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BRANCH-AND-BOUND METHODS
FOR INTEGER PROGRAMMING,
Branch-and-Bound

Overview.
An integer programming problem (IP) is an

optimization problem in which some or all of
the variables are restricted to take on only in-
teger values. The exposition presented here will
focus on the case in which the objective and con-
straints of the optimization problem are defined
via linear functions. In addition, for simplicity,
it will be assumed that all of the variables are re-
stricted to be nonnegative integer valued. Thus,
the mathematical formulation of the problem
under consideration can be stated as:

maximize cTx

subject to Ax ≤ b (IP)
x ∈ Zn

+

where A ∈ <m×n, b ∈ <m and c ∈ <n. For no-
tational convenience, let S denote the constraint
set of problem (IP); i.e.,

S := {x ∈ Zn
+ : Ax ≤ b}.

The classical approach to solving integer pro-
grams is branch-and-bound [41]. The branch-
and-bound method is based on the idea of it-
eratively partitioning the set S (branching) to
form subproblems of the original integer pro-
gram. Each subproblem is solved — either ex-
actly or approximately — to obtain an upper
bound on the subproblem objective value. The
driving force behind the branch-and-bound ap-
proach lies in the fact that if an upper bound
for the objective value of a given subproblem is
less than the objective value of a known inte-
ger feasible solution (e.g., obtained by solving
some other subproblem) then the optimal solu-
tion of the original integer program cannot lie in
the subset of S associated with the given sub-
problem. Hence, the upper bounds on subprob-
lem objective values are, in essence, used to con-
struct a proof of optimality without exhaustive
search.

One concept that is fundamental to obtaining
upper bounds on subproblem objective values is
that of problem relaxation. A relaxation of the
optimization problem

max{cTx : x ∈ S}

is an optimization problem

max{cT
Rx : x ∈ SR},

where S ⊆ SR and cTx ≤ cT
Rx for all x ∈ S.

Clearly, solving a problem relaxation provides
an upper bound on the objective value of the
underlying problem. Perhaps the most common
relaxation of problem (IP) is the linear program-
ming relaxation formed by relaxing the inte-
ger restrictions and enforcing appropriate bound
conditions on the variables; i.e., cR = c and
SR = {x ∈ <n : Ax ≤ b, l ≤ x ≤ u}.

A formal statement of a general branch-and-
bound algorithm [50] is presented in Figure 1.
The notation L is used to denote the list of ac-
tive subproblems {IPi}, where IP0 = IP denotes
the original integer program. The notation z̄i

denotes an upper bound on the optimal objec-
tive value of IPi, and zip denotes the incumbent
objective value (i.e., the objective value corre-
sponding to the current best integral feasible so-
lution to IP).

Figure 1.
General Branch-and-Bound Algorithm

1. (Initialization): Set L = {IP0}, z̄0 =
+∞, and zip = −∞.

2. (Termination): If L = ∅, then the solution
x∗ which yielded the incumbent objective
value zip is optimal. If no such x∗ exists
(i.e., zip = −∞) then IP is infeasible.

3. (Problem selection and relaxation): Select
and delete a problem IPi from L. Solve a
relaxation of IPi. Let zR

i denote the opti-
mal objective value of the relaxation, and
let xiR be an optimal solution if one exists.
(Thus, zR

i = cTxiR, or zR
i = −∞.)

4. (Fathoming and Pruning):
(a) If zR

i ≤ zip go to Step 2.

integer programming problem

linear programming relaxation

incumbent objective value
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(b) If zR
i > zip and xiR is integral feasi-

ble, update zip = zR
i . Delete from L all

problems with z̄i ≤ zip. Go to Step 2.
5. (Partitioning): Let {Sij}j=k

j=1 be a partition
of the constraint set Si of problem IPi. Add
problems {IPij}j=k

j=1 to L, where IPij is IPi

with feasible region restricted to Sij and
z̄ij = zR

i for j = 1, . . . , k. Go to Step 2.

The actual implementation of a branch-and-
bound algorithm is typically viewed as a tree
search, where the problem at the root node of
the tree is the original IP. The tree is constructed
in an iterative fashion with new nodes formed
by branching on an existing node for which the
optimal solution of the relaxation is fractional
(i.e., some of the integer restricted variables have
fractional values). Typically, two child nodes are
formed by selecting a fractional valued variable
and adding appropriate constraints in each child
subproblem to ensure that the associated con-
straint sets do not include solutions for which
this chosen branching variable assumes the same
fractional value.

The phrase fathoming a node is used in ref-
erence to criteria that imply that a node need
not be explored further. As indicated in Step 4,
these criteria include:

(a) the objective value of the subproblem re-
laxation at the node is less than or equal
to the incumbent objective value; and

(b) the solution for the subproblem relaxation
is integer valued.

Note that (a) includes the case when the relax-
ation is infeasible, since in that case its objective
value is −∞. Condition (b) provides an oppor-
tunity to prune the tree; effectively fathoming

nodes for which the objective value of the relax-
ation is less than or equal to the updated incum-
bent objective value. The tree search ends when
all nodes are fathomed.

A variety of strategies have been proposed
for intelligently selecting branching variables, for
problem partitioning, and for selecting nodes
to process. However, no single collection of
strategies stands out as being best in all cases.
In the remainder of this article, some of the
strategies that have been implemented or pro-
posed are summarized. An illustrative example
is presented. Some of the related computational
strategies – preprocessing and reformulation,
heuristic procedures , and the concept of reduced-
cost fixing – which have proved to be highly
effective in branch-and-bound implementations
are considered. Finally, there is a discussion of
recent linear programming based branch-and-
bound algorithms that have employed interior-
point methods for the subproblem relaxation
solver, which is in contrast to using the more
traditional simplex-based solvers.

Though branch-and-bound is a classic ap-
proach for solving integer programs, there are
practical limitations to its success in applica-
tions. Often integer feasible solutions are not
readily available, and node pruning becomes im-
possible. In this case, branch-and-bound fails
to find an optimal solution due to memory ex-
plosion as a result of excessive accumulation of
active nodes. In fact, general integer programs
are NP-hard ; and consequently, as of this writ-
ing, there exists no known polynomial-time algo-
rithm for solving general integer programs [30].

In 1983, a breakthrough in the computational
possibilities of branch-and-bound came as a re-
sult of the research by Crowder, Johnson, and
Padberg. In their paper [22], cutting planes were

tree search

branching

fathoming a node

prune

preprocessing and reformulation

heuristic procedures

reduced-cost fixing

interior-point methods

NP-hard

polynomial-time algorithm
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added at the root node to strengthen the LP for-
mulation before branch-and-bound was called.
In addition, features such as reduced-cost fixing,
heuristics and preprocessing were added within
the tree search algorithm to facilitate the solu-
tion process. Readers are referred to the arti-
cle on cutting planes in this encyclopedia for
details on cutting plane applications to integer
programming.

Most commercial integer programming
solvers use a branch-and-bound algorithm with
linear programming relaxations. Unless other-
wise mentioned, the descriptions of the strate-
gies discussed herein are based on using the
linear programming relaxation.

Readers are referred to Nemhauser and
Wolsey’s textbook on Integer and Combinator-
ial Optimization [50] for other references not in-
cluded in this paper. The text [53] also includes
useful material about branch-and-bound.
Partitioning Strategies.

When linear programming relaxation is em-
ployed, partitioning is done via addition of linear
constraints. Typically, two new nodes are formed
on each division. Suppose xR is an optimal so-
lution to the relaxation of a branch-and-bound
node. Common partitioning strategies include:

• Variable Dichotomy [23]. If xR
j is frac-

tional, then two new nodes are created, one
with the simple bound xj ≤ bxR

j c and the
other with xj ≥ dxR

j e; where b·c and d·e
denote the floor and the ceiling of a real
number. In particular, if xj is restricted to
be binary, then the branching reduces to
fixing xj = 0 and xj = 1, respectively.
One advantage of simple bounds is that
they maintain the size of the basis among
branch-and-bound nodes, since the sim-
plex method can be implemented to han-
dle both upper and lower bounds on vari-
ables without explicitly increasing the di-
mensions of the basis.

• Generalized-Upper-Bound (GUB) Di-
chotomy [8]. If the constraint

∑
j∈Q xj = 1

is present in the original integer program,
and xR

i , i ∈ Q are fractional, one can par-
tition Q = Q1 ∪ Q2 such that

∑
j∈Q1

xR
j

and
∑

j∈Q2
xR

j are approximately of equal
value. Then two branches can be formed by
setting

∑
j∈Q1

xj = 0, and
∑

j∈Q2
xj = 0

respectively.
• Multiple branches for bounded integer vari-

able. If xR
j is fractional, and xj ∈

{0, . . . , l}, then one can create l + 1 new
nodes, with xj = k for node k, k = 0, . . . , l.
This idea was proposed in the first branch-
and-bound algorithm by Land and Doig
[41], but currently is not commonly used.

Branching Variable Selection.
During the partitioning process, branching

variables must be selected to help create the
children nodes. Clearly the choice of a branch-
ing variable affects the running time of the al-
gorithm. Many different approaches have been
developed and tested on different types of in-
teger programs. Some common approaches are
listed below:

• Most/Least Infeasible Integer Variable. In
this approach, the integer variable whose
fractional value is farthest/closest from/to
an integral value is chosen as the branching
variable.

• Driebeck-Tomlin Penalties [25, 59]. Penal-
ties give a lower bound on the degradation
of the objective value for branching each
direction from a given variable. The penal-
ties are the cost of the dual pivot needed
to remove the fractional variable from the
basis. If many pivots are required to re-
store primal feasibility, these penalties are
not very informative. The up penalty, when
forcing the value of the kth basic variable
up, is

uk = min
j:akj<0

(1 − fk)c̄j

−akj

where fk is the fractional part of xk, c̄j

is the reduced cost of variable xj, and the
akj are the transformed matrix coefficients

cutting planes

Variable Dichotomy

Generalized-Upper-Bound (GUB) Dichotomy

Driebeck-Tomlin Penalties
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from the kth row of the optimal dictionary
for the LP relaxation. The down penalty dk

is calculated as

dk = min
j:akj>0

fk c̄j

akj
.

Once the penalties have been computed,
a variety of rules can be used to select the
branching variable (e.g., maxk max(uk, dk),
or maxk min(uk, dk)). A penalty can be
used to eliminate a branch if the LP ob-
jective value for the parent node minus the
penalty is worse than the incumbent inte-
ger solution. Penalties are out of favor be-
cause their cost is considered too high for
their benefit.

• Pseudo-Cost Estimate. Pseudo-costs pro-
vide a way to estimate the degradation to
the objective value by forcing a fractional
variable to an integral value. The technique
was introduced in 1970 by Benichou et al
[10]. They attempt to reflect the total cost,
not just the cost of the first pivot, as with
penalties. Once a variable xk is labeled as a
candidate branching variable, the pseudo-
costs are computed as:

Uk =
z̄k − zu

k

1− fk
, and Dk =

z̄k − zd
k

fk

where z̄k is the objective value of the par-
ent, zu

k is the objective value resulting from
forcing up, and zd

k is the objective value
from forcing down. (If the subproblem is
infeasible, the associated pseudo-cost is not
calculated.) If a variable has been branched
upon repeatedly, an average may be used.

The branching variable is chosen as that
with the maximum degradation, where the
degradation is computed as: Dkfk +Uk(1−
fk). Pseudo-costs are not considered to be
beneficial on problems where there is a
large percentage of integer variables.

• Pseudo-Shadow Prices . Similar to pseudo-
costs, pseudo-shadow prices estimate the
total cost to force a variable to an integral
value. Up and down pseudo-shadow prices

for each constraint and pseudo-shadow
prices for each integer variable are specified
by the user or given an initial value. The
degradation in the objective function for
forcing an integer variable xk up or down
to an integral value can be estimated. The
branching variable is chosen using criteria
similar to penalties and pseudo-costs. See
[27, 42] for precise mathematical formula-
tions on this approach.

• Strong Branching . This branching strat-
egy arose in connection with research on
solving difficult instances of the traveling
salesman problem and general mixed 0/1
integer programming problems [2, 12, 13].
Applied to 0/1 integer programs within
a simplex-based branch-and-cut setting,
strong branching works as follows. Let N

and K be positive integers. Given the so-
lution of some linear programming relax-
ation, make a list of N binary variables
that are fractional and closest to 0.5 (if
there are fewer than N fractional variables,
take all fractional variables). Suppose that
I is the index set of this list. Then, for each
i ∈ I , fix xi first to 0 and then to 1 and per-
form K iterations (starting with the opti-
mal basis for the LP relaxation of the cur-
rent node) of the dual simplex method with
steepest-edge pricing. Let Li, Ui, i ∈ I , be
the objective values that result from these
simplex runs, where Li corresponds to fix-
ing xi to 0 and Ui to fixing it to 1. A
branching variable can be selected based
on the best weighted-sum of these two val-
ues.

• Priorities Selection. Variables are selected
based on their priorities. Priorities can be
user-assigned, or based on objective func-
tion coefficients, or on pseudo-costs.

Node Selection.
Given a list of active problems, one has to

decide which subproblem should be selected to
be examined next. This in turn will affect the

Pseudo-Cost Estimate

Pseudo-Shadow Prices

Strong Branching

optimal basis
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possibilities of improving the incumbent, the
chance of node fathoming, and the total number
of problems needed to be solved before optimal-
ity is achieved. Below, various strategies given in
[7, 10, 11, 20, 27, 29, 31, 35, 49] are presented.

• Depth-First-Search with Backtracking .
Choose a child of the previous node as
the next node; if it is pruned, choose the
other child. If this node is also pruned,
choose the most recently created unex-
plored node, which will be the other child
node of the last successful node.

• Best-Bound . Among all unexplored nodes,
choose the one which has the best LP
objective value. In the case of maximiza-
tion, the node with the largest LP objec-
tive value will be chosen. The rationale is
that since nodes can only be pruned when
the relaxation objective value is less than
the current incumbent objective value, the
node with largest LP objective value can-
not be pruned, since the best objective
value corresponding to an integer feasible
solution cannot exceed this largest value.

• Sum of Integer Infeasibilities. The sum of
infeasibilities at a node is calculated as

s =
∑

j

min(fj, 1− fj).

Choose the node with either maximum or
minimum sum of integer infeasibilities.

• Best-Estimate using Pseudo-Costs. This
technique was introduced [10] along with
the idea of using pseudo-costs to select a
branching variable. The individual pseudo-
costs can be used to estimate the result-
ing integer objective value attainable from
node k:

εk = z̄k −
∑

i

min(Difi, Ui(1− fi))

where z̄k is the value of the LP relaxation
at node k. The node with the best estimate
is chosen.

• Best-Estimate using Pseudo-Shadow
Prices. Pseudo-shadow prices can also be

used to provide an estimate of the resulting
integer objective value attainable from the
node, and the node with the best estimate
can then be chosen.

• Best Projection [35, 49]. Choose the node
among all unexplored nodes which has the
best projection. The projection is an esti-
mate of the objective function value asso-
ciated with an integer solution obtained by
following the subtree starting at this node.
It takes into account both the current ob-
jective function value and a measure of the
integer infeasibility. In particular, the pro-
jection pk associated with node k is defined
as

pk = z̄k − sk(z̄0 − zip)
s0

,

where z̄0 denotes the objective value of the
LP at the root node, zip denotes an esti-
mate of the optimal integer solution, and
sk denotes the sum of the integer infea-
sibilities at node k. The projection is a
weighting between the objective function
and the sum of infeasibilities. The weight
(z̄0 − zip)/s0 corresponds to the slope of
the line between node 0 and the node pro-
ducing the optimal integer solution. It can
be thought of as the cost to remove one
unit of infeasibility. Let nk be the num-
ber of integer infeasibilities at node k. A
more general projection formula is to let
wk = µnk +(1−µ)sk, where µ ∈ [0, 1], and
define

pk = z̄k − wk(z̄0 − zip)
w0

.

Illustrative Example.
In this section, a two-variable integer program

is solved using branch-and-bound. The most in-
feasible integer variable is used as the branching

Depth-First-Search with Backtracking

Best-Bound

Best Projection
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variable, and best-bound is used for node selec-
tion. Consider the problem

maximize 13x1 + 8x2

subject to x1 + 2x2 ≤ 10
5x1 + 2x2 ≤ 20 (IP0)
x1 ≥ 0, x2 ≥ 0
x1, x2 integer

Initially, L consists of just this problem IP0.
The solution to the LP relaxation is x0

1 = 2.5,
x0

2 = 3.75, with value zR
0 = 59.5. The most in-

feasible integer variable is x1, so two new sub-
problems are created, IP1 where x1 ≥ 3 and IP2

where x1 ≤ 2, and L = {IP1, IP2}.
Both problems in L have the same bound

59.5, so assume the algorithm arbitrarily selects
IP1. The optimal solution to the LP relaxation
of IP1 is x1

1 = 3, x1
2 = 2.5, with value zR

1 = 59.
The most infeasible integer variable is x2, so
two new subproblems of IP1 are created, IP3

where x2 ≥ 3 and IP4 where x2 ≤ 2, and now
L = {IP2, IP3, IP4}.

The algorithm next examines IP2, since this
is the problem with the best bound. The optimal
solution to the LP-relaxation is x2

1 = 2, x2
2 = 4,

with value zR
2 = 58. Since x2 is integral feasible,

zip can be updated to 58 and IP2 is fathomed.
Both of the two problems remaining in L have

best bound greater than 58, so neither can yet be
fathomed. Since these two subproblems have the
same bound 59, assume the algorithm arbitrarily
selects IP3 to examine next. The LP relaxation
to this problem is infeasible, since it requires
that x satisfy x1 ≥ 3, x2 ≥ 3 and 5x1 +2x2 ≤ 20
simultaneously. Therefore, zR

3 = −∞, and this
node can be fathomed by bounds since zR

3 ≤ zip.
That leaves the single problem IP4 in L. The

solution to the LP relaxation of this problem is
x4

1 = 3.2, x4
2 = 2, with value zR

4 = 57.6. Since
zR
4 ≤ zip, this subproblem can also be fathomed

by bounds. The set L is now empty, so x2 is op-
timal for the integer programming problem IP0.

The progress of the algorithm is indicated
in Figure 2. Each box contains the name
of the subproblem, the solution to the LP

relaxation, and the value of the solution.

Figure 2. Branch and bound example
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Preprocessing and Reformulation.

Problem preprocessing and reformulation has
been shown to be a very effective way of improv-
ing integer programming formulations prior to
and during branch-and-bound [14, 15, 18, 19, 22,
24, 34, 36, 37, 56]. Below, some commonly em-
ployed preprocessing techniques are listed. For
more details on these procedures, see the refer-
ences.

1. Removal of empty (all zeros) rows and
columns. Detection of implicit bounds and
implicit slack variables.

2. Removal of rows dominated by multiples
of other rows, including pairs of rows for
which the support of one is a subset of the
support of the other.

3. Strengthen the bounds within rows by
comparing individual variables and coef-
ficients to the right-hand-side. Additional
strengthening may be possible for integral
variables using rounding.

4. Use variable bounds to determine upper
and lower bounds for the left-hand side of
a constraint, and compare these bounds to
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the right-hand side. Where possible con-
clude that a constraint is inconsistent, re-
dundant, or forces the fixing of some or all
variables in its support. Several of these
row-driven operations can be dualized to
columns.

5. Aggregation: Given an equality constraint
where the bound on some variable is im-
plied by the satisfaction of the bounds
on the other variables, this variable can
be substituted out, and the constraint
deleted. Note that free variables always
satisfy this condition. Note also that in
order to control fill-in (and coefficient
growth), not all such substitutions may be
desirable. For integral variables, there is
the added restriction that they can be elim-
inated only if their integrality is implied
by the integrality of the remaining vari-
ables. For integer programming problems,
an added advantage of aggregation relative
to LP’s, is that the reduction in the num-
ber of equality constraints increases the
relative dimension of the underlying poly-
tope.

6. Coefficient reduction: Consider a con-
straint

∑
j∈K ajxj ≥ b in which all aj ≥ 0

and all xj ≥ 0. If xj is a 0/1 variable and
aj > b, for some j ∈ K, replace aj by b. A
stronger version of this procedure is possi-
ble when the problem formulation involves
other constraints of appropriate structure.

7. Logical implications and probing:
a. Logical implications : Choose a binary

variable xk and fix it to 0 or 1. Per-
form 4. This analysis may yield logi-
cal implications such as xk = 1 implies
xj = 0, or xk = 1 implies xj = 1, for
some other variable xj. The implied
equality is then added as an explicit
constraint.

b. Probing : Perform logical implications
recursively. An efficient implementa-
tion of probing appears to be very diffi-
cult. Guignard and Spielberg [34], and
Savelsbergh [56] discuss details of com-
putational issues regarding probing.

Heuristics.
Heuristic procedures provide a means for ob-

taining integer feasible solutions quickly, and
can be used repeatedly within the branch-and-
bound search tree. A good heuristic — one that
produces good integer feasible solutions — is a
crucial component in the branch-and-bound al-
gorithm since it provides an upper bound for
reduced-cost fixing (see later) at the root, and
thus allows reduction in the size of the lin-
ear program that must be solved. This in turn
may reduce the time required to solve subse-
quent linear programs at nodes within the search
tree. In addition, a good upper bound increases
the likelihood of being able to fathom active
nodes, which is extremely important when solv-
ing large-scale integer programs as they tend to
create many active nodes leading to memory ex-
plosion.

Broadly speaking, five ideas are commonly
used in developing heuristics. The first idea is
that of greediness. Greedy algorithms work by
successively choosing variables based on best im-
provement in the objective value. Kruskal’s al-
gorithm [39], which is an exact algorithm for
finding the minimum-weight spanning tree in a
graph, is one of the most well-known greedy al-
gorithms. Greedy algorithms have been applied
to a variety of problems, including 0/1 knapsack
problems [38, 43, 55], uncapacitated facility lo-
cation problems [40, 58], set covering problems
[3, 4], and the traveling salesman problem [54].

A second idea is that of local search, which
involves searching in a local neighborhood of
a given integer feasible solution for a feasible
solution with a better objective value. The k-
interchange heuristic is a classic example of a

Aggregation

Coefficient reduction

Logical implications

Probing

greedy algorithms

local search
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local search heuristic [40, 46, 48]. Simulated
annealing is another example, but with a bit
of a twist. It allows, with a certain probability,
updated solutions with less favorable objective
values in order to increase the likelihood of es-
caping from a local optimum [16].

Randomized Enumeration is a third idea that
is used to obtain integer feasible solutions. One
such method is that of genetic algorithms,
where the randomness is modeled on the bio-
logical mechanisms of evolution and natural se-
lection [33]. Recent work on applying a genetic
algorithm to the set covering problem can be
found in [9].

Simulated annealing and genetic algorithms
are examples of metaheuristics : they find local
mimima, but they also possess mechanisms for
moving away from one local minimum to a bet-
ter local minimum. Another widely used meta-
heuristic is tabu search. This process makes
certain moves tabu, or forbidden, and then finds
the best remaining move. More details on tabu
search can be found in [32], and in the references
contained therein.

The term primal heuristics refers to certain
LP-based procedures for constructing integral
feasible solutions from points that are in some
sense good, but fail to satisfy integrality. Typ-
ically, these non-integral points are obtained
as optimal solutions of LP relaxations. Primal
heuristic procedures involve successive variable
fixing and rounding (according to rules usu-
ally governed by problem structure) and sub-
sequent resolves of the modified primal LP
[6, 12, 14, 36, 37].

The fifth general principle is that of exploiting
the interplay between primal and dual solutions.
For example, an optimal or heuristic solution to
the dual of an LP relaxation may be used to
construct a heuristic solution for the primal IP.
Problem dependent criteria based on the gen-
erated primal-dual pair may suggest seeking an
alternative heuristic solution to the dual, which

would then be used to construct a new heuris-
tic solution to the primal. Iterating back-and-
forth between primal and dual heuristic solu-
tions would continue until an appropriate ter-
mination condition is satisfied [21, 26, 28].

It is not uncommon that a heuristic in-
volves more than one of these ideas. For exam-
ple, pivot-and-complement is a simplex-based
heuristic in which binary variables in the ba-
sis are pivoted out and replaced by slack vari-
ables. When a feasible integer solution is ob-
tained, the algorithm performs a local search
in an attempt to obtain a better integer fea-
sible solution [5]. Obviously, within a branch-
and-bound implementation, the structure of the
problems that the implementation is targeted
at influences the design of an effective heuristic
[2, 12, 13, 14, 22, 26, 36, 37, 45].
Continuous Reduced Cost Implications.

Reduced cost fixing is a well-known and im-
portant idea in the literature of integer program-
ming [22]. Given an optimal solution to an LP
relaxation, the reduced costs c̄j are nonpositive
for all nonbasic variables xj at lower bound, and
nonnegative for all nonbasic variables at their
upper bounds. Let xj be a nonbasic variable in
a continuous optimal solution having objective
value zLP , and let zip be the objective value as-
sociated with an integer feasible solution to (IP).
The following are true:

(a) If xj is at its lower bound in the continuous
solution and zLP − zip ≤ −c̄j, then there
exists an optimal solution to the integer
program with xj at its lower bound.

(b) If xj is at its upper bound in the continu-
ous solution and zLP −zip ≤ c̄j, then there
exists an optimal solution to the integer
program with xj at its upper bound.

When reduced-cost fixing is applied to the
root node of a branch-and-bound tree, vari-
ables which are fixed can be removed from the
problem, resulting in a reduction in the size of

Simulated annealing

genetic algorithms

metaheuristics

tabu search

primal heuristics

Reduced cost fixing
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the integer program. A variety of studies have
examined the effectiveness of reduced-cost fix-
ing within the branch-and-bound tree search
[12, 14, 22, 36, 37, 51, 52].

Subproblem Solver.

When linear programs are employed as the re-
laxations within a branch-and-bound algorithm,
it is common to use a simplex-based algorithm
to solve each subproblem, using dual simplex to
reoptimize from the optimal basis of the par-
ent node. This technique of advanced basis has
been shown to reduce the number of simplex it-
erations to solve the child node to optimality,
and thus speedup the overall computational ef-
fort. Recently with the advancement in compu-
tational technology, the increase in the size of
integer programs, and the success of interior
point methods to solve large-scale linear pro-
grams [1, 47] there are some branch-and-bound
algorithms employing interior point algorithms
as the linear programming solver [17, 44, 45, 57].
In this case, advanced basis is no longer available
and care has to be taken to take advantage of
warmstart vectors for the interior point solver so
as to facilitate effective computational results. In
[44, 45], a description of the ideas of “advanced
warmstart” and computational results are pre-
sented.
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and Xu, X.: ‘Implementation of interior point meth-

ods for large scale linear programming’, Interior

Point Methods in Mathematical Programming, in

T. Terlaky (ed.). Kluwer Academic Publishers,

1996, ch. 6.

[2] Applegate, D., Bixby, R.E., Chvátal, V., and
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