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Abstract

We describe a branch and cut algorithm for both MAX-SAT and
weighted MAX-SAT. This algorithm uses the GSAT procedure as a primal
heuristic. At each node we solve a linear programming (LP) relaxation
of the problem. Two styles of separating cuts are added: resolution cuts
and odd cycle inequalities.

We compare our algorithm to an extension of the Davis Putnam Love-
land (EDPL) algorithm and a Semi-De�nite Programming (SDP) ap-
proach. Our algorithm is more e�ective than EDPL on some problems,
notably MAX-2-SAT. EDPL and SDP are more e�ective on some other
classes of problems.

1 Introduction

The satis�ability problem (SAT) is a problem in propositional logic. A logic
formula consists of the conjunction of clauses. Each clause consists of a dis-
junction of literals. Each literal is a variable or its negation. The SAT problem
seeks to �nd an assignment to the variables which satis�es the logic formula,
or an indication that no such assignment exists. The satis�ability problem is
NP-complete [7].

There are a number of exact algorithms for the satis�ability problem. These
include Davis-Putnam-Loveland [6, 27], resolution [31], and integer program-
ming approaches [2, 19, 22, 24, 25]. A number of heuristics that use randomiza-
tion also exist; the �rst randomized local search algorithm for satis�ability was
due to Gu [12, 13, 14, 15]. Other algorithms include the GSAT heuristic [33, 34]
and the GRASP heuristic [30]. For surveys of algorithms for SAT problems
see [16, 17].
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In this paper we investigate the related MAX-SAT problem. Given a col-
lection of clauses, we seek a variable assignment that maximizes the number
of satis�ed clauses. The weighted MAX-SAT problem assigns a weight to each
clause, and seeks an assignment that maximizes the sum of the weights of the
satis�ed clauses. Both of these problems are NP-hard. It is possible to approx-
imate MAX-SAT within a factor of 1.325 in polynomial time [8].

Most SAT heuristics have been extended to MAX-SAT. Several heuristics for
MAX-SAT are summarized in Hansen and Jaumard [18]. The GSAT heuristic
has also been extended to weighted MAX-SAT [26].

In this paper we investigate a branch and cut approach to MAX-SAT. We
then report on computational results using both our approach and an extension
of the Davis-Putnam-Loveland procedure [4].

We also compare our algorithm with a semi-de�nite programming (SDP)
approach [9, 20]. This method formulates an SDP relaxation of the MAX-
SAT problem, solves the relaxation using an interior point algorithm, and, if
necessary, repeatedly adds cutting planes and solves the modi�ed relaxation.
The implementation described in this paper may not solve a given instance to
optimality, but in those cases, it could be made into an exact algorithm with
the addition of a branch-and-bound phase. The SDP approach provides both
an upper and a lower bound on the optimal value, so it is possible to terminate
with guaranteed optimality if these two bounds agree.

1.1 MAX-SAT as an Integer Programming Problem

A logical variable vi can be TRUE or FALSE. We replace this variable with
a corresponding integer variable xi. This variable takes on value 1 when vi is
TRUE and 0 when it is FALSE.

An unnegated literal vi is simply replaced with the expression xi. A negated
literal such as vi can be replaced with the expression 1� xi.

A clause is satis�ed if, and only if, at least one of its k literals is TRUE.
For the integer problem, we sum the corresponding k expressions. The clause
is true if, and only if, the sum is one or more. For example, the clause

v1 _ v3 _ v7 _ v9

is equivalent to

(1� x1) + x3 + x7 + (1� x9) � 1

We must have some way of handling the maximization of satis�ed con-
straints. We do this by adding variables to the problem. A clause is either
satis�ed or it isn't. But this just produces a new clause that is always satis�ed:

original clause _ original clause not satisfied

we can replace the 2nd term above with a new variable. There will be one such
variable per clause.
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Maximizing the sum of the weights of satis�ed constraints is equivalent to
minimizing the sum of the weights of unsatis�ed constraints. This sum is simply
the sum of the weight of each clause times the variable indicating that the clause
is not satis�ed. Given the MAX-SAT problem:

v1 _ v2 weight 1
v1 _ v2 _ v3 weight 4
v1 _ v2 weight 3

we obtain the equivalent Integer Program (IP):
min w1 + 4w2 + 3w3

s:t: (1� x1) + (1� x2) + w1 � 1
x1 + x2 + x3 + w2 � 1
x1 + (1� x2) + w3 � 1

xi = 0 or 1; i = 1; : : : ; 3: wi = 0 or 1; i = 1; : : : ; 3
or

min w1 + 4w2 + 3w3

s:t: � x1 � x2 + w1 � �1
x1 + x2 + x3 + w2 � 1
x1 � x2 + w3 � 0

xi = 0 or 1; i = 1; : : : ; 3: wi = 0 or 1; i = 1; : : : ; 3
These added variables are referred to as the weighted variables. The other

variables are the unweighted variables.

2 Description of Algorithm

2.1 Overview

The basic approach is branch and cut [10, 11, 21, 29]. At each node of the
tree we solve the linear programming (LP) relaxation obtained by replacing the
integrality requirements by the simple bounds:

0 � xi � 1; i = 1; : : : ; n; 0 � wi � 1; i = 1; : : : ;m
If the solution to the LP is integral, we compare it to the best integral solution
so far. If the solution has one or more fractional variables, we branch on one of
the fractional variables and repeat the procedure.

The algorithm has several interacting components. A primal heuristic is
used to obtain an upper bound on the binary solution. This allows us to fathom
nodes in the branch and cut tree. A bounds routine is used to determine if
any variable of the LP relaxation can be �xed at zero or one. Resolution cuts
and odd cycle inequalities are added to guide the LP toward a binary solution.
Finally, a branching routine is used to choose a variable on which to branch.
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2.2 Primal Heuristic

The primal heuristic is run once at the beginning of the algorithm. This routine
is an e�cient randomized local search heuristic, similar to other good heuristics
in the literature [12, 13, 14, 15, 26, 33, 34]. Several tries are attempted. For each
try we randomly choose a binary assignment to the variables. We then perform
a series of 
ips. By 
ipping variables (choosing the opposite assignment for a
single variable), we attempt to move towards an optimal solution.

There are two types of 
ips. Random 
ips randomly select a variable to 
ip.
Best-choice 
ips attempt to select the best variable to 
ip. We compute the
e�ect of a 
ip, that is the net increase or decrease in the sum of the weights of
the satis�ed clauses. We choose the variable with the best net increase in this
sum. If several variables produce the same net increase, we select one of these
variables at random.

Seventy percent of the 
ips (chosen arbitrarily) are best-choice 
ips. The
random 
ips are used to assist in escaping from local minima.

2.3 Node Fathoming

The di�erence between the optimal value of the LP relaxation and that of the
incumbent solution is referred to as the gap. If the gap is su�ciently small then
we can fathom the node. That is, we know that any binary solution along this
branch is no better than the incumbent solution.

If the gap is strictly less than some threshold then we can fathom the nodes.
Normally this threshold is the greatest common divisor of the clause weights.
In the special case where the optimal incumbent solution has one unsatis�ed
clause of minimal weight, the threshold is this minimum weight.

2.4 Variable bounds

In some cases we can �x variables, thus simplifying the problem. When a
variable is �xed, some clauses become satis�ed.

Let us sum the weighted variables that are �xed at one. This is the �xed
weighted variable sum, and it represents a lower bound on the LP objective
function. Suppose we have a non-satis�ed clause whose weight when added to
this sum is greater than or equal to the optimal value of the incumbent solution.
Since we are seeking a better solution, the weighted variable of the clause must
be �xed at zero (or equivalently the unweighted portion of the clause must be
satis�ed). This clause is a must satisfy clause.

A simple form of variable �xing is su�cient weight �xing. If we have a must
satisfy clause then we �x the weighted variable at zero.

If we have a must satisfy clause with only a single un�xed unweighted vari-
able then we must �x this variable in such a way as to satisfy the clause. This
is known as unit clause �xing.

If a variable appears in only the positive sense in the non-satis�ed clauses
then we can �x the variable at one. Likewise, if the variable is always negated
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then we can �x it at zero. This is known as monotone variable �xing.
First, we examine the clauses that are not satis�ed. We compute the number

of non-�xed variables in each clause. For each non-�xed variable, we count the
number of clauses in which it appears in the positive and negated senses. If
a variable appears in only the positive sense then �x it via monotone variable
�xing. If there is only a single non-�xed variable in a clause of su�cient weight
then �x it via unit clause �xing.

When a variable is �xed, this satis�es some constraints. We decrement
the counters for the other variables in this newly satis�ed constraint. This
potentially allows us to �x additional variables that may now have become
monotone. As we �x a variable, all constraints having the opposite sense of
the variable are now shorter. If a clause is now of length one and has su�cient
weight then we can �x the remaining variable via unit clause �xing.

If an original constraint is satis�ed, we set the clause's weighted variable to
zero. This is known as satis�ed clause �xing.

If all the unweighted variables of an original clause are �xed in such a way
that none of the unweighted literals satisfy the clause then we set the clause's
weighted variable to one. This is known as unsatis�ed clause �xing.

2.5 Cut generation

There are two types of cuts: resolution cuts and odd cycle inequalities. The
cuts are applied locally (at this node of the branch and bound tree and its
descendents) rather than to the whole tree. After adding cuts, the LP is re-
evaluated. This process is repeated until no more cuts can be added. Resolution
cuts are discussed by Hooker and Fedjki [22, 23, 24]. Odd cycle inequalities are
discussed by Cheriyan et al. [5].

2.5.1 Resolution cuts

Resolution cuts arise by combining two clauses: one with the positive sense of
a variable, the other clause with the negative sense. There must be exactly one
such literal. The resolvent consists of literals (even those arising from weighted
variables) found in either clause except for the variable of opposite sense. For
example, given the clauses:

x1 _ x3 _ x7 _w9

x2 _ x3 _ x7 _w11

we can resolve to generate the following:

x1 _ x2 _ x7 _w9 _w11

The resolution routine consists of a sequence of passes, each designed to
generate resolvents matching certain criteria. In each pass for each variable
of each resolvable clause, the list of clauses with the opposite sense of that
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variable is obtained. This clause is resolved (if possible) with each of the other
clauses on the list. If the resolvent matches the given criteria, it is added to
the list of resolvable clauses for the next pass. If this clause is of length one or
less (counting only the original unweighted variables) and is a su�ciently deep
separating cut (violated by 0.3 or more with the current LP solution) then it
is added to the list of separating cuts (the length and depth restrictions were
determined by experimentation to yield the fastest algorithms). This process
continues until a su�cient number of resolvents have been generated or all such
clauses have been exhausted.

At the end of each pass, constraints that can not possibly be useful in future
passes are removed from consideration. The resolvents that are generated are
reduced to a minimal set through absorption. In absorption if the unweighted
literals of clause A are a subset of the literals of clause B, then clause A implies
clause B. In this case, clause B is absorbed by clause A and B is removed
from consideration. The list of separating cuts is also reduced to a minimal set
through absorption.

The �rst pass requires that the resolvents match the requirements for the
separating cuts, that is, of length one or less and violated by 0.3 or more.

The second pass requires that the resolvents be of length three or less.
The third pass requires that the resolvents be of length two or less.
The fourth pass requires that the resolvents be of length one or less.

2.5.2 Odd cycle inequalities

The odd cycle inequalities combine clauses with two un�xed unweighted vari-
ables. A clause is considered odd if both un�xed unweighted variables are
negated, or if both are not negated; otherwise, the clause is considered even. A
cycle xi1

; : : : ; xik
in the un�xed unweighted variables is sought. The �rst con-

straint involves variables xi1
and xi2

, the next xi2
and xi3

, the next xi3
and xi4

,
. . . the last clause involving xik and xi1 . The cycle is said to be odd if when we
\add up" these constraints, we obtain an odd total. By insuring that the cycle
is odd, we know that the right hand side will be odd, and will be rounded up
when we divide the coe�cients of the resulting constraint by two.

This is best illustrated by an example. Suppose we have the constraints
below. Variables x1{x4 are un�xed unweighted variables, the other variables
are un�xed and weighted. The �rst constraint is a cut (generated at a previous
branch and cut node) since it involves multiple weighted variables.

x1 +x2 +w10 +w11 � 1
+x2 �x3 +w11 � 0

�x3 �x4 +w12 � �1
�x1 �x4 +w13 � �1

The �rst, third, and fourth constraints are odd; the second is even. Adding
these constraints together we obtain:

2x2 � 2x3 � 2x4 + w10 + 2w11 + w12 +w13 � �1

Dividing by 2 and rounding coe�cients we obtain:
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x2 � x3 � x4 + w10 + w11 +w12 + w13 � 0

We are again seeking only separating cuts. Odd cycles force this increase in
the right hand side thus potentially generating a separating cut. Even cycles do
not have this potential. If we �nd an odd cycle of accumulated weight (de�ned
below) 1{2�, then we obtain a separating cut of depth �. We are seeking a
cut of depth 0.3, so we are seeking an odd cycle of weight 0.4 or less. We also
require that the cut is of length two or less (the length and depth restrictions
were determined by experimentation to yield the fastest algorithms).

We use a modi�ed version of Dijkstra's shortest path algorithm to �nd the
separating cuts. Dijkstra's algorithm starts from a given start node of a tree and
uses edge weights to �nd the shortest path from this start node to any other.
Initially, the start node is assigned weight 0. All others are assigned in�nite
weight. All nodes are initially unmarked. The algorithm then picks the lowest
weight unmarked node. This node is now marked. For any unmarked neighbors
of this chosen node with

chosen weight+weight of edge from chosen to neighbor < weight of neighbor

we replace the neighbor's weight with this sum. This process continues until all
the shortest paths have been found (all nodes are marked). The algorithm can
be slightly modi�ed to record the actual shortest path to a node (in addition to
its length).

We use the algorithm once per literal. In each iteration this literal is the
start literal.

� The edges represent clauses with two un�xed unweighted literals. The
weight of an edge is the surplus of the constraint plus the sum of the
weights of the clause's weighted variables (as these are likely to appear in
the sum exactly once and so will have their coe�cient rounded up thus
increasing the slack).

� The weight of a node is the accumulated edge weights on the path from
the start node.

� There are two nodes per literal. One node represents the length of the
shortest odd path to the node. The other that of the shortest even path.

� The start node corresponds to an even length path to the start literal.
This null path is considered even.

� The algorithm terminates when either:

1. The chosen node (most recently marked) has a weight exceeding 0.4
(indicating that any separating cut is no deeper than 0.3, a failure),
or has a length greater than 2 (a failure), or
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2. The chosen node is the odd sense of the start literal. Thus, we have
an odd path from the start node to itself (a cycle).

The odd cycle cuts can only be applied if we start with a large number of
two literal clauses or after a signi�cant number of variables have been �xed.
Hence, these cuts tend to be applied only deep into the tree. We will investigate
the e�ects of a more robust approach in a future paper.

2.6 Branching

After generating cuts and applying bounds, we branch if there are still fractional
variables in the LP solution.

The branching scheme we use is a modi�cation of the Jeroslow-Wang [25]
scheme.

We examine the probability of satisfying all the constraints if we randomly
assign values to the remaining un�xed variables. For simpli�cation, we assume
that the probabilities of such an assignment satisfying each constraint are inde-
pendent, and that each binary variable assignment has a probability of one half.
We attempt to pick a variable whose assignment will have the greatest change
in this probability.

For each fractional variable, we �nd a weight for the positive and negative
sense as follows. We investigate all the original clauses containing the given
sense of the variable. The chance of a random assignment satisfying this clause
is: �

1

2

�k

We then consider the relative weights of the clause. For a clause of weight,
w, with k � 2, we assign the following value to the clause:

w

�
1

2

�k

For a singleton clause (k = 0) of weight, w, we assign the following value to
the clause:

w0:05

instead of merely using k = 1 in the previous formula. This considerably reduces
the weight assigned to singleton clauses. This value was determined through
experimentation.

We sum the clause values over all clauses in which this sense of the variable
occurs. A similar approach is used for the opposite sense of the variable. We
sum these two values and branch on the variable with the greatest sum. Such
a variable will have a signi�cant e�ect along either of the two branches and
should, therefore, tend to generate a smaller branch and bound tree. For this
variable, we �rst explore the more heavily weighted branch.

This approach di�ers from Jeroslow-Wang in that:
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1. We give lesser weight to singleton clauses.

2. We consider the e�ect on both branches.

3 Test Results

In this section we compare our branch and cut code (B+C) to a MAX-SAT ex-
tension of the Davis-Putnam-Loveland (EDPL) algorithm [4] and a semi-de�nite
programming (SDP) approach [3]. All are implemented in C. The branch and
cut code uses the MINTO package of Savelsbergh et al. [28] (replacing default
modules with those discussed in previous sections). All tests are executed on
an IBM RS6000/390 with 128 Megabytes of memory. The results are contained
in Tables 1{14. The abbreviation \MEM" in the tables indicates that a test
terminated due to insu�cient memory.

We tested these algorithms on a set of unweighted problems generated by
the MWFF package of Selman [32]. Both MAX-2-SAT and MAX-3-SAT prob-
lems were examined. Various numbers of variables and clauses were tried. This
produced some problems that were satis�able and others with several unsatis-
�able clauses. The results were sorted on the number of unsatis�ed clauses, as
this gave a strong indication of the di�culty of the problem. The semi-de�nite
programming approach can only be directly applied to MAX-2-SAT problems.

For MAX-2-SAT problems (see Tables 1{5), the branch and cut code appears
superior. EDPL only performs better on problems with a small number of
clauses. Both algorithms take more CPU time as the number of clauses grow;
however, the execution time of EDPL grew explosively. The branch and cut code
tends to generate very small trees while EDPL generates large ones. As a result,
branch and cut performs dramatically better. SDP appears to fare poorly on
most of these problems. However, on very dense problems (see Table 5), SDP
outperforms the branch and cut code. The run time of the SDP approach
appears almost insensitive to the number of clauses.

Our algorithm does not perform nearly so well for MAX-3-SAT problems
(see Tables 6{13). The search tree is generally smaller than that of EDPL.
However, the evaluation at each node is much more expensive thus resulting
in much greater execution times. EDPL's advantage diminishes with increasing
numbers of unsatis�ed clauses (for example the series of problems in Tables 6{8);
however, even here, EDPL performs better.

We also examined the Steiner \D" weighted tree problems [26] (see Table 14).
Our current implementation of the primal heuristic is too primitive to handle
these large variable problems well. So, for these problems, we ran our code with
the primal heuristic disabled. The EDPL code takes in excess of 12 hours on all
of these problems. This is true even if the primal heuristic is disabled and the
code is provided with the correct incumbent value. Our branch and cut code
handles many of these problems with ease.
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problem clauses unsat. B+C EDPL SDP
name clauses CPU nodes CPU backtracks CPU lower upper

p2180 5 180 0 0.62 1 0.1 1 366.85 180 180
p2180 8 180 1 4.96 1 0.7 2 1015.99 179 179
p2180 6 180 1 4.89 1 0.7 47 911.65 178 178
p2180 3 180 2 5.18 1 0.7 40 1417.08 178 178
p2180 9 180 2 5.23 1 0.7 34 2497.35 178 179
p2180 2 180 2 5.29 1 0.7 10 2152.11 178 179
p2180 1 180 3 4.99 1 0.7 162 2299.32 177 178
p2180 7 180 4 5.25 1 0.8 964 1322.69 176 176
p2180 4 180 4 5.19 1 0.9 1773 2315.90 176 177
p2180 10 180 4 5.31 1 0.9 1933 1106.76 176 176

p2200 8 200 4 5.24 1 0.8 1065 613.46 196 196
p2200 6 200 4 5.27 1 0.9 1304 2249.11 196 197
p2200 3 200 4 5.58 1 0.9 2219 2231.58 196 197
p2200 5 200 5 5.39 1 1.5 7982 643.29 195 195
p2200 1 200 5 5.48 1 2.3 12303 2465.95 195 196
p2200 7 200 5 5.41 1 2.3 13549 2169.85 195 196
p2200 2 200 6 5.67 1 4.2 32700 2373.41 194 195
p2200 10 200 6 6.02 3 8.2 73117 2146.13 194 196
p2200 9 200 6 5.56 1 8.9 80824 2162.91 194 195
p2200 4 200 7 5.56 1 20.1 217362 2549.42 193 194

Table 1: Computational results for 100 variable MAX-2-SAT problems with a
small number of clauses
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problem clauses unsat. B+C EDPL SDP
name clauses CPU nodes CPU backtracks CPU lower upper

p2220 5 220 4 5.81 1 0.8 1045 2279.29 216 217
p2220 3 220 4 5.71 1 1.2 3699 424.00 216 216
p2220 9 220 4 5.80 1 1.0 2233 1924.46 216 216
p2220 2 220 5 5.51 1 1.8 10039 2134.21 215 216
p2220 7 220 6 5.94 1 5.7 48360 2083.10 214 215
p2220 10 220 7 5.91 1 9.8 91322 1450.78 213 213
p2220 1 220 7 5.83 1 10.3 90586 2240.66 213 214
p2220 8 220 7 6.46 5 21.6 197734 2190.08 213 214
p2220 4 220 8 5.74 1 17.4 172550 2156.89 212 213
p2220 6 220 8 5.93 1 41.5 418421 2127.74 212 213

p2240 7 240 7 6.12 1 26.6 242434 2219.66 233 234
p2240 9 240 9 6.22 1 33.9 337982 906.15 231 231
p2240 10 240 9 6.05 1 84.2 817004 2660.03 231 232
p2240 2 240 9 6.22 1 115.4 1150960 2245.81 231 232
p2240 4 240 9 6.22 1 163.9 1767247 1557.34 231 231
p2240 5 240 9 6.70 1 150.4 1634963 2149.84 231 232
p2240 6 240 9 6.47 1 181.4 1775023 2200.40 231 232
p2240 8 240 9 6.35 1 126.4 1357751 1110.96 231 231
p2240 3 240 11 6.57 1 1205.4 13050216 2115.74 229 230

Table 2: Computational results for 100 variable MAX-2-SAT problems with a
somewhat small number of clauses
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problem clauses unsat. B+C EDPL SDP
name clauses CPU nodes CPU backtracks CPU lower upper

p2260 10 260 6 6.53 1 4.1 29932 419.95 254 254
p2260 4 260 8 6.54 1 12.5 109971 1155.04 252 252
p2260 7 260 8 6.23 1 36.4 340233 442.69 252 252
p2260 3 260 9 6.37 1 61.7 588508 902.17 251 251
p2260 2 260 9 6.53 1 66.2 631689 2206.08 251 252
p2260 6 260 11 6.89 1 510.7 5214818 2148.64 249 250
p2260 8 260 11 7.92 1 939.1 9722169 2144.15 249 250
p2260 1 260 11 7.43 1 1543.1 15149775 2294.05 249 250
p2260 9 260 12 7.70 1 2556.3 26165444 2264.76 248 249
p2260 5 260 12 7.39 1 4293.8 46674569 662.34 248 248

p2280 10 280 10 6.83 1 227.2 2118261 2401.60 270 272
p2280 8 280 11 7.54 1 495.6 4770966 2169.24 268 270
p2280 9 280 11 7.11 1 407.3 3853794 1161.27 269 269
p2280 5 280 11 7.06 1 1398.0 14876069 1181.26 269 269
p2280 7 280 12 6.98 1 3437.0 35347297 2105.63 268 269
p2280 1 280 13 7.89 1 2738.0 28997281 2241.37 267 268
p2280 3 280 13 7.56 1 3151.6 32091970 2102.66 267 268
p2280 6 280 14 16.37 15 29111.1 313402437 2199.46 266 268
p2280 2 280 15 12.68 5 32085.0 332713465 2212.57 265 266
p2280 4 280 15 10.39 3 45268.2 503462478 2243.10 265 267

Table 3: Computational results for 100 variable MAX-2-SAT problems with a
medium number of clauses
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problem clauses unsat. B+C EDPL SDP
name clauses CPU nodes CPU backtracks CPU lower upper

p2300 2 300 13 7.18 1 2229.1 21334438 2307.46 287 288
p2300 3 300 13 7.50 1 2497.9 23764177 2399.92 287 288
p2300 4 300 14 7.29 1 4618.5 47629271 2202.70 286 287
p2300 9 300 15 7.51 1 8746.0 85235320 1220.04 285 285
p2300 1 300 15 8.18 1 10564.3 104553113 2086.05 285 286
p2300 10 300 15 8.24 1 12693.1 125325067 2292.71 285 286
p2300 5 300 15 11.35 3 29738.0 309999407 2263.76 285 287
p2300 6 300 17 9.67 1 69325.3 704246333 2200.03 283 284
p2300 8 300 17 9.42 1 Not Run Not Run 2123.03 283 284
p2300 7 300 20 32.33 11 Not Run Not Run 2266.63 280 281

p2400 3 400 25 13.36 1 Not Run Not Run 2097.99 375 376
p2400 7 400 26 30.69 11 Not Run Not Run 2127.00 374 375
p2400 6 400 27 18.70 3 Not Run Not Run 2134.13 373 374
p2400 4 400 28 13.58 1 Not Run Not Run 640.15 372 372
p2400 2 400 28 18.29 3 Not Run Not Run 2134.42 372 373
p2400 1 400 29 21.75 3 Not Run Not Run 2157.36 371 372
p2400 5 400 29 45.13 15 Not Run Not Run 2167.33 371 373
p2400 10 400 30 64.82 11 Not Run Not Run 2141.70 370 372
p2400 8 400 33 71.13 11 Not Run Not Run 2166.69 367 369
p2400 9 400 34 121.73 19 Not Run Not Run 2074.66 365 368

Table 4: Computational results for 100 variable MAX-2-SAT problems with a
large number of clauses
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variables clauses B+C SDP
CPU CPU lower upper

50 100 3.32 56.15 96 96
200 5.70 46.61 184 184
300 9.51 93.63 268 268
400 12.65 34.45 355 355
500 26.94 78.56 434 434
1000 64.76 18.75 838 838
1500 1933.55 250.39 1228 1229
2000 1350.11 84.56 1614 1614
2500 3378.69 348.00 2007 2008
3000 523.75 38.77 2419 2419
3500 10142.31 88.67 2783 2783
4000 5761.59 58.76 3169 3169
4500 16958.45 352.68 3540 3541
5000 37241.84 298.27 3933 3933

100 1000 22915.42 5153.65 857 859
1500 MEM 5321.79 1270 1272
2000 MEM 1549.69 1685 1685
2500 MEM 6422.84 2055 2060

150 1000 MEM 24445.65 1285 1297
1500 MEM 23274.42 1309 1310
2000 MEM 30934.79 1702 1711
2500 MEM 21335.99 2104 2112

Table 5: Computational results on dense MAX-2-SAT problems

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

test215 1 215 0 0.64 1 0.1 1
test215 3 215 1 5.99 23 0.5 23
test215 2 215 1 6.74 25 0.5 25
test215 5 215 1 7.18 33 0.5 31
test215 4 215 2 31.19 281 0.6 562

test250 3 250 0 1.53 1 0.2 1
test250 1 250 2 19.13 71 0.6 314
test250 4 250 2 21.56 85 0.6 306
test250 5 250 2 24.64 119 0.6 362
test250 2 250 4 172.02 759 3.2 20001

Table 6: Computational results for 50 variable MAX-3-SAT problems with a
small number of clauses
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problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

test300 3 300 4 70.41 169 2.1 10116
test300 1 300 4 116.84 285 2.3 11073
test300 2 300 5 193.81 469 5.9 42151
test300 5 300 5 250.22 615 8.4 59216
test300 4 300 6 351.27 773 16.2 130802

test350 4 350 5 208.03 323 4.8 28409
test350 2 350 6 334.62 553 15.1 112539
test350 1 350 8 1052.44 1583 103.3 915731
test350 3 350 8 1074.87 1639 97.8 864778
test350 5 350 8 1346.03 2289 118.0 1048876

test400 3 400 8 556.56 609 62.8 482523
test400 5 400 8 664.45 787 76.1 594532
test400 2 400 8 765.23 821 68.9 521495
test400 4 400 11 1808.15 1811 519.8 4541184
test400 1 400 11 3199.41 3455 690.1 6196183

Table 7: Computational results for 50 variable MAX-3-SAT problems with a
medium number of clauses

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

test450 4 450 10 924.22 791 162.6 1237498
test450 5 450 11 1353.03 1095 357.9 2817502
test450 3 450 11 1965.93 1579 533.7 4268781
test450 1 450 12 2572.63 1911 868.9 7129533
test450 2 450 14 5298.33 3795 2752.4 24408217

test500 1 500 15 4446.50 2343 2465.1 19442201
test500 3 500 16 7999.25 3793 4081.6 32959363
test500 4 500 16 6712.91 3381 3923.8 31096996
test500 5 500 19 19831.93 10681 15832.7 136515702

Table 8: Computational results for 50 variable MAX-3-SAT problems with a
large number of clauses
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problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

s323 4 323 0 0.72 1 0.1 1
s323 2 323 0 0.93 1 0.1 1
s323 3 323 0 1.22 1 0.1 1
s323 1 323 0 4.26 1 0.2 1
s323 5 323 1 22.72 81 0.8 94

s350 1 350 1 24.24 69 0.9 85
s350 2 350 1 24.38 67 0.9 76
s350 4 350 1 29.49 107 0.9 73
s350 3 350 1 160.09 765 0.9 77
s350 5 350 2 128.47 639 1.3 1176

s375 1 375 0 0.92 1 0.1 1
s375 2 375 2 136.71 583 1.5 1527
s375 3 375 2 187.54 783 1.5 1649
s375 5 375 3 308.18 829 4.0 11649
s375 4 375 3 355.89 1061 4.7 14669

Table 9: Computational results for 75 variable MAX-3-SAT problems with a
small number of clauses

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

s400 3 400 2 216.12 723 1.7 1894
s400 5 400 3 447.54 1195 4.1 11460
s400 2 400 4 807.87 1615 20.3 90478
s400 4 400 4 1042.92 2611 25.9 118064
s400 1 400 5 2207.02 4529 104.1 554165

s425 3 425 4 1057.23 2183 21.8 88537
s425 1 425 4 1146.52 2147 20.4 83776
s425 4 425 5 1971.31 3787 84.6 442233
s425 2 425 5 2862.11 5617 110.0 559420
s425 5 425 6 4390.22 7133 478.5 2799709

s450 4 450 5 2286.86 3551 97.9 481736
s450 5 450 6 3113.21 4757 295.9 1603476
s450 1 450 6 5932.71 8739 466.4 2619212
s450 3 450 7 5011.38 6999 1212.7 7362249
s450 2 450 7 5152.23 7921 1639.2 10218689

Table 10: Computational results for 75 variable MAX-3-SAT problems with a
medium number of clauses
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problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

s475 2 475 6 2944.16 3821 345.5 1844920
s475 3 475 6 3108.99 3901 282.3 1500066
s475 5 475 7 3522.77 3671 678.2 3741527
s475 1 475 7 4687.80 5803 856.5 4841953
s475 4 475 8 7074.77 8055 2651.3 15909584

s500 2 500 7 4001.40 3997 758.0 4205882
s500 4 500 7 MEM MEM 985.3 5693206
s500 3 500 8 MEM MEM 2652.9 15799725

Table 11: Computational results for 75 variable MAX-3-SAT problems with a
large number of clauses

problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

o430 3 430 0 0.97 1 0.2 1
o430 4 430 0 1.08 1 0.1 1
o430 2 430 0 2.19 1 0.1 1
o430 1 430 1 169.68 543 1.4 320
o430 5 430 2 1429.61 7541 5.2 8834

o450 5 450 0 1.06 1 0.1 1
o450 4 450 1 88.37 233 1.3 199
o450 3 450 1 126.68 361 1.4 312
o450 1 450 2 818.97 3073 3.5 5221
o450 2 450 2 1144.84 4023 3.9 5712

o475 5 475 1 90.83 201 1.4 281
o475 4 475 1 97.27 235 1.4 230
o475 3 475 1 112.73 297 4.1 6168
o475 1 475 2 457.51 1571 3.2 4212
o475 2 475 2 983.93 3171 3.3 4265

o500 1 500 0 3.65 1 0.2 1
o500 3 500 2 983.06 3139 2.9 3345
o500 2 500 3 2908.52 7095 31.3 87816
o500 5 500 4 7927.12 16889 203.1 735535
o500 4 500 4 9873.80 18793 162.5 572489

Table 12: Computational results for 100 variable MAX-3-SAT problems with a
small number of clauses
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problem clauses unsat. B+C EDPL
name clauses CPU nodes CPU backtracks

o525 1 525 2 450.48 1085 2.3 1910
o525 4 525 3 2330.12 5087 21.3 54483
o525 3 525 3 3290.84 6953 29.0 74311
o525 5 525 3 3864.73 7551 25.7 66390
o525 2 525 5 MEM MEM 1122.6 4525046

o550 2 550 3 1290.38 1985 11.2 24487
o550 1 550 3 2411.89 4231 30.0 78768
o550 5 550 4 8769.65 13813 147.9 479767
o550 3 550 5 17128.79 24793 837.4 3304456
o550 4 550 6 MEM MEM 7526.6 33281390

o575 5 575 4 6488.93 8609 151.9 491192
o575 3 575 5 13342.57 17253 602.2 2191647
o575 1 575 6 MEM MEM 4370.9 18334787
o575 2 575 7 MEM MEM 10488.5 47346157

Table 13: Computational results for 100 variable MAX-3-SAT problems with a
large number of clauses

problem variables clauses ave clause optimal B+C
name length value CPU nodes

steind2 1295 1765 1.31 220 86.35 105
steind3 1416 1885 1.25 1646 3.08 1
steind4 1499 2074 1.28 2044 4.44 1
steind5 1749 2646 1.34 3419 11.42 1
steind7 2045 2325 1.15 103 2.90 3
steind8 2166 2544 1.15 1180 3.14 1
steind9 2249 2797 1.20 1585 4.73 1
steind10 2499 3261 1.23 2219 10.46 1
steind11 5120 5882 1.17 29 467.52 333
steind12 5009 5039 1.01 42 2.57 1
steind13 5166 5499 1.06 544 4.29 1
steind14 5249 5709 1.08 740 5.81 1
steind15 5499 6202 1.11 1193 11.41 1
steind16 25032 25133 1.01 13 18.41 2
steind18 25166 25412 1.01 262 13.42 1
steind19 25249 25585 1.01 359 15.02 1
steind20 25499 26041 1.02 558 20.54 1

Table 14: Computational results for Steiner \D" tree problems
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depth nodes resolution odd cycle
cuts/node cuts/node

0 1 0.00 0.00
1 2 24.00 0.00
2 4 12.25 0.00
3 8 12.88 3.50
4 16 13.00 3.88
5 32 7.84 6.66
6 64 7.23 11.63
7 128 5.91 14.77
8 256 5.05 16.60
9 508 4.47 18.27
10 947 3.58 18.77
11 1393 3.09 18.10
12 1503 2.42 16.58
13 1128 2.01 15.26
14 623 1.78 14.02
15 253 1.70 11.93
16 105 1.31 9.72
17 26 1.46 6.00
18 10 2.30 8.10
19 1 4.00 5.00

Table 15: Cuts per node in the branch and cut tree of problem test500 5 in
table 8

4 Conclusions and Future Directions

We compared three algorithms for solving MAX-SAT. None was universally
superior. The general trend was that branch and cut works best on MAX-2-SAT
and the Steiner \D" problems (where the average clause length is small). Trends
suggest that branch and cut may also be better if the system contains a large
number of unsatis�ed clauses. EDPL appears to generally work best for MAX-
3-SAT. The EDPL code generates larger search trees, but spends much less time
per node. The SDP approach works well on MAX-2-SAT problems with a very
large number of clauses. It may be possible to improve the performance of an
SDP algorithm for problems with fewer clauses by implementing an algorithm
that exploits sparsity, for example a dual algorithm as used by Benson et al. [1]
for MAXCUT problems.

There are a number of ways in which the performance of the branch-and-cut
code might be improved:

� One possibility is some kind of hybrid algorithm, perhaps using a limited
EDPL step for node fathoming and/or variable �xing. This should help
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reduce the tree size with a relatively low cost per node.

� Another possibility is the addition of deeper cuts such as max-clique [5]
inequalities.

� A third possibility is a branch step that takes into account the slacks on
the LP relaxation. It may also be worthwhile to investigate branching on
several variables, perhaps reducing the total number of LP evaluations.

� A �nal possibility is to reduce or eliminate cuts in the �rst few levels of
the tree. Despite the addition of a large number of cuts here, the tree
expanded in a binary fashion for several levels (see table 15). These cuts
increase the size of the LP's and, therefore, the time to solve them.
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