ −1

1
(1−y)2

1
1

(1+y)2
+ 100

(1−y)2
for constraint py ≤ p

so the gradient of the volumetric barrier function is

dV

dy
=
− 1

(1+y)3
+ 100

(1−y)3

1
(1+y)2

+ 100
(1−y)2

.

It follows that the volumetric center satisfies

100(1 + y)3 − (1− y)3 = 0,

17

which is zero at ω ≈ −0.6455. Thus, the volumetric center is closer than the analytic

center to the geometric center of this feasible region.

Cutting planes generated at the volumetric center will often be deeper cuts than

those generated at the analytic center, as they would be in this example.

3.2 An algorithm

A volumetric barrier cutting plane algorithm is given in Figure 3. The initial re-

laxation consists of box constraints, −1
ε
e ≤ y ≤ 1

ε
e. The box constraints are never

dropped. An approximate volumetric center for the current relaxation is found, and

a constraint is then added or dropped as appropriate, and the process is repeated.

Approximate volumetric centers are defined in §3.3. If any σi drops below a thresh-

old σmin then a constraint is dropped; this process takes place in Steps 2 and 3 of

the algorithm and is discussed further in §3.3. When the relaxation is updated, it is

necessary to find a new approximate volumetric center in Step 6; this is also described

in §3.3.
The termination criterion of the algorithm in Step 7 requires comparing the value

of the volumetric barrier at the current iterate, V (y), with a threshold. The rationale

for this criterion is presented in §3.4.

3.3 Local convergence

In this subsection, we show how the number of Newton steps required in one call to

Step 6 of the algorithm given in Figure 3 can be bounded. In the next subsection, we

show how the number of calls to Step 6 can be bounded. The product of these two

bounds will bound the overall number of Newton steps required by the volumetric

center cutting plane algorithm.

Given a set of constraints ATy ≤ c, the volumetric center ω minimizes the volu-

metric barrier function V (y) = 1
2
ln det(ATS−2A). The volumetric center is ap-

proached in the limit by an algorithmic approach, so it is necessary to work with

approximate volumetric centers. The condition for a point to be an approximate

volumetric center can be expressed as a condition on the norm of the gradient of

the volumetric barrier function in the norm given by the approximation P (y) to the

Hessian of the volumetric barrier function. (This is similar to the definition of an

approximate analytic center.) In order to define an approximate volumetric center

formally, we need to define some other quantities.

18

1. Initialize:

Set n = 2m, A = [I, −I], and c = 1
ε
e. Set y = 0 and s = c.

Initialize the iteration counter k = 0. Initialize σmin to some value

between 0 and ε. Go to Step 4.

2. Check to drop constraints:

Calculate σi for each constraint. Let ī be the index with the

smallest value of σi, for i = 2m + 1, . . . , n. If σī < σmin, go to

Step 3, else go to Step 4.

3. Drop constraint:

Drop the īth row from [AT , c]. Update n← n− 1. Go to Step 6.

4. Call oracle:

Call the oracle with y as the trial point. If the oracle does not

return a violated constraint, STOP with feasibility.

5. Update relaxation:

Let a and c0 denote the constraint returned by the oracle. Set

β = aTy. Add the constraint aTy ≤ β to [AT , c] and update

n← n+ 1.

6. Update y:

Find a new approximate volumetric center y. Update s = c−AT y.

7. Infeasible termination:

If V (y) is sufficiently large, STOP, with the conclusion that C is

empty. Otherwise, return to Step 2.

Figure 3: A volumetric barrier cutting plane algorithm

19

Given a point y satisfying ATy < c, let σī be the smallest value of σi. Set

ν := min

(2
√
σī − σī)

−1/2,

√
1 +
√
m

2

 . (23)

Anstreicher proves the following result showing that if the gradient of the volumetric

barrier is sufficiently small at y, measured in an appropriate norm, then y is close to

the volumetric center ω and V (y) is close to the optimal value V (w):

Theorem 3 ([5], Theorem 2.6, Corollary 2.7.) Let y satisfy ATy < c. Let g denote

the gradient of the volumetric barrier function at y. Assume ν||g||P (y)−1 ≤ γ ≤ 1
6
.

Then ν||ω − y||P (y) ≤ 1. If γ = 4
27

then V (y) − V (ω) ≤ 0.0232
ν2 and if γ = 1

8
then

V (y)− V (ω) ≤ 0.0113
ν2 .

Thus, we regard y as an approximate volumetric center if

ν||g||P (y)−1 ≤ γ (24)

for some appropriate γ. If the current iterate y at Step 6 is an approximate volumetric

center, then we move to Step 2. Otherwise, we need to improve y. This is done by

using an approximate Newton step in the direction d satisfying P (y)d = −∇V (y).

For an appropriate step length, this will give a decrease of O(1√
n
) in the value of the

volumetric barrier function (Theorem 3.1 in [35]). The technical lemmas that are

needed to prove this result look at points ȳ = y+ d for some feasible step d satisfying

||S−1ATd||∞ = δ < 1 and obtain bounds on the difference between V (ȳ) and V (y)

and between P (ȳ) and P (y), as a function of δ.

When a constraint is dropped, the criterion used in Step 3 ensures that the value of

the volumetric barrier function at the volumetric center only decreases slightly, and,

further, the old approximate volumetric center is sufficiently close to the volumetric

center of the modified polytope that a new approximate volumetric center can be

recovered in one iteration.

When adding a constraint, Vaidya [35] proposed weakening the added constraint

so that a new approximate analytic center can be recovered in O(1) Newton steps.

These weakened cuts were also used in [2]. Ramaswamy and Mitchell [33] proposed

adding central cuts, as presented in Step 5. They showed that an approximate analytic

center can now be recovered in O(
√
m) Newton steps, and these central cuts were

also used in [5]. When the cuts are placed in central position, the direction proposed

in [29] is used to move off the added constraint, and then Newton steps are used to

recover an approximate volumetric center.

20

3.4 Global convergence

Global convergence of volumetric center algorithms is usually shown by demonstrating

that eventually the volumetric barrier function becomes too large for the feasible

region to contain a ball of radius ε. This enables us to place an upper bound on the

number of iterations required: either the algorithm will find a feasible point in this

time, or no feasible point exists. For example, Anstreicher proves a result similar to

the following theorem (Lemma 3.1, [2]):

Theorem 4 Let the current polyhedral approximation Q to C have n constraints. If

the value of the volumetric barrier at the volumetric center ω of Q is greater than

Vmax := mL+m ln(n) then the volume of C is smaller than that of an m-dimensional

sphere of radius ε.

Proof: Let y∗ be the analytic center of Q. Then P is contained within an ellipsoid

centered at y∗:

P ⊆ {y ∈ IRn : (y − y∗)T∇2F (y∗)(y − y∗) ≤ n2}.

It follows that the volume of Q is no larger than the volume of this ellipsoid, so, from

(13), the volume of C is bounded by

Vol(C) ≤ Υmn
m(det(∇2F (y∗)))−1/2,

where Υm denotes the volume of the unit ball E(I, 0, 1) in IRm. Equation (22) then

gives

Vol(C) ≤ Υmn
me−V (y∗) from (22)

≤ Υmn
me−V (ω) since ω minimizes V (.)

≤ Υmn
mεnn−m from our hypothesis and (1)

= Υmε
m,

as required.

Notice that this maximum possible value of the volumetric barrier at the volu-

metric center increases logarithmically in the number of constraints, n. If we can show

that there is a guaranteed constant increase in V (ω) when a constraint is added, then

eventually this value will be larger than Vmax, if no constraints are ever dropped —

see Figure 4. This is shown by Vaidya [35], under the assumption that the variational

21

6

-
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

Vmax

V (ω)

n

V

Figure 4: Comparing Vmax and V (ω). The maximum number of constraints that can

be generated is the value of n where the curve Vmax and the line V (ω) cross.

quantities are bounded away from zero. It is possible to modify this result to obtain a

complexity result when constraints are not dropped. However, the complexity result

of O(m2L2) calls to the oracle provided by this approach is weaker than that provided

by an alternative, and the analysis is more complicated.

Therefore, other complexity results (including another result in [35]) also consider

dropping constraints. Now the structure of the complexity results requires showing

the increase in V (ω) when a constraint is added is at least ∆V +, and also the decrease

when a constraint is dropped is no more than ∆V −, for constants ∆V + and ∆V −

satisfying ∆V + −∆V − ≥ k for some positive O(1) constant k. We keep the original

box constraints in the formulation, so the number of constraints describing Q at any

stage is at least 2m. Thus, if we drop a constraint, then the value of the volumetric

center may decrease, but the decrease is less than the increase seen when the constraint

was originally added. It follows that the increase in the value of the volumetric center

is at least

V (ω)− the original value

22

≥ (number of constraints added and still in relaxation) ×∆V +

+ (number of constraints added and subsequently dropped) × k
≥ k × (total number of constraints added)

≥ kp

2

where p is the number of outer iterations performed by the algorithm, that is, the

number of visits to Step 6. Thus, the value of the volumetric barrier at the volumetric

center ω is bounded below by a function that increases linearly in the number of outer

iterations performed by the algorithm.

The results of this section have been stated in terms of the exact volumetric

center ω. They can be modified to use approximate volumetric centers as defined

in §3.3. The overall complexity of the algorithm can be summarized as follows:

Theorem 5 The volumetric center cutting plane algorithm either finds a feasible

solution or proves that C is empty in O(mL) calls to the oracle and either O(mL) or

O(m1.5L) approximate Newton steps, depending on the choice of parameters.

Note that the number of calls to the oracle required by the volumetric algorithm

is smaller than the corresponding number for either the ellipsoid algorithm or the

logarithmic barrier algorithm presented in §2. This complexity of O(mL) calls to the

separation oracle is optimal — see Nemirovskii and Yudin [31].

3.5 Extensions and future research

This algorithm is still far from practical, because of the large constants involved. It is

of interest to reduce the constant terms in the complexity analysis in order to make

the algorithm more practical, and Anstreicher [5] has made a start on this.

The algorithm has been extended to add multiple cuts — see [5, 33]. Neither

of these approaches uses the restart technique developed by Goffin and Vial [11] for

analytic center cutting plane algorithms. A similar result for the volumetric center

would be of interest.

Vaidya [35] discussed solving optimization problems using his algorithm. He sug-

gested cutting on the objective function if the current approximate volumetric center

is feasible, and otherwise cutting on a violated constraint. Such an approach has also

been proposed to extend other algorithms for the convex feasibility problem, includ-

ing the ellipsoid method and analytic center cutting plane algorithms. Ramaswamy

and Mitchell [33] proposed an alternative, long-step, approach, and we discuss this

further in §4.2.

23

Anstreicher has investigated the use of the volumetric algorithm to solve semidefi-

nite programming problems [6] and for problems with convex quadratic constraints [4].

Vaidya [35] proposed combining the volumetric and logarithmic barrier functions.

This has been pursued further by Anstreicher [6, 3]. The algorithms considered in

these references are not cutting plane algorithms, but algorithms for problems where

the constraints are given explicitly. Anstreicher [3] was able to obtain a complexity

of O(n1/4m1/4L) for linear programming with a short step algorithm combining the

two barrier functions; this is better than the standard O(
√

max{m,n}L) complexity

for short step potential reduction algorithms, especially if m and n differ markedly.

Nesterov and Nemirovskii (§5.5 of [32]) derive the self-concordancy parameter for

both the volumetric barrier and the combined barrier; simplified proofs appear in [3].

The combined barrier is an O(
√
mn)-logarithmically homogeneous self-concordant

barrier.

4 Long-step polynomial approaches to solving the

convex optimization problem

The algorithms presented in §2 and §3 are designed to solve the convex feasibility

problem. These feasibility algorithms can be extended to solve the optimization

problem

max bT y

subject to y ∈ C, (OPT)

by cutting on a violated constraint when the trial point is infeasible, and cutting on

the objective function when the trial point is feasible but not optimal. However, this

is somewhat like a ‘short step’ method — when cutting on the objective function, the

cut is placed such that the next iterate is in a small ellipsoid around the current point.

This suggests that the progress in objective function value cannot be too much.

In this section, we look at long step cutting plane algorithms for the optimization

problem. These methods use potential functions that include the objective function

explicitly, allowing good progress in improving the objective when the current ap-

proximate center is feasible. In a long step algorithm for linear programming, the

barrier parameter µ is reduced by a constant factor at each iteration, and this factor

does not depend on the problem size. The iterates trace the central trajectory of the

polytope. Long step methods perform far better in practice than short step methods,

although their worst case theoretical complexity results are slightly worse. Another

advantage of the explicit inclusion of the objective function in the potential function is

24

that it obviates the need to add multiple copies of cuts corresponding to the objective

function. These algorithms also maintain primal and dual feasible iterates, allowing

for early termination when the sub-optimality is determined to be within acceptable

limits.

Thus, the algorithms are essentially long step path-following algorithms that use

a polyhedral approximation to C, and whenever infeasibility is encountered a scheme

similar to that in either §2 or §3 is used until the current iterate again becomes

feasible. The extension of the method of §2 is described in §4.1 and the extension of

the volumetric cutting plane method is presented in §4.2.
The linear programming relaxation of the optimization problem (OPT) can be

written
max bT y

s.t. ATy ≤ c (P)

with dual
min cTx

s.t. Ax = b (D)

x ≥ 0.

It should be noted that any feasible solution to (D) will provide an upper bound

on the optimal value of the optimization problem, since (P) is a relaxation of the

problem of interest.

In addition to the assumptions made earlier regarding ε, we assume that it suffices

to find a solution to (OPT) to within an accuracy ε. Further, we assume that C is

nonempty.

4.1 A long step logarithmic barrier cutting plane algorithm

The algorithm we present in this section extends the algorithm presented in §2 by

including a term for the objective function in the barrier function. We use the barrier

function

f(y, µ) := −b
Ty

µ
+ F (y) (25)

where µ is a positive scalar and F (y) was defined in (6). For a fixed value of µ > 0, it is

desirable to minimize f(y, µ), leading to a balance between the objective function and

centrality. The barrier parameter µ is driven to zero, leading to increasing emphasis

on the objective function and convergence to an optimal solution. The algorithm has

a complexity of O(nL2) iterations, the same as that for the algorithm presented in §2.
Luo et al. [22] have extended the fully polynomial algorithm recently surveyed by

Goffin and Vial [12] to a long-step method with exponential complexity, although it

25

does not require that constraints be dropped. Den Hertog et al. [17, 18, 16] and

Kaliski et al. [19] discuss an algorithmic framework very similar to the one described

in this section, combining long steps with the addition and deletion of cuts to yield

a long step cutting plane algorithm. These papers prove complexity bounds that

are polynomial in the total number of cuts that become active, and not necessarily

polynomial in the dimension of the space. In their conclusions, the authors of [16]

mention that proving possible polynomial complexity of their algorithm remains open.

In [19], the authors point out that results from [10] suggest that their algorithm is

fully polynomial.

At any given iteration, we operate with a relaxation of (OPT). The algorithm is

initialized with the relaxation

max bTy

s.t. y ≤ 1
ε
e (P0)

−y ≤ 1
ε
e

bTy ≤ 1
ε

√
m

where, by our assumptions, the feasible set of this relaxation contains Y, the set

of optimal solutions to (OPT). The first 2m hyperplanes included in this initial

relaxation are the box hyperplanes, familiar from the algorithm in Figure 2. The

final constraint does not affect the feasible region of the initial relaxation. As the

algorithm obtains better upper bounds on the optimal value of the full problem, the

right hand side of this upper bound constraint is updated.

At iteration k, we would have something like :

max bTy

s.t. y ≤ 1
ε
en (Pk)

−y ≤ 1
ε
en

bTy ≤ uk

ĀT
k y ≤ c̄k

where Āk ∈ IRm×n̄k , and uk is some upper bound on the optimal objective function

value. This can be written more simply as

max bTy

s.t. AT
k y ≤ bk (Pk)

with Ak ∈ IRm×nk , so nk = 2m+1+ n̄k. We refer to the feasible region of (Pk) as Qk.

Throughout most of the discussion, we may omit the subscripts k since that causes

no ambiguity.

26

The gradient of the barrier function f(y, µ) is given by

∇f(y, µ) = − b
µ

+
n∑

i=1

ai

si

= − b
µ

+ ATS−1e (26)

and the Hessian by

∇2f(y, µ) = ATS−2A. (27)

For a given value of µ, y(µ) denotes the unique minimizer of this barrier function.

We refer to this unique point when we use the term (exact) µ-center. Because the

polytope we have at any iteration is always bounded, it has a unique exact µ-center

for any µ > 0. In a similar manner to (9), we define an approximate µ-center to be a

point y satisfying

Ψf (y, µ) := ∇f(y, µ)T (∇2f(y, µ))−1∇f(y, µ) ≤ 1

16
. (28)

It should be noted that Ψf(y, µ) is the square of the measure of centrality δ(y, µ)

given by

δ(y, µ) := min
x
||Sx
µ
− e|| (29)

s.t. Ax = b.

For a given y and µ, it is easy to find the solution x to this quadratic program. It

follows from (29) that each component of Sx must be close to µ, so in particular the

duality gap sTx can be bounded in terms of δ(y, µ) and µ:

sTx =
n∑

i=1

sixi

≤
n∑

i=1

µ(1 + δ(y, µ))

= nµ(1 + δ(y, µ)).

This is used in the analysis of the algorithm to provide an upper bound on the optimal

value of (OPT). If δ(y, µ) ≤ 1 then the corresponding x is feasible in the dual to

(Pk). This is a constrained version of the dual problem to (OPT), so the value of x

gives an upper bound on the optimal value of (OPT). In particular, we obtain an

upper bound of

u = bTy + nµ(1 + δ(y, µ)) (30)

for any feasible y in the current relaxation with δ(y, µ) ≤ 1. If, in addition, y ∈ C,
and y is an approximate µ-center, then it is within 1.25nµ of optimality. This upper

27

bound is used in the algorithm to give a constraint. The constraint is redundant when

it is added, but it may later become useful if constraints are dropped. However, the

principal use of the constraint is in the analysis of the algorithm, because it allows

an explicit bounding of various quantities, including the size of a polytope Q∗.

This polytope Q∗ is guaranteed to contain the optimal solution to (OPT). Before

defining Q∗, it is necessary to define some more notation. The algorithm moves from

one approximate µ-center to another. If the approximate µ-center is in C either a con-

straint is dropped (using the criteria of the algorithm of §2) or the barrier parameter

is reduced. If the barrier parameter is reduced, let yprev denote the current feasible

approximate µ-center, let µprev denote the barrier parameter before it is reduced, and

let nprev denote the number of constraints before the barrier parameter is reduced.

Standard interior point iterations are then taken until a new approximate µ-center ỹ

is found. This point ỹ may not be in C. The polytope Q∗ is defined as follows:

Q∗ := Q ∩ {y ∈ <m : bTy ≥ ζ} (31)

where ζ is equal to min(bT ỹ, bTyprev) − 1.25nprevµprev. Thus, this polytope is certain

to contain the optimal set to the problem of interest and the current point ỹ. This

property is important, and enables the construction of termination criteria based on

the volume and width of Q∗. This property would hold without the 1.25nprevµprev

term in the definition of ζ; this extra term is used to relate the width of Q∗ to

the width of Q. It is important to note that the polytope Q∗ is used only in the

theoretical analysis — lower-bound constraints that restrict subsequent iterates to be

in the polytope Q∗ are not added explicitly, although they could be.

The algorithm is contained in Figure 5. The algorithm will terminate with opti-

mality if the current iterate y is an approximate µ-center for a sufficiently small µ,

provided y ∈ C. The algorithm also has termination criteria based upon the num-

ber of constraints in the current relaxation and on the width of Q∗. These will be

invoked if, for example, the algorithm finds the optimal solution while the value of µ

is still large: further iterations may well produce infeasible iterates, resulting in the

addition of constraints, or the new iterates may be feasible but inferior to the known

feasible point, resulting in reductions in µ. Therefore, it is possible that the optimal

point returned by the algorithm will not be final approximate analytic center found

in Step 7 or Step 8. The algorithm stops in Step 2 if the current polytope Q∗ is too

narrow to contain a ball of the appropriate diameter; it stops in Step 7 if the number

of constraints implies that the volume of Q∗ is too small.

The principal difference between this algorithm and the one contained in Figure 2

lies in the handling of µ. If the oracle fails to find a violated constraint in Step 5

28

1. Initialize:

Set µ = 1
ε
, n = 2m + 1, A = [I, −I, b], and cT = [1

ε
eT , 1

ε
eT ,

√
m
ε

]. Set y = 0

and s = c. Set κi = ci for i = 1, . . . , n. Initialize the iteration counter k = 0.

Set uprev = cn. Initialize x. Iterate, if necessary, to get approximate µ-center.

Set constants nmax := 4093mL, and smin := 10−5ε3/(2m1.5L). Go to Step 5.

2. Check to drop constraints:

If si ≤ smin for some i, STOP: the best feasible point found so far is optimal.

Let Λ := max{ si

κi
: i = 2m + 2, . . . , n}. If Λ ≤ 2, go to Step 5. Otherwise, if

there is an index ī with sī

κī
> 2 and σī < 0.04, go to Step 3, else let ī be any

index with si

κi
> 2 and go to Step 4.

3. Drop constraint:

Drop the īth row from [AT , c]. Update n← n− 1. Go to Step 7.

4. Update κ:

Set κī = si. Go to Step 2.

5. Call oracle:

Call the oracle with y as the trial point. If the oracle does not return a violated

constraint, go to Step 8; otherwise go to Step 6.

6. Update relaxation:

Let a and c0 denote the constraint returned by the oracle. Set β = aTy. Add

the constraint aT y ≤ β to [AT , c] and update n← n + 1. If n ≥ nmax, STOP:

the best feasible point found so far is optimal.

7. Update y:

Find a new approximate analytic center y in O(1) Newton steps. Update s =

c− ATy. Set κn = cn − aTy if we came here from Step 6. Return to Step 2.

8. Reduce µ:

Test y for optimality (is 1.25nµ < ε?). If optimal, get dual solution x and

STOP. Else, set u = bTy + 1.25nµ. Set uprev = min{u, uprev} and update the

constraint bTy ≤ uprev. Set µ = µρ where ρ ∈ (0.5, 1) is a constant independent

of the problem. Take Newton steps with linesearch to find new approximate

µ-center. Return to Step 2.

Figure 5: A long step variant of the algorithm in Figure 2

29

then the algorithm moves to Step 8, reduces µ, and finds a new approximate µ-center.

This new point is found using a Newton method with long steps, so it may require

O(mL2) steps (note that n = O(mL)).

It might appear that a short step approach to reducing µ would result in a smaller

overall complexity of O(
√
mLL) Newton steps, as it does for algorithms for linear

programming. However, this is not the dominant term in the overall complexity

analysis, because the number of cutting plane additions is bounded byO(mL2). Thus,

for this cutting plane algorithm, the overall complexity is the same whether a short

step or a long step approach to reducing µ is used.

As mentioned above, an upper bound constraint on the objective function value is

added to the formulation, in Step 1. This constraint is implied by the box constraints

−1
ε
e ≤ y ≤ 1

ε
e. Whenever a feasible iterate is found in Step 5, the right hand side of

the upper bound constraint is be updated using the formula given in (30), in Step 8,

provided this leads to an improved upper bound.

One technique used in the analysis of the algorithm is to use the modified barrier

function

fu(y, µ) :=
u− bTy

µ
+G(y), (32)

where u is the current best known upper bound on the optimal value of (OPT) and

G(y) was defined in (14). It follows that a reduction in the upper bound u will lead

to a decrease in the modified barrier function fu(y, µ). Local convergence analysis

(that is, the number of Newton steps required in Step 7 or Step 8) is not changed by

the explicit inclusion of the upper bound in the modified barrier function. The global

convergence analysis is simplified because the size of u−bT y
µ

is limited at approximate

analytic centers to be O(n). Therefore, once fu has increased sufficiently, we can

conclude that G(y) has also increased to a large enough value to allow termination

due to either volume or width considerations.

To be more specific, it can be shown that when the barrier parameter is reduced,

the decrease in fu(y, µ) from one approximate µ-center to the next is no greater

than O(mL) (see Lemma 18 in [28]). The number of reductions in µ is O(L), so

the total decrease in fu due to barrier parameter reduction steps is no more than

O(mL2). Recall that the analysis of the algorithm in §2 required showing that the

barrier function increases from one approximate analytic center to the next, and that

there is a limit to how large this function can become. The decrease in the potential

function due to the inclusion of the barrier parameter reduction steps is of the same

order as the maximum possible increase in fu before we can terminate due to volume

or width considerations. Therefore, the overall complexity bound for the algorithm

30

is also O(mL2) Newton steps and O(mL) calls to the oracle.

Note that the algorithm can be terminated before Q∗ becomes too small, in the

same way that the ellipsoid method can be terminated. In particular, if Q∗ can be

contained in an ellipsoid of volume no more than that of a ball of radius ε, then we

could round to an optimal solution using simultaneous diophantine approximation, as

described in Grötschel et al. [15]. An alternative method for rounding to an optimal

solution is described in Megiddo [23].

4.2 A long-step volumetric center cutting plane algorithm

Ramaswamy and Mitchell [33] have proposed a long step variant of the volumetric

cutting plane algorithm. They used the barrier function

Φu(y, µ) :=
u− bTy

µ
+ V (y) (33)

where V (y) is the volumetric barrier function defined in (17), u is an upper bound on

the optimal value of (OPT), and µ is the barrier parameter. As in §4.1, the presence

of u in the barrier function Φu(y, µ) serves to bound the contribution of the objective

function. It then follows that once the barrier function Φu(y, µ) is sufficiently large,

the volumetric barrier function V (y) is also large enough to allow termination on the

basis that a region similar to Q∗ is too small to contain a ball of radius ε.

The algorithm generates an approximate µ-volumetric center (see (34) below), and

tries to drop or add constraints as in the algorithm presented in §3. If no constraints

should be dropped and if no violated constraints are returned by the oracle, then the

barrier parameter µ is reduced and quasi-Newton steps are taken to recover a new

approximate µ-volumetric center.

The algorithm is initialized with the same relaxation (P0) given in §4.1, and the

relaxation at any stage would have the form (Pk). A strictly feasible point y in the

current relaxation is an approximate µ-volumetric center if it satisfies

ν||∇Φu(y, µ)||P (y) ≤ γ (34)

for some appropriate constant γ, where ν was defined in (23).

The algorithm is given in Figure 6. Local convergence in Step 5 can be shown to

have the same complexity, namely O(
√
m) quasi-Newton steps, as for the volumetric

algorithm presented in §3. Local convergence in Step 7 requiresO(m1.5) quasi-Newton

steps.

It can be shown that the barrier function Φu(y, µ) increases by at least a constant

∆Φ+ when a constraint is added, and decreases by no more than a constant ∆Φ−

31

1. Initialize:

Set µ = 1
ε
, n = 2m+1, A = [I, −I, b], and cT = [1

ε
eT , 1

ε
eT ,

√
m
ε

].

Set y = 0 and s = c. Initialize the iteration counter k = 0. Set

uprev = cn. Iterate, if necessary, to get approximate µ-volumetric

center. Initialize σmin to some value between 0 and ε. Go to

Step 4.

2. Check to drop constraints:

If V (y) is sufficiently large, STOP: the best point seen so far is

optimal. Calculate σi for each constraint. Let ī be the index with

the smallest value of σi, for i = 2m+ 2, . . . , n. If σī < σmin, go to

Step 3, else go to Step 4.

3. Drop constraint:

Drop the īth row from [AT , c]. Update n← n− 1. Go to Step 6.

4. Call oracle:

Call the oracle with y as the trial point. If the oracle does not

return a violated constraint, go to Step 7.

5. Update relaxation:

Let a and c0 denote the constraint returned by the oracle. Set

β = aTy. Add the constraint aTy ≤ β to [AT , c] and update

n← n+ 1.

6. Update y:

Find a new approximate volumetric center y. Update s = c−AT y.

Return to Step 2.

7. Reduce µ:

Test y for optimality. If optimal, get dual solution x and STOP.

Else, set u = bTy+2nµ. Set uprev = min{u, uprev} and update the

constraint bTy ≤ uprev. Set µ = µρ where ρ ∈ (0.5, 1) is a con-

stant independent of the problem. Take quasi-Newton steps with

linesearch to find new approximate µ-center. Return to Step 2.

Figure 6: A long step volumetric barrier cutting plane algorithm

32

when a constraint is dropped, with ∆Φ+ − ∆Φ− bounded away from zero, as in §3.
As in §4.1, global convergence requires showing that the reduction in the function

Φu(y, µ) is limited when µ is reduced. Since the number of reductions in the barrier

parameter is no more than O(L), the following result was proved in [33]:

Theorem 6 The algorithm will terminate in at most O(m1.5L) quasi-Newton steps,

with at most O(mL) constraints added.

For the feasibility algorithm, adding constraints through the current iterate in-

creases the number of quasi-Newton steps in Step 6 from O(1) to O(
√
m), and this

increases the overall complexity of the algorithm by a factor of
√
m. For the algorithm

in this section, backing off the constraints does not lead to a reduction in the overall

complexity, because Step 7 requires O(m1.5) quasi-Newton steps.

5 Solving integer programming problems

Cutting plane algorithms can be used to solve integer programming problems. In this

case, the set C in (OPT) is the convex hull of the set of feasible integer solutions. Note

that this formulation can be used for nonlinear as well as linear integer programs,

as long as the inequality constraints are convex. Problems with concave objective

functions f(y) can also be cast in the form of (OPT): introduce an extra variable Θ

to give the objective function value, maximize this additional variable, and include

the constraint Θ − f(y) ≤ 0. An optimal solution to (OPT) occurs at an extreme

point of C, so solving (OPT) will give the optimal solution to the integer program if

it is unique.

Classical Gomory cutting planes for general integer linear programming problems

were extended to interior point cutting plane methods in [24]. Much recent success

with cutting plane methods has come with the use of problem-specific cutting planes.

For experience with interior point cutting plane methods with problem-specific cutting

planes, see [25] or [26]. These methods are surveyed in [27].

The algorithms described in this paper construct polyhedral approximations to

the convex set of interest, C. Mixed integer nonlinear programming problems can

be solved using such an approach. For an example of a polyhedral cutting plane

approach for solving maxcut problems via a semidefinite formulation, see Krishnan

and Mitchell [20, 21]. Akrotirianakis et al. [1] solve mixed integer nonlinear pro-

gramming problems using a cutting plane approach where nonlinear programming

relaxations are constructed and the nonlinear programs are solved using an interior

33

point method. The theoretical work of Mokhtarian and Goffin [30] addresses the

performance of cutting plane methods where nonlinear cuts are added, so nonlinear

programming approximations to C are solved.

Grötschel et al. [15] showed the polynomial equivalence of separation and opti-

mization for integer programming problems. In particular, they showed that if the

separation oracle requires polynomial time then the optimization problem (OPT) can

be solved in polynomial time, if the ellipsoid algorithm is used to solve the relaxations.

The polynomial methods presented in this paper provide an alternative proof of this

fundamental result.

6 Conclusions and open questions

The volumetric cutting plane algorithm for the feasibility problem gives a complexity

for the number of calls to the oracle that is optimal. This complexity can be achieved

whether or not the algorithm is designed to drop unimportant constraints. The

complexity of the cutting plane algorithm based on the logarithmic barrier function

is slightly worse, and the analysis requires that unimportant constraints be dropped.

This algorithm is polynomial. It would be desirable to reduce the complexity of such

an algorithm to match the complexity of the volumetric center algorithm.

Algorithms that are based on the analytic center and do not drop constraints

have only been shown to be fully polynomial. It would be of interest to develop a

polynomial cutting plane algorithm using the logarithmic barrier function that did

not require that unimportant constraints be dropped.

The algorithms have been extended to handle optimization problems, through the

introduction of a linear term for the objective function into the barrier functions.

These algorithms allow long-step reductions in the barrier parameter µ. The long-

step variant of the logarithmic cutting plane algorithm has the same complexity as

the original, but the long-step volumetric cutting plane algorithm requires a larger

number of quasi-Newton steps (although the same number of calls to the oracle) as

the feasibility version.

References

[1] I. Akrotirianakis, I. Maros, and B. Rustem. An outer approximation based

branch and cut algorithm for convex 0-1 MINLP problems. Optimization Methods

and Software, 16:21–47, 2001.

34

[2] K. M. Anstreicher. On Vaidya’s volumetric cutting plane method for convex

programming. Mathematics of Operations Research, 22:63–89, 1997.

[3] K. M. Anstreicher. Volumetric path following algorithms for linear programming.

Mathematical Programming, 76:245–263, 1997.

[4] K. M. Anstreicher. The volumetric barrier for convex quadratic constraints.

Technical report, Department of Management Sciences, University of Iowa, Iowa

City, Iowa 52242, October 1998.

[5] K. M. Anstreicher. Towards a practical volumetric cutting plane method for

convex programming. SIAM Journal on Optimization, 9:190–206, 1999.

[6] K. M. Anstreicher. The volumetric barrier for semidefinite programming. Math-

ematics of Operations Research, 25(3):365–380, 2000.

[7] D. S. Atkinson and P. M. Vaidya. A cutting plane algorithm for convex program-

ming that uses analytic centers. Mathematical Programming, 69:1–43, 1995.

[8] O. Bahn, O. Du Merle, J. L. Goffin, and J. P. Vial. A cutting plane method

from analytic centers for stochastic programming. Mathematical Programming,

69:45–73, 1995.

[9] J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial. Solving nonlinear multi-

commodity network flow problems by the analytic center cutting plane method.

Mathematical Programming, 76:131–154, 1997.

[10] J.-L. Goffin, Z.-Q. Luo, and Y. Ye. Complexity analysis of an interior cutting

plane method for convex feasibility problems. SIAM Journal on Optimization,

6:638–652, 1996.

[11] J.-L. Goffin and J.-P. Vial. Multiple cuts in the analytic center cutting plane

method. SIAM Journal on Optimization, 11(1):266–288, 2001.

[12] J.-L. Goffin and J.-P. Vial. Convex nondifferentiable optimization: a survey

focussed on the analytic center cutting plane method. Optimization Methods

and Software, 17(5):805–867, 2002.

[13] J. Gondzio. Warm start of the primal-dual method applied in the cutting plane

scheme. Mathematical Programming, 83:125–143, 1998.

35

[14] J. Gondzio, O. du Merle, R. Sarkissian, and J.-P. Vial. ACCPM — A library for

convex optimization based on an analytic center cutting plane method. European

Journal of Operational Research, 94:206–211, 1996.

[15] M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combina-

torial Optimization. Springer-Verlag, Berlin, Germany, 1988.

[16] D. den Hertog, J. Kaliski, C. Roos, and T. Terlaky. A logarithmic barrier cutting

plane method for convex programming problems. Annals of Operations Research,

58:69–98, 1995.

[17] D. den Hertog, C. Roos, and T. Terlaky. A build-up variant of the path-following

method for LP. Operations Research Letters, 12:181–186, 1992.

[18] D. den Hertog, C. Roos, and T. Terlaky. Adding and deleting constraints in the

logarithmic barrier method for LP. In D.-Z. Du and J. Sun, editors, Advances in

Optimization and Approximation, pages 166–185. Kluwer Academic Publishers,

Dordrecht, The Netherlands, 1994.

[19] J. Kaliski, D. Haglin, C. Roos, and T. Terlaky. Logarithmic barrier decom-

position methods for semi-infinite programming. International Transactions in

Operations Research, 4:285–303, 1997.

[20] K. Krishnan and J. E. Mitchell. Cutting plane methods for semidefinite program-

ming. Technical report, Mathematical Sciences, Rensselaer Polytechnic Institute,

Troy, NY 12180, November 2002.

[21] K. Krishnan and J. E. Mitchell. Semidefinite cutting plane approaches for the

maxcut problem. Technical report, Mathematical Sciences, Rensselaer Polytech-

nic Institute, Troy, NY 12180, April 2003.

[22] Z.-Q. Luo, C. Roos, and T. Terlaky. Complexity analysis of a logarithmic barrier

decomposition method for semi-infinite linear programming. Applied Numerical

Mathematics, 29(3):379–395, 1999. Special issue dedicated to the HPOPT-I

workshop held in Delft, September 19–20, 1996.

[23] N. Megiddo. On finding primal- and dual-optimal bases. ORSA Journal on

Computing, 3:63–65, 1991.

[24] J. E. Mitchell. Fixing variables and generating classical cutting planes when

using an interior point branch and cut method to solve integer programming

problems. European Journal of Operational Research, 97:139–148, 1997.

36

[25] J. E. Mitchell. Computational experience with an interior point cutting plane

algorithm. SIAM Journal on Optimization, 10(4):1212–1227, 2000.

[26] J. E. Mitchell and B. Borchers. Solving linear ordering problems with a combined

interior point/simplex cutting plane algorithm. In H. L. Frenk et al., editor,

High Performance Optimization, chapter 14, pages 349–366. Kluwer Academic

Publishers, Dordrecht, The Netherlands, 2000.

[27] J. E. Mitchell, P. M. Pardalos, and M. G. C. Resende. Interior point methods

for combinatorial optimization. In D.-Z. Du and P. M. Pardalos, editors, Hand-

book of Combinatorial Optimization, volume 1, pages 189–297. Kluwer Academic

Publishers, 1998.

[28] J. E. Mitchell and S. Ramaswamy. A long-step, cutting plane algorithm for linear

and convex programming. Annals of Operations Research, 99:95–122, 2000.

[29] J. E. Mitchell and M. J. Todd. Solving combinatorial optimization problems

using Karmarkar’s algorithm. Mathematical Programming, 56:245–284, 1992.

[30] F. S. Mokhtarian and J.-L. Goffin. A nonlinear analytic center cutting plane

method for a class of convex programming problems. SIAM Journal on Opti-

mization, 8:1108–1131, 1998.

[31] A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency

in Optimization. John Wiley, 1983.

[32] Y. E. Nesterov and A. S. Nemirovsky. Interior Point Polynomial Methods in Con-

vex Programming : Theory and Algorithms. SIAM Publications. SIAM, Philadel-

phia, USA, 1993.

[33] S. Ramaswamy and J. E. Mitchell. A long step cutting plane algorithm that uses

the volumetric barrier. Technical report, DSES, Rensselaer Polytechnic Institute,

Troy, NY 12180, June 1995.

[34] J. Renegar. A polynomial-time algorithm based on Newton’s method for linear

programming. Mathematical Programming, 40:59–93, 1988.

[35] P. M. Vaidya. A new algorithm for minimizing convex functions over convex

sets. Mathematical Programming, 73:291–341, 1996.

37

[36] Y. Ye, O. Güler, R. A. Tapia, and Y. Zhang. A quadratically convergent

O(
√
nL)–iteration algorithm for linear programming. Mathematical Program-

ming, 59:151–162, 1993.

[37] Y. Zhang, R. A. Tapia, and J. E. Dennis. On the superlinear and quadratic

convergence of primal–dual interior point linear programming algorithms. SIAM

Journal on Optimization, 2(2):304–324, 1992.

38

