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Abstract

The inclusion of transaction costs is an essential element of any realistic
portfolio optimization. In this paper, we consider an extension of the standard
portfolio problem in which linear transaction costs are incurred to rebalance
an investment portfolio. The Markowitz framework of mean-variance efficiency
is used with costs modelled as a percentage of the value transacted. Each
security in the portfolio is represented by a pair of continuous decision vari-
ables corresponding to the amounts bought and sold. In order to properly
represent the variance of the resulting portfolio, we suggest rescaling by the
funds available after paying the transaction costs. This results in a fractional
quadratic programming problem. We show that this fractional quadratic pro-
gramming problem has a structure that allows it to be reformulated as an
equivalent quadratic programming problem of size comparable to the model
without transaction costs. Theoretically, one way to reduce the measure of risk
is to buy and sell the same security, which is not an attractive practical strategy.
We show that an optimal solution to the quadratic programming reformulation
can always be found that does not simultaneously buy and sell a single security.
The results of the paper extend the classical Markowitz model to the case of
proportional transaction costs in a natural manner with limited computational
cost. Computational results for two empirical datasets are discussed.

Keywords: Portfolio optimization, transaction costs, rebalancing, quadratic
programming
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1 Introduction

Constructing a portfolio of investments is one of the most significant financial deci-
sions facing individuals and institutions. A decision-making process must be devel-
oped which identifies the appropriate weight each investment should have within the
portfolio. The portfolio must strike what the investor believes to be an acceptable
balance between risk and reward. In addition, the costs incurred when setting up a
new portfolio or rebalancing an existing portfolio must be included in any realistic
analysis. In this paper, we show that proportional transaction costs can be incor-
porated in a manner which makes the resulting optimization problem a quadratic
program.

Essentially, the standard portfolio optimization problem is to identify the optimal
allocation of limited resources among a limited set of investments. Optimality is
measured using a tradeoff between perceived risk and expected return. Expected
future returns are based on historical data. Risk is measured by the variance of those
historical returns.

When more then one investment is involved, the covariance among individual in-
vestments becomes important. In fact, any deviation from perfect positive correlation
allows a beneficial diversified portfolio to be constructed. Efficient portfolios are allo-
cations that achieve the highest possible return for a given level of risk. Alternatively,
efficient portfolios can be said to minimize the risk for a given level of return. These
ideas earned their inventor a Nobel Prize and have gained such wide acceptance that
countless references could be cited; however, the original source is Markowitz [16].

One standard formulation of the portfolio problem minimizes a quadratic risk
measurement with a set of linear constraints specifying the minimum expected port-
folio return, E0, and enforcing full investment of funds. The decision variables xi are
the proportional weights of the ith security in the portfolio. Here n securities are un-
der consideration. We assume the presence of a risk-free security with return ρ, and
we let y denote the amount invested in this security. Additionally, µ is the column
vector of expected returns and Q is the positive semidefinite covariance matrix. We
assume that short selling is not allowed, so the proportions xi are restricted to be
nonnegative. This formulation is:

min 1
2
xT Qx

s.t. ρy + µT x ≥ E0

y + eT x = 1
y, x ≥ 0,

(1)

where e denotes the vector of all ones.
By varying the parameter E0 and solving multiple instances of this problem, the

set of efficient portfolios can be generated. This set, visualized in a risk/return plot, is
called the efficient frontier. An investor may decide where along the efficient frontier
(s)he finds an acceptable balance between risk and reward.

In this paper, we describe a method for finding an optimal portfolio when propor-
tional transaction costs have to be paid. These costs vary linearly with the amount of
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a security bought or sold. Our method requires the solution of a quadratic program
of similar size to the Markowitz model. If E0 is very small, it may be necessary to
subsequently solve a linear programming problem to ensure that there is not simul-
taneous buying and selling in a single security. Our method allows different costs for
different securities, and different costs for buying and selling. Our model captures
the feature that transaction costs are paid when a security is bought or sold and the
transaction cost reduces the amount of that particular security that is available. In
particular, both the risk and the return in our model are measured using the portfolio
arising after paying the transaction costs.

The portfolio rebalancing problem has similarities to the index tracking prob-
lem [1, 7, 11]. See Zenios [23] for a discussion of portfolio optimization models. The
optimal solution to the portfolio optimization problem is sensitive to the data Q and
µ, so estimating this data accurately is the subject of current research; see Chopra
and Ziemba [9] or Bengtsson and Holst [2] for example. Stochastic programming
approaches to portfolio optimization have been investigated in [10, 12, 19, 20] and
elsewhere; such approaches work with sets of scenarios.

Modification of a portfolio should be performed at regular intervals, and determi-
nation of the appropriate interval in the presence of transaction costs is a problem
of interest. Preferably, selection of the interval should be done in conjunction with
selection of the method used for rebalancing. This paper contains a method for re-
balancing. There has been interest in portfolios that can be modified continuously,
starting with Merton [18]. These methods are generally limited to problems with a
small number of securities. For a recent survey on the impact of transaction costs
on the dynamic rebalancing problem, see Cadenillas [5]. For a discussion of han-
dling capital gains taxes in dynamic portfolio allocation problems, see Cadenillas and
Pliska [6].

This paper is organized as follows. We turn to the portfolio rebalancing problem
in §2. First, we motivate the cost model and provide examples of costs that fit this
model before introducing an essential change of variables. Alternative approaches
to this problem are also discussed in §2. Our model is a quadratic programming
problem, and the nature of the solutions to that problem is discussed in §3. If the
return requirement is low, the nature of the solutions can change; this is the subject
of §4. Computational results for two empirical datasets are presented in §5. Finally,
we offer concluding remarks in §6.

2 Portfolio Rebalancing Problem

What we consider is an extension of the basic portfolio optimization problem in which
transaction costs are incurred to rebalance a portfolio, x̄, into a new and efficient
portfolio, x. A portfolio may need to be rebalanced periodically simply as updated
risk and return information is generated with the passage of time. Further, any
alteration to the set of investment choices would necessitate a rebalancing decision of
this type.

2



In addition to the obvious cost of brokerage fees/commissions, here are two ex-
amples of other transaction costs that can be modeled in this way:

1. Capital gains taxes are a security-specific selling cost that can be a major con-
sideration for the rebalancing of a portfolio. For more discussion of the impact of
capital gains, especially in a dynamic portfolio allocation model, see Cadenillas
and Pliska [6].

2. Another possibility would be to incorporate an investor’s confidence in the
risk/return forecast as a subjective “cost”. Placing high buying and selling
costs on a security would favor maintaining the current allocation x̄. Placing a
high selling cost and low buying cost could be used to express optimism that a
security may outperform its forecast.

Let ui and vi represent the amount bought and sold (respectively) of risky secu-
rity i. The amount invested in each of the securities will be

x = x̄ + u− v. (2)

We assume proportional transaction costs. Let cBi
and cSi

denote the transaction cost
of buying and selling one unit of risky security i, respectively. We assume 0 ≤ cB < e,
0 ≤ cS < e and cS +cB > 0. We assume that there are no transaction costs associated
with the risk-free security — if there are such costs, we can instead treat this security
in the same manner as the other securities. We let x0 denote the total amount spent
on transaction costs, so

x0 = cT
Bu + cT

Sv. (3)

The total amount invested in the securities, after paying transaction costs, will be
1− x0. We obtain the constraint

y + eT x = 1− cT
Bu− cT

Sv.

The resulting model for minimizing the variance of the resulting portfolio subject to
meeting an expected return of E0 > 0 in the presence of proportional transaction
costs is

min 1
2
xT Qx (4)

s.t. ρy + µT x ≥ E0 (5)

x− u + v = x̄ (6)

y + eT x + cT
Bu + cT

Sv = 1 (7)

u, v, x, y ≥ 0. (8)

A user might also require restrictions such as limiting the proportion of assets
that can be invested in a group of securities. We can express this as a homogeneous
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constraint on x. For example, if security 1 must constitute no more than 10% of the
resulting portfolio, we can impose the constraint

9x1 −
n∑

i=2

xi ≤ 0.

We generalize this to allow m homogeneous constraints in our model, written in the
form ay + Ax ≤ 0 where A is an m× n matrix and a is an m-vector.

To this point, we have been optimizing the standard risk measure for efficient
frontiers, that is:

1

2
xT Qx.

When there are no transaction costs to be paid, one dollar is always available for
investment, i.e. (y +

∑n
i=1 xi = 1). This assumption is implicit in the standard risk

measure. However, for nonzero transaction costs that implicit assumption is no longer
valid. One dollar is not available for investment, costs will be paid to rebalance. The
appropriate objective is therefore

f(x) :=
1
2
xT Qx

(y + eT x)2
. (9)

Here x0 is again the amount paid in transaction costs. Therefore (1 − x0) is the
actual amount available for investment, so we are choosing to scale the standard risk
measurement by the square of the dollar amount actually invested.

This gives the fractional quadratic programming problem (FQP ) which we will
solve to find the optimal portfolio for a given expected return.

min xT Qx
2(y+eT x)2

s.t. ρy + µT x ≥ E0

(FQP ) x − u + v = x̄
y + eT x + cT

Bu + cT
Sv = 1

ay + Ax ≤ 0
u, v, x, y ≥ 0.

Analytically, notice that with zero transaction costs then y + eT x = 1 and we
recover the standard risk measurement. So our choice does pass the first test required
of any theoretical extension; recover the previous result. This choice also makes
dimensional sense given the quadratic numerator.

Our choice of this fractional objective function also makes intuitive sense. For
nonzero transaction costs, there are conflicting effects at work within the portfolio.
For a given x̄, the absolute amount of principal available for investment will decrease
as the transaction cost percentage is increased. But in order to get the same payoff
(µT x) on a smaller amount of principal the investor will need to reach for higher
returns. This should correlate to taking on higher levels of risk. Our fractional choice
effectively boosts the risk measurement for these transaction cost depleted portfolios.
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Without the denominator in the objective function, it is possible to obtain optimal
solutions which involve both buying and selling a particular security, so both ui > 0
and vi > 0 for some security i. Of course, in practice this is not a desirable strategy.
Nonetheless, it does reduce the measure of risk 1

2
xT Qx. The incidence of solutions of

this form is particularly noticeable for low values of E0. Normalizing by the amount
invested in securities prevents this undesirable outcome, as we shall see.

The fractional objective f(x) can be made quadratic using the technique of re-
placing the denominator by the square of the reciprocal of a variable. This is a
straightforward extension of the technique of Charnes and Cooper [8] for fractional
programs where the objective is a ratio of linear functions and the constraints are
linear. Let

t :=
1

y + eT x
(10)

and then define
û := tu, v̂ := tv, x̂ := tx, ŷ := ty. (11)

Note that since u and v are constrained to be nonnegative, we must have t ≥ 1.
The constraints (5)–(7) can be multiplied through by t. We also need to include the
constraint ŷ + eT x̂ = 1, which is equivalent to (10). Thus, the fractional quadratic
program (FQP ) is equivalent to the quadratic programming problem (QP ):

minx̂,û,v̂,t
1
2
x̂T Qx̂

s.t. ρŷ + µT x̂ − E0t ≥ 0
(QP ) x̂ − û + v̂ − x̄t = 0

ŷ + eT x̂ + cT
Bû + cT

S v̂ − t = 0
ŷ + eT x̂ = 1

aŷ + Ax̂ ≤ 0
x̂, û, v̂, t ≥ 0.

Once we find a solution (ŷ∗, x̂∗, û∗, v̂∗, t∗) to (QP ), we can obtain a solution (y∗, x∗, u∗, v∗)
to the original problem (FQP ) by rescaling ŷ, x̂, û and v̂, so y∗ = 1

t∗
ŷ∗, x∗ = 1

t∗
x̂∗,

u∗ = 1
t∗

û∗, and v∗ = 1
t∗

v̂∗.
The efficient frontier is found by optimizing (QP ) for different values of E0. In

Figure 1, we graph the efficient frontier for a nine-security problem, with three differ-
ent choices for the transaction costs, namely zero costs, 3% costs for each buy and sell
decision, and 5% costs for each buy and sell decision. The initial portfolio is equally
weighted in the nine securities.

The optimal objective function is plotted against the value of E0. Optimizing this
quadratic program creates the situation where the c = 0% frontier extends furthest
into the risk/return plane. Other transaction cost efficient frontiers, abbreviated
TCEF, are pulled back from that limit as seen in Figure 1. It is apparent that
transaction costs reduce the range of investment choice.

The model (QP ) is the one that we propose to solve in order to find an optimal
level of risk for a given level of return in the presence of proportional transaction
costs. In the next two sections we examine properties of the solutions to (QP ). First,
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Figure 1: The initial portfolio is located by a circle. Notice that as the level of
transaction costs c increases, the curves shift right. Increased transaction costs reduce
investment choice.
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we conclude this section by considering other methods for portfolio rebalancing that
have been discussed in the literature.

Adcock and Meade [1] add a linear term for the costs to the original Markowitz
quadratic risk term and minimize this quantity. This requires finding an appropriate
balance between the transaction costs and the risk. The model assumes a fixed rate
of transaction costs across securities. The risk is measured in terms of the adjusted
portfolio before transaction costs are paid. Konno and Wijayanayasake [14] consider
a cost structure that is considerably more involved than ours, with the result that the
model is harder to solve. Yoshimoto [22] considers a similar transaction cost model to
ours and proposes a nonlinear programming algorithm to solve the problem and their
computational results indicate that ignoring transaction costs can result in inefficient
portfolios.

An alternative model is to reduce the vector of expected returns µ by the trans-
action costs. The method implicitly assumes that transaction costs are paid at the
end of the period, impacting both the risk and the return. If the transaction costs
must be paid at the beginning of the period then care must be taken in the sale of
assets to pay the transaction costs, in order to ensure that the resulting portfolio has
securities in the same proportion. Further, the return calculation assumes a return
on the amount paid in transaction costs, so this constraint needs to be modified.

If the only transaction cost is a fixed cost per transaction, one modeling approach
is to place an upper bound on the number of transactions. This gives rise to a
quadratically constrained integer programming problem. This approach has been in-
vestigated widely; see, for example, Perold [21], Bienstock [3] or Lee and Mitchell [15].
The presence of the integrality restriction makes the formulation far harder to solve
than the one presented in this paper. An alternative approach is to place these
transaction costs directly into the objective, which again results in a quadratic in-
teger programming formulation; see for example Konno and Wijayanayasake [14] or
Kellerer et al [13].

3 Optimal solutions to (QP )

We have introduced variables to both buy u and sell v each security. We have not
imposed an explicit constraint requiring that if a certain security is bought then it
cannot also be sold. Both buying and selling a security would not be a desirable
strategy in practice, but it might decrease the risk measure x̂T Qx̂. We call a solution
(û, v̂) complementary if it satisfies ûT v̂ = 0, that is, if no stock is both bought and
sold. In this section, we show that if the return constraint ρy+µT x̂−E0t ≥ 0 is active
at the optimal solution to (QP ) then the optimal solution must be complementary.

If the return constraint is not active at the optimal solution, then it is possible
that an optimal solution will not be complementary. We discuss this situation in §4,
where we also show that a complementary solution can always be found efficiently
even in this situation.

The Karush-Kuhn-Tucker (KKT) optimality conditions for the quadratic program
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(QP ) require that (ŷ, x̂, û, v̂, t) be primal feasible and that the following equations can
be satisfied:

z + λ + aT π − wρ = 0 (12)

(z + λ)e + AT π + Qx̂− wµ + sr − sx = 0 (13)

−sr − zcB − su = 0 (14)

sr − zcS − sv = 0 (15)

−wE0 − x̄T sr + z = 0 (16)

w(µT x̂− E0t) = 0 (17)

x̂T sx = 0 (18)

ûT su = 0 (19)

v̂T sv = 0 (20)

πT (aŷ + Ax̂) = 0. (21)

Here, w is a nonnegative scalar, z and λ are free scalars, π is a nonnegative m-vector,
sr is a free n-vector, and sx, su, and sv are nonnegative n-vectors. We have exploited
the fact that t ≥ 1 in any feasible solution in deriving (16).

Assume that ûi > 0 and v̂i > 0 for some security i. We argue that we must then
have w = 0 for the KKT conditions to hold. If ûi > 0 and v̂i > 0, it follows from
(19) and (20) that su

i = sv
i = 0. Adding together the ith components of (14) and (15)

gives
z(cBi + cSi) = 0.

Since cS + cB > 0, we immediately obtain z = 0. Now adding together the whole of
(14) and (15) gives su + sv = 0, so su = sv = 0 and sr = 0. Substituting into (16) for
sr and z and gives wE0 = 0. Thus, we have proved the following theorem.

Theorem 1 If the optimal solution to (QP ) has a strictly positive Karush-Kuhn-
Tucker multiplier w for the return constraint ρy + µT x̂ − E0t ≥ 0 then the optimal
solution is complementary.

If there is no risk-free security then the theorem still holds. The proof given above
did not involve the equations impacted by y, so it is still valid.

4 Low return requirements

If an investor just wishes to minimize risk, with little concern for expected return,
then the value of E0 can be set to a low number, with the result that the return
constraint may be satisfied strictly in the solution to (QP ). Alternatively, it may be
that the presence of the homogeneous constraints ay + Ax ≤ 0 results in an optimal
solution that satisfies the return constraint strictly. If the return constraint is not
active at the optimal solution, then an optimal solution may not be complementary.
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Nonetheless, there is an optimal solution that is complementary, and that solution
can be found efficiently, as we argue in this section.

Let (ŷ∗, x̂∗, û∗, v̂∗, t∗) be an optimal solution to (QP ). Assume this point is a
noncomplementary solution. If we modify û, v̂, and t while fixing ŷ = ŷ∗ and x̂ = x̂∗

then the objective function value in (QP ) does not change. Reducing t will reduce
the amount spent in transaction costs. This suggests solving the following linear
programming problem:

min t
s.t. −cT

Bû − cT
S v̂ + t = ŷ∗ + eT x̂∗

(LP t) û − v̂ + x̄t = x̂∗

û ≥ 0
v̂ ≥ 0

Examining the dual of this linear program and the LP complementary slackness con-
ditions shows that the optimal solution must satisfy ûT v̂ = 0, in a similar manner to
the proof of Theorem 1. The structure of this LP is such that an efficient iterative
scheme can be developed to find the optimal solution.

5 Computational Results

We discuss two portfolios in this section, a nine-security one due to Markowitz [17],
and a portfolio consisting of the thirty stocks in the Dow Jones Industrial Average.
Solving the problem (QP ) for different values of E0 will give a transaction cost efficient
frontier (TCEF).

We investigated the Markowitz 9-security portfolio with all transaction costs equal
to 3% and with all transaction costs equal to 5%, with the initial portfolio equally
divided among the securities in both cases. The results are plotted in Figure 1.
For the return and risk data, and more details of the results, see Braun [4]. A
general observation is that the portfolios along the TCEF are not simply related to
the portfolios along the no transaction cost efficient frontier. Sometimes, entirely
new securities are involved. Sometimes, buy and sell decisions are reversed. The
introduction of costs changes the portfolio rebalancing problem dramatically and the
optimal solutions are also quite different.

We applied our solution strategy to the problem of rebalancing portfolios com-
posed of the 30 stocks which currently make up the Dow Jones Industrials Average.
All securities were involved initially, with proportions varying from 1% to 5%. The
buying and selling costs varied from security to security, from 0% to 5%. For more
details on these experiments, see Braun [4]. As with the earlier example, the optimal
solution was altered by the transaction costs.
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6 Conclusions

The results of this paper will allow the incorporation of transaction costs into portfolio
optimization problems, in a manner that leads to intuitive and sensible allocations.
The model calculates the risk of the resulting portfolio, weighted by the amount
invested after paying transaction costs. The model can be formulated as a quadratic
programming problem of size comparable to the model with no transaction costs, so
it can be solved equally efficiently.

From the computational results presented in this paper, it appears that the effect
of transaction costs is more marked for relatively high levels of desired expected
return, since the portfolio manager is then forced to perform a lot of rebalancing
because only a few assets can meet the desired return requirement.
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