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1.1 INTRODUCTION

Branch-and-bound is a classical approach for solving linear mixed integer programs. While the approach is
applicable to nonlinear MIPs, there has been much less emphasis on the nonlinear case among the research
community. Some work in this direction is described in Borchers and Mitchell, 1994, Borchers and Mitchell,
1997, and Sahinidis, 1996, and elsewhere. (See the survey paper by Hansen et al., 1993.) Borchers and
Mitchell, 1991, describe computational results with the use of an interior point branch-and-bound method
for linear mixed integer programming problems, and Mitchell, 1996a, Mitchell, 1996b, and Mitchell et al.,
1997, survey the use of interior point methods to solve integer programming and combinatorial optimization
problems. Other methods for mixed integer nonlinear programming include methods based on Bender’s
decomposition (e.g., see Floudas, 1995), the outer approximation method of Duran and Grossman, 1986,
Lagrangean decomposition and trust-region based approaches Michelon and Maculan, 1991, and Mauricio
and Maculan, 1997. Nevertheless, the coupling of nonlinear solvers within the branch-and-bound framework
is relatively unexplored.

The goal of this work is to incorporate the computational advances in nonlinear programming within
the basic branch-and-bound framework to assist in tackling 0/1 mixed integer programs with nonlinearities
appearing in either the objective or constraints. Thus, the general problem considered is of the form

minimize f(x)
subject to: g(x) ≤ 0

xi ∈ {0, 1} ∀ i = 1, . . . , p,
(NMIP)

where x ∈ <n, g : <n → <m and p ≤ n. Without loss of generality, bounds on the variables are integrated
into the constraints g(x) ≤ 0.

In Section 2 we describe the nonlinear interior-point based solver we developed to solve the branch-and-
bound subproblems. The integration of the nonlinear solver within the branch-and-bound tree is described
in Section 3. In Section 4 we briefly describe the parallel implementation, and preliminary numerical results
are reported in Section 5.

1.2 INTERIOR-POINT BASED NONLINEAR SOLVER

At each node of the branch-and-bound tree a subproblem — obtained by fixing certain 0/1 variables to zero
or one, and relaxing the integral restrictions on the remaining 0/1 variables — must be solved. Thus, each
subproblem is a nonlinear programming problem with only continuous variables. As such, it can be written
as:

minimize f(x)
subject to: g(x) ≤ 0 (NLP)

There has been a tremendous amount of research among the nonlinear programming community on finding
efficient algorithms for (NLP) (see, for example, Boggs et al., 1996, Boggs et al., 1994, Domich et al., 1991,
El-Bakry et al., 1996, Murtagh and Saunders, 1978, McCormick, 1991, and Monteiro and Wright, 1992). In
our current implementation, we employ the method of sequential quadratic programming (SQP) — which
has been shown to be very effective in solving practical nonlinear programming problems — for solving
(NLP). We note that when f and g are convex and differentiable, the SQP approaches return an optimal
solution for (NLP) and thus a true lower bound for (NMIP). Suppose xk is the current iterate. The direction
d for computing the next iterate is obtained by first solving the quadratic problem:

minimize ∇f(xk)T d + 1
2dT B(xk)d

subject to: g(xk) + ∇g(xk)d ≤ 0,
(QP)

where B(xk) is an approximation of the hessian of the Lagrangian for (NLP), evaluated at xk.
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This quadratic problem is solved via an interior-point algorithm, an approach which has been shown to
be computationally very effective by Lustig et al., 1992, and Vanderbei, 1994. The progress of the algorithm
and the choice of a steplength is guided by a merit function. In our current implementation, we apply a
simple L1 merit function of the form:

f(x) + ρ||g+(x)||1 (MF)

where ρ is a constant chosen to be greater than ||y||∞ with y the dual multiplier of (QP); and g+
i (x) denotes

the violation of constraint gi when evaluated at x. Below we describe the interior-point solver implemented
to solve problem (QP) and some special features of our code.

1.2.1 Overview of the Interior-point Solver.

Our interior point solver, based on the one developed by Boggs et al., 1996, and Domich et al., 1991, is
developed to solve the quadratic problem (QP). For convenience of notation, we rewrite (QP) as

minimize cT d + 1
2dT Qd

subject to: Ad ≤ b.
(QP)

The first step of the solver is to preprocess the augmented matrix [A, b] in order to remove redundant rows
and columns, dominated rows and columns, as well as columns associated with fixed variables. If it is
necessary to perform Phase I on (QP) to obtain an initial feasible solution, we modify (QP) to include an
artificial variable with a dynamically altered cost. The iterates di are always strictly feasible in this modified
problem, and the artificial variable is driven to zero as optimality is approached, provided the original (QP)
is feasible. At the ith iterate, di, the next iterate di+1 is determined by an (O3D) step as well as a Newton
centering step. The (O3D) directions, v1, v2, v3, chosen are the dual affine direction, the centering direction,
and the order three correction direction. As optimality is approached, the centering direction is replaced by
a direction that moves the iterate away from the constraint which is closest in the dual affine direction. Let
s > 0 be the corresponding vector of slacks for (QP), and let D be the diagonal matrix with Dii = 1/s2

i .
Then the three directions mentioned above are obtained by solving systems of the form

(AT DA +
1
r0

Q) v = v̄

to find v. Here, v̄ is an appropriately chosen vector and r0 is an estimate of the objective function residual;
that is, the gap between the objective value of (QP) evaluated at di and the optimal objective value. The
steplengths taken in each of these directions are obtained by solving a three-dimensional subproblem:

minimize c̃T x̃ + 1
2
x̃T Q̃x̃

subject to: Ãx̃ ≤ b̃
(O3D)

where R = [v1, v2, v3], c̃ = RT (c + Qdi), Q̃ = RT QR, Ã = AR, b̃ = b − Adi, and x̃ ∈ <3.

Clearly, the origin is feasible for (O3D). However, since there is no guarantee that an optimal solution
exists, the O3D solver returns a vector x̃∗ that is either declared to be optimal, or tends to be very large
in magnitude due to unboundedness of (O3D). In the case of optimality, we set di+1 = di + αγRx̃∗, where
α ∈ [0, 1], and γ is the safe steplength (i.e., the largest step possible without violating the constraints in
(QP)). Otherwise, x̃∗ is scaled (to avoid taking too large of a step) before di+1 is selected as above. We use
a Newton centering step after each (O3D) step to center the iterate and to improve the rate of convergence.
This centering routine also involves solving a three dimensional subproblem, and it is based on the one
described in Boggs et al., 1996, and Domich et al., 1991. The stopping criteria for the interior-point solver
are when the relative duality gap is less than or equal to the optimality tolerance; or when there is no relative
improvement in the primal objective; or when there are no good steps obtained from the (O3D) routine
and the Newton recentering step. In our implementation, initially the quadratic programming subproblems
(QP ) are solved using a relatively big optimality tolerance; then, as the solution to the underlying nonlinear
programming problem is approached, the tolerance is decreased in order to achieve greater accuracy.
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1.2.2 Special Features within the SQP Solver

We remark that the principal advantage of the implemented interior point algorithm over other interior
point approaches to solving quadratic programming problems is that only one matrix, AT A + Q, has to be
factorized. This can be performed quite efficiently when the nonzero structures of AT A and Q share many
entries. Most other methods (see, for example, Vanderbei, 1994) require the factorization of a matrix of the
form [

Q AT

A G

]

for an appropriately chosen diagonal matrix G. This latter factorization in general amounts to considerably
more work than the one we use. However, our approach in general does not provide a dual feasible solution
until termination, and it has not been proven to enjoy quadratic convergence.

Below, we highlight the iterative dual refinement procedure implemented to overcome the shortcomings
of our approach, as well as some features which are implemented within our current SQP solver.

Scaling of input matrix. Before any numerical calculation, the interior-point solver first performs iter-
ative scaling of the rows and columns of the constraint matrix of (QP). In particular, each row (column) is
scaled by the geometric mean of the maximum and minimum of the absolute values of the nonzero entries
of the row (column). We perform this iterative procedure until the ratio of the described maximum and
minimum in each row (column) is within a certain pre-specified range. We also apply scaling within each
O3D step.

Heuristic jumpstart of (QP). The interior-point solver includes a Phase I procedure to obtain a feasible
interior starting point. Since Phase I involves calculations with large values, we also include an inexpensive
heuristic for finding an initial interior starting point. The heuristic first sets the primal solution to zero.
Then it determines the smallest right-hand-side coefficient. If this coefficient is positive, we scale it by a
factor between 0 and 1. Otherwise, we set the value to -1.0. After that, each non-slack variable is assigned
this value, scaled by the number of columns and the norm of the corresponding column in the constraint
matrix. The slacks are then assigned values according to the current slack values. If the resulting vector
is feasible and is in the interior of the constraint matrix, this point will be used as the warmstart for the
interior-point solver. Otherwise, Phase I will be called.

Heuristic minimum ordering and diagonal augmentation. At the beginning of the (QP) solve, one
minimum ordering is performed on the matrix AT A+Q. We include a minimum degree ordering implemented
as described in George and Liu, 1981, as well as a fast heuristic which orders the rows in nondecreasing order
of the number of nonzero entries in each row. During numerical factorization, diagonal elements will be
augmented whenever their values fall below a threshold zero tolerance. Within the O3D routines, the step
x̃ is solved using a dense-Cholesky factorization with pivoting. We again augment diagonal elements when
needed to ensure positive definiteness in the 3 × 3 matrix.

Iterative dual refinement. Since (O3D) is a primal method, it often does not provide a very accurate
dual solution for (QP), especially if the algorithm is terminated prematurely. To improve the dual values of
(QP), three dual refinement steps are performed:

The first refinement, designed to reduce dual infeasibility, works within each primal iterate in the
interior-point solver. If the estimated dual variable y for a primal iterate is infeasible, its value will be
iteratively refined so as to reduce dual infeasibility. The second refinement occurs before the interior-
point solver exits (QP). If the dual solution remains infeasible, it will be recalculated based on the
corresponding theoretical values.

We exploit the presence of simple bounds on the primal variables to increase the flexibility of selection
of the values of the dual variables. For example, if one of the primal constraints is a simple bound on
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a variable, then there is a slack variable in the corresponding dual constraint, and this variable can be
adjusted to move towards feasibility, if necessary, or to improve the dual value.

We employ basis identification, discussed in El–Bakry et al., 1994, and Mitchell et al., 1997, which
requires exploiting complementary slackness relationships to fix some dual variables at zero. In the
quadratic case, this involves determining which constraints hold at equality, fixing some dual values to
zero, and then searching for an appropriate dual solution.

Update dual variables of NLP. The dual solutions to (QP) can be used as dual solutions to (NLP). We
use a slightly more conservative approach, and take the updated dual solution to (NLP) to be a weighted
average of the former dual solution to (NLP) and the dual solution to (QP).

1.3 THE NONLINEAR BRANCH-AND-BOUND SOLVER

The SQP solver described above is embedded within a branch-and-bound framework. At the root node of
the branch-and-bound tree, the solver begins by solving the nonlinear programming relaxation of (NMIP)
to obtain a lower bound on the objective value. After the initial solve, the heuristic is called. If a feasible
integer solution is found, the associated objective value serves as the current upper bound. (By default in
a branch-and-bound algorithm, the initial upper bound is set to ∞, see Nemhauser and Wolsey, 1988, for
details of the algorithm.) If the lower bound is less than the upper bound, we proceed with the branch-and-
bound tree search. Throughout the tree search, whenever a node cannot be fathomed, a branching variable,
based on either the smallest index among the fractional binary variables, or the most infeasible value (if
there is a tie, the one with the smallest index is chosen), will be selected. Two new nodes, one with the
selected variable set to 0, and the other with the selected variable set to 1, will be created and added to the
set of active nodes. The order of processing nodes is based on the “best estimate” criterion. (Note that the
bound on each node is only an estimate of its lower bound, due to our premature termination of the SQP
solve as described below.) We now summarize some special features in our branch-and-bound solver.

Premature termination of SQP and QP solvers. At each node of the branch-and-bound tree, some
binary variables are fixed to 0 or 1. We solve the corresponding nonlinear relaxation using the SQP approach,
which uses the interior point algorithm (described in Section 2.1) to approximately solve the quadratic
programming subproblems generated from the SQP method. The degree of premature termination of the
SQP solver is controlled by selecting the optimality tolerance appropriately. Note that there are four possible
outcomes at each node. In three of them, it suffices to solve the relaxation approximately.

If the optimal solution to the relaxation is fractional, it suffices to only solve the relaxation approxi-
mately, as basis identification techniques such as those used in El–Bakry et al., 1994, can be used to
determine which variables are tending to fractional values.

If the optimal value to the relaxation is greater than the current best upper bound on the optimal
value of the (NMIP), the relaxation only has to be solved accurately enough to determine this, and
the node can then be fathomed.

If the relaxation is infeasible, it only has to be solved accurately enough to obtain a lower bound on
the relaxation greater than the current best upper bound on the optimal value of the NMIP. This node
can then be fathomed.

When the optimal solution is integral feasible and yields an objective which may result in updating
of the best current upper bound, we solve the relaxation using a tightened optimality tolerance and
cross-check to ensure integrality conditions are indeed satisfied by the solution.

The premature termination of the SQP and QP solvers help to reduce the iteration counts and avoid
unnecessary computation, this is accomplished by allowing the optimality tolerance to range from 10−4 (for
a loose optimality condition) to 10−13 (when accurate solution is important for correct conclusion).
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Advanced warmstarts. In a branch-and-bound framework, it is desirable to exploit information about
the parent node when solving the child node. This information should provide a good initial solution (or
warmstart) for the child.

When the simplex algorithm is used to solve integer linear programming problems by branch-and-bound,
it is advantageous to start the solution process at the child node from the optimal basis to the parent,
reoptimizing using dual simplex. This is the fundamental idea of “advanced basis” in a simplex-based
branch-and-bound solver. Typically, the set of indices of the basic variables of the optimal solution of each
parent node is stored. Thus, for each active branch-and-bound node, a basis (corresponding to the optimal
basis of its parent node) is stored for restart purpose.

The situation is much different with an interior point method. In this case, the optimal solution to the
parent is not a good starting point for the child, since it is too close to the boundary. Typically, an interior
point method will first move into the interior of the feasible region and then move towards the optimal
solution to the child. It is better to start the interior point method at the child with a point that is more
centered. Therefore, rather than storing a set of indices, it is desirable to store an interior point for the
parent problem, and use this as a restart point for the child. Unfortunately, it is prohibitively expensive to
store a double-precision vector of an initial interior point for each tree node. As the branch-and-bound tree
grows, this will lead to memory explosion and prohibit further continuation of the solution process. However
without a warmstart, the interior point algorithm may take an unacceptably large number of iterations
before convergence is achieved.

Analogous to the “advanced basis,” we introduce the idea of “advanced warmstart” in an interior-point
based branch-and-bound solver. At the root node of the branch-and-bound tree, a collection of interior
feasible points are reserved. As we select a node, we also select the most appropriate vector from the
collection for warmstart. Typically we select one which is further away from the boundary of the feasible
region. If it is not feasible to the subproblem, we perform an ad-hoc heuristic to try modifying this warmstart
vector such that it becomes primal feasible. This collection of warmstarts is updated dynamically as the tree
search proceeds.

Adaptive heuristic procedure and local warmstart updates. For each node at the depth of a multiple
of 8, we perform a heuristic before branching. For difficult integer programming instances, the existence of
good integer feasible solutions help to prune active nodes, and reduce the size of the branch-and-bound
tree. This has a direct impact on the speedup of the solution process. We experimented with some primal
heuristics. The current implementation involves an extension of the primal heuristics described in Bixby
et al., 1996, and Bixby and Lee, 1998, which have been shown to be very effective for mixed 0/1 linear
integer programming instances. The heuristic starts by using the warmstart associated with the current
node. During successive solves within the heuristic, this vector is updated appropriately and, as such, serves
as a local warmstart for the next solve. As is done when solving (SQP) within each branch-and-bound node,
initially the heuristic is solved to a looser optimality tolerance within each consecutive solve. However, a
tighter tolerance is employed when more variables are fixed and a higher degree of accuracy is desired.

Preprocessor. Preprocessing is performed on each branch-and-bound node. This procedure includes
the commonly used techniques of removal of redundant rows, columns, dominated rows and columns as
well as checks for infeasibility. After that, fixed columns are removed and the right-hand-side is updated
appropriately. Next we scan for rows with exactly one nonzero entry. If the value for such a nonzero variable
satisfies its bounds, the row is eliminated and the bounds for the variable are updated. Otherwise, the
subproblem is declared infeasible.

A more involved type of preprocessing would be to use specialized techniques for finding upper and lower
bounds, which may make it possible to prune a node more quickly. Techniques described in the literature
include the use of Lagrangean decomposition; see, for example, Borchers and Mitchell, 1994, and Michelon
and Maculan, 1991. We do not currently employ such techniques.
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1.4 PARALLEL IMPLEMENTATION

Branch-and-bound is an inherently parallel algorithm. Indeed, there has been consistent interest among
both the computer science and the integer programming research communities in designing efficient parallel
implementations, see for example Applegate et al., 1994, Bixby et al., 1996, Cannon and Hoffman, 1990,
Eckstein, 1994, and Gendron and Crainic, 1994. Due to the “NP-hard” nature of integer programs, it is
to be expected that an efficient parallel branch-and-bound algorithm will be able to solve some difficult
integer programs which would otherwise be intractable running on sequential codes. Indeed, three of the
most competitive commercial MIP solvers (CPLEX, OSL, XPRESS), include a parallel branch-and-bound
implementation on certain computer platforms. One distinct difference of our parallel branch-and-bound is
its capability of solving nonlinear mixed 0/1 integer programs.

Our parallel implementation uses TreadMarks1 as the parallel platform. TreadMarks is a distributed
shared memory (DSM) system for networks of Unix workstations and distributed-memory multiprocessors,
such as the IBM SP2. DSM enables processes running on different workstations to share data through a
network-wide virtual memory, even though the hardware provided by the network lacks the capability for
one workstation to access another workstation’s physical memory as discussed in Bixby et al., 1996, Keleher
et al., 1994, and Li and Hudak, 1989. Our current implementation is done on a loosely coupled network of
SUN SPARC20/M61 workstations, connected via 10BaseT ethernet cable.

At the initial phase of the parallel code, one processor is responsible for reading in the problem. That
processor also solves the initial nonlinear programming relaxation. If the optimal solution is integral feasible,
the algorithm is done; otherwise, the heuristic is called. After that, sequential branch-and-bound is performed
to spawn enough active nodes until the accumulated number of nodes exceeds a predetermined threshold.
At this point, parallel execution is activated. The global data in our implementation consists of the best
upper bound (for minimization problems), its corresponding solution, the global list of active nodes, and a
collection of warmstart vectors (generated at the root node). For an individual processor, the initial setup
amounts to reading in a copy of the nonlinear programming relaxation, as well as all the modifications to it
after performing preprocessing and scaling at the root. The tree search is handled in a “pseudo” centralized
manner. Based on best-estimate selection, an idle processor fetches a short list of active nodes from the
global list, reads the current best upper bound and the collection of warmstart vectors. One node from the
short list is selected, and the associated nonlinear program is solved. If an integral solution is obtained, this
node is fathomed without further branching; otherwise, a local heuristic is called according to the heuristic
interval setting. If the heuristic is performed and a better upper bound is obtained, the best upper bound and
solution are “updated” locally within this processor. If there is no gap between the nonlinear programming
objective value and this upper bound, this node is fathomed; otherwise, a branching variable is selected and
two new nodes corresponding to the selected variable are created. The processor keeps all this new global
data locally, and continues the solution process on another node from its short collection until all of the
nodes are exhausted. After that, if an updated best upper bound is available, or if there are new active
nodes created, or if warmstart vectors have been modified, all this information will lead to global update via
the lock and release mechanisms on the global data. The above process is repeated until the entire list of
active nodes is exhausted and every processor is idle, signaling the completion of the parallel processing.

1.5 NUMERICAL RESULTS

Gathering our experience in the implementation of interior point solvers and branch-and-bound algorithms
(including Bixby et al., 1996, Bixby et al., 1995, Bixby and Lee, 1998, Borchers and Mitchell, 1991, Borchers
and Mitchell, 1994, Borchers and Mitchell, 1997, Lee, 1997b, Lee, 1997a, Mitchell, 1996a, Mitchell, 1996b,
and Mitchell, 1997), the entire optimization code is built “in-house” in C to allow greater flexibility and
efficiency in adapting features from the SQP solver within the tree search environment. In this section, we
report our preliminary tests performed on five portfolio problems and 16 mixed 0/1 instances from MIPLIB.
These instances arise from real applications, and the experiments will serve as our initial stage of reporting
empirical performance of the solver as a quadratic MIP solver. The tests were performed on a network of
SUN SPARC/M61(50MHZ) workstations.
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Table 1.1 shows the problem statistics and the performance of the branch-and-bound solver on 16 MIPLIB
instances. Name, Rows, Cols, and 0/1 var. correspond to the name of the problem instance, and the number
of rows, columns and 0/1 variables in the constraint matrix. LP Obj., MIP Obj., BB nodes, and CPU Time
(secs) indicate the objective for the initial LP relaxation, the optimal objective for the integer program, the
number of branch-and-bound nodes solved, and the CPU time elapsed.

Table 1.1 Problem Descriptions and Branch-and-Bound Statistics of MIPLIB Instances

Initial Optimal BB CPU
Name Rows Cols 0/1 var. LP Obj. MIP Obj. nodes Time (secs)

air01 23 771 771 6743.0 6796 4 62.3
bm23 20 27 27 20.57 34 101 328.2
egout 98 141 55 149.589 568.1007 634 1290.2
fixnet3 478 878 378 40717.018 51845 131 972.6
fixnet4 479 878 378 4257.966 8922 376 722.8
fixnet6 479 878 378 1200.884 3981 60 120.5
lp4l 85 1086 1086 2942.5 2967 41 395.6
misc01 54 83 82 57.0 563.5 49 235.5
misc02 39 59 58 1010.0 1690 14 13.0
mod008 6 319 319 290.931 307 194 576.2
mod013 62 96 48 256.016 280.95 120 305.7
p0033 16 33 33 2520.57 3089 62 85.2
p0040 23 40 40 61796.55 62027 12 20.3
rgn 24 180 100 48.799 82.199 15 139.7
stein15 13 9 15 7.0 9 23 34.2
stein27 118 27 27 13.0 18 620 543.2

The portfolio problem deals with the decision of selecting a portfolio consisting of at most K out of n
potential investments. Here, the investor has a fixed amount of capital to invest, and must decide how much
of this capital should go to each investment. For each dollar invested in investment i, the return at time
T is ai. The investor desires to select a portfolio that will provide a return of at least M at time T . The
optimization concerns minimizing the total variance in the investment so that the investor is guaranteed a
net return of at least M . The portfolio problem can be modeled as a quadratic 0/1 integer program of the
following form:

minimize xT Qx
subject to: xi −yi ≤ 0 ∀ i = 1, . . . , n∑n

i=1 yi ≤ K∑n
i=1 aixi ≥ M∑n

i=1 xi = 1
yi ∈ {0, 1} ∀ i = 1, . . . , n
xi ≥ 0 ∀ i = 1, . . . , n

where Q is a dense positive definite matrix representing the covariance between different investments.

In Table 1.2, the column labels are analogous to those in Table 1.1. Here, NLP Obj. corresponds to the
objective value of the initial nonlinear programming relaxation.

To investigate the importance of the idea of “advanced warmstart” within the tree search environment, we
performed branch-and-bound on the problem instances with only one parameter change: advanced warmstart
flag. Table 1.3 compares the average interior-point iterations per branch-and-bound node solved, with and
without advanced warmstart vectors. The first two columns correspond to the total CPU time, and the
average number of interior point iterations per branch-and-bound nodes when advanced warmstarts are
employed within the tree search environment. The last two columns indicate the corresponding values when
advanced warmstart is turned off. With the advanced warmstarts, the reduction in solution times in all
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Table 1.2 Problem Descriptions and Branch-and-Bound Statistics for 5 Portfolio Problems

Initial Optimal BB CPU
Name Rows Cols 0/1 var. NLP Obj. MIP Obj. nodes Time (secs)

port150 755 300 150 1.49695 1.496950 49 902.6
port100 505 200 100 1.3735 1.37357 29 495.3
port50 255 100 50 1.77815 1.83227 30 90.5
port50b 255 100 50 1.54860 1.548633 78 180.7
port10 55 20 10 2.89533 2.89533 12 19.2

reported instances range from 1.17 to as much as 7.8 times, with an average 2.5 times decrease in the
number of interior point iterations solved per branch-and-bound node. These empirical results provide solid
evidence that using advanced warmstarts within the tree search environment can dramatically reduce both
the number of interior point iterations performed, and the overall solution time.

Table 1.3 Effect of “advanced warmstart”

Warmstart No Warmstart

CPU Aver. ip CPU Aver. ip
Name Time (secs) iters Time (secs) iters

port150 902.6 7 2459.4 21
port100 495.3 6 1100.3 20
port50 90.5 6 350.7 18
port50b 180.7 5 310.2 12
port10 19.2 6 29.4 8
air01 62.3 17 189.2 42
bm23 328.2 7 510.5 15
egout 1290.2 7 3012.3 18
fixnet3 972.6 8 3742.5 30
fixnet4 722.8 12 3015.2 37
fixnet6 120.5 8 936.2 39
lp4l 395.6 7 1073.1 19
misc01 235.5 5 412.2 11
misc02 13.0 6 40.2 14
mod008 576.2 7 1320.1 16
mod013 305.7 5 810.2 11
p0033 85.2 7 211.2 15
p0040 20.3 6 31.2 8
rgn 139.7 7 402.1 21
stein15 34.2 4 40.3 5
stein27 543.2 5 792.2 8

We next report the speedup of our solver over four distributed machines in Table 1.4. Let Tn denote
the time elapsed when n processors are used. To capture the idle time spent on the machines due to
communication overhead during the parallel process, in our tests, Tn was always measured using “wall-
clock” time, and was recorded starting from reading in the problem instance to the final shutdown of all
processors after printing the solution. We define the speedup for n processors to be the ratio T1

Tn
.

We observe that problems with sequential running time greater than 100 seconds enjoyed fairly decent
speedup. However, few of the problems with sequential solution times under 100 seconds achieved significant
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Table 1.4 Speedup on n SPARC20/M61

Name T1
T2

T1
T3

T1
T4

port150 1.94 2.76 3.60
port100 1.90 2.80 3.41
port50 1.67 2.41 2.23
port50b 1.78 2.45 3.22
port10 1.34 1.21 1.90
air01 1.12 1.23 1.02
bm23 1.87 2.87 3.56
egout 2.02 2.97 3.87
fixnet3 2.12 3.09 3.99
fixnet4 1.96 2.78 3.50
fixnet6 1.75 2.50 3.0
lp4l 1.70 2.61 3.2
misc01 1.56 1.98 2.33
misc02 1.23 1.20 1.01
mod008 1.98 2.67 3.76
mod013 1.78 2.77 3.65
p0033 1.77 2.56 3.41
p0040 1.43 1.21 1.12
rgn 1.57 1.54 1.24
stein15 1.34 1.17 1.23
stein27 1.90 2.78 3.56

speedup. Indeed, in some instances, the parallel runnings times are almost the same as the sequential time.
Such behavior is not unexpected, and can be largely attributed to communication overhead. In addition,
several of these models simply do not generate enough nodes to justify (or necessitate) the use of parallelism.
We will continue to explore the capability of our solver on different classes of nonlinear 0/1 mixed integer
programs. We expect the parallel code will provide good speedup on some difficult instances.

1.6 CONCLUSIONS AND CURRENT RESEARCH

The preliminary results on the nonlinear branch-and-bound solver described herein are quite encouraging.
Empirical results justify our idea of using advanced warmstarts within each branch-and-bound node. In
addition, we remark that from the results of our numerical tests, we observed that the dual refinement aids
in reducing iteration counts within the interior-point solver. An interior point method is good at getting close
to optimality fast, thus it is a perfect candidate to solve the relaxations in a branch-and-bound framework for
nonlinear mixed integer programming problems. The challenge lies in effective exploitation of the nonlinear
solver, and the branch-and-bound algorithm so as to adapt them efficiently into a single unified optimization
tool. Further numerical tests will be conducted on different classes of nonlinear mixed integer programs
arising in real applications to further evaluate the effectiveness of the SQP solver within a branch-and-bound
framework. As pointed out in section 2, when f and g are convex and differentiable, our current algorithm
solves the NMIP instances to proved optimality. Present algorithmic work includes improving the robustness
and capability of the solver (e.g., to handle nonconvex objective and constraint functions). The solution of
nonconvex problems will obviously require the use of a method for generating reliable lower bounds on the
global optimum of the nonlinear programming relaxation of the problem. In addition, the near-optimality
solution obtained in each subproblem can serve as the guide for generating cuts.
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Notes

1. TreadMarks is a trademark of Parallel Tools, L.L.C.
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