
Branch-and-Cut for the k-way equipartition
problem

John E. Mitchell1

Mathematical Sciences

Rensselaer Polytechnic Institute

Troy, NY 12180

January 19, 2001

Abstract

We investigate the polyhedral structure of a formulation of the k-way equipar-
tition problem and a branch-and-cut algorithm for the problem. The k-way
equipartition problem requires dividing the vertices of a weighted graph into
k equally sized sets, so as to minimize the total weight of edges that have
both endpoints in the same set. Applications of the k-way equipartition prob-
lem arise in diverse areas including network design and sports scheduling. We
describe computational results with a branch-and-cut algorithm.

Keywords: Graph equipartition, branch-and-cut, network design,
realignment, clustering.

1 Introduction

We have a graph G = (V, E) with edge weights ce. The aim of the k-way equiparti-

tion problem is to divide the graph into k sets of vertices, each of the same size, so

as to minimize the total weight of the edges which have both endpoints in one of the

sets. We will call these k sets divisions. We assume |V | is an integer multiple of k.

This can be regarded as a clustering of the vertices, with the additional condition

that each cluster must contain the same number |V |/k =: S of elements. We define

a binary variable xij, which takes the value 1 if i and j are in the same division and

0 otherwise. Our formulation is:

min
∑

e∈E cexe

subject to
∑

e∈δ(v) xe = S − 1 ∀v ∈ V

x is the incidence vector of a clustering

1Research supported in part by NSF grant number CCR–9901822

1

where δ(v) denotes the set of edges incident to vertex v. In what follows we assume

G is the complete graph on |V | vertices; this can be done without loss of generality

— any missing edges in a graph can be given weight ce = 0 in the complete graph.

In addition to being a constrained version of the clustering problem, the k-way

equipartition problem is closely related to the classical graph partition problem. This

requires partitioning the vertices into two equally sized sets U1 and U2 so as to min-

imize the total weight of the edges that either have both endpoints in U1 or both

in U2.

Approaches to the k-way graph partitioning algorithm include the multilevel ap-

proach of Karypis and Kumar [20] and the eigenvalue approach of Donath and Hoff-

man [11], tested computationally by Areibi and Vannelli [1] and by Falkner et al. [12].

If k = 2 we have the equipartition problem, which has been studied extensively.

Branch and cut approaches to this problem include the work of Conforti et al [4, 8, 9]

and Chopra [5]. Ferreira et al. [13, 14] have developed a branch-and-cut algorithm for

the related node capacitated graph partitioning problem. Semidefinite programming

approaches for graph equipartition were investigated by Frieze and Jerrum [15] and

Ye et al. [3, 29]. Semidefinite programming approaches for the k-way equipartition

problem were developed by Karisch and Rendl [19] and Wolkowicz and Zhao [28],

and we consider the approach of [19] in more detail in §5. Lisser and Rendl [22]

have recently described an application of the k-way equipartition problem to network

design problems and they investigated both semidefinite and polyhedral relaxations

of the problem.

De Souza et al. [27] proposed solving this problem by breaking it into a sequence

of graph partitioning problems, for the special case of minimizing the frontwidth

in finite element calculations. Thus, a graph partitioning problem is solved on the

initial graph, giving two sets U1 and U2. Graph partitioning problems are then solved

recursively on U1 and U2 until a k-equipartition is obtained. This approach may not

produce the optimal k-partition in the general case.

If the sets are not all constrained to be of the same cardinality, we have a clus-

tering or partition problem. This problem has been investigated by Grötschel and

Wakabayashi [17, 18] and we look at their approach in §3. Chopra and Rao [6] have in-

vestigated a polyhedral approach for the partition problem for graphs that are sparse;

their approach defines variables for both the edges and the vertices.

When S = 2, we have a matching problem, so the problem is polynomially solv-

able. For larger choices of S, the problem is NP-complete, as shown in Garey and

Johnson [16].

2

One motivation for considering this problem arises from consideration of align-

ment of teams. The National Football League (NFL) in the United States currently

comprises 31 teams. It will expand to 32 in 2002 with the addition of a team in

Houston. At that point, there is a possibility that the league will be realigned into

eight divisions, each containing four teams. Each team plays each other team in its

division twice, playing its remaining games against a subset of the teams outside its

division. A team’s opponents from outside its division depend on the team’s results

in the previous season and on a rotating choice of one other division. Since the choice

of outside teams will therefore vary from season to season, we propose to choose the

divisions so as to minimize the total intradivisional travel distance. In this setting,

an edge weight will be the distance between the two endpoints of the edge. For more

details on this application, see [24].

1.1 Notation

We define the sets Q(kS) and Q̄(kS) as follows:

Q(kS) := {x ∈ {0, 1}n :
∑

e∈δ(v)

xe = S − 1 ∀ v ∈ KkS ,

x is the incidence vector of a clustering}
Q̄(kS) := {x ∈ [0, 1]n :

∑
e∈δ(v)

xe = S − 1 ∀ v ∈ KkS},

where n = kS(kS − 1)/2 and Kq denotes the complete graph on q vertices. We

want to minimize the objective function over Q(kS). Our initial linear programming

relaxation will have feasible region Q̄(kS).

Given a subset U ⊆ V , we define E(U) to be the edges with both endpoints in

U , and we define x(U) :=
∑

e∈E(U) xe. Similarly, we define δ(U) to be the edges with

exactly one endpoint in U . Given two disjoint subsets U ⊆ V and W ⊆ V , we define

E(U, W) to be the edges with exactly one endpoint in U and exactly one endpoint

in W ; further, we define x(U, W) :=
∑

e∈E(U,W) xe. If U ⊆ V and v ∈ V \ U then

x(v, U) denotes
∑

u∈U xuv. A matrix with every entry equal to one is denoted 1. Note

that 1 = eeT , where e denotes the vector of ones. All vectors will be column vectors.

The transpose of a matrix M will be written MT . If C denotes a cycle then E(C)

denotes the edges of the cycle and x(E(C)) :=
∑

e∈E(C) xe.

Our definition of x agrees with the work of Grötschel and Wakabayashi [17, 18]

on the clustering problem. Note that it is the opposite of that in literature on the

MAXCUT problem, where typically we take xe = 1 if edge e appears in the cut.

3

2 Polyhedral theory for the equipartition polytope

Brunetta et al. [4] have developed a branch-and-cut algorithm for the equicut problem.

Their work is based on that of Conforti et al. [8, 9], who developed a great deal of

polyhedral theory for the equipartition problem.

They proved the following result regarding the dimension of the equicut partition:

Lemma 1 ([8], Lemma 3.5.) The dimension of the equicut polytope on 2S vertices

is


 2S

2


 − S.

Among the families of cutting planes that they describe for the equipartition

problem on a graph with 2S vertices are the following two classes of facet defining

inequalities:

• Clique inequalities ([9], Theorem 6.1): For every complete subgraph with q

vertices, we have x(E(Kq)) ≥ b1
2
qc2, provided q ≥ 3 and odd.

• Cycle inequalities ([9], Theorem 6.2): For every cycle C of length S + 1, we

have

x(E(C)) ≤ S − 1. (1)

(It should be noted that Conforti et al. show that facet defining inequalities for the

equipartition polytope on 2S−1 vertices can be extended to facet defining inequalities

for the equipartition polytope on 2S vertices in a natural way, and vice versa (see [8],

Remark, page 59).)

The cycle inequalities can be used for the k-way equipartition problem, as we

show in Corollary 1. However, the clique inequalities are no longer valid. This is a

consequence of the following simple lemma.

Lemma 2 Let G′ = (V ′, E′) be a subgraph of G with |V ′| ≤ k. Let aTx ≥ b be a

valid inequality for the k-way equipartition problem with a ≥ 0 and ae = 0 if e 6∈ E ′.

We must then have b = 0, so the inequality is trivial.

Proof: Feasible solutions to the k-way equipartition problem can be obtained

where each vertex in V ′ is in a different division, and xe = 0 for all e ∈ E ′ for these

feasible solutions.

Many of the other families of cutting planes in [4, 8, 9] exploit the fact that

the problem is an equipartition, and thus cannot be used directly for the k-way

4

equipartition problem, again because of this lemma. We can convert them into useful

inequalities by exploiting the fact that x(E) = S(S−1) for the equipartition problem,

so an inequality in the variables x(E ′) is equivalent to an inequality in the variables

x(E \ E ′). Thus, the clique inequalities can be stated equivalently as

x(E \ E(Kq)) ≤ S(S − 1) − b1

2
qc2 (2)

where q is odd and at least three.

3 Polyhedral theory for the clustering polytope

In the NP -hard clustering problem, we are given a set of p observations, each of which

possesses k characteristics. The objective is to divide the observations into clusters

where the observations within each cluster are similar to one another. For example,

the observations could consist of different types of computers, and the characteristics

could include the speed of the computer, the amount of RAM of the computer and

the size of the hard disk of the computer. There are no a priori constraints on the

number of clusters or on the number of elements in a cluster. The k-way equipartition

problem is a version of the clustering problem where all the clusters are required to

have the same prescribed size.

Grötschel and Wakabayashi [17, 18] described a simplex-based cutting plane al-

gorithm for the clustering problem. The set of incidence vectors of feasible clusters

with p observations are given by the solutions to the following set of constraints:

−xij + xil + xjl ≤ 1 for 1 ≤ i < j < l ≤ p (3)

xij − xil + xjl ≤ 1 for 1 ≤ i < j < l ≤ p (4)

xij + xil − xjl ≤ 1 for 1 ≤ i < j < l ≤ p (5)

xij = 0 or 1, 1 ≤ i < j ≤ p

where we interpret xij = 1 to mean that i and j are in the same cluster, and xij = 0

to mean that they are in different clusters. The constraints (3), (4), and (5) are

called triangle inequalities. Constraint (3) corresponds to the logical condition that

if i and j are in different clusters then l can not be in the same cluster as both i and

j; constraints (4) and (5) have similar interpretations. All these inequalities define

facets of the convex hull of the set of feasible solutions to the clustering problem.

We used these inequalities as cutting planes in our algorithm for the k-way equipar-

tition problem. The triangle inequalities are also presented in [4] and they are well

5

known in the literature for the MAX-CUT problem; see, for example, Barahona and

Mahjoub [2].

Other classes of facets for this problem are known, but a complete description of

the convex hull is not currently known — see Grötschel and Wakabayashi [17, 18] for

more details. We have the following theorem.

Theorem 1 ([18], Theorem 4.1.) For every nonempty disjoint subsets U, W ⊆ V ,

the 2-partition inequality

x(U, W) − x(U) − x(W) ≤ min{|U |, |W |} (6)

defines a facet of the clique partioning polytope, provided |U | 6= |W |.
Chopra and Rao [6] investigated a version of this problem with an upper bound

p on the number of clusters, where the clusters can be any size. Let Q be any subset

of the vertices of cardinality p + 1. They show that the clique inequality

∑
E(Q)

xe ≥ 1 (7)

is facet-defining. Further, they show that certain generalizations of this constraint

are also facet defining.

4 Polyhedral theory for the k-way equipartition

problem

We have used the inequalities described in §2 and §3. Further, we have developed

some valid inequalities specifically for the k-way equipartition problem; we enumerate

these inequalities in this section.

4.1 Dimension

The main result of this section is that the dimension of Q(kS) is d(kS) provided

S > 2, where we define

d(q) :=


 q

2


 − q. (8)

It follows directly from Lemma 3.3 in [8] that this is an upper bound on the dimension

of Q(kS). In order to show the dimension is at least d(kS), it suffices to exhibit

d(kS) + 1 linearly independent vectors in Q(kS).

We first need to show several technical lemmas.

6

Lemma 3 The n × n matrices 1 − I and 1 − 2I are of full rank, provided n ≥ 3.

Proof: Assume u satisfies (1 − I)u = 0. Subtracting row i from row j shows that

ui = uj =: ū for any 1 ≤ i < j ≤ n. Any row then implies that (n−1)ū = 0, so u = 0

and the columns of 1 − I are linearly independent.

Now assume u satisfies (1 − 2I)u = 0. Subtracting row i from row j again shows

that ui = uj =: ū for any 1 ≤ i < j ≤ n. Any row then implies that (n − 2)ū = 0, so

u = 0 and the columns of 1 − 2I are linearly independent.

Define the n2 × n2 matrix

M̄ :=




1 − I I . . . I

I 1 − I . . . I
...

...
. . .

...

I I . . . 1 − I




(9)

consisting of n2 blocks, with each block being n × n.

Lemma 4 The matrix M̄ has full rank provided n ≥ 3.

Proof: Let ui, i = 1, . . . , n, be n-vectors. Let u = ((u1)T , . . . , (un)T)T . Assume

M̄u = 0. It suffices to show that u = 0. For i = 1, . . . , n − 1, premultiplying the ith

block of equations by 1 − I and subtracting the last block of equations gives

(1 − I)(1− I)ui +
n−1∑

j=1,j 6=i

(1 − I)uj −
n−1∑
j=1

uj = 0 for i = 1, . . . , n − 1.

This can be rewritten

0 = (12 − 21)ui +
n−1∑

j=1,j 6=i

(1 − 2I)uj

= (1 − 2I)(1ui +
n−1∑

j=1,j 6=i

uj).

It follows from Lemma 3 that 1ui +
∑n−1

j=1,j 6=i uj = 0. Subtracting this expression from

the ith block of equations for M̄u = 0 gives −ui + un = 0, so ui =: ū for i = 1, . . . , n.

The ith block of equations of M̄u = 0 then gives

0 = 1ū + (n − 2)ū.

Now, the eigenvalues of 1 are n with multiplicity one, and 0 with multiplicity n − 1.

Thus, we must have ū = 0 provided n > 2, so M̄ is of full rank.

7

We use induction on the value of k to prove the result on the dimension of Q(kS).

In particular, assuming the dimension is d(kS) for kS vertices, we show it is d((k+1)S)

for (k + 1)S vertices. The base case of k = 2 follows from Lemma 1.

The origin is not in Q(kS), so there are d(kS) + 1 linearly independent incidence

vectors of k-way equipartitions in Q(kS). Each of these can be extended to a (k +1)-

way equipartition of Q((k + 1)S) by placing the additional S vertices in a single

cluster.

The additional S vertices provide an additional S2k + S(S − 1)/2 edges. We

generate a further S2k+S(S−1)/2−(S−1) incidence vectors of points in Q((k+1)S)

in two stages. First, we pick any k-way partition of the original kS vertices, and we

designate one of the resulting clusters as special. For each vertex j in one of the non-

special clusters and for each new vertex i, we generate a clustering by interchanging

i and j. This gives S2(k − 1) incidence vectors.

Next, we keep the non-special clusters as they are. The equipartition polytope

consisting of the 2S vertices in the new cluster C1 and the special cluster C2 has

dimension d(2S) = 2S(2S − 1)/2 − 2S. Since it does not contain the origin, it must

contain d(2S) + 1 linearly independent incidence vectors. We can write the first

S(2S − 1) components of these d(2S) + 1 incidence vectors as follows:

Φ :=




Ξ

Λ

Γ


 corresponding to edges with




both endpoints in C1

one endpoint each in C1 and C2

both endpoints in C2

Thus, Φ has d(2S) + 1 columns, Λ has S2 rows, and Ξ and Γ each have S(S − 1)/2

rows.

In order to prove that the dimension of the union of these three sets of incidence

vectors in Q((k + 1)S) is large enough, we need to look first at submatrices of Φ.

Lemma 5 Without loss of generality, we can assume Λ has full row rank.

Proof: Note that Λ has S2 rows. Construct the first S2 incidence vectors by inter-

changing each pair of elements from C1 and C2. The first S2 columns of Λ are then

M̄ with n = S. This can be seen by ordering the rows so that the ith block of rows

correspond to the edges with one of the endpoints being the ith vertex in C1; the

jth block of columns correspond to the incidence vectors obtained by interchanging

the jth element of C1 with each element in C2 in succession. The result then follows

from Lemma 4.

8

Lemma 6 Without loss of generality, we can assume

rank


 Ξ

Λ


 − rank(Λ) ≥ rank(Φ) − rank


 Ξ

Λ


 .

Proof: We show by contradiction that we cannot have both of the following rela-

tionships:

rank


 Ξ

Λ


 − rank(Λ) < rank(Φ) − rank


 Ξ

Λ


 (10)

rank


 Λ

Γ


 − rank(Λ) < rank(Φ) − rank


 Λ

Γ


 . (11)

The following relationships hold for any matrices Ξ, Γ, Λ:

rank




Ξ

Λ

Γ


 − rank


 Ξ

Λ


 ≤ rank


 Λ

Γ


 − rank(Λ) (12)

rank




Ξ

Λ

Γ


 − rank


 Λ

Γ


 ≤ rank


 Ξ

Λ


 − rank(Λ). (13)

Using (10) followed by (12) then (11) and (13) gives the contradiction

rank


 Ξ

Λ


 − rank(Λ) < rank


 Ξ

Λ


 − rank(Λ).

Thus, at least one of (10) and (11) is not satisfied. By the symmetry of the definition

of Φ, we can choose Ξ and Γ so that the result follows.

Lemma 7 Under the assumptions of Lemmas 5 and 6, the rank of


 Ξ

Λ


 is at least

3S2−3S
2

+ 1.

Proof: From Lemma 6, we have:

rank


 Ξ

Λ


 − rank(Λ) ≥ rank(Φ) − rank


 Ξ

Λ


 .

Using the fact that

rank(Φ) = 2S(2S − 1)/2 − (2S − 1)

9

gives us

rank


 Ξ

Λ


 ≥ 1

2
(rank(Φ) + rank(Λ))

=
1

2
(2S(2S − 1)/2 − (2S − 1) + S2)

=
1

2
(3S2 − 3S + 1).

Since the rank must be integral, we can round up this last lower bound, giving the

required result.

We now let Φ denote 1
2
(3S2−3S)+1 of these columns, ensuring that the resulting

columns of


 Ξ

Λ


 are linearly independent.

The matrix of these three sets of incidence vectors can be written as follows:

M̌ :=




1 P Ξ

0 0 Λ

0 M̄ 0 0
...

. . .
...

0 0 M̄ 0

1 Γ

Q 1

M̂

0 0




C1

C1C2

C1C3

...

C1Ck+1

C2

C3

...

Ck+1

C2C3

...

CkCk+1

Here, the single label C i indicates the S(S − 1)/2 rows corresponding to edges with

both endpoints in C i and the double label C iCj indicates the S2 rows corresponding

to edges with one endpoint in C i and the other endpoint in Cj. The first block

of columns corresponds to the d(kS) + 1 incidence vectors arising from the k-way

equipartition problem on the vertices in sets C2,. . . ,Ck+1, so the columns of M̂ are

linearly independent. The middle set of S2(k − 1) vectors correspond to the first

additional set described above, and the last block of columns corresponds to the final

set of incidence vectors defined above. We do not need to specify the matrices P and

Q further.

10

Lemma 8 The rank of the matrix M̌ is d((k + 1)S) + 1, provided S ≥ 3.

Proof: We note first that the number of columns of M̌ is

d(kS) + 1 + S2(k − 1) +
3S2 − 3S

2
+ 1

=
1

2
(kS(kS − 1)) − kS + 1 + S2(k − 1) +

3S2 − 3S

2
+ 1

=
1

2
((k2 + 2k + 1)S2 − (3k + 3)S) + 2

= d((k + 1)S) + 2.

The result will follow if we can show that the dimension of the nullspace of M̌ is one.

Let (u1T
, u2T

, u3T
)T be in the nullspace of M̌ . From Lemma 4, it follows that

u2 = 0. The first two blocks of rows then require that

(eTu1)


 e

0


 +


 Ξ

Λ


 u3 =


 0

0


 .

It follows from Lemma 7 and the subsequent redefinition of Φ that there is a unique

solution u3, up to scalar multiplication.

The rows corresponding to the original edges give the equations

M̂u1 +




Γ

1

0


 u3 = 0.

From the induction hypothesis, the columns of M̂ are linearly independent. Since

there is a unique choice for u3 (up to scalar multiplication), it follows that there is a

unique choice for u1 (again, up to the same scalar multiplication). Thus, the dimen-

sion of the nullspace of M̌ is one, and the result follows.

We can now summarize by giving the dimension of Q(kS).

Theorem 2 The dimension of Q(kS) is

d(kS) =


 kS

2


 − kS,

provided S > 2 and k ≥ 2.

Proof: The sequence of Lemmas 5–8 show that this result holds by induction on

the value of k.

11

4.2 Lifting inequalities

In this section, we show that certain facet defining inequalities for the equipartition

problem can be converted into facet defining inequalities for the k-way equipartition

problem. We assume that the vertices of our graph are V := ∪k
i=1C

i and that |C i| = S

for i = 1, . . . , k. We make three assumptions about an inequality aT x ≤ b:

1. The inequality defines a facet of the p-way equipartition polytope on the graph

with vertices ∪p
i=1C

i, for some p < k. For notational purposes, we assume that

the incidence vector of the equipartition with the vertices in C i in different

divisions for i = 1, . . . , p satisfies the constraint at equality.

2. The inequality is valid for the k-way equipartition problem on the graph with

vertices V , where the coefficient of any edge that does not have both endpoints

in ∪p
i=1C

i is zero.

3. For each vertex v ∈ ∪p
i=1C

i, there exists an incidence vector xv of a p-way

equipartition that satisfies the constraint at equality and that has xv
e = 0 for

every edge e incident to vertex v with nonzero coefficient ae.

Of course, the equipartition problem corresponds to p = 2.

Under these assumptions, we construct three sets of vectors in Q(kS) that satisfy

the constraint at equality, and such that the dimension of the union of all these vectors

is d(kS) − 1. The three sets are defined as follows:

1. Generate a linearly independent set of d((k − p)S) + 1 incidence vectors for

the (k − p)-way equipartition problem on vertices ∪k
i=p+1C

i. Extend these to

incidence vectors on the graph with vertices V by placing C i, i = 1, . . . , p in

their own divisions.

2. Start with the equipartition C1, . . . , Ck. For each vertex i ∈ ∪p
l=1C

l and each

vertex j ∈ ∪k
q=p+1C

q, generate a new equipartition by interchanging vertices i

and j. If necessary, rearrange the vertices in (∪p
l=1C

l) \ i so as to satisfy the

constraint at equality; the final assumption above ensures that this can be done.

This gives p(k − p)S2 equipartitions.

3. Generate d(pS) linearly independent incidence vectors for the equipartition

problem on the graph with vertices ∪p
i=1C

i, each of which satisfies the con-

straint at equality. Extend each of these out to the whole of V by placing each

of Cp+1, . . . , Ck in its own division.

12

Lemma 9 The procedure outlined above gives d(kS) + 1 points in Q(kS) that satisfy

the constraint at equality.

Proof: The total number p of points is

p = d((k − p)S) + 1 + p(k − p)S2 + d(pS)

=
1

2
(k − p)S((k − p)S − 1) − (k − p)S + p(k − p)S2 +

1

2
pS(pS − 1) − pS

=
k2S2

2
− 3kS

2
+ 1

=
1

2
kS(kS − 1) − kS + 1

= d(kS) + 1,

as required.

The matrix of these three sets of incidence vectors can be written as follows:

M̌ :=




1 P Ξ

0 0 Λ

0 M̄ 0 0
...

. . .
...

0 0 M̄ 0

Q 1

M̂

0 0




C1

...

Cp

C1C2

...

Cp−1Cp

C1Cp+1

...

CpCk

Cp+1

...

Ck

Cp+1Cp+2

...

Ck−1Ck

Here, the single label C i indicates the S(S − 1)/2 rows corresponding to edges with

both endpoints in C i and the double label C iCj indicates the S2 rows corresponding

to edges with one endpoint in C i and the other endpoint in Cj. Note that M̌ , M̂ ,

P , Q, Ξ, and Λ all have different meanings from in §4.1. The matrix M̄ is defined

as in equation (9). The first block of columns corresponds to the d((k − p)S) + 1

13

incidence vectors arising from the (k − p)-way equipartition problem on the vertices

in sets Cp+1,. . . ,Ck, so the columns of M̂ are linearly independent. The middle set of

p(k − p)S2 vectors correspond to the second set of incidence vectors described above.

The matrices Ξ and Λ are redefined so that the last block of columns corresponds

to the final set of incidence vectors defined above. We do not need to specify the

matrices P and Q further.

Lemma 10 The rank of matrix M̌ is d(kS).

Proof: Let (u1T
, u2T

, u3T
)T be in the nullspace of M̌ . From Lemma 4, it follows

that u2 = 0. The first two blocks of rows then require that

(eT u1)


 e

0


 +


 Ξ

Γ


 u3 =


 0

0


 .

It follows from the linear independence of the columns of [ΞT , ΓT]T that there is a

unique solution u3, up to scalar multiplication.

The rows corresponding to the edges with both endpoints in ∪k
i=p+1C

i give the

equations

M̂u1 +


 1

0


 u3 = 0.

The columns of M̂ are linearly independent. Since there is a unique choice for u3 (up

to scalar multiplication), it follows that there is a unique choice for u1 (again, up to

the same scalar multiplication). Thus, the dimension of the nullspace of M̌ is one,

and the result follows from Lemma 9.

This leads directly to the following theorem:

Theorem 3 Any inequality satisfying the three assumptions given above defines a

facet of Q(kS), provided S ≥ 3.

A corollary of this theorem is that the cycle inequalities defined in (1) can be

extended to facet defining inequalities for the k-way equipartition problem.

Corollary 1 Given a cycle C of length S +1, the inequality x(E(C)) ≤ S−1 defines

a facet of Q(kS), provided S ≥ 3.

Proof: The assumptions of Theorem 3 hold:

14

1. The inequality defines a facet of the equipartition polytope on 2S vertices, as

noted earlier.

2. The inequality is valid for the k-way equipartition problem since the vertices of

the cycle must belong to at least two divisions, so there are at least two edges

on the cycle whose endpoints are in different divisions.

3. For any vertex on the cycle, the k-way equipartition where all the other vertices

on the cycle are placed in a single division satisfies the third assumption. For

any vertex not on the cycle, the third assumption is satisfied by any k-way

equipartition.

The result then follows as an immediate consequence of Theorem 3.

For the clique inequalities given in (2), the third assumption will not be satisfied

for any vertex not in the clique Kq . This is because every edge incident to each of

these vertices appears with coefficient ae equal to one in the constraint and every

equipartition must use p − 1 of these edges.

4.3 Valid inequalities

There are several families of inequalities that we have used in our cutting plane

approach, beyond those indicated in §2 and §3. Some of these families are defined on

the vertices of an equipartition polytope, although they are not facet defining for the

equipartion problem. Other families use more than 2S vertices.

4.3.1 Inequalities from the equipartition polytope

There is a limit on the number of edges that can be used from any complete subgraph.

Theorem 4 Let U ⊆ V , with |U | = S + p and 2 ≤ p ≤ S − 1. The following is a

valid inequality:
∑

e∈E(U)

xe ≤

 S

2


 +


 p

2


 . (14)

Proof: The following configuration satisfies the constraint at equality:

• Let Û ⊆ U with |Û | = S be one division and place the remaining vertices from

U in another division.

15

All other valid configurations satisfy the constraint strictly.

When k = 2, we must have x(u, U) ≥ p for each of the S − p vertices u 6∈ U .

Summing the degree constraints for the S + p vertices in U gives

2
∑

e∈E(U)

xe = (S − 1)(S + p) − ∑
u6∈U

∑
v∈U

xuv (15)

≤ S(S − 1) + p(p − 1) + p(S − p) − (S − p)p

= 2


 S

2


 + 2


 p

2


 .

Thus, for the equipartition problem, (14) is implied by the degree constraints. Nonethe-

less, this inequality is violated by some points in the LP relaxation of the k-way

equipartition problem for k > 2. For example, if k = 3 and S = 4, divide the twelve

vertices into two equal sets. Set xe = 0.6 for each edge with both endpoints within

one set, and take xe = 0 otherwise. This point satisfies the degree constraints, the

triangle constraints, and the cycle constraints but it violates (14).

The next theorem discusses two inequalities defined on cliques with S+1 vertices.

These are stronger for the equipartition polytope than those given in (14), but they

are implied by the cycle inequalities, so they are of limited use in solving the k-way

equipartition problem.

Theorem 5 Let W ⊆ V with |W | = S + 1. The following is a valid inequality:

∑
e∈E(W)

xe ≤

 S

2


 . (16)

Further, let U ⊆ V , with |U | = S − 1 and let v1 and v2 be two other vertices. The

following is a valid inequality:

2
∑

e∈E(U)

xe + (S − 1)xv1v2 +
2∑

i=1

∑
v∈U

xviv ≤ (S − 1)2. (17)

Proof: The complete graph on W can be covered by S cycles of length S + 1,

where each edge appears in exactly two of the cycles. Summing the cycle inequalities

for these cycles gives:

2x(W) ≤ S(S − 1),

showing immediately the validity of (16).

Similarly, the complete graph on {U, v1, v2} can be covered by 2(S − 1) cycles of

length S +1, with edge (v1, v2) appearing in every cycle, each edge of the form (vi, u)

16

(i = 1, 2, u ∈ U) appearing in exactly four cycles, and each edge in E(U) appear-

ing in exactly two cycles. Summing the corresponding cycle inequalities gives (17).

In the next theorem, we give another valid inequality for the equipartion problem

that extends to the k-way equipartition problem.

Theorem 6 Let U and W be two disjoint subsets of V with |U | = |W | = S − 1. The

following is a valid inequality:

(S − 1)
∑

e∈E(U)

xe + (S − 1)
∑

e∈E(W)

xe + (S − 2)
∑

e∈E(U,W)

xe ≤ (S − 2)(S − 1)2. (18)

Proof: The following configurations satisfy the constraint at equality:

• Let U be part of one division and let W be part of another division.

• Let U together with one vertex from W be one division and let the rest of W

be contained in another division.

• Let W together with one vertex from U be one division and let the rest of U

be contained in another division.

All other valid configurations satisfy the constraint strictly.

Example: Consider a graph with S = 4, so |U | = |W | = 3. The right hand side

of (18) is 18, and in Figure 1 the red edges have coefficient 3 while the black edges

have coefficient 2.

Consider this theorem for the k-way equipartition problem with k = 3. Let

Ū := V \ (U ∪ W). This is not implied by the constraints considered earlier. For

example, let δ = 1
S2−4S+5

, ε = 2δ
S−1

, ν = S−2
(S+2)(S−1)

, and γ = 4S
(S+1)(S+2)

and then set xe

as:

xij =




1 − ε if i, j ∈ U

1 − ε if i, j ∈ W

δ if i ∈ U, j ∈ W

1 − γ if i, j ∈ Ū

ν if i ∈ Ū , j ∈ U ∪ W

0 otherwise.

This arrangement satisfies the degree constraints, the triangle inequalities, the cycle

inequalities, and (14), but violates (18) by (δ − ε)(S − 1)2(S − 2).

We now consider an inequality that is equivalent to (14) if S = 3 and general-

izes it for larger values of S. This inequality was suggested by PORTA [7] for the

equipartition polytope with S = 4.

17

t t

t t
t t

�
�

�
�

�
�

�
�

�
�@

@
@

@
@

@
@

@
@

@������������������������������PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP��������������������HHHHHHHHHHHHHHHHHHHH

'

&

$

%

U

'

&

$

%

W

Figure 1: An illustration of Theorem 6

Theorem 7 Let U1 ⊆ V and U2 ⊆ V be two disjoint sets with |U1| = S − 3 and

|U2| = S +1. Let v be a vertex from V \ (U1∪U2). The following is a valid inequality:

(S − 2)
∑

e∈E(v,U1∪U2)

xe +
∑

e∈E(U2)

xe ≤ 3S2 − 9S + 8

2
. (19)

Proof: The following configurations satisfy the constraint at equality:

• Let any S vertices from U2 be one division and let the remaining vertices be

part of a second division.

• Let v together with any S − 1 vertices from U2 be one division, let the two

remaining vertices in U2 be part of a second division, and allocate the vertices

in U1 arbitrarily either into the second division or into any other division.

All other valid configurations satisfy the constraint strictly.

Note that (19) is implied by the triangle inequalities and the degree constraints

when k = 2. In particular, take (15) for the set U = U2 ∪ v, so p = 2. Let u be the

unique element of V \ (U1 ∪ U2 ∪ v). We have:

2x(U2) + 2x(v, U2) = (S − 1)(S + 2) − x(v, U1) − x(U1, U2) − x(v, u)− x(u, U2)

= (S − 1)(S + 2) − ((S − 3)(S − 1) − x(u, U1) − 2x(U1))

−(S − 1 − x(u, U1))

18

from degree constraints for u and U1

= 4(S − 1) + 2x(u, U1) + 2x(U1). (20)

Adding (S − 3) times the degree constraint for vertex v to one half of (20) gives:

x(U2) + (S − 2)x(v, U2) + (S − 3)x(v, U1)

= 2(S − 1) + (S − 1)(S − 3) + x(u, U1) + x(U1) − (S − 3)x(v, u)

≤ (S − 1)2 +
(S − 3)(S − 4)

2
+ x(u, U1) − (S − 3)x(v, u)

since |U1| = S − 3, giving an upper bound on x(U1)

≤ (S − 1)2 +
(S − 3)(S − 4)

2
+ (S − 3) − x(v, U1)

from a triangle inequality on vertices u, v, w for each w ∈ U1

=
3S2 − 9S + 8

2
− x(v, U1),

giving (19). As with constraint (14), this inequality is still useful in a cutting plane

approach to the k-way equipartition problem when k > 2, even though it is redundant

for k = 2.

4.3.2 Inequalities using more than 2S vertices

There are valid inequalities for the k-way equipartition problem that are not implied

by the inequalities presented earlier and which use edges incident to more that 2S

vertices. We present some families of such inequalities of this form in this section.

The first valid inequality is a generalization of the cycle inequality (1).

Theorem 8 Let C be a cycle with pS + 1 vertices for some integer p ≥ 1. The

following is a valid inequality:

x(E(C)) ≤ pS − p. (21)

Proof: The vertices of the cycle must be assigned to at least p+1 divisions. Thus,

at least p+1 of the pS +1 edges in the cycle have endpoints in different divisions.

The next theorem generalizes the result of Theorem 4.

Theorem 9 Let U ⊆ V with |U | = pS + q, with 2 ≤ p < k and 1 ≤ q < S. The

following is a valid inequality:

∑
e∈E(U)

xe ≤




p


 S

2


 +


 q

2


 if q ≥ 2

p


 S

2


 if q = 1.

(22)

19

Proof: The configuration of the vertices in U that uses most edges is to form p

divisions of S vertices and place the remaining q vertices in the same division. The

number of edges used by this configuration is equal to the right hand side given in

the theorem.

The following theorem is defined on a subset of the edges of a set of vertices of

size 2S + 2. The edges are chosen in such a way that at most S(S − 1) of them can

be used in any valid solution.

Theorem 10 Let U ⊆ V with |U | = 2S +2. Let Ē ⊆ E(U) and let Ḡ := (U, Ē) with

vertices U and edges Ē. If Ē is such that for any two vertex disjoint copies of KS

in Ḡ the remaining two vertices are not adjacent in Ḡ, then the following is a valid

inequality: ∑

e∈Ē

xe ≤ S(S − 1). (23)

Proof: The only way that more edges can be used from E(U) is to construct two

divisions from U and then place the remaining two vertices in the same division.

From the definition of Ē, not all the edges used by this construction appear in Ē.

There are many different ways to form Ē to meet the conditions of this theorem.

For example, the edges can be chosen so that there are not two disjoint copies of

KS within Ē. Another possibility is to add two vertices to K2S , with each of the

additional two vertices having degree S − 2 in Ḡ. We discuss further possibilities

in §7.
The next theorem is also defined on a subset of the edges of a set of 2S+2 vertices.

The edge weights vary depending on the particular edge. They are chosen to allow

multiple configurations to satisfy the constraint at equality.

Theorem 11 Let U1 ⊆ V and U2 ⊆ V be two disjoint sets with |U1| = S and

|U2| = S +1. Let v be a vertex from V \ (U1∪U2). The following is a valid inequality:

S
∑

e∈E(U1)

xe + (S − 1)
∑

e∈E(U2)

xe + (S − 1)
∑

e∈E(U1,U2)

xe + (S − 1)
∑

e∈E(v,U1)

xe

≤ S(S − 1)(2S − 1)

2
. (24)

Proof: The following configurations satisfy the constraint at equality:

• Let U1 be one division and take any S vertices in U2 to be a second division.

20

• Let v together with any S−1 vertices in U1 be one division. Create one division

of S vertices from the remaining S + 2 vertices in U1 ∪ U2, and place the last

two vertices in the same division as each other.

All other valid configurations satisfy the constraint strictly.

5 Semidefinite Programming

We can use semidefinite programming to impose an additional constraint on the

variables. Define the n × n symmetric matrix X as

Xij :=




1 if i = j

xij otherwise.

It was shown by Donath and Hoffman [11] that the matrix X is positive semidefinite.

In particular, define the n × k matrix Y as

Yij :=




1 if vertex i is in division j

0 otherwise.

We then have X = Y Y T . Karisch and Rendl [19] have investigated a semidefinite

cutting plane algorithm using this formulation. They used triangle inequalities and

constraints of the form (7) as cutting planes.

Lisser and Rendl [22] have applied a similar semidefinite programming approach

to network design problems. They initialize with the constraint that X be positive

semidefinite, and they add nonnegativity requirements on the elements of X as cutting

planes. They also investigate a polyhedral approach similar to ours, initializing as we

do and adding triangle inequalities as cutting planes. Their results indicate that the

semidefinite programming approach seems preferable for problems with large values

of S and small values of k, while the polyhedral approach is better for problems with

small values of S and large values of k.

6 Branch-and-cut

Our branch-and-cut algorithm for the k-way equipartition problem is as follows. We

call one pass through Steps 2–6 an outer iteration.

21

1. Initialize: The feasible region for the initial linear programming relaxation

is Q̄(kS). The initial incumbent integer feasible solution is a random assignment

of vertices to divisions.

2. Approximately solve the current LP relaxation using an interior point algorithm.

3. If the gap between the value of the LP relaxation and the value of the incumbent

integer solution is sufficiently small, STOP with optimality.

4. If the duality gap for the current LP relaxation is smaller than 10−8 or if 41 outer

iterations have been performed, call the branch-and-cut solver in CPLEX [10]

to attempt to verify that the incumbent integer solution is optimal and then

STOP.

5. Use a variant of the Kernighan-Lin heuristic [21] to round the fractional solution

to the LP relaxation into a good integer feasible solution. Replace the current

incumbent solution with this solution if it is an improvement.

6. Use the separation routine (defined below) to find violated cutting planes and

return to Step 2.

An interior point method was used in Step 2 to approximately solve the LP re-

laxations, with the required tolerance on the relative duality gap gradually tightened

at each outer iteration. The initial tolerance was 0.3. It was multiplied by a factor

between 0.2 and 1 depending on the outcome of the separation routines — the toler-

ance is decreased more quickly if the maximum triangle inequality violation is small.

For more details on interior point cutting plane algorithms of this type, see [23].

In all the experiments considered later, the data was integer. Thus, the algorithm

terminates in Step 3 if the gap is smaller than one.

In Step 4, we provide the set of constraints from the final LP relaxation, together

with the integrality restrictions, to the branch-and-cut solver. Since this set of con-

straints does not contain all of the triangle inequalities, the solution to this integer

program may not be feasible in the k-way equipartition problem. If the integer solu-

tion returned by the branch-and-cut solver has the same value as the solution found

in Step 5 then this confirms that the latter is the optimal integral solution.

The separation routine consists of the following parts:

6–i The algorithm first searches for triangle inequalities (3), (4), and (5),

using complete enumeration. Inequalities are bucket sorted by the size of

the violation. Starting with inequalities in the most violated bucket, a

22

subset are added, ensuring that no two of these added inequalities share

an edge. The violation of the last constraint added is restricted to be no

smaller than a multiple of the violation of the first constraint added.

6–ii If no more than twenty triangle inequalities have been added or if the

maximum violation of a triangle inequality is smaller than 0.3, a routine

similar to that described in Grötschel and Wakabayashi [17, 18] is used

to find violated 2-partition inequalities (6), with |U | = 1 or 2 and

|W | ≥ 3.

6–iii If the maximum violation of a triangle inequality is smaller than 0.3, the

algorithm searches for violated cycle inequalities (1) by building up

cliques of vertices. This uses a breadth first search approach, based on

adding vertices v to the test set U if xuv is sufficiently large for one or

more vertices in U . Initially, the algorithm only considers edges e with

xe ≥ 0.75; it then considers edges with xe ≥ 0.6, then xe ≥ 0.45, and

finally xe ≥ 0.3. Cliques of size S + 1 with weight x(U) > S(S−1)
2

must

contain violated cycle inequalities, so if we find a violated clique inequality

of this form, we add the corresponding cycle inequalities.

6–iv Clique inequalities of the form (14) with p = 1 and q = 2 and of the

form (18) are checked using the same breadth first search routine as in

Step 6–iii.

6–v If no more than five cliques leading to violated inequalities have been

found, the algorithm searches for cycle inequalities (1) directly, using a

depth first search approach.

If one step does not produce enough violated cutting planes or if the cutting planes

are not sufficiently violated, the separation routine moves to the next step. Otherwise,

it returns to the main algorithm. In all the computational experiments described in

§7, we had S = 4; different values of S may require different values for some of the

parameters discussed in this section.

The cutting plane algorithm was written in Fortran 77 and implemented on a Sun

Enterprise workstation. CPLEX was run on a Sun 20/71 workstation. It took an mps

file as input, containing a description of the final LP relaxation as well as integrality

restrictions.

23

7 Computational results

Test problems were drawn from three different sources. In all of these problems, the

cluster size was set equal to four.

7.1 Realignment in the NFL

The first class of problems we examined were based on realignment in the National

Football League. For this problem, S = 4 and k = 8. The minimum value for the total

intradivisional travel distance is 27957 kilometers. The heuristic in the cutting plane

algorithm found this optimal solution. The cutting plane algorithm found a lower

bound of 27938 kilometers and CPLEX confirmed that the algorithm had found the

optimal solution. The cutting plane algorithm used 57 seconds and CPLEX required

a further 57 seconds. For the realignment problems, seven specific inequalities of the

forms (19), (22), (23), and (24), were found by visual inspection of the fractional

solution. For these problems, these constraints were added after Step 6–v on the

first outer iteration when the cutting plane routines would otherwise have added no

constraints.

The breakdown of these seven inequalities is as follows:

• One constraint of the form (19).

• Two constraints of the form (22) with p = 2 and q = 2.

• Three constraints of the form (23). These were defined in two different ways:

– For one of the constraints, start with K8. Delete one edge. Choose two

additional vertices. Connect them to each end of the missing edge from

K8. Connect each of the two additional vertices to one of the original eight

vertices.

– For the other two constraints, start with one copy of K4 and two copies of

K3. Add six edges between the two copies of K3, ensuring that the max-

imum clique within these six vertices still has cardinality three. Connect

one of the vertices in one of the copies of K3 and two of the vertices in the

other copy of K3 to every vertex in the copy of K4.

• One constraint of the form (24).

For this problem, we also added a semidefiniteness constraint to the final relax-

ation and resolved using a semidefinite programming algorithm. However, this only

24

improved the lower bound by one, so we did not try using the semidefiniteness con-

straint for any of the other problems.

We also solved some variants of this problem; for details see [24]. Some of these

variants benefited from the addition of one additional constraint of the form (14) with

p = 3 and one additional constraint of the form (22) with p = 2 and q = 1. The

cutting plane algorithm was able to solve some of these variants without branching.

7.2 Random geometric problems

We generated vertices in the unit square. The distance between two vertices was then

defined as the integral part of 1000 times the Euclidean distance between the vertices.

We generated problems with between 40 and 160 vertices. Ten problems of each size

were generated.

Table 1 shows that the cutting plane algorithm was typically able to solve these

problems to within about 2% of optimality. The rows in the table give the number of

problems solved exactly with the cutting plane algorithm, the average final gap for

the cutting plane code, the average runtime in seconds for the cutting plane code,

the average number of cuts added, the average number of outer iterations, and the

average number of interior point iterations.

The last two rows of the table show the performance of CPLEX on one instance

of each size. In each case, the final relaxation formed by the cutting plane algorithm

was submitted to the branch and bound routine in CPLEX; the runtime and size

of the tree generated are reported. Note that feeding all the triangle inequalities to

CPLEX is impractical; CPLEX was unable to solve a 40 vertex instance in 16 hours

when given only the triangle inequalities.

7.3 Random network design problems

Lisser and Rendl [22] have described an application of the k-way equipartition prob-

lem in network design problems. Given estimates for the communication between

each pair of vertices, it is desired to cluster the vertices into equal size clusters so as

to maximize the sum of communication within clusters. The vertices in a cluster will

then be connected using a Sonet or SDH ring. They discuss results for some propri-

etary France Telecom problems, and they also give computational results for some

randomly generated problems. The problems have between 100 and 500 vertices. We

experimented with dividing them into clusters of size 4, and the results are contained

in Table 2.

25

Vertices 40 60 80 100 120 140 160

Solved exactly 4 0 0 0 0 0 0

Gap 2.3% 1.9% 1.7% 1.7% 2.3% 2.4% 2.0%

Time 20.1 54.4 127.4 221.9 504.2 708.6 975.9

Cuts added 265.2 457.9 568.7 715.2 886.7 1042.5 1202.4

Outer iterations 17.7 24.8 30.5 34.1 35.4 40.4 39.7

Inner iterations 188.1 320.2 461.1 571.3 678.7 759.8 792.2

Typical CPLEX run

time 333.4 646.1 2772.6 4009.1 > 10000

nodes 1300 228 1007 608 > 1500

Table 1: Results on random geometric problems

Size 100 200 300 400 500

LP bound 184.850 763.423 1756.202 3125.942 4915.604

IP bound 185.752 765.719 1760.241 3131.535 4922.800

gap 0.49% 0.30% 0.23% 0.18% 0.15%

intra gap 7.1% 8.8% 10.2% 10.6% 10.8%

Rows 2850 4632 4468 5260 5333

Outer iterations 33 36 32 30 28

Inner iterations 257 411 384 405 382

Table 2: Results on random network design problems

In order to agree with [22], we have reported the bounds in terms of the sum

of the edge lengths of the inter-divisional distances. The percentage differences are

considerably smaller when given in this manner. We give the percentage gap in the

sum of the total intradivisional distance for comparison. The code was allowed to run

for 50000 seconds on each of these problems. We report the number of interior point

iterations, the number of outer iterations, and the number of constraints in the final

relaxation found in this time.

It should be noted that the algorithm gets close to the optimal solution quickly.

For example on the 300 vertex problem, it has found the integer solution with value

1760.241 and has a lower bound of 1754.176, that is a gap of 0.35%, in 135 seconds.

Results for the other problems are similar.

Because our cutting plane routines are more extensive, these bounds are slightly

better than those obtained by Lisser and Rendl [22]. As they note, the polyhedral ap-

26

proach is superior to a purely semidefinite approach for problems with many divisions,

as in these instances.

8 Conclusions

The use of a polyhedral approach allows the construction of better bounds on optimal

values for instances of the k-way equipartition problem drawn from different settings.

This can be used in conjunction with a branch-and-bound or branch-and-cut approach

to find optimal solutions, at least for problems of a reasonable size.

The network design problems of §7.3 appear harder than the Euclidean problems

discussed in §7.1 and §7.2. They require considerably more time and the final duality

gaps (in terms of the intradivisional distances) are far larger. One of the reasons for

the increased computational time is that the matrix AD2AT formed by the interior

point method is denser, because the columns of A are denser, with more constraints

needed to force certain difficult components of x to take the correct values. (Here,

A denotes the constraint matrix and D is a diagonal matrix.) We observed a similar

phenomenon for matching problems in [26], where instances with edge lengths cor-

responding to Euclidean distances required less computational work than instances

with a random distribution of edge lengths. It would be of interest to try a simplex

cutting plane approach for these problems, either on its own, or in combination with

an interior point cutting plane method, as was done in [25] for the linear ordering

problem.

References

[1] S. Areibi and A. Vannelli. Advanced search techniques for circuit partitioning. In

P. Pardalos and H. Wolkowicz, editors, Quadratic Assignment and Related Prob-

lems, volume 16 of DIMACS: Series in Discrete Mathematics and Theoretical

Computer Science, pages 77–96. AMS, 1994.

[2] F. Barahona and A. R. Mahjoub. On the cut polytope. Mathematical Program-

ming, 36:157–173, 1986.

[3] S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefi-

nite programs for combinatorial optimization. SIAM Journal on Optimization,

10(2):443–461, 2000.

27

[4] L. Brunetta, M. Conforti, and G. Rinaldi. A branch-and-cut algorithm for the

equicut problem. Mathematical Programming, 78:243–263, 1997.

[5] S. Chopra. The graph partitioning polytope on series-parallel and 4-wheel free

graphs. SIAM Journal of Discrete Mathematics, 7:16–31, 1994.

[6] S. Chopra and M. R. Rao. The partition problem. Mathematical Programming,

59:87–115, 1993.

[7] T. Christof and G. Reinelt. Combinatorial optimization and small polytopes.

Top (Spanish Statistical and Operations Research Society), 4:1–64, 1996.

[8] M. Conforti, M. R. Rao, and A. Sassano. The equipartition polytope I: For-

mulations, dimension and basic facets. Mathematical Programming, 49:49–70,

1990.

[9] M. Conforti, M. R. Rao, and A. Sassano. The equipartition polytope II: Valid

inequalities and facets. Mathematical Programming, 49:71–90, 1990.

[10] CPLEX Optimization Inc. CPLEX Linear Optimizer and Mixed Integer Opti-

mizer. Suite 279, 930 Tahoe Blvd. Bldg 802, Incline Village, NV 89541.

[11] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs.

IBM Journal of Research and Development, 17:420–425, 1973.

[12] J. Falkner, F. Rendl, and H. Wolkowicz. A computational study of graph parti-

tioning. Mathematical Programming, 66:211–239, 1994.

[13] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A. Wolsey. The

node capacitated graph partitioning problem: formulations and valid inequali-

ties. Mathematical Programming, 74:247–267, 1996.

[14] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A. Wolsey. The

node capacitated graph partitioning problem: a computational study. Mathe-

matical Programming, 81:229–256, 1998.

[15] A. Frieze and M. Jerrum. Improved approximation algorithms for max k-cut and

max bisection. In Proceedings of the Fourth IPCO Conference, pages 1–13, 1995.

[16] M. R. Garey and D. S. Johnson. Computers and intractibility: a guide to the

theory of NP-completeness. Freeman, 1979.

28

[17] M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a clustering

problem. Mathematical Programming, 45:59–96, 1989.

[18] M. Grötschel and Y. Wakabayashi. Facets of the clique partitioning polytope.

Mathematical Programming, 47:367–387, 1990.

[19] S. E. Karisch and F. Rendl. Semidefinite programming and graph equiparti-

tion. In P.M. Pardalos and H. Wolkowicz, editors, Topics in Semidefinite and

Interior-Point Methods, volume 18 of Fields Institute Communications, pages

77–95. AMS, 1998.

[20] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. Technical

Report 98–036, Department of Computer Science and Engineering, University of

Minnesota, Minneapolis, MN 55455, 1998.

[21] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

graphs. Bell System Technical Journal, 49:291–307, 1970.

[22] A. Lisser and F. Rendl. Telecommunication clustering using linear and semidef-

inite programming. Technical report, Institüt f̈r Mathematik, Universität Kla-

genfurt, A – 9020 Klagenfurt, Austria, November 2000.

[23] J. E. Mitchell. Computational experience with an interior point cutting plane

algorithm. SIAM Journal on Optimization, 10(4):1212–1227, 2000.

[24] J. E. Mitchell. Realignment in the NFL. Technical report, Mathematical Sci-

ences, Rensselaer Polytechnic Institute, Troy, NY 12180, November 2000.

[25] J. E. Mitchell and B. Borchers. Solving linear ordering problems with a combined

interior point/simplex cutting plane algorithm. In H. L. Frenk et al., editor,

High Performance Optimization, chapter 14, pages 349–366. Kluwer Academic

Publishers, Dordrecht, The Netherlands, 2000.

[26] J. E. Mitchell and M. J. Todd. Solving combinatorial optimization problems

using Karmarkar’s algorithm. Mathematical Programming, 56:245–284, 1992.

[27] C. C. de Souza, R. Keunings, L. A. Wolsey, and O. Zone. A new approach to

minimising the frontwidth in finite element calculations. Computer Methods in

Applied Mechanics and Engineering, 111:323–334, 1994.

[28] H. Wolkowicz and Q. Zhao. Semidefinite programming relaxations for the graph

partitioning problem. Discrete Applied Mathematics, 96/97:461–479, 1999.

29

[29] Y. Ye. A .699-approximation algorithm for max-bisection. Technical report,

Department of Management Sciences, The University of Iowa, Iowa City, Iowa

52242, March 1999.

30

