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1 INTRODUCTION

We are trying to find a point y in a convex set C ⊆ <m. We assume that if C
is nonempty then it contains a ball of radius ε, and we assume that C ⊆ B :=
{y ∈ <m : −e ≤ y ≤ e}, where e denotes a vector of ones. The set C is defined
by a separating oracle: given a point in <m, the oracle will either state that the
point is in C, or it will return a hyperplane that separates the point and C.

We will solve the feasibility problem by solving a sequence of linear program-
ming relaxations. The initial relaxation will correspond to the box B, and this
relaxation will be extended by adding separating hyperplanes returned by the
oracle. Thus, we will always have the primal-dual pair of linear programming
problems:

min cTx

subject to Ax = 0 (P )
x ≥ 0

and
max 0
subject to AT y + s = c (D)

s ≥ 0,

where A is an m× n matrix and c, x, y and s are dimensioned appropriately.
We assume n ≥ 2m and the constraints AT y ≤ c contain all the constraints of
the box B. Any point y ∈ C will satisfy AT y ≤ c in the current relaxation (D).
We assume that the feasible region for (D) is defined by an oracle. Thus, we
are going to solve this problem using a column generation method, where we
add constraints to (D). We will assume that we always know feasible points
x > 0 and (y, s) with s > 0 for the current relaxation — this assumption will
be justified later. We will assume throughout, without loss of generality, that
every column of A has norm 1.

Recent papers on interior point cutting plane algorithms include Goffin et
al. (1996), who described a fully polynomial algorithm which added one con-
straint at a time, right through the current analytic center. This work has
been extended in Ye (1997) and Goffin and Vial (1998), who considered adding
many cuts simultaneously; in Ye (1997) the analytic center was recovered using
a primal approach, while a primal-dual approach requiring the solution of a
nonlinear programming problem was proposed in Goffin and Vial (1998). A
simpler primal-dual updating approach with multiple cuts was proposed in Ra-
maswamy and Mitchell (1994), at the cost of weakening the cuts. Nesterov and
Vial (1997) have described a homogeneous analytic center cutting plane algo-
rithm with a very good complexity bound; this method is not a primal-dual
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method. Atkinson and Vaidya (1995) described a polynomial cutting plane
algorithm that required that unimportant constraints be dropped; this was
extended to a long-step method for optimization problems by Mitchell and Ra-
maswamy (1993). Other work on interior point cutting plane methods includes
that of den Hertog et al. (1995).

We propose to solve the original linear programming problem by solving the
homogenized self-dual linear programming problem

min d̄φ

subject to Ax = 0
−AT y −s +cτ = 0 (HSDF )

−cTx −κ +d̄φ = 0
−d̄τ = −d̄

x, s, τ, κ ≥ 0,

where d̄ is a positive constant to be specified later. One novel aspect of our
analysis is the use of a different proximity measure than those used in other
interior point cutting plane algorithms.

In §2, we give some preliminaries on barrier functions and proximity mea-
sures. Our algorithm is described in §3. A method that requires O(1) Newton
steps to recover the analytic center after the addition of a cutting plane is de-
scribed in §4. We show that the algorithm is fully polynomial in §5. In §6 we
discuss a practical implementation of the homogenized cutting plane method
for solution of LPs. In the following §7 we present our computational results
for solving some large-scale set-partioning and set-covering problems. Finally,
we offer our conclusions in §8.

Notation:

Given an n-vector x, we use X to denote the diagonal matrix with Xii = xi.
The matrix S is defined similarly. As stated earlier, we use e to denote a vector
of ones of an appropriate dimension.

2 BARRIER FUNCTIONS AND PROXIMITY MEASURES

The primal-dual logarithmic barrier function we use is

Ψ(x, s, τ, κ) := xT s+ τκ− (n+ 1) −
n∑

i=1

ln(xisi) − ln(τκ). (2.1)

Note that we will work throughout with a barrier parameter µ = 1, so this
parameter is omitted from our definitions of Ψ(x, s, τ, κ) and δ(x, s, τ, κ).
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It can be shown that Ψ ≥ 0, with equality only at the analytic center. The
analytic center is thus the point that minimizes Ψ, and at the analytic center
we have xisi = 1 for each i and τκ = 1.

One proximity measure is

δ(x, s, τ, κ) := 0.5 ‖ u− u−1 ‖, (2.2)

where u, u−1 ∈ <n+1, with components indexed from 0 to n, and

ui :=

{ √
τκ if i = 0√
xisi otherwise

(2.3)

(u−1)i :=
1
ui
. (2.4)

Further, we define the n-vectors ū and ū−1 ∈ <n:

ūi = ui, (ū−1)i =
1
ui

for i = 1, . . . , n. (2.5)

We will call a feasible point (x, s, τ, κ) approximately centered if it satisfies
the inequality δ(x, s, τ, κ) < θ for some constant θ to be specified later. We will
have 0 < θ < 0.5.

Define

ψ(t) := t − ln(1 + t) for t > −1 (2.6)

ρ(δ) := δ +
√

1 + δ2. (2.7)

Lemma II.67 in Roos et al. (1997) allows us to relate Ψ(x, s, τ, κ) and δ(x, s, τ, κ):

Lemma 2.1 Let δ := δ(x, s, τ, κ). We have

ψ(−2δ/ρ(δ)) ≤ Ψ(x, s, τ, κ) ≤ ψ(2δρ(δ)).

We also have the following lemma concerning the performance of Newton’s
method for this algorithm when µ and φ are both fixed at one.

Lemma 2.2 Let δ := δ(x, s, τ, κ).

1. (Theorem II.49, Roos et al. (1997).) If δ ≤ 1√
2

then the primal-dual
Newton step is feasible and δ(x+, s+, τ+, κ+) ≤ δ2.

2. (Lemma II.70, Roos et al. (1997).) If δ ≥ 1√
2

then the barrier function
Ψ is decreased by at least 1

6 if a damped primal-dual Newton step with a
specified step length is taken.
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The global convergence analysis in §5 will use the dual logarithmic barrier
function:

ΨD(s) :=
n∑

i=1

ln(si). (2.8)

The more usual proximity measure is

‖ Xs − e ‖=‖ Ū(ū− ū−1) ‖ .

The eigenvalues of Ū are the components of the vector ū; it follows that if
ūi < 1 + ζ for each i then ‖ Xs − e ‖≤ (1 + ζ) ‖ ū− ū−1 ‖.

3 A COLUMN GENERATION METHOD

3.1 Overview:

Assume that the initial dual constraints are given by −e ≤ y ≤ e, where
e denotes the vector of ones of the appropriate dimension. Thus, initially,
n = 2m. The vector ŷ = 0 is then feasible in (D), and the vector x̂ = e is
feasible in (P ). It should be noted that with this assumption, the dual feasible
region is bounded, so if κ is nonzero at the optimal complementary pair then
there exists a primal ray, and the primal problem has unbounded optimal value
since it is feasible.

In order to satisfy the constraints of (HSDF ), we will use τ0 = 1 and κ0 = 1
initially; we can then start with y0 = 0 and x0 = e. We can set d̄ := n+1. Since
we are using a column generation method, d̄ will change whenever the number
of dual constraints changes. Using s0 = e this gives cTx0 = n = (x0)T s0. With
φ = 1, we then have an analytic center, with xisi = 1 for each component i
and τκ = 1 also.

The algorithm can be summarized as follows:

1. Initialize with φ = 1.

2. If the problem has too many dual constraints, STOP with infeasibility.

3. Find an approximate center for the current value of φ and with µ = 1.

4. Call the separation oracle at the point y
τ .

5. If cuts are found, add them through the current dual iterate, obtain a
new feasible iterate with x > 0 and s > 0, and return to step 2.

6. Otherwise, STOP with feasibility.
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Clearly, we need to define what we mean by “too many dual constraints” in
Step 2; this will be discussed in §5. Step 5 is the subject of §4. Notice that φ is
never changed in this algorithm. This is because we are solving the feasibility
problem, and so there is no need to decrease the duality gap by decreasing φ.

3.2 A direction for restarting

Our old iterate (xk, yk, sk) is on the boundary of the feasible region in both the
primal and the dual spaces. Let the new primal problem be

min cTx + cn+1xn+1

subject to Ax + an+1xn+1 = 0 (P+)
x, xn+1 ≥ 0

where an+1 is the new primal column, and xn+1 is the new primal scalar variable
with objective function coefficient cn+1 := aT

n+1y
k. Note that we add the

new constraint in a central position, that is, right through the current dual
iterate yk. The new dual problem is

max 0
subject to AT y + s = c (D+)

aT
n+1y + sn+1 = cn+1

s, sn+1 ≥ 0,

where sn+1 is the slack for the additional constraint.
Since we add the constraint right through the current iterate, we can get

a primal-dual feasible iterate by taking xn+1 = sn+1 = 0. Unfortunately,
this is not an interior point, so we need to take a direction to obtain positive
iterates. We can use directions dx and dy which move us to the points in the
corresponding Dikin ellipsoids that maximize the new variables:

dx = −D2
PA

T (AD2
PA

T )−1an+1 (3.1)

dy = −(AD2
DA

T )−1an+1, (3.2)

where DP and DD are diagonal matrices. We could use, for example, DP = X,
DD = S−1, or DP = DD = DPD := X0.5S−0.5. We now restrict attention
to the primal-dual scaling DP = DD = DPD . This considerably helps the
analysis in §4. Moving in these directions is guaranteed to give an interior
point, provided we don’t take too large a step. So we update for some positive
scalars αP and αD:

x+ := x+ αPdx (3.3)
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xn+1 := αP (3.4)

y+ := y + αDdy (3.5)

s+ := s− αDA
Tdy (3.6)

sn+1 := αDa
T
n+1(AD

2
PDA

T )−1an+1. (3.7)

Using (3.6) and (3.2), we define

ds := −AT dy = AT (AD2
PDA

T )−1an+1. (3.8)

Using the orthogonality of (dx, 1) and (ds, dsn+1), the reader easily verifies
the following lemma.

Lemma 3.1 We have dT
x ds = −aT

n+1(AD2
PDA

T )−1an+1.

Thus, the quantity

∆PD :=
√
aT

n+1(AD
2
PDA

T )−1an+1 (3.9)

will have an effect on the performance of the algorithm, both through affecting
dT

x ds and through determining the value of sn+1. Methods that back off the
additional constraint usually back it off by a quantity proportional to ∆PD, or
to the equivalent quantity using a different scaling matrix. (See, for example,
Atkinson and Vaidya (1995) and Goffin et al. (1993).)

3.3 Bounds on the step lengths

The algorithm has found an approximate analytic center for φ = 1, µ = 1 when
it adds a constraint. Therefore, the current iterates satisfy

0.5 ‖ u− u−1 ‖≤ θ (3.10)

for some positive scalar θ < 0.5, where u and u−1 are defined in equation (2.3).

Lemma 3.2 If the iterates are approximately centered, then

(1 − 2θ) ≤ xisi ≤ 1 + 2θ(2θ + 1) (3.11)

for each component i. Further, the duality gap is bounded:

n− 2θ(2θ + 1) ≤ xT s ≤ n+ 2θ.
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Proof: We have

4θ2 ≥ (u− u−1)T (u − u−1)

= uTu+ (u−1)T (u−1) − 2(n+ 1)

= (
√
τκ− 1√

τκ
)2 +

n∑
i=1

(xisi +
1
xisi

− 2).

Since each term in the summand is nonnegative, each term must be less than
the left hand side. This implies the following, multiplying by the positive term
xisi.

(xisi)2 − (2 + 4θ2)xisi + 1 ≤ 0

The roots of this quadratic are

1 + 2θ2 ±
√

(1 + 2θ2)2 − 1 = 1 + 2θ2 ± 2θ
√
θ2 + 1,

so xisi must lie between these two roots. We can simplify these expressions
slightly by observing that

√
θ2 + 1 ≤ θ + 1. We thus get the bounds:

1 − 2θ ≤ xisi ≤ 1 + 2θ(2θ + 1).

To bound the duality gap, notice that κτ must also satisfy these inequalities.
Since τ = 1, we obtain a restriction on κ. From the definition of (HSDF ), we
obtain

cTx = −κ+ d̄φ = n + 1 − κ,

since d̄ = n+ 1 and φ = 1. The result follows.

If αP > 0 then xn+1 > 0. To ensure that the other components of x remain
positive, it is necessary to keep x + αPdx > 0. We need positivity of the dual
slacks as well, so we need s+ αDds > 0.

Lemma 3.3 The following step length choices ensure positive iterates.

1. If 0 < αP <
√

1−2θ
∆P D

then x+ αPdx > 0.

2. If 0 < αD <
√

1−2θ
∆P D

then s+ αDds > 0.

Proof: To prove part 1, we have

x+ αPdx = Xe− αPD
2
PDA

T (AD2
PDA

T )−1an+1 from (3.1)

= DPD(X0.5S0.5e− αPDPDA
T (AD2

PDA
T )−1an+1)

≥ DPD(
√

1 − 2θ− αP∆PD)e
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where the last line follows from Lemma 3.2 and equation (3.9). Similarly, to
show part 2, we have

s+ αDds = Se+ αDA
T (AD2

PDA
T )−1an+1 from (3.8)

= D−1
PD(X0.5S0.5e+ αPDPDA

T (AD2
PDA

T )−1an+1)

≥ DPD(
√

1 − 2θ − αP∆PD)e.

The result follows.

3.4 Adding multiple cuts

If we add more than one constraint, we can still get a new primal interior point
fairly easily as in Mitchell and Todd (1992); Ye (1997):

1. Add together the additional columns to give a new column ā and a cor-
responding variable x̄n+1.

2. Generate the direction dx given above with ā taking the place of an+1

and x̄n+1 taking the place of xn+1.

3. Disaggregate this additional variable, and set each of the new variables
equal to the value of x̄n+1.

Unfortunately, it is not so easy to restart with the dual problem when adding
multiple constraints. If only two constraints are added, then we can take dy

to be the average of the directions that would be calculated if only one of the
constraints was added. If more than two constraints are added, one way to find
a direction is by solving a small linear programming feasibility problem:

Let Ā consist of the additional columns of A. Find a direction η ≥ e

satisfying ĀT (AD2
DAT )−1Āη ≥ e.

Notice that this is an LP in p variables, with p constraints, where p is the num-
ber of additional variables. Solving it with an interior point algorithm should
result in a well-scaled direction if all the slacks are approximately equal. An
appropriate direction is dy = −Āη. Such a method is proposed in Ramaswamy
and Mitchell (1994). A related, more complicated approach that requires ap-
proximately solving a nonlinear programming problem in p variables is proposed
in Goffin and Vial (1998). The approach proposed in Goffin and Vial (1998)
allows the recovery of an approximate analytic center for the modified problem
in O(p ln(p)) Newton steps.
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4 CHOOSING A RESTART POINT

If the step lengths are chosen small enough, then the new x and s will still be
approximately centered for the original n components. For the last component,
we show that it is possible to bound an appropriate quantity, and that the
distance from optimality will then be bounded by a constant. We can keep
τ+ = 1. The constant d̄ is increased by one, since the number of dual constraints
is increased. We then set

κ+ = d̄− cTx+ − cn+1xn+1 = d̄− (x+)T s+ − xn+1sn+1. (4.1)

We will see that this will enable us to regain centrality in O(1) iterations.
The proof takes the following form:

After taking our restart step to an interior point, the proximity measure
is bounded by a constant. We prove this in §4.1.

This implies, from Lemma 2.1 that the primal-dual logarithmic barrier
function is also bounded by a constant.

From Lemma 2.2, the logarithmic barrier function decreases by a constant
as long as δ is large. Once δ is small, it will converge quadratically to zero.
Therefore, a new approximate center can be found in O(1) iterations. We
discuss this further in §4.2.

4.1 Updating the measure of centrality

We had an approximately centered iterate before adding the constraint, so the
proximity measure δ(x, s, τ, κ) ≤ θ, say. We define

δ̄ :=‖ ū− ū−1 ‖ (4.2)

for this approximate center. Note that

δ(x, s, τ, κ)2 = 0.5
[
δ̄2 + (

√
τκ− 1√

τκ
)2

]
. (4.3)

After updating, the measure of centrality becomes

(δ+)2 := (δ((x+, xn+1), (s+, sn+1), τ+, κ+))2

= 0.5
[
‖ ū+ − (ū+)−1 ‖2 +(xn+1sn+1 +

1
xn+1sn+1

− 2)

+(κ+ +
1
κ+

− 2)
]
, (4.4)
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where ū+ and (ū+)−1 are defined in the natural way using equations (2.3–2.5).
It will prove useful to use the same step length in the primal and dual

problems, particularly in Lemma 4.2. Therefore, we take

αP = αD = α =
β

∆PD
(4.5)

for an absolute constant β to be specified later, with 0 < β <
√

1 − 2θ.

Lemma 4.1 After taking the specified step, the term in equation (4.4) corre-
sponding to the new dual constraint satisfies

xn+1sn+1 +
1

xn+1sn+1
− 2 = β2 +

1
β2

− 2.

Proof: From equations (3.4), (3.7), and (4.5), we have

xn+1sn+1 = αPαD∆2
PD = β2.

The result follows.

Let us define the vector

v := DPDA
T (AD2

PDA
T )−1an+1. (4.6)

Notice that
vT v = ∆2

PD (4.7)

and that
dx = −DPDv and ds = D−1

PDv. (4.8)

This observation enables us to simplify the expression for ‖ ū+ − (ū+)−1 ‖
considerably, as shown in the next two lemmas.

Lemma 4.2 The ith component of the complementary slackness is reduced to
x+

i s
+
i = xisi − α2v2

i for i = 1, . . . , n.

Proof: We have

x+
i s

+
i = (xi + α(dx)i)(si + α(ds)i)

= xisi + αx0.5
i s0.5

i vi − αx0.5
i s0.5

i vi − α2v2
i

= xisi − α2v2
i .
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Lemma 4.3 We have the following bound provided 0 < β <
√

1 − 2θ:

‖ ū+ − (ū+)−1 ‖2≤ δ̄2 + γ,

where

γ := β2

(
1

(1 − 2θ)(1 − 2θ − β2)
− 1

)
.

Proof: We have

‖ ū+ − (ū+)−1 ‖2 =
n∑

i=1

[√
xisi − α2v2

i − 1√
xisi − α2v2

i

]2

=
n∑

i=1

[
xisi − α2v2

i +
1

xisi − α2v2
i

− 2
]

=
n∑

i=1

(xisi +
1
xisi

− 2) − α2 ‖ v ‖2

+
n∑

i=1

[
1

xisi − α2v2
i

− 1
xisi

]

= δ̄2 − α2∆PD +
n∑

i=1

α2v2
i

(xisi − α2v2
i )(xisi)

by (4.7)

≤ δ̄2 − β2 +
β2

(1 − 2θ)(1 − 2θ− α2∆PD)
by (4.5), (4.7) and Lemma 3.2.

The result follows from a further application of (4.5).

We can also bound the term in the proximity measure due to τ+ = 1 and κ+.

Lemma 4.4 If 0 < β <
√

1 − 2θ then

κ+ +
1
κ+

− 2 ≤ 1 + (κ+
1
κ
− 2).

Proof: Now,

κ+ = n+ 2 − (x+)T s+ − xn+1sn+1 from (4.1)

= n+ 2 − (xT s− β2) − β2 from Lemmas 4.2 and 4.1

= n+ 2 − xT s

= 1 + κ from (HSDF ) without the new constraint.

Therefore,

κ+ +
1
κ+

= 1 + κ+
1

1 + κ
< 1 + κ +

1
κ
.
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The result follows.

It is now possible to bound δ+.

Theorem 4.1 If β =
√

0.5(1 − 2θ) then (δ+)2 ≤ θ2 + 0.5(−1 + 3
1−2θ).

Proof: From equation (4.4) and Lemmas 4.1, 4.3, and 4.4, we have

(δ+)2 = 0.5
[
‖ ū+ − (ū+)−1 ‖2 +(xn+1sn+1 +

1
xn+1sn+1

− 2) + (κ+ +
1
κ+

− 2)
]

≤ 0.5
[
δ̄2 + γ + β2 +

1
β2

− 2 + 1 + κ +
1
κ
− 2

]

= (δ(x, s, τ, κ))2 + 0.5
[
γ + β2 +

1
β2

− 1
]

from (4.3).

Now,

γ + β2 +
1
β2

= β2

[
1

(1 − 2θ)(1 − 2θ − β2)
− 1

]
+ β2 +

1
β2

=
β2

(1 − 2θ)(1 − 2θ − β2)
+

1
β2

=
3

1 − 2θ

with the specified choice of β. The result follows.

4.2 Obtaining a new approximate analytic center

From Theorem 4.1 and Lemma 2.1, the logarithmic barrier function value at
the restart point is bounded above by a constant:

Ψ+ := Ψ((x+, xn+1), (s+, sn+1), τ+, κ+) ≤ ψ(2δ+ρ(δ+)).

Notice that if we have an exact analytic center with θ = 0 then the proximity
measure for the new iterate is no larger than 1, and Ψ+ ≤ 3.066. The bound
on the proximity measure is achieved if just one component of v is nonzero,
in which case the new iterate has xn+1sn+1 = 0.5, xisi = 0.5 for exactly one
other component, and xisi = 1 for the remaining components. One possible
choice for an approximate analytic center is θ = 0.25, which gives δ+ ≤ 1.601
and Ψ+ ≤ 8.672.

By using damped Newton steps while δ > 1√
2

and full Newton steps there-
after, we can then retrieve an approximate center in O(1) steps.
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5 GLOBAL CONVERGENCE

The analysis of Goffin et al. (1996) can be used directly to analyze the per-
formance of this algorithm. In Goffin et al. (1996), upper and lower bounds
are placed on the value of the dual logarithmic barrier function evaluated at
the exact analytic center. After a fully polynomial number of iterations, the
bounds cross. The lower bound uses the assumption that C contains a ball of
radius ε. Thus, if the bounds cross then this assumption must be violated, so
the algorithm can terminate with infeasibility.

From Lemma 3.2 and the discussion in §2, if an iterate is approximately
centered for an appropriate θ in our framework, then it is also approximately
centered for an appropriate centering parameter with the standard proximity
measure. We add cuts in exactly the same manner as in Goffin et al. (1996),
so the dual analytic center will behave identically. Thus, we require the same
fully polynomial number of cutting planes as in Goffin et al. (1996). This gives
the following theorem:

Theorem 5.1 The upper bound on the number of constraints that need to be
added before the algorithm can be terminated with infeasibility is O(m2

ε2 ), and
the number of Newton steps required has the same complexity.

6 AN IMPLEMENTATION

The purpose of this section is to present a practical implementation of the
homogenized cutting plane method. The practical implementation differs from
the theoretical in several ways, because it has been adapted to solve linear
programs directly and not only the feasibility problem.

Hence, the problem of study is the primal LP

min cTx

subject to Ax = b,

x ≥ 0
(6.1)

and the dual problem
max bT y

subject to AT y ≤ c,
(6.2)

where A is an m× n matrix. We assume that c, b, x, and y are appropriately
dimensioned.

In general we will assume that n� m which for example is the case for LP
relaxations of set-partitioning and set-covering problems occurring in practice,
see Bixby et al. (1992) for an example. In that case it is impractical to solve
(6.2) directly or may be impossible due to memory requirements.
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The homogeneous and self-dual linear programming formulation (see Roos
et al. (1997)) of the linear program (6.1) is

min ḡφ

subject to Ax −bτ −b̄φ = 0,
−AT y +cτ +c̄φ ≥ 0,
bT y −cTx +d̄φ ≥ 0,
b̄T y −c̄Tx −d̄τ = −ḡ,

x ≥ 0, τ ≥ 0,

(6.3)

where
b̄ := Ax0 − bτ0,

c̄ := −cτ0 +AT y0 + s0,

d̄ := cTx0 − bT y0 + κ0,

ḡ := (x0)T s0 + τ0κ0.

One obvious choice is

(y0, x0, τ0, s0, κ0, φ0) = (0, e, 1, e, 1, 1), (6.4)

where e is a vector of appropriate dimension containing all ones and subse-
quently it is the choice we will use. We have the following lemma:

Lemma 6.1 The problem (6.3) always has an optimal solution with zero ob-
jective value. Let (y∗, x∗, τ∗, φ∗) be any maximally complementary solution of
(6.3), then τ∗ > 0 if and only if (6.1) has an optimal solution. Moreover, x∗/τ∗

is an optimal solution to (6.1).

The central path for the homogeneous model (6.3) is defined by

Ax −bτ −b̄φ = 0,
−AT y +cτ +c̄φ −s = 0,
bT y −cT x +d̄φ −κ = 0,
b̄T y −c̄T x −d̄τ = −ḡ,

Xs = ρ ḡ
n+1

e,

τκ = ρ ḡ
n+1 ,

x ≥ 0, τ ≥ 0, s, κ ≥ 0,

(6.5)

where ρ is an additional parameter. Note we have added the slack variables
s and κ. It can be proved that this system of linear and nonlinear equations
has an unique solution for all positive values of ρ. Moreover, the solution to
this system converge to a maximally complementary solution of (6.3) for ρ
converging to zero.
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Now let (y, x, τ, s, κ, φ) be any solution to (6.5) for a given ρ, then we have
that

0 = yT (Ax− bτ − b̄φ) + xT (−AT y + cτ + c̄φ− s)
+τ (bT y − cTx+ d̄φ− κ) + φ(b̄T y − c̄T x− d̄τ + ḡ)

= −xT s− τκ+ φḡ

= −eTXs− τκ+ φḡ

= −ρḡ + φḡ

= (φ− ρ)ḡ

(6.6)

which implies that φ = ρ for all solutions on the central path. Moreover, it is
easy to verify that

−xT s− τκ = φ(b̄T y − c̄Tx− d̄τ ) (6.7)

which implies
b̄T y − c̄Tx− d̄τ = − 1

φ (xT s+ τκ)
= −ρḡ

φ

= −ḡ.
(6.8)

Hence, for any solution on the central path, the fourth equation in (6.5) is
redundant. Therefore, the central path equations (6.5) can be reduced to

Ax −bτ = φb̄,

−AT y +cτ −s = −φc̄,
bT y −cTx −κ = −φd̄,

Xs = φ ḡ
n+1

e,

τκ = φ ḡ
n+1

,

x ≥ 0, τ ≥ 0, s, κ ≥ 0,

(6.9)

where φ is now seen as a parameter which should be reduced to zero. It should
be noted that the elimination of the redundant equation in the central path
definition also leads to more efficient computation of the search direction to be
presented later.

Given our assumptions it will be costly to solve (6.9) using the usual path
following method, because n is large. Therefore, a cutting plane (or a column
generation) method is devised. Now let

J ⊆ {1, . . . , n}

and define the complementary set

J̄ := {1, . . . , n} \ J . (6.10)
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If all the variables in J̄ are fixed i.e.

xJ̄ = φ
ḡ

n+ 1
(6.11)

and hence the dual variables sJ̄ are free variables, then a reduced central path
problem

AJ xJ −bτ = φ(AJ x0
J − bτ0),

−AT
J y +cJ τ −sJ = −φ(−cJ τ0 + AT

J y
0 + s0J ),

bT y −(cJ )T xJ −κ = −φ(bT y0 − cTJ x
0
J + κ0),

XJ sJ = φ ḡ
n+1e,

τκ = φ ḡ
n+1e,

xJ ≥ 0, τ ≥ 0, sJ , κ ≥ 0,
(6.12)

is obtained. Note that this problem only requires information about the vari-
ables in J . Moreover, given that |J | is not too large, then an approximate
solution to this problem can be computed cheaply. By an approximate solution
we mean a solution (y, xJ , τ, sJ , κ) that satisfies

AJ xJ −bτ = φ(AJ x0
J − bτ0),

−AT
J y +cJ τ −sJ = −φ(−cJ τ0 + AT

J y
0 + s0J ),

bT y −(cJ )T xJ −κ = −φ(bT y0 − cTJ x
0
J + κ0),

xJ ≥ 0, τ ≥ 0, sJ , κ ≥ 0,
(6.13)

and belongs to the set

N (J , φ, θ) :=

{
(y, xJ , τ, sJ , κ) :

minj∈J (xjsj , τκ) ≥ θφ ḡ
n+1 ,

xT
J sJ + τκ = φ ḡ

n+1 |J |

}

for some θ ∈ (0, 1). We call such a solution an approximate analytic center
solution. Note, we do not use the proximity measure suggested in Section 2,
but rather a relaxed variant. Hence, the practical algorithm does not follow
the central path as closely as the theoretical one.

If (ŷ, x̂J , τ̂ , ŝJ ) is an approximate analytic center solution, then it can be
extended to a solution of the full problem by defining x̂J̄ by (6.11) and

ŝJ̄ := cJ̄ τ̂ −AT ŷ + φ(−cJ̄ τ0 + AT
J̄ y

0 + s0J̄ ).

Clearly, nothing guarantees that ŝJ̄ ≥ 0 i.e. the set

J̄ − := {j ∈ J : ŝj < 0}

is nonempty. However, if J̄ − is nonempty, then some of the variables in J̄ −

should be moved to J . This corresponds to generating variables in the primal
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and cutting planes in the dual. On the other hand if J̄ is empty, then φ is
reduced. In both cases a new approximate analytic center solution is computed
to the new relaxations. This process is continued until φ is reduced sufficiently,
because then an approximate solution to (6.5) has been computed. This method
stated formally leads to the algorithm:

Algorithm 6.1

1. Input: J 0 ⊆ {1, ..., n}, β ∈ (0, 1), ε > 0
2. φ0 := 1, (x0, τ0, y0, s0, κ0) := (e, 1, 0, e, 1)
3. k := 0
4. while φk > βε

5. (xk+1, τk+1, yk+1, sk+1, κk+1) := center(J k, φk, (xk, τk, yk, sk, κk)).
6. J̄ − := {j 6∈ J k : sk+1

j < 0}
7. if J̄ − 6= ∅
8. Choose J k+1 such that J k ⊂ J k+1 ⊆ J k ∪ J̄ −

9. φk+1 := φk

10. else

11. J k+1 := J k

12. φk+1 := βφk

13. end if

14. k := k + 1
15. end while

The procedure “center” used in step 5 means that the approximate analytic
center is computed to the reduced center problem defined by J k. Also note
that whenever φ is reduced in step 12, then the value of the “inactive” variables
is reduced.

Algorithm 6.1 converges in a number iterations bounded by O(n ln(ε)
ln(β) ) be-

cause in each iteration either φ is reduced by the factor β or the set J is
extended. Moreover, the size of J is bounded by n and φ is bounded below by
the termination tolerance ε.

6.1 Recomputing the approximate analytic center

One important issue not addressed in Algorithm 6.1 is how to compute the
approximate center solution in step 5. Clearly, whenever the approximate an-
alytic center is recomputed after φ has been reduced or J has been extended,
then the previous approximate analytic center should serve as a warm-start.
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In both cases we are seeking an approximate analytic center solution satis-
fying

AJ xJ −bτ = φ(AJ x0
J − bτ0),

−AT
J y +cJ τ −sJ = φ(−cJ τ0 +AT

J y
0 + s0J ),

bT y −(cJ )TxJ −κ = φ(bT y0 − cTJ x
0
J + κ0).

(6.14)

Moreover, the complementarity gap should satisfy

(xJ )T sJ + τκ = φ((x0
J )T s0J + τ0κ0). (6.15)

and the new iterate should be close to the central path i.e.

min
j∈J

(xjsj , τκ) ≥ θφ
ḡ

n+ 1
(6.16)

for φ = φk+1 and the given θ ∈ (0, 1). The equations (6.14) and (6.15) define a
target for the residuals and the complementarity gap respectively, whereas the
equation (6.16) is the centering condition.

In the case φ is reduced, then a solution satisfying (6.14) and (6.16) is known
for φ = φk. Let this solution be denoted as (y′, x′J , τ

′, s′J , κ
′) and let φ′ denote

the corresponding φ. Hence, we want to compute a new approximate analytic
center for a smaller φ and for that purpose we use the search direction

AJ dxJ −bdτ = ηφ′(AJ x0
J − bτ0),

−AT
J dy +cJ dτ −dsJ = −ηφ′(−cJ τ0 +AT

J y
0 + s0J ),

bTdy −(cJ )TdxJ −dκ = −ηφ′(bT y0 − cTJ x
0
J + κ0),

S′
J dxJ +X′

J dsJ = −X′
J s

′
J + γφ′ ḡ

n+1
e,

κdτ +τdκ = −τ ′κ′ + γφ′ ḡ
n+1

e,

(6.17)
suggested in Xu et al (1996). Here, γ, η ∈ [0, 1] are two parameters to be
chosen later. After the search direction has been computed, then a step-size α
is chosen and the current solution is updated as follows



x+
J
τ+

y+

s+J
κ+




=




x′J
τ ′

y′

s′J
κ′




+ α




dxJ

dτ

dy

dsJ

dκ



. (6.18)

It is easy to verify that

AJ x+
J −bτ+ = (1 − αη)φ′(AJ x0

J − bτ0),
−AT

J y
+ +cJ τ+ −s+J = −(1 − αη)φ′(−cJ τ0 +AT

J y
0 + s0J ),

bT y+ −(cJ )Tx+
J −κ+ = −(1 − αη)φ′(bT y0 − cTJ x

0
J + κ0),
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and

(x+
J )T s+J + τ+κ+ = (1 − α(1− γ) + α2η(1 − η − γ))φ′((x0

J )T s0J + τ0κ0).

Given α > 0 and the choice η = 1−γ > 0, then (x+
J , τ

+, y, s+J , κ
+) is a solution

to (6.14) and (6.15) for

φ = (1 − α(1 − γ))φ′ = (1 − αη)φ′ =< φ′.

This demonstrates that the updated solution is closer to the target solution.
In general it might not be possible to reach the target in one step, because
the step size α should be chosen such that (y+ , x+, τ+, s+, κ+) is not too far
from the central path. In our implementation we use a fairly small γ and
let intermediate iterates move far from the central path. Therefore, whenever
a solution satisfying (6.14) for the target φ has been computed, then several
(centering) steps using γ = 1 and η = 0 may be required.

Note that the search direction given by (6.17) is a highly flexible direction.
For example if a solution is known satisfying (6.14), then by choosing η = 0 and
γ either smaller or greater than 1, then the complementarity gap can be reduced
or increased respectively. Moreover, the new solution keeps on satisfying the
three first equations in (6.14).

In summary, whenever φ is reduced in Algorithm 6.1, then it is easy to
perform an efficient warmstart. However, in the case the set J is extended then
the situation is more difficult, because the current solution is not feasible i.e.
some of the elements in sJ are negative. In that case we define an intermediate
solution

φ′ := φ,

y′ := y,

x′J := xJ ,
x′J− := φ′x0

J− ,

τ ′ := τ,

s′J ′ := sJ ,
s′J− := ḡ

n+1(X0
J −)−1e,

κ′ := κ,

(6.19)
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where (y, xJ , τ, sJ , κ) was the previous approximate analytic center and the
search direction

AJ dxJ −bdτ = φk(AJ x0
J − bτ0)

−(AJ x′J − bτ ′),
−AT

J dy +cJ dτ −dsJ = φk(−cJ τ0 +AT
J y

0 + s0J )
−(−cJ τ ′ +AT

J y
′ + s′J ),

bTdy −(cJ )T dxJ −dκ = φk(bT y0 − cTJ x
0
J + κ0)

−(bT y′ − cTJ x
′
J + κ′),

S′
J dxJ +X′

J dsJ = −X′
J s

′
J + φ′ g0

n+1e,

κ′dτ +τ ′dκ = −τ ′κ′ + φ′ g0

n+1e,

(6.20)
and perform the update (6.18). In this case it can be verified that

AJ x+
J −bτ+ = (1 − α)(Ax′J − bτ ′)

+αφ′(AJ x0
J − bτ0),

−AT
J y

+ +cJ τ+ −s+J = (1 − α)(−cJ τ ′ +AT
J y

′ + s′J )
+αφ′(−cJ τ0 +AT

J y
0 + s0J ),

bTy+ −(cJ )Tx+
J −κ+ = (1 − α)(bT y′ − cTJ x

′
J + κ′)

+αφ′(bT y0 − cTJ x
0
J + κ0),

Note if α = 1, then the updated solution satisfies (6.14) exactly. Moreover, for
any positive step-size α, then the solution is moved closer to satisfying (6.14).
Unfortunately, there is no control over the complementary gap and it may
decrease or increase. Therefore, α is chosen such that the complementarity gap
is only allowed to be within the range [0.5, 2.0] times the target gap (6.15). If
the step-size has to be cutback, because the complementarity gap was moving
outside the range, then the search direction (6.17) is used repeatedly with
η = 0 and γ > 1 (γ < 1) to increase (decrease) the complementarity gap
until the target value of the complementarity gap is reach. Ultimately this
procedure generates a solution satisfying (6.14). However, when this procedure
is terminated then the complementarity gap might be too small or too large
and the solution might not be centered. However, this can be corrected using
the search direction (6.17) with η = 0 and γ chosen appropriately.

7 COMPUTATIONAL RESULTS

In this section we report computational results for the implementation discussed
in the previous section. The test problems we are using are LP relaxations of
real world set-partitioning and set-covering problems obtained from the OR-
Library, see http://mscmga.ms.ic.ac.uk/info.html. The characteristic of
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these problems is that n � m, all elements in the matrix A are either zero
or one, and all coefficients in the right-hand side are one. All constraints for
the set-covering type problems are of the greater-than-equal type, whereas all
the constraints for the set-partitioning type problems are of the equality type.
Therefore, we add a full set of artificial variables, i.e. slack variables with lower
and upper bounds zero, to the set-partitioning problems. Hence, the initial
set J 0 consists of slack variables which corresponds to the identity matrix. In
our implementation we use β = 0.1 and θ = 0.1, meaning that φ is reduced
fairly fast and the central path is followed loosely. In each iteration we add
multiple variables as follows. Assume that the variables in the set J − has been
sorted in increasing order after index, then each kth variable is chosen, where
k is determined such that at most m/4 variables are chosen. The procedure
for computing the search direction is a slight modification of those presented
in Andersen and Andersen (1997). Finally, the algorithm is terminated when a
primal and dual solution has been computed to the original problem that does
not violate any inequality by more than 10−8 and 8 figures in the corresponding
primal and dual objective value are identical.

The computational test is performed on a 300mhz Pentium II PC using
Windows NT and having 128 megabytes of memory.

Name Con- Variables Iterations Time Primal Relative
straints full relaxation outer inner objective gap

sppaa01 823 8904 2774 42 121 77.17 5.553544e+004 1.48e-010
sppaa02 531 5198 1592 29 71 15.27 3.049400e+004 6.42e-011
sppaa03 825 8627 2485 37 83 46.69 4.961636e+004 1.13e-010
sppaa04 426 7195 1486 36 93 12.66 2.587761e+004 1.45e-010
sppaa05 801 8308 2443 38 97 54.69 5.373593e+004 9.94e-011
sppaa06 646 7292 2087 33 86 29.51 2.697719e+004 1.74e-011
sppkl01 55 7479 350 21 48 0.48 1.084000e+003 2.19e-010
sppkl02 71 36699 506 26 61 1.15 2.152500e+002 3.69e-010
sppnw01 135 51975 586 38 76 2.55 1.148520e+005 3.50e-010
sppnw02 145 87879 742 39 80 3.91 1.054440e+005 9.24e-010
sppnw03 59 43749 392 28 58 1.31 2.444700e+004 4.55e-010
sppnw04 36 87482 397 28 67 1.94 1.631067e+004 -9.62e-012
sppnw05 71 288507 522 35 77 6.76 1.328780e+005 3.04e-012
sppnw06 50 6774 274 22 37 0.42 7.640000e+003 8.78e-010
sppnw07 36 5172 221 20 34 0.28 5.476000e+003 -2.49e-010
sppnw08 24 434 109 20 35 0.11 3.589400e+004 -2.21e-010
sppnw09 40 3103 226 23 45 0.25 6.776000e+004 1.62e-010
sppnw10 24 853 133 20 37 0.13 6.827100e+004 1.37e-013
sppnw11 39 8820 259 22 45 0.35 1.162545e+005 2.39e-011
sppnw12 27 626 134 20 34 0.12 1.411800e+004 1.07e-010
sppnw13 51 16043 354 27 57 0.61 5.013200e+004 9.07e-011
sppnw14 73 123409 514 35 78 3.35 6.184400e+004 5.79e-011
sppnw15 31 467 150 21 36 0.18 6.774300e+004 1.72e-011
sppnw16 139 148633 625 29 55 4.41 1.181590e+006 1.54e-011
sppnw17 61 118607 414 30 71 2.96 1.087575e+004 2.85e-010
sppnw18 124 10757 584 32 70 1.37 3.388643e+005 2.00e-011
sppnw19 40 2879 207 20 35 0.23 1.089800e+004 -5.31e-010
sppnw20 22 685 113 19 34 0.10 1.662600e+004 -2.09e-010
sppnw21 25 577 108 17 26 0.09 7.380000e+003 2.74e-011
sppnw22 23 619 123 18 32 0.10 6.942000e+003 -6.78e-011
sppnw23 19 711 127 22 38 0.11 1.231700e+004 1.41e-010
sppnw24 19 1366 140 18 27 0.09 5.843000e+003 -4.27e-010
sppnw25 20 1217 141 19 32 0.11 5.852000e+003 5.62e-011
sppnw26 23 771 165 20 33 0.11 6.743000e+003 1.54e-011
sppnw27 22 1355 165 20 36 0.13 9.877500e+003 3.72e-010

Table 1.1: Computation using the homogenized cutting plane algorithm.
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Name Con- Variables Iterations Time Primal Relative
straints full relaxation outer inner objective gap

sppnw28 18 1210 111 20 33 0.11 8.169000e+003 1.97e-010
sppnw29 18 2540 194 22 43 0.15 4.185333e+003 3.02e-010
sppnw30 26 2653 168 20 34 0.16 3.726800e+003 -4.14e-010
sppnw31 26 2662 173 19 32 0.15 7.980000e+003 2.22e-010
sppnw32 19 294 107 20 38 0.08 1.457000e+004 1.60e-010
sppnw33 23 3068 162 19 30 0.15 6.484000e+003 3.50e-011
sppnw34 20 899 125 18 24 0.08 1.045350e+004 5.43e-011
sppnw35 23 1709 139 18 28 0.11 7.206000e+003 3.98e-010
sppnw36 20 1783 158 21 38 0.13 7.260000e+003 -7.80e-011
sppnw37 19 770 105 18 28 0.09 9.961500e+003 -8.63e-011
sppnw38 23 1220 162 19 42 0.16 5.552000e+003 -6.17e-011
sppnw39 25 677 143 18 28 0.11 9.868500e+003 7.15e-010
sppnw40 19 404 90 19 30 0.07 1.065825e+004 -3.27e-011
sppnw41 17 197 80 18 28 0.06 1.097250e+004 -3.87e-010
sppnw42 23 1079 141 18 31 0.11 7.485000e+003 -4.26e-011
sppnw43 18 1072 151 20 36 0.10 8.897000e+003 -7.00e-011
sppus01 145 1053137 768 39 90 40.33 9.963067e+003 1.30e-010
sppus03 77 85552 405 26 52 2.95 5.338000e+003 5.16e-011
sppus04 163 28016 609 29 54 2.54 1.773167e+004 4.98e-011
rail2536 2536 1081841 11100 42 183 2346.76 6.883992e+002 3.09e-010
rail2586 2586 920683 12663 42 223 1217.80 9.359218e+002 1.54e-010
rail4284 4284 1092610 18206 43 201 14529.23 1.054054e+003 2.48e-010
rail507 507 63009 2489 35 144 26.08 1.721456e+002 4.23e-010
rail516 516 47311 1963 29 100 14.10 1.820000e+002 1.86e-010
rail582 582 55515 2525 35 146 27.93 2.097122e+002 1.54e-010
Sum 74585 1551 3661

Table 1.1: Computation using the homogenized cutting plane algorithm.

In Table 1.1 the test problems and the computational results are presented.
All problems having a name starting with “spp” are of the set-partitioning type
and the remaining problems are of the set-covering type.

Beyond the name of the test problems the table first shows the number of
constraints (m). Next the number of variables in the full problem (n) and the
final relaxation is shown.

The column with the heading Iterations shows the number of times φ is
reduced and the number of times the search direction is computed. It can be
observed that for most of the problems few outer iterations are required. Fur-
thermore, approximately 2 to 3 inner iterations are needed per outer iteration.
Although for the large rail problems 4 to 5 inner iterations are needed per outer
iteration. This indicates that our warm start technique works well. It should
also be noted that relatively few variables out of the total number of variables
in the full problem are included in the final relaxation. One exception is the set
of problems with names starting with “sppa”. However, these problems have
relatively few variables compared to the number of constraints and in fact the
final relaxation contains a number of variables which is only a small multiple of
the number of constraints. In computational experiments not reported here it
was observed that if the number of variables added per iterations was limited
to about 50, then the number of outer iterations grew by around a factor of 2
for a lot of the problems. Moreover, contrary to expectations, the total number
of generated variables was not reduced significantly.
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Table 1.2 Results for solving some of the problems using MOSEK v1.0b.

Name Iterations Time Primal

full cut objective

sppnw01 15 23.2 2.55 1.148520e+005

sppnw02 15 40.2 3.91 1.054441e+005

sppnw04 20 28.1 1.94 1.631067e+004

sppnw05 29 170.5 6.76 1.328780e+005

sppnw14 23 60.2 3.35 6.184400e+004

sppnw16 23 106.1 4.41 1.181590e+006

sppnw17 24 58.7 2.96 1.087575e+004

sppus03 15 31.3 2.95 5.338000e+003

rail507 23 44.7 26.86 1.721456e+002

rail516 15 25.8 14.10 1.820000e+002

rail582 22 43.8 27.93 2.097122e+002

The column with the heading Time shows the number of CPU seconds spent
to solve the problems. Except for the rail problems these numbers are small.
The reason the solution time is large for the rail problems is that for those
problems it is expensive to compute the search direction which is caused by the
relatively large number of constraints and fill-in in the Cholesky factorization,
see Andersen and Andersen (1997) for details about the latter. Finally, it
should be noted that the solution time for rail4284 is exceptionally large due
to memory swapping caused by needing more than 128 megabytes of memory
to solve the problem.

The last two columns shows the optimal primal objective value and the
relative gap. In all cases a solution satisfying the termination tolerances was
computed.

One obvious question is how the homogenized cutting plane algorithm com-
pares to solving the full problem directly. To answer that question we have
made Table 1.2 which reports results for solving the problems having more
than 50000 variables using MOSEK v1.0b interior-point optimizer (Andersen
and Andersen (1997)). Note that most of the linear algebra routines are shared
by MOSEK and the homogenized cutting plane algorithm so the comparison
should be fair. Moreover, the largest problems are excluded from Table 1.2, be-
cause those problems could not be solved using only 128 megabytes of memory.
Table 1.2 presents the number of interior-point iterations and the time spent
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solving the problems for solving the full problem and using MOSEK (full) and
the cutting plane approach (cut). Finally, the optimal primal objective value re-
ported by MOSEK is shown. A comparison of the timing results shows that for
the chosen problems the homogenized cutting-plane algorithm is significantly
better than the full approach with respect to running time. Indeed for the
problems sppnw05 and sppnw16 the cutting plane approach is approximately
20 to 25 times faster than the regular approach. Hence, we can conclude at least
for LP relaxations of set-partitioning and set-covering problems having many
more variables than constraints, then the homogenized cutting plane approach
is an attractive alternative to solving the full problem. Moreover, it should
be emphasized that the problems with about one million variables can only be
solved using the cutting plane approach due to the large memory consumption
of the full approach.

In summary, the suggested implementation is capable of solving large LP
relaxations of set-covering and set-partitioning problems in a low number of
outer and inner iterations. Moreover, for problems having many more variables
than constraints, then the approach is much more efficient than solving the full
problem directly. However, it seems to be important for efficiency reasons that
possibly many variables in each iteration can be generated.

Finally, it should be mentioned that several possibilities exist for improving
the efficiency of the implementation. For example a more sophisticated choice
of the initial set J 0 is likely to reduce the number of inner and outer iterations.

8 CONCLUSIONS

We have presented a cutting plane algorithm using a self-dual homogenized
formulation. The analysis of the algorithm uses a different proximity measure
than that in, for example, Goffin et al. (1996). The algorithm has the same
complexity as that in Goffin et al. (1996).

Furthermore, we present an implementation of the homogenized cutting
plane algorithm adapted to solve LP problems having many more variables
than constraints. The implementation is applied to the LP relaxation of real-
world set-covering and set-partitioning problems. The computational results
show that the discussed implementation solves the test problems in a low num-
ber of inner and outer iterations. Moreover, the results show that for problems
having many more variables than constraints, the cutting plane approach saves
a lot of computation time and space compared to solving the problems directly.
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