
Logic-based Multi-Objective Optimization for
Restoration Planning

Jing Gong1, Earl E. Lee2, John E. Mitchell3, William A. Wallace4

1 DSES, Rensselaer Polytechnic Institute, Troy, NY 12180. gongj@rpi.edu
2 DSES, Rensselaer Polytechnic Institute, Troy, NY 12180. leee@rpi.edu
3 Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180.
mitchj@rpi.edu

4 DSES, Rensselaer Polytechnic Institute, Troy, NY 12180. wallaw@rpi.edu

Summary. After a disruption in an interconnected set of systems, it is necessary
to restore service. This requires the determination of the tasks that need to be un-
dertaken to restore service, and then scheduling those tasks using the available re-
sources. This paper discusses combining mathematical programming and constraint
programming into multiple objective restoration planning in order to schedule the
tasks that need to be performed. There are three classical objectives involved in
scheduling problems: the cost, the tardiness, and the makespan. Efficient solutions
for the multiple objective function problem are determined using convex combina-
tions of the classical objectives. For each combination, a mixed integer program is
solved using a Benders decomposition approach. The Master Problem assigns tasks
to workgroups, and then subproblems schedule the tasks assigned to each workgroup.
Hooker has proposed using integer programming to solve the master problem and
constraint programming to solve the subproblems, when using one of the classical
objective functions. We show that this approach can be successfully generalized to
the multiple objective problem. The speed at which a useful set of points on the ef-
ficient frontier can be determined should allow the integration of the determination
of the tasks to be performed with the evaluation of the various costs of performing
those tasks.

Key words: Constraint programming, Mixed integer programming, Multi-Objective,
Scheduling and planning.

1 Problem Description

Our previous work [1], [2] introduced the interdependent layered network
model (ILN). This model was a network flow based model of civil infras-
tructure systems incorporating their interdependencies (or interconnected-
ness). The work identified five types of interdependency and mathematical
representations of each were developed. This model of the system of systems
could demonstrate the cascading effects of a disruption; allow for collaborative



2 Jing Gong, Earl E. Lee, John E. Mitchell, William A. Wallace

restoration planning across the set of systems; and could show vulnerability
in a system due to its reliance on other systems.

In [1], a scenario was developed to exercise the model. Using data provided
by the respective system managers, a realistic representation of the power,
communications and subway systems of a large portion of Manhattan was
developed. A disruption with effects similar to the September 11, 2001 attacks
on the World Trade Center was proposed. The disruption was entered into the
ILN with the output showing the service outages which resulted directly from
the disruption and the impact due to the cascading effect of the disruption
due to the interconnectedness of the systems.

The next step was the development of a restoration plan which met the
constraints placed upon planners by the various management agencies in-
volved. In general, the restoration plan consisted of the running of temporary
lines along the streets of Manhattan to restore power and phone service until
permanent repairs could be made. New constraints included the capacity of
the temporary lines, limits on streets where lines may or may not be run along
or crossed, etc. Consider the street sections in the area of interest as arcs. The
output of the ILN was a subset of those arcs which met the constraints of the
planners and restored the services. With a plan developed, another module
of the ILN developed a schedule for the set of tasks. This scheduling module,
like the ILN was a mixed-integer problem.

This paper builds upon that work. In this case, a hybrid mixed integer
and constraint programming modeling framework is presented for scheduling.
Based on the optimal restoration plan developed in the ILN, this hybrid model
determines how to accomplish the plan, i.e. the assignment and sequence of
activities.

In the example provided in this paper, all resources are considered unary.
Workers and equipment are bundled into work groups and have sufficient skills
to accomplish any of the tasks in the set. Each task only requires one work-
group. The only differences between the work groups are their cost and time
required to complete each task. So the decision problem is how to assign repair
tasks to these groups and schedule tasks for each workgroup in an optimal
fashion. Future work will include shared resources. For example, supervisors
might be a shared resource. Each task would have its own unique require-
ment for the number of supervisors at each job site, with a fixed number of
supervisors available during each time interval.

Requirements from a planner or a manager could be: spend as little money
as possible; complete all tasks by their due dates; or finish all tasks as soon
as possible. So there are three measures that need to be minimized: the cost,
the tardiness of each task and the makespan of all tasks. They are formulated
as objectives in our model. Our approach to address this multi-objective issue
is to minimize the weighted sum of the three objectives. Decision making for
the optimal solution can be viewed as a procedure to tradeoff among them.



Logic-based Multi-Objective Optimization for Restoration Planning 3

2 Literature Review

Constraint Programming (CP) developed as a computer science technology
which employs developments in artificial intelligence and computer program-
ming languages [3]. It provides the capability of defining the structure of
the search space and specifying the algorithm for exploring the search space,
which make it possible to solve some particular problems efficiently, e.g. some
combinatorial optimization problems [4]. Constraint programming is viewed
as more like a method of solving the problem, not just a modeling language,
like AMPL, GAMS and so on, although languages supporting constraint pro-
gramming have a strengthened expressiveness compared with those traditional
mathematical programming languages. More and more researchers discuss in-
corporation of this technology into the operations research field.

Recently, research interest in combining constraint programming with
mathematical programming arose. Kim and Hooker [5] applied a hybrid solu-
tion method which combines constraint programming and linear programming
to fixed charge network flow problems. They solved the problem by combin-
ing constraint propagation and a projected relaxation and got a significant
computational performance improvement compared with a commercial mixed
integer programming code. Hooker [6] compared those two technologies and
pointed out that they have complementary strengths in solving integer and
mixed integer problems, although one originated from mathematics and the
other from engineering. Hooker [7] proposed a search-infer-relax framework
for integrating solution methods. Searching is a procedure of enumerating
all values in the domain. Inference derives implicit constraints to reduce the
domain. Relaxation solves a relaxed problem for a bound on the original
problem. Branch-and-bound in mathematical programming, specifically, in-
teger programming and mixed integer programming, is a particular strategy
of searching the whole space. It can be viewed as a sophisticated enumeration,
which makes it possible to combine two solution methods in this integration
framework.

Another integration scheme is applying constraint programming into clas-
sical Benders decomposition for some problems whose subproblem is easily
solved by constraint programming technology. Hooker [8] extended the idea of
the classical Benders decomposition to a logic-based Benders. The logic-based
Benders cuts are obtained by solving the inference dual of the subproblem.
The solution of the inference dual can prove optimality when variables of the
master problem take certain values. The difference between the logic-based
Benders cut and classical Benders cut is that no standard form exists for the
logic-based cut. The subproblem could be a Linear Program (LP), Mixed In-
teger Program (MIP), or CP, and cuts are generated by logical inference on
the solution of the subproblem. However, generally the master problem is an
MIP, therefore cuts are formulated as linear constraints. The classical Benders
decomposition is strengthened by introducing the logic-based Benders cut.



4 Jing Gong, Earl E. Lee, John E. Mitchell, William A. Wallace

Scheduling is a decision-making process of allocating limited resources to
tasks over time with the goal of optimizing a certain objective [9]. Scheduling
problems can be solved by dynamic programming or integer programming
models. Most scheduling problems do not have a polynomial time algorithm
and are NP-hard problems. Pinedo [9] presented a complexity hierarchy of
scheduling problems. The IP model for scheduling problems contains much
symmetry, which makes the model hard to be solved by branch-and-bound.
Lustig and Puget [3] pointed out that constraint programming is often better
than integer programming in application to sequencing and scheduling.

Jain and Grossmann [10] applied the logic-based Benders cut into a plan-
ning and scheduling problem that involves cost minimization. Harjunkoski
and Grossmann [11] extended the decomposition strategy for a multistage
planing and scheduling problem. Maravelias and Grossmann [12] applied the
decomposition to a scheduling of batch plants formulated as the State Task
Network. Hooker [13] developed the logic Benders cuts for three different ob-
jectives (minimum cost, minimum makespan and minimum total tardiness) in
general planning and scheduling problems. He modeled them as three different
problems, solving each of them one at a time. However, the requirements from
a real world application might be that several goals need to be achieved si-
multaneously. Multiple objective optimization might be the case. This paper
discusses how to implement logic-based Benders cuts for multiple-objective
optimization in planning and scheduling problems. It can be viewed as an
extension to Hooker’s work.

As mentioned before, a logic-based Benders cut is based on the inference
of the subproblem, so there is no standard formulation for the cut. It is prob-
lem specific. Different objectives require different logical inference for cuts, so
complicated objectives might result in difficulty in cut generation. This paper
proposes a logic-based Benders cut approach for a planning and scheduling
problem with combined multiple objectives.

3 Integrated Solution of the Problem

As stated in section 1, an assignment and scheduling problem must be solved
for a set of tasks which comprise the restoration plan. The optimal solution
assigns the tasks to a workgroup and then arranges the tasks into a schedule.
Each task has a due date and the objective function will include a term to
minimize the amount of time each task exceeds its due date by (referred to
later as tardiness). The cost and time to complete a task depends on the
workgroup to which it is assigned. The objective function will include terms
to minimize the cost of completing all the tasks, the total tardiness, and the
time to complete the last task (the makespan). Each of these three terms of
the objective function will be weighted to reflect the priorities of the decision
maker. The problem is fundamentally an assignment and scheduling problem.
It falls into a category of problems that have proved to be difficult to solve [10,



Logic-based Multi-Objective Optimization for Restoration Planning 5

13]. An integrated algorithm based on a MILP master problem and several CP
subproblems is presented in this paper. The idea behind it is that the master
problem assigns tasks to groups; for each workgroup, a subproblem schedules
the tasks assigned to it. When subproblems prove the optimal solution from
master problem is also feasible (for each workgroup, a schedule which achieves
the same optimality as master problem can be found with satisfaction of all
constraints), the algorithm will stop and the solution from the master problem
is optimal to the original problem. Otherwise, relevant cutting planes are
added to the master problem and the above procedure iterates. Basically,
the original problem is decomposed to several smaller problems as long as an
assignment is set. Because parallel groups won’t interact with each other, each
subproblem can be solved individually, which causes a dramatic improvement
in computational performance .

3.1 Master Problem

The Master Problem determines the assignment of tasks to workgroups. The
formulation requires the following notation:

i : a task,
m : a work workgroup,
I : the set of tasks,
M : the set of workgroups,
Im : the set of tasks assigned to workgroup m,
xim := 1 if task i is assigned to workgroup m,
ti : starting time of task i,
si : tardiness of task i, always ≥ 0, since we only consider penalty.
y : makespan, i.e., completion time of the last task,
Rm : the amount of resource bundled to workgroup m,
cim : the cost of workgroup m completing task i,
pim : time of workgroup m requiring to complete task i,
di : the due time of task i,
qi : the workgroup that task i is assigned to,
rim : the amount of resource workgroup m requires to complete task i.

The Master Problem is formulated as a mixed integer program.

min
x,s,y,t

α
∑
i∈I

∑
m∈M

cimxim + β
∑
i∈I

si + γy (1)

subject to ti +
∑

m∈M

pimxim − si ≤ di ∀i ∈ I (2)

ti +
∑

m∈M

pimxim ≤ y ∀i ∈ I (3)∑
m∈M

xim = 1 ∀i ∈ I (4)



6 Jing Gong, Earl E. Lee, John E. Mitchell, William A. Wallace∑
i∈I

ximpim ≤ y ∀m ∈ M (5)

integer cuts (6)
xim = 0 if rim > Rm (7)
xim ∈ {0, 1} ∀i ∈ I and ∀m ∈ M (8)

si ≥ 0 ∀i ∈ I (9)
y ≥ 0 (10)

The master problem includes all three measures: total cost, tardiness and
makespan. Weights α, β, γ are used to trade off among those three objectives.
The objective function tries to minimize the weighted sum of them. Equation
(2) ensures that task i is completed before the due time, otherwise tardiness
si is incurred. Equation (3) ensures the makespan is no smaller than the com-
pletion time of every task. Equation (4) is an assignment constraint: each task
can only be assigned to one group. Equation (5) ensures that total performing
time of each group should be less than or equal to makespan. Equation (6)
are integer cuts from all subproblems. These integer cuts impose more and
more strict restrictions on variable xim, si, y as the algorithm proceeds, and
eventually drive those variables to the optimal solution of the original prob-
lem. Equation (7) ensures each task is only assigned to a workgroup which
has enough resources to complete it.

Note that the master problem doesn’t have sequencing constraints, which
means for each task no restrictions exist on starting time, so starting times
in the solution of master problem might not be feasible. Since starting times
imply a schedule of tasks, the master problem can’t yield feasible schedules be-
cause of infeasible starting times. Tardiness si and makespan y are associated
with schedules, infeasible schedules result in infeasible si and y. Therefore, the
master problem yields the optimal assignment xim, optimal tardiness si and
optimal makespan y, but their feasibility can’t be guaranteed. That requires
the subproblems to play a role in checking feasibility of the optimal solution
from the master problem.

3.2 Subproblem (CP model)

The master problem can’t guarantee what it yields is feasible to the original
problem, so it only solves the problem partially. The goal of the subproblem is
to examine whether this partial solution can be extended to a full solution for
the original problem, i.e., to feasible schedules. When the subproblem finds
the schedule which can achieve the same minimum tardiness and makespan as
the master problem, the original problem is solved. The cost isn’t involved in
the subproblem because it is only related to the assignment result and won’t
change. The subproblem only checks the result of the master problem and it
won’t change the assignment result.



Logic-based Multi-Objective Optimization for Restoration Planning 7

The subproblem requires as input the assignment results from the master
problem. For each group, the set of tasks composing the group is determined
by the master problem. That is, the assignment result xim from the master
problem can derive the value of qi indicating to which group task i is assigned.
For each group m, a set of tasks assigned to it, Im := {i ∈ I : qi = m}, can
be determined. Then a subproblem m is modeled as:

min β
∑
i∈Im

s′i + γy′ (11)

subject to i.end ≤ y∗ + y′ ∀i ∈ Im (12)
i.start ≤ di + s′i − piqi ∀i ∈ Im (13)

i.duration = piqi ∀i ∈ Im (14)
i1 precedes i2 ∀(i1, i2) ∈ precedence pairs , i1 6= i2 ∈ Im(15)

i require qi ∀i ∈ Im (16)
s′t ≥ 0 ∀i ∈ Im (17)
y′ ≥ 0 (18)

The model is a pure CP model and seeks a schedule which minimizes the
weighted sum of total tardiness and makespan. Variable task i is a special
object in OPL [14] and has some attributes such as starting time, ending
time, duration and so on. Variable s′i is the new tardiness. Compared with
si from the master problem, it is the exact tardiness since the subproblem
imposes effective constraints on it. Parameter y∗ is the optimal makespan of
the master problem. Variable y′ is the slack in the makespan of the master
problem, as defined in Equation (12). Equation (13) ensures every task is
completed before its due time. Equation (14) specifies the processing time of
task i. Equation (15) is a precedence constraint. A workgroup m is an unary
resource. Equation (16) is a unary resource constraint and makes sure no two
tasks requiring it are scheduled at the same time.

3.3 Algorithm

Let xk∗, sk∗, yk∗ be the optimal solution of the master problem at iteration k.
For each group m, a subproblem is formulated. So the number of subproblems
is the number of groups and the original problem is decomposed into several
small size problems. They determine our three objectives cost, tardiness and
makespan, respectively. Let s′

(m,k)∗
, y′

(m,k)∗ be the optimal solution of sub-
problem m at iteration k. Different schedules in subproblems won’t change
the optimal cost, because the cost is only related to the assignment. Thus, all
we concerned with at iteration k is whether or not the minimum tardiness and
makespan from the master problem can also be achieved in the subproblem.
That is, whether the sum of the differences between the master problem and



8 Jing Gong, Earl E. Lee, John E. Mitchell, William A. Wallace

the subproblem, i.e., difference in tardiness and difference in makespan, equals
zero. As mentioned before, constraints on those two terms in the subproblem
are always tighter than those in the master problem, consequently those two
values in the subproblem are larger than those in the master problem. Let’s
introduce a new term defined as follows:

D(m,k) =
∑
i∈Ik

m

(s′)(m,k)
i

∗
−

∑
i∈Ik

m

sk
i

∗
+ (y′)(m,k)∗ (19)

where Ik
m = {i ∈ I : xk

im
∗ = 1}.

The subproblem difference D(m,k) is a measure of the difference in tardi-
ness and makespan between the master problem solution and the subproblem
solution. When

∑
m∈M D(m,k) = 0, at iteration k the minimum tardiness and

makespan from the master problem can also be achieved by optimal schedules
from the subproblems, so the optimal solution for the original problem, i.e, an
optimal assignment and schedules, is obtained. Otherwise, the current optimal
solutions from master problem xk

im
∗
, sk

i
∗
, yk∗ needs to be cut off. Different

values of those two measurements determine the cutting plane. There are four
cases:

1. Subproblem m is infeasible, indicating that the assignment from the mas-
ter problem is incorrect, so the cutting plane at k iteration is to cut off
current assignment: ∑

i∈Ik
m

xim ≤
∑
i∈Ik

m

xk
im

∗ − 1 (20)

2. D(m,k) > 0 indicates that tardiness sk
i
∗ and makespan yk∗ from the master

problem might not be large enough, so cutting plane at iteration k either
cuts off the current assignment or increases tardiness and makespan:∑

i∈Ik
m

xim ≤
∑
i∈Ik

m

xk
im

∗ − 1

or ∑
i∈Ik

m

βsi + γy ≥
∑
i∈Ik

m

β(s′)(m,k)
i

∗
+ γ(yk∗ + (y′)(m,k)∗) (21)

3. D(m,k) ≤ 0 indicates that current solution from the master problem is
feasible for subproblem m.

4.
∑

m∈M D(m,k) = 0 holds for all subproblems, then the current solutions
are optimal. The optimal assignment is from the master problem and
optimal schedule is from the subproblems.

There are two fundamental constraints comprising the above cuts. Con-
straint (20) cuts off the current assignment by restricting the sum of as-
signment variables xim, i ∈ Ik

m to be less than the current value. This cut



Logic-based Multi-Objective Optimization for Restoration Planning 9

only involves the assignment variables currently assigned to a group, so it is
tight enough to make the feasible region shrink efficiently. Constraint (21)
increases the tardiness and makespan by imposing a lower bound, i.e., the
optimal weighted sum of them from the current subproblem, which implies
the weighted sum of tardiness and makespan should be at least as large as∑

i∈Ik
m

βs′
(m,k)
i

∗
+ γ(yk∗ + y′

(m,k)∗). In other words, constraint (21) employs
a nice bound to drive variable si, i ∈ Ik

m and y towards optimality.
The logic behind the cut is when the optimal solution of the master prob-

lem is proved to be infeasible, there are two possibilities: 1) the assignment
is wrong; or 2) the assignment is correct but makespan and tardiness are not
large enough, which results in infeasibility. So the cut is either to cut off the
assignment or to increase the makespan and tardiness. Hooker’s cut [13] tried
to build up the relationship between the objective value and the assignment
variables. When the problem has one of the classical single objectives of cost
or makespan or tardiness, it is possible to place bounds on how the objec-
tive value is changed as the values of the assignment variables change. Thus,
Hooker is able to derive more specialized cuts for these objectives. However,
when the objective function is a convex combination of the classical objectives,
it is hard to derive such a relationship. So we use different logic to derive the
cut and drive the solution to optimality. Nonetheless, as will be seen in the
section on computational results, these general cuts are still powerful and
enable the fast solution of realistic problems.

We use disjunctive constraints to represent this logic for case 2. The bi-
nary variable z(m,k) is involved in the formulation of disjunctive constraints.
Whether constraint (20) and constraint (21) are effective or not is dependent
on values of this binary variable. So case (2) can be rewritten as follows:∑

i∈Ik
m

xim ≤ Mz(m,k) +
∑
i∈Ik

m

xk
im

∗ − 1 (22)

∑
i∈Ik

m

βsi + γy ≥ z(m,k)

 ∑
i∈Ik

m

β(s′)(m,k)
t

∗
+ γ(yk∗ + (y′)(m,k)∗)

 (23)

M is equal to the total number of tasks, which is an upper bound which is
large enough for the sum of some assignment variables, since all assignment
variables are binary. When z(m,k) takes a value of 0, constraint (20) will take
effect. Otherwise, the cut is invalidated by a redundant upper bound for xim.
Likewise, both variable si and y have a lower bound 0. When z(m,k) takes a
value of 1, constraint (21) will take effect. When it takes a value of 0, the cut
will turn out to be a redundant lower bound for si and y.

Figure 1 depicts the whole solving procedure. The original problem is di-
vided into two parts, the assignment problem and the scheduling problem.
The former is the master problem and includes all assignment constraints. As
the algorithm proceeds, more and more integer cuts are added to it. The lat-
ter is the subproblem and includes all sequencing constraints. The algorithm



10 Jing Gong, Earl E. Lee, John E. Mitchell, William A. Wallace

begins with solving a master problem, solutions of the master problem spec-
ify each subproblem. If a subproblem is infeasible, the cut which cuts off the
current assignment will be added to the master problem, and the algorithm
goes back to the beginning. If the subproblem is feasible, its optimal value
will be compared with the corresponding part of master problem value. The
algorithm ends up with equality of those two values. If they are not equiva-
lent, disjunctive cuts will be added to the master problem and the algorithm
goes back to the beginning. Briefly, subproblems at each iteration check if
the master problem solution can be extended to feasible schedules. If so, the
optimal solution for the original problem is found. Otherwise, cutting planes
are added to the master problem.

Solve SPs

Optimal
Y

N

Infeasible

Solve MP

Specify SPs

Add cutting planes
k=k+1

Add cutting planes
k=k+1

All SP differences
equal to zero ?

Fig. 1. Decomposition Algorithm

4 Computational Results

All CP subproblems were solved by ILOG Solver and ILOG Scheduler [15].
All MIP master problems were solved by ILOG CPLEX 8.0 [16]. The decom-
position algorithm was implemented using the script language in ILOG OPL
Studio 3.7 [14]. There are 3 workgroups and 30 tasks in our problem.



Logic-based Multi-Objective Optimization for Restoration Planning 11

4.1 Objective Function Scaling

As defined in equation (1), the goal of our model is to find the optimal solution
for the combined objectives (the cost, the tardiness and the makespan). They
are not comparable because of the different units they use, so it is hard to
reflect the priorities of the decision maker by weights. Our approach to address
this issue is to convert different units of measures into the same unit. The
conversion can be viewed as a process of finding the relationship of different
units, i.e., how much does it cost when there is a one day delay? How much
does it cost for every working day? We try to measure makespan and tardiness
by money. Therefore, the objective can be rewritten as follows:

α
∑
i∈I

∑
m∈M

cimxim + βη1

∑
i∈I

si + γη2y (24)

where η1 is the ratio of the cost to the tardiness, η2 is the ratio of the cost to
the makespan.

Generally, ratios η1 and η2 need to be set by model users. Sometimes, their
values can be derived mathematically. Take η2 as a example, set α to be 100,
β to be 0 and γ to be 0, solve the problem for the minimum cost (cost∗),
and then set α to be 0, β to be 0 and γ to be 100, solve the problem for the
minimum makespan (makespan∗). Then η2 can be set as follows:

η2 =
cost∗

makespan∗ (25)

The argument for this method is that given the same amount of resources
and same constraints two goals can be achieved individually, so the ratio of
their optimal values can be viewed as the ratio of the cost to the makespan
for those resources and constraints. This method only applies to the problem
with nonzero optimal value for each objective, otherwise, the an infinitely
large ratio could be derived.

For the problem discussed in this paper, we get three extreme points by
considering only one objective at a time. They are (442,240,60), (503,0,60)
and (502,240,20), corresponding to three sets of (α, β, γ) equal to (100,0,0),
(0,100,0) and (0,0,100), respectively. So, in order to complete all restoration
tasks, we need to pay at least 442 dollars, which is the lower bound of the
cost. If we don’t care about how much completing the task will cost or how
long completing all tasks will take, then we can complete all tasks by its due
date. If we don’t care about the cost or if every task is done by the due date,
then we can finish all the tasks in 20 days.

cost∗ = 442
tardiness∗ = 0

makespan∗ = 20



12 Jing Gong, Earl E. Lee, John E. Mitchell, William A. Wallace

The value of η2 is obtained by dividing cost∗ by makespan∗, giving 22.
While the above method doesn’t apply to η1 since tardiness∗ is 0, it is set to
be 1 by user’s experience.

4.2 Computational Performance

Table 1 shows computational performance for different values of weight. #
cuts gives the number of cuts generated to solve the problem. Iterations lists
the number of times the Master Problem was solved. Solving time is the CPU
time for solving the model. It was calculated by summing up solving times
of the MIP model and 3 CP models. Different combinations of the three
weights α, β, γ lead to different complexities of problems. As the proportion
of α decreases, deviation of the master problem solution from the optimal
solution to the original problem becomes larger. Thus more iterations are
involved in the algorithm.

Table 1. Computational performance of algorithm for different combinations of
α, β, γ.

No. α β γ # Cuts Iterations Solving time (seconds)

1 0 75 25 28 22 1.834
2 5 70 25 28 21 1.812
3 10 65 25 27 20 1.545
4 15 60 25 27 20 1.672
5 20 55 25 21 17 1.187
6 25 50 25 18 15 0.766
7 30 45 25 14 12 0.547
8 35 40 25 14 12 0.673
9 40 35 25 10 9 0.500
10 45 30 25 9 8 0.391
11 50 25 25 7 6 0.172
12 55 20 25 5 5 0.156
13 60 15 25 2 3 0.079
14 65 10 25 2 3 0.078
15 70 5 25 2 3 0.078
16 75 0 25 0 1 <0.001

4.3 Optimal Solutions

Tables 2–10 display optimal solutions for different priorities on three objec-
tives: cost, tardiness and makespan. Almost all of the problems could be solved
in less than four seconds. The exceptions are when the makespan has low pri-
ority, in particular γ is equal to 5 or smaller. We found that the problem could



Logic-based Multi-Objective Optimization for Restoration Planning 13

not be solved in two hours for many of these priority combinations with γ = 0
so these results have been omitted. The sum of the three weights is 100. Each
weight is held constant at 3 different levels, i.e., 25, 50 and 75, and the other
two weights varied by multiples of five. It can be seen that most of the time
optimal solutions don’t change as weights change. This uneven distribution of
optimal solutions was noted by Das and Dennis [17]. They pointed out that an
evenly distributed set of weights fails to produce an evenly distributed set of
points from all parts of the Pareto set. The result set presents frontier values
for different weights.

Table 2. γ held constant at 25.

No. α β γ Cost Tardiness Makespan Solving time
(dollars) (days) (days) (seconds)

1 0 75 25 497 3 20 1.834
2 5 70 25 495 3 20 1.812
3 10 65 25 495 3 20 1.545
4 15 60 25 495 3 20 1.672
5 20 55 25 495 3 20 1.187
6 25 50 25 495 3 20 0.766
7 30 45 25 495 3 20 0.547
8 35 40 25 495 3 20 0.673
9 40 35 25 494 4 20 0.500
10 45 30 25 494 4 20 0.391
11 50 25 25 483 3 21 0.172
12 55 20 25 483 3 21 0.156
13 60 15 25 483 3 21 0.079
14 65 10 25 483 3 21 0.078
15 70 5 25 483 3 21 0.078
16 75 0 25 483 240 21 <0.001

Let us take Table 2 as an example. In this case, the weight of makespan, γ,
is held constant at 25 and five optimal solution sets are obtained by varying
weights of cost and tardiness, α and β. It can be seen that when makespan is
25% of the total objective, the three efficient (non-dominated) solutions are
(495, 3, 20), (494, 4, 20), and (483, 3, 21). Those three solutions compose the
frontier value set of optimal solutions at γ = 25 level. In this way, frontiers
for different levels of the weights can be presented. The set of such frontiers
provides the decision maker a nice picture of the correspondence between
weights and optimal solutions.

Tables 3 and 4 show the efficient solutions are (495,3,20) and (494,4,20)
when γ is held constant at 50 or 75. Table 5 shows the efficient solutions are
(495,3,20), (494,4,20),(488,0,21) and (480,0,22) when α is held constant at
25. Table 6 shows the efficient solutions are (494,4,20), (483,3,21), (472,3,23)
and (470,1,24) when α is held constant at 50. Table 7 shows the efficient



14 Jing Gong, Earl E. Lee, John E. Mitchell, William A. Wallace

Table 3. γ held constant at 50.

No. α β γ Cost Tardiness Makespan Solving time
(dollars) (days) (days) (seconds)

1 0 50 50 497 3 20 1.264
2 5 45 50 495 3 20 1.391
3 10 40 50 495 3 20 1.359
4 15 35 50 495 3 20 0.906
5 20 30 50 495 3 20 0.485
6 25 25 50 494 4 20 0.328
7 30 20 50 494 4 20 0.110
8 35 15 50 494 4 20 0.156
9 40 10 50 494 4 20 0.094
10 45 5 50 494 4 20 0.063
11 50 0 50 494 240 20 0.016

Table 4. γ held constant at 75.

No. α β γ Cost Tardiness Makespan Solving time
(dollars) (days) (days) (seconds)

1 0 25 75 495 3 20 1.001
2 5 20 75 495 3 20 1.609
3 10 15 75 495 3 20 0.469
4 15 10 75 494 4 20 0.172
5 20 5 75 494 4 20 0.094
6 25 0 75 494 240 20 0.031

Table 5. α held constant at 25.

No. α β γ Cost Tardiness Makespan Solving time
(dollars) (days) (days) (seconds)

1 25 0 75 494 240 20 0.016
2 25 5 70 494 4 20 0.047
3 25 10 65 494 4 20 0.095
4 25 15 60 494 4 20 0.203
5 25 20 55 494 4 20 0.235
6 25 25 50 494 4 20 0.280
7 25 30 45 495 3 20 0.485
8 25 35 40 495 3 20 0.469
9 25 40 35 495 3 20 0.625
10 25 45 30 495 3 20 0.718
11 25 50 25 495 3 20 0.828
12 25 55 20 495 3 20 1.110
13 25 60 15 488 0 21 3.751
14 25 65 10 488 0 21 3.769
15 25 70 5 480 0 22 14.203



Logic-based Multi-Objective Optimization for Restoration Planning 15

Table 6. α held constant at 50.

No. α β γ Cost Tardiness Makespan Solving time
(dollars) (days) (days) (seconds)

1 50 0 50 494 240 20 0.016
2 50 5 45 494 4 20 0.046
3 50 10 40 494 4 20 0.031
4 50 15 35 494 4 20 0.109
5 50 20 30 494 4 20 0.141
6 50 25 25 483 3 21 0.204
7 50 30 20 483 3 21 0.109
8 50 35 15 483 3 21 0.780
9 50 40 10 472 3 23 3.655
10 50 45 5 470 1 24 2923

Table 7. α held constant at 75.

No. α β γ Cost Tardiness Makespan Solving time
(dollars) (days) (days) (seconds)

1 75 0 25 483 240 21 0.031
2 75 5 20 483 3 21 0.140
3 75 10 15 471 7 23 0.062
4 75 15 10 461 7 26 3.765
5 75 20 5 452 14 30 500

Table 8. β held constant at 25.

No. α β γ Cost Tardiness Makespan Solving time
(dollars) (days) (days) (seconds)

1 0 25 75 495 3 20 1.077
2 5 25 70 495 3 20 1.344
3 10 25 65 495 3 20 0.657
4 15 25 60 495 3 20 0.734
5 20 25 55 495 3 20 0.658
6 25 25 50 494 4 20 0.265
7 30 25 45 494 4 20 0.282
8 35 25 40 494 4 20 0.250
9 40 25 35 494 4 20 0.172
10 45 25 30 494 4 20 0.187
11 50 25 25 483 3 21 0.266
12 55 25 20 483 3 21 0.110
13 60 25 15 472 3 23 1.703
14 65 25 10 472 3 23 4.453
15 70 25 5 452 14 30 1998



16 Jing Gong, Earl E. Lee, John E. Mitchell, William A. Wallace

Table 9. β held constant at 50.

No. α β γ Cost Tardiness Makespan Solving time
(dollars) (days) (days) (seconds)

1 0 50 50 497 3 20 1.297
2 5 50 45 495 3 20 1.375
3 10 50 40 495 3 20 1.313
4 15 50 35 495 3 20 1.718
5 20 50 30 495 3 20 0.875
6 25 50 25 494 4 20 0.797
7 30 50 20 494 4 20 1.342
8 35 50 15 483 3 21 1.156
9 40 50 10 480 0 22 6.705
10 45 50 5 470 1 24 724

Table 10. β held constant at 75.

No. α β γ Cost Tardiness Makespan Solving time
(dollars) (days) (days) (seconds)

1 0 75 25 496 3 20 1.844
2 5 75 20 495 3 20 2.250
3 10 75 15 495 3 20 2.220
4 15 75 10 488 0 21 2.751
5 20 75 5 480 0 22 3.111

solutions are (483,3,21), (471,7,23), (461,7,26) and (452,14,30) when α is
held constant at 75. Table 8 shows the efficient solutions are (495,3,20),
(494,4,20), (483,3,21), (472,3,23) and (452,14,30) when β is held constant at
25. Table 9 shows the efficient solutions are (495,3,20), (494,4,20), (483,3,21),
(480,0,22)and (470,1,24) when β is held constant at 50. Table 10 shows the
efficient solutions are (495,3,20), (488,0,21), (480,0,22)and (470,1,24) when β
is held constant at 75.

Altogether, eleven efficient solutions were found, and ten of these are dis-
played in Figure 2. The additional solution is the efficient solution (442,240,60)
found when minimizing the single objective of cost; this is not plotted be-
cause it would change the scaling of the picture too dramatically. The solu-
tions found by minimizing the single objectives makespan and tardiness were
not efficient. As can be seen from the tables, these solutions are found very
quickly, making it practical to determine them all. It appears that either an
integrated MIP approach or a Benders decomposition approach where the sub-
problems were solved using integer programming techniques would require far
more time. Because of the speed of the algorithm, all these efficient solutions
could be presented to a decision maker, who could then choose an appropriate



Logic-based Multi-Objective Optimization for Restoration Planning 17

schedule of tasks to workgroups in order to restore the interdependent layered
network.

450
460

470
480

490
500

0
5

10
15
16

18

20

22

24

26

28

30

m
ak
es
pa
n

tardiness cost

(452,14,30)

(480,0,22)

(488,0,21)
(495,3,20)

(494,4,20)
(483,3,21)(470,1,24)

(472,3,23)

(471,7,23)
(461,7,26)

Fig. 2. Efficient points for the problem

5 Conclusions and Future Work

This paper presents a general framework of a logic-based Benders cut for
objective functions that combine the cost, the tardiness and the makespan.
Disjunctive cuts are generated based on logical inference. Our computational
results show that the algorithmic framework allows rapid solution of these
problems, enabling the determination of representative points on the efficient
frontier set of optimal solutions for a multiple objective optimization problem.

Future work will address the following issues:

1. Take shared resources into account. As described earlier, the re-
sources considered in the problems are bundled into workgroups. i.e. unary
resources. When shared resources are considered, each subproblem can’t
be solved individually. The shared resources must be considered across
all the subproblems. This will imposes a challenge on the decomposition
algorithm and cutting planes.

2. Integrate determination of restoration plan with assignment
and scheduling. The example given separates the determination of the



18 Jing Gong, Earl E. Lee, John E. Mitchell, William A. Wallace

restoration plan from its cost and schedule. Solving the assignment and
scheduling problem is the second step in restoration. Separation of the
procedure into two steps could result in a case where the optimal restora-
tion plan found in the first step is hard to implement in the second step
for some reason, for example, limited budget, limited resources, and so on.
Integration of the two steps into a single process might yield more efficient
restoration plans. The speed of solution of the scheduling problem should
make this integration possible.

6 Acknowledgments

This research is supported by NSF grant CMS 0301661, Decision Technologies
for Managing Critical Infrastructure Interdependencies

References

1. E.E. Lee, J.E. Mitchell, W.A. Wallace (2006) Restoration of Services in Inter-
dependent Infrastructure Systems: A Network Flows Approach. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
to appear.

2. E.E. Lee (2006) Assessing Vulnerability and Managing Disruptions to Inter-
dependent Infrastructure Systems: A Network Flows Approach. Ph.D. Thesis,
Rensselaer Polytechnic Institute, New York

3. I.J. Lustig, J.F. Puget (2001) Program Does Not Equal Program: Constraint
Programming and Its Relationship to Mathematical Programming. Interfaces
31:29-53

4. P.V. Hentenryck, L. Perron, J.F. Puget (2000) Search and Strategies in OPL.
ACM Transactions on Computational Logic 1:282–315

5. H.J. Kim, J.N. Hooker (2002) Solving fixed-charge network flow problems with
a hybrid optimization and constraint programming approach. Annals of Oper-
ations Research 115:95–124

6. J.N. Hooker (2002) Logic, optimization and constraint programming. IN-
FORMS Journal on Computing 14:295–321

7. J.N. Hooker (2005) A Search-infer-and-relax Framework for Integration Solu-
tion Methods. Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems(CPAIOR), LNCS 3524:243-257

8. J.N. Hooker (2000) Logic-based Methods for Optimization: Combining Opti-
mization and Constraint Satisfaction. John Wiley, New York

9. M. Pinedo (2002) Scheduling: Theory, Algorithms and Systems. Prentice Hall,
Upper Saddle River, New Jersey

10. V. Jain, I.E. Grossmann (2001) Algorithms for Hybrid MILP/CP Models for A
Class of Optimization Problems. INFORMS Journal on Computing 13:258–27

11. I. Harjunkoski, I. E. Grossmann (2002) Decomposition Techniques for Multi-
stage Scheduling Problems Using Mixed-integer and Constraint Programming
Methods. Computers and Chemical Engineering 26:1533–1552



Logic-based Multi-Objective Optimization for Restoration Planning 19

12. C.T. Maravelias, I.E. Grossmann (2004) A Hybrid MILP/CP Decomposition
Approach for the Continuous Time Scheduling of Multipurpose Batch Plants.
Computers and Chemical Engineering 28:1921–1949

13. J.N. Hooker (2004) Planning and Scheduling by Logic-based Benders Decom-
position. Operations Research, to appear

14. ILOG Inc (2002) ILOG OPL Studio 3.7.1 Language Manual. ILOG Inc. Moun-
tain View, California

15. ILOG Inc (2002) ILOG OPL Studio 3.7.1 User’s Manual. ILOG Inc. Mountain
View, California

16. ILOG Inc (2002) ILOG CPLEX 8.0 User’s Manual. ILOG Inc. Mountain View,
California

17. I. Das, J. Dennis (1997) A Closer Look at Drawbacks of Minimizing Weighted
Sums of Objectives for Pareto Set Generation in Multicriteria Optimization
Problems. Structural Optimization 14: 63-69


