
McMaster University

Advanced Optimization Laboratory

Title:
A semidefinite programming based polyhedral cut

and price approach for the maxcut problem

Authors:

Kartik Krishnan, John Mitchell

AdvOL-Report No. 2004/3

May 2004, revised February 2005, Hamilton, Ontario, Canada

1



A semidefinite programming based polyhedral cut
and price approach for the maxcut problem1 2

Kartik Krishnan
Department of Computing & Software

McMaster University

Hamilton, Ontario L8S 4K1

Canada

kartik@optlab.mcmaster.ca

http://optlab.mcmaster.ca/˜kartik

John E. Mitchell
Mathematical Sciences

Rensselaer Polytechnic Institute

Troy, NY 12180

mitchj@rpi.edu

http://www.rpi.edu/˜mitchj

Draft of March 10, 2005

Abstract

We investigate solution of the maximum cut problem using a polyhedral
cut and price approach. The dual of the well-known SDP relaxation of maxcut
is formulated as a semi-infinite linear programming problem, which is solved
within an interior point cutting plane algorithm in a dual setting; this consti-
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based on the polyhedral theory of the maxcut problem are then added to the
primal problem in order to improve the SDP relaxation; this is the cutting
phase of the algorithm. We provide computational results, and compare these
results with a standard SDP cutting plane scheme.
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1 Introduction

Let G = (V, E) denote an edge weighted undirected graph without loops or multiple

edges. Let V = {1, . . . , n}, E ⊂ {{i, j} : 1 ≤ i < j ≤ n}, and w ∈ IR|E|, with {i, j}
the edge with endpoints i and j, and weight wij. We assume that m = |E|. For

S ⊆ V , the set of edges {i, j} ∈ E with one endpoint in S and the other in V \S form

the cut denoted by δ(S). We define the weight of the cut as w(δ(S)) =
∑

{i,j}∈δ(S)

wij.

The maximum cut problem, denoted as (MC), is the problem of finding a cut for

which the total weight is maximum. (MC) can be formulated as

max{w(δ(S))|S ⊆ V } (MC) (1)

The problem finds numerous applications in, for example, the layout of electronic

circuitry (Chang & Du [7] and Pinter [40]), and state problems in statistical physics

(Barahona et al. [3]). It is also a canonical problem from which one can develop al-

gorithms for other combinatorial optimization problems such as min-bisection, graph

partitioning etc.

The maximum cut problem is one of the original NP complete problems (Karp

[22]). However, there are several classes of graphs for which the maximum cut problem

can be solved in polynomial time; for instance planar graphs, graphs with no K5 minor

etc. A good survey on the maxcut problem appears in Poljak and Tuza [41].

We can model the maxcut problem as an integer program as follows: Consider

a binary variable associated with each edge of the graph. The value of the variable

indicates whether the two endpoints of the edge are on the same side of the cut

or on opposite sides. Taken together, these binary variables define a binary vector,

which represents a feasible solution to the maxcut problem. The convex hull of all

these candidate solutions forms a polytope known as the maxcut polytope, whose

complete description is unknown. The maxcut problem amounts to minimizing a

linear objective function over this polytope. One can also regard these variables

as the entries of a matrix which has a row and a column for each vertex, and this

matrix should be rank one (and therefore positive semidefinite) for the values of the

variables to be consistent. This gives rise to a non-polyhedral (SDP) formulation of

the maxcut problem where one is now optimizing over this matrix variable. These

non-polyhedral formulations can be solved efficiently and in polynomial time using

interior point methods. In an LP (SDP) cutting plane approach, one begins with an

initial polyhedral (non-polyhedral) description that contains the maxcut polytope,

and these descriptions are progressively refined using cutting planes. The procedure

is repeated until we have an optimal solution to the maxcut problem.
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Our aim in this paper is to solve the maxcut problem to optimality using a poly-

hedral cut and price approach and heuristics. Although, our approach is entirely

polyhedral, it closely mimics an SDP cutting plane approach for the maxcut prob-

lem.

The paper is organized in a manner that we have all the details at hand to describe

our cutting plane approach, which appears in §4. An outline of the paper is as

follows: §2 deals with a linear programming (LP) formulation while §3 deals with

a semidefinite programming (SDP) formulation of the maxcut problem. In §4 we

motivate and develop our polyhedral cut and price approach for the maxcut problem;

this is based on an SDP formulation of the maxcut problem presented in §3. The

details of the algorithm are given in §5. We present some computational results in §6
and our conclusions in §7.

1.1 Notation

A quick word on notation: we represent vectors and matrices, by lower and upper

case letters respectively. For instance dij denotes the jth entry of the vector di in a

collection, whereas Xij denotes the entry in the ith row and jth column of matrix

X. The requirement that a matrix X be symmetric and positive semidefinite (psd)

is expressed X � 0. We also use MATLAB-like notation frequently in this paper.

For instance y(n + 1 : m) will denote components n + 1 to m of vector y, while

A(n + 1 : m, 1 : p) will denote the sub-matrix obtained by considering rows n + 1 to

m, and the first p columns of matrix A. Finally dj.
2 refers to a row vector obtained

by squaring all the components of dj.

2 Linear programming formulations of the maxcut

problem

Consider a variable xij for each edge {i, j} in the graph. Let xij assume the value 1 if

edge {i, j} is in the cut, and 0 otherwise. The maxcut problem can then be modelled

as the following integer programming problem.

max
n∑

i=1

∑
i<j,{i,j}∈E

wijxij

subject to x is the incidence vector of a cut,

(2)

where n is the number of vertices in the graph.
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Let CUT(G) denote the convex hull of the incidence vectors of cuts. Since max-

imizing a linear function over a set of points is equivalent to maximizing it over the

convex hull of this set of points, we can also write (2) as the following linear program

max cT x

s.t. x ∈ CUT(G).
(3)

Here c = {wij}, x = {xij} ∈ IRm, where m is the number of edges in the graph.

We usually index c and x with the subscript e to relate them to the edges in the

graph. However from time to time we drop the subscript e as appropriate. If we had

an oracle capable of solving the separation problem with respect to this polytope in

polynomial time, we could use this oracle in conjunction with the ellipsoid algorithm

to solve the maxcut problem in polynomial time (Grötschel et al [15]). Unfortunately

we do not have polynomial time separation oracles for some of the inequalities that

describe the maxcut polytope, owing to the NP complete nature of the problem.

It is instructive to study facets of the maxcut polytope, since these provide good

separation inequalities in a cutting plane approach. Numerous facets of the maxcut

polytope have been studied, but the ones widely investigated in connection with a

cutting plane approach are the following inequalities

xe ≥ 0, ∀e ∈ E,

xe ≤ 1, ∀e ∈ E,

x(F )− x(C\F ) ≤ |F | − 1 ∀ circuits C ⊆ E

and all F ⊆ C with |F | odd,

(4)

where x(S) =
∑

{i,j}∈S

xij for any S ⊆ E. It is easy to see that these are valid inequalities

for the maxcut polytope. The first and second set of inequalities define facets of

CUT(G), if e is not contained in a triangle. The third set known as the odd-cycle

inequalities defines facets for each F ⊆ C, with |F | odd, if C has no chord. We will call

a graph chordal if any cycle C of length ≥ 4 has a chord. The latter inequalities can

be derived from the observation that every cycle and cut intersect in an even number

of edges. Moreover, the integral vectors satisfying (4) are vertices of CUT(G). So

we indeed have an integer programming formulation of the maximum cut problem,

namely

max cT x

s.t. x(F )− x(C\F ) ≤ |F | − 1 ∀ circuits C ⊆ E

and all F ⊆ C with |F | odd

x ∈ {0, 1}m.

(5)

3



Incidentally, the inequalities in (4) define a polytope known as the odd cycle polytope.

Barahona and Mahjoub [4] show that we can drop the integrality restriction in (5),

and solve the maxcut problem simply as an LP, if G does not have any subgraph

contractible to K5. This includes planar graphs, so we can indeed solve these maxcut

instances in polynomial time.

Although there is an exponential number of linear constraints in (5), Barahona

and Mahjoub [4] describe a polynomial time separation oracle for the inequalities

(4). Thus it is possible to optimize a linear function over the odd cycle polytope in

polynomial time. This exact algorithm, together with separation heuristics, has been

used in cutting plane algorithms for the maxcut problem by Mitchell [35] and De

Simone et al. [9, 10], among others. The initial relaxation used in these approaches is

max cT x

s.t. 0 ≤ x ≤ e,
(6)

where c, x ∈ IRm, where m is the number of edges in the graph.

3 Semidefinite formulations of the maxcut prob-

lem

In this section we consider semidefinite programming (SDP) formulations of the max-

cut problem. Our polyhedral cut and price algorithm presented in §4 works with this

SDP formulation.

The maxcut problem can be modelled as an integer program using cut vectors

d ∈ {−1, 1}n with di = 1 if i ∈ S, and di = −1 for i ∈ V \ S. Consider the following

problem

max
n∑

i,j=1

wij
1− didj

4

s.t. d2
i = 1, i = 1, . . . , n.

(7)

A factor of 1
2

accounts for the fact that each edge is considered twice. Moreover

the expression (1−didj)

2
is 0 if di = dj, i.e. if i and j are in the same set, and 1 if

di = −dj. Thus (1−didj)

2
yields the incidence vector of a cut associated with a cut

vector d, evaluating to 1 if and only if edge {i, j} is in the cut.

The Laplacian matrix of the graph G is L := Diag(Ae)−A, where A is the weighted

adjacency matrix of the graph. The objective function in (7) can be rewritten as
1
4
dT Ld. Now, consider the symmetric matrix X = ddT of size n, whose (i, j)th
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entry is given by Xij = didj. One can rewrite the maxcut problem as the following

optimization problem over the matrix variable X

max L
4
•X

s.t. diag(X) = e

X � 0

rank(X) = 1.

(8)

Dropping the rank one restriction on the matrix X gives the following SDP relaxation

of the maxcut problem

max L
4
•X

s.t. diag(X) = e

X � 0,

(9)

and its dual

min eT y

s.t. S = Diag(y)− L
4

S � 0,

(10)

which was originally derived in Laurent and Poljak [33] (see also Laurent [32], Helm-

berg [18] and Krishnan & Terlaky [29]). We will refer to the feasible region of (9) as

the elliptope. It must be emphasized that the elliptope is no longer a polytope. Thus

(9) is actually a non-polyhedral relaxation of the maxcut problem.

This semidefinite formulation of the maxcut problem satisfies strong duality, i.e.,

at optimality the objective values of (9) and (10) are the same. In a semidefinite

cutting plane scheme for the maxcut problem, we would begin with (9) as our starting

SDP relaxation.

Theorem 1 The SDP relaxation (9) is tighter than the LP relaxation (6)

Proof: We will show that any feasible solution in the SDP relaxation (9) gives a

feasible solution in (6).

Consider any feasible solution X in (9). The constraints diag(X) = e, and X � 0

together imply that −1 ≤ Xij ≤ 1.

We now transform the problem into {0, 1} variables using the transformation

xij = 1−Xij

2
. This gives L

4
• X =

n∑
i=1

∑
i<j,{i,j}∈E

wijxij. Also, we have 0 ≤ xij ≤ 1,

∀{i, j} ∈ E. Such an x is feasible in (6).

Goemans and Williamson [13] developed a 0.878 approximation algorithm for the
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maxcut problem when all the edge weights are nonnegative. Their algorithm uses the

solution X to the SDP relaxation (9), followed by an ingenious randomized rounding

procedure to generate the incidence vector d of the cut. Since we employ the rounding

scheme in our algorithm, we briefly discuss the procedure in §4.2. This 0.878 approx-

imation ratio for the SDP formulation is a tremendous improvement over previous

known LP formulations, where the ratio of the maxcut value to that of the LP relax-

ation over the odd cycle polytope could be 1
2

for various sparse random graphs (Poljak

and Tuza [42]). This ratio improves to 3
4

if one considers dense random graphs, where

it can be further improved by considering k-gonal inequalities; in fact one has a PTAS

for dense graphs (Avis & Umemoto [2]). On the negative side, H̊astad [17] showed

that it is NP-hard to approximate the maxcut problem to within a factor of 0.9412.

If we include negative edge weights and still have the Laplacian matrix L � 0,

then Nesterov [36] showed that the GW rounding procedure gives an 2
π

approximation

algorithm for the maxcut problem.

The solution obtained by the randomized rounding procedure can be further im-

proved using a Kernighan-Lin [24] (see also Papadimitriou and Steiglitz [37]) local

search heuristic. Since we employ this heuristic too in our algorithm, we discuss it in

§4.2.

One can further improve the relaxation (9) using chordless odd cycle inequalities.

These are simply the odd cycle inequalities for the LP formulation in a ±1 setting,

and have the following form

X(C\F )−X(F ) ≤ |C| − 2

for each cycle C, F ⊂ C, |F | odd,
(11)

where X(S) =
∑

{i,j}∈S

Xij etc. These include among others the triangle inequalities.

Since diag(X) = e, and X � 0 imply −1 ≤ Xij ≤ 1, the feasible region of the SDP

relaxation (9) intersected with the odd cycle inequalities (11) is contained within the

odd cycle polytope. We should thus get tighter upper bounds on the maxcut value.

Interestingly, although the additional inequalities improve the SDP relaxation,

they do not necessarily give rise to better approximation algorithms. On the negative

side, Karloff [21] exhibited a set of graphs for which the optimal solution to (9)

satisfies all the triangle inequalities as well, so after the Goemans-Williamson rounding

procedure we are still left with a 0.878 approximation algorithm.

More recently, Anjos and Wolkowicz [1] presented a strengthened semidefinite

relaxation of the maxcut problem. Their SDP relaxation is tighter than the relax-

ation (9) together with all the triangle inequalities. To arrive at their relaxation
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they add certain redundant constraints of the maxcut problem to (9), and consider

the Lagrangian dual of this problem. On the negative side, this strengthened SDP

relaxation is fairly expensive to solve. Also, see Lasserre [30, 31] for a hierarchy of

increasingly tighter SDP relaxations for the maxcut problem.

4 An SDP based polyhedral cut and price method

for the maxcut problem

This section deals with the major contribution of the paper which is a polyhedral cut

and price algorithm, which is based on the SDP formulation of the maxcut problem

presented in §3.

At the outset, we must mention that one could develop a SDP cutting plane

approach for solving the maxcut problem. The approach sets up a series of primal

SDP relaxations of the maxcut problem beginning with (9), which are progressively

tightened by adding cutting planes, such as those presented in §3, to the primal SDP

relaxation. Such an SDP cutting plane approach for the maxcut problem is discussed

in Helmberg and Rendl [20].

Such an approach requires effective techniques for solving the SDPs that arise in

the algorithm. The main tools for solving SDPs are interior point methods. Interior

point methods, however, are fairly limited in the size of problems they can handle.

Problems with more than 3000 constraints are considered quite hard (see Helmberg

[18]).

Recently, several large scale approaches have been developed to try to overcome

this drawback. For example, Helmberg [19] has incorporated the spectral bundle

method in a cutting plane approach to solving the maxcut problem.

In this paper, we will solve each SDP in an interior point LP cutting plane frame-

work. Such a approach is discussed in Krishnan and Mitchell [25, 26, 27, 28] and

we present some details in §4.1. The overall approach is a polyhedral cut and price

approach for the maxcut problem that mimics an SDP cutting plane approach. We

note that in the past such cut and price LP approaches have been applied with a

great degree of success in solving large scale integer programs (see Wolsey [44]).

We motivate our polyhedral cut and price approach as follows. The matrix variable

X is equal to ddT at optimality for (8), where d is a ±1 vector representing a cut.

Let di be a ±1 vector representing a cut. We can write X as a convex combination
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of all such vectors, and so the maxcut problem (7) can also be written as follows

max L
4
• (

∑
i∈I

xidid
T
i )

s.t.
∑
i∈I

xid
2
ij = 1, j = 1, . . . , n

xi ≥ 0, i ∈ I,

(12)

where I is the index set of all the ±1 incidence cut vectors. Note that all the equality

constraints in (12) are equivalent to the single constraint
∑

i

xi = 1 for this choice of

index set I. Moreover, dT
i di = n, and there is an exponential number of such vectors.

If we allow di instead to lie on the n dimensional sphere of radius
√

n, we obtain the

following relaxation of the maxcut problem

max L
4
• (

∑
i∈J

xidid
T
i )

s.t.
∑
i∈J

xid
2
ij = 1, j = 1, . . . , n

xi ≥ 0, ∀i ∈ J ,

(13)

where J is the index set of all the vectors with Euclidean norm
√

n. In fact, (13) is

exactly the SDP formulation (9) for the maxcut problem. Note that there are now

infinitely many terms in the summation, so (13) is really a semi-infinite LP relaxation

of the maxcut problem. Note that summing the constraints
∑
i∈J

xid
2
ij = 1 implies∑

i∈J
xi = 1, so the feasible region is contained in the set of convex combinations of the

vectors di.

We can solve (13) in a polyhedral column generation (pricing) scheme, with a

small number of di ∈ IRn and generating others as necessary. This is reminiscent of

the Dantzig-Wolfe decomposition approach applied to (13) and constitutes the pricing

phase of the algorithm. The key to this pricing phase is the existence of a polynomial

time separation oracle for the SDP relaxations. Of course, we eventually want to

solve the problem over di that are ±1 vectors. To do so, we introduce linear cutting

planes in (13), that cut off some of the non ±1 vectors not in the maxcut polytope;

this is the cutting phase of the algorithm. We elaborate on these two phases below:

1. Cutting phase: The input to this phase is a feasible point X in (9). This is

given to an oracle, which verifies whether this point is also within the maxcut

polytope in a ±1 setting. If this point is not in this polytope, the oracle returns

linear cutting planes which are facets of the maxcut polytope. The cutting

planes are added to the primal SDP relaxation, thereby strengthening it. This
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is identical to the cutting phase of an SDP cutting plane approach, and the

hope is that the added cutting planes enforce the rank one constraint (see the

formulation (8) of the maxcut problem).

2. Pricing phase: The input to this phase is an SDP relaxation of the maxcut

problem. We approximately solve the dual version of this SDP in a polyhedral

interior point cutting plane scheme. In particular, one sets up LP relaxations

of this dual SDP formulation, and approximately solves these relaxations using

interior point methods. The solution is then given to a separation oracle for the

SDP problem. The oracle verifies whether this point is also in the dual SDP

feasible region. If this is not the case, the oracle returns linear cutting planes,

which are supporting hyperplanes of the dual SDP feasible region. These cutting

planes are added to the LP relaxation and the process is repeated. The reader

familiar with linear programming decomposition will recognize the primal linear

program as the reformulation obtained when Dantzig-Wolfe decomposition is

applied to (9). Also, adding linear cutting planes in the dual LP relaxation

amounts to pricing (column generation) in the primal LP setting. This is why

we call this phase our pricing phase. We present some details in §4.1.

We now describe our entire algorithm in a nutshell. Each of these steps will be

elaborated in more detail in §5.

Algorithm 1 (SDP cut-and-price algorithm for maxcut)

1. Initialize

2. Approximately solve the dual maxcut SDP as an LP using the pric-

ing phase discussed in §4.1. This gives an upper bound on the maxcut value.

Construct the primal matrix X.

3. Generate good integer cut vectors by running the Goemans-Williamson

and Kernighan-Lin heuristics on the primal matrix X. These heuristics are

presented in §4.2. Add these integer vectors into the LP approximation, and

solve this LP to optimality to find the new X.

4. Check for termination: If the difference between the upper bound and the

value of the best cut is small, return the best cut as our solution to the maxcut

problem. STOP.
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5. Finding violated odd cycle inequalities: Feed the matrix X to a separation

oracle that returns violated odd cycle inequalities. This oracle is described in

Barahona and Mahjoub [4] and involves the solution of n shortest path problems

on an auxiliary graph having twice the number of nodes and four times the

number of edges. Bucket sort the resulting violated inequalities and add a subset

of constraints to the primal LP approximation. This changes the dual slack

matrix S.

6. Update the LP relaxation by choosing the most important constraints in the

primal polyhedral approximation including the best integer cut vector, constraints

based on the spectral factorization of X, and the initial box constraints. Return

to Step 2.

Assuming that we do not resort to branch and bound, at the termination of the

cutting plane scheme we are approximately solving

max L
4
•X

s.t. diag(X) = e,∑
ij∈C\F

Xij −
∑
ij∈F

Xij ≤ |C| − 2,

C a cycle, F ⊆ C, |F | odd,

X � 0,

(14)

which is still a relaxation of the maxcut problem.

We briefly motivate the steps in the algorithm: In Step 2 we are solving a relax-

ation of (14) in a polyhedral column generation scheme. We utilize this solution to

get integer cut vectors in Step 3; we then add these integer vectors to the polyhedral

approximation and resolve this LP. This ensures that some of the di in the LP are

±1 vectors representing the best incidence cuts currently obtained by the algorithm.

Moreover, Step 3 ensures that the feasible region of the LP approximation has a

non-empty intersection with the maxcut polytope. In Step 5, we add violated odd

cycle inequalities to the primal LP approximation; these odd cycle inequalities are

cutting off some of the non ±1 di vectors outside the maxcut polytope. Since we are

employing an IPM to solve the LP approximations it is imperative that we keep the

size of the LP approximations bounded. Step 6 realizes this objective by aggregating

the useful information contained in the current polyhedral approximation.

We must mention that Gruber [16] has a similar approach, where he solves a

semi-infinite formulation of the primal SDP relaxation (9). However, he does not

motivate it in this way; his aim is rather to strengthen the LP cutting plane approach
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by adding cutting planes valid for the SDP approach. An advantage of his approach

is that he deals exclusively with the primal problem. If the graph is chordal then

it suffices to force every submatrix of X corresponding to a maximal clique to be

positive semidefinite, so it is not necessary to consider the other entries in the primal

matrix X explicitly. Grone et al. [14] showed that values for the missing entries can

be chosen to make X positive semidefinite provided all these submatrices are positive

semidefinite.

The approach is advantageous only if the underlying graph is chordal and sparse.

If the graph is not chordal, then one needs to construct a chordal extension of it,

by adding redundant edges of weight zero. This could lead to a fairly dense graph.

Moreover, since one is confined to the edge set of the original graph in this approach,

it is not clear how one could add hypermetric inequalities (see, eg, [11]) without

enlarging the support of X.

4.1 An LP pricing approach for SDP

We describe the pricing phase (step 2 of Algorithm 1) in detail in this section.

Consider the following SDP

max C •X

s.t. Ai •X = bi, i = 1, . . . ,m

X � 0,

(15)

and its dual

min bT y

s.t. S =
m∑

i=1

yiAi − C,

S � 0,

(16)

which are some of the relaxations of the maxcut problem encountered during the

course of the algorithm.

Our method is based on the semi-infinite formulation of (16), namely

min bT y

s.t. S =
m∑

i=1

yiAi − C,

dT Sd ≥ 0, ∀d ∈ B,

(17)

where B is a compact set, typically {d : ||d||2 ≤ 1} or {d : ||d||∞ ≤ 1}. We described

a cutting plane approach to solving this relaxation in Krishnan and Mitchell [25, 26,
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27, 28]. This approach sets up a relaxation to (16),

min bT y

subject to
m∑

j=1

yj(d
T
i Ajdi) ≥ dT

i Cdi for i = 1, . . . , k,
(18)

with a corresponding constrained version of (15),

max C • (
k∑

j=1

xjdjd
T
j )

subject to Ai • (
k∑

j=1

xjdjd
T
j ) = bi i = 1, . . . ,m

x ≥ 0.

(19)

We briefly present the pricing phase below:

Algorithm 2 (Pricing procedure)

1. Initialize: Start with an initial relaxation of the form (18).

2. Solve the LP relaxation: Approximately solve (18) and (19) using a primal-

dual interior point method to a prescribed tolerance for the solution (x, y).

3. Call the SDP separation oracle: Compute the slack matrix S at the approx-

imate solution y to (18). If S is psd then we proceed to Step 4. Else, if S is

indefinite, we add the following cutting plane

m∑
j=1

yj(d
T Ajd) ≥ (dT Cd),

where d is an eigenvector corresponding to the minimum eigenvalue of S to

(18), update k, and return to Step 2.

4. Tighten the tolerance: If the prescribed tolerance is still above the minimum

threshold, tighten the tolerance, and proceed to Step 2. Else, the solution (X, y),

where X =
k∑

i=1

xidid
T
i is optimal for the current SDP relaxation. STOP.

This cutting plane approach will be used as a subroutine to solve the SDP relaxations

which arise while solving the maxcut problem.

An important point needs to be emphasized here: We use a primal-dual IPM to

solve the LP relaxations approximately; the query points at which we call the oracle

are more central iterates in the feasible region of (18), where this oracle returns better
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cuts. One could use the simplex method to solve the LP relaxations or even an interior

point method solving these relaxations to optimality. This leads to the classical Kelley

LP cutting plane scheme [23] for convex optimization (or the traditional Dantzig-

Wolfe decomposition in the primal setting); here the query points are extreme points

of the LP feasible region. It is known that the Kelley cutting plane method suffers

from tailing effects, and we observed in Krishnan [25] (see also Elhedhli & Goffin [12])

that a simplex implementation performed very badly. Some convergence estimates

for Kelley’s method can be found in Lemarechal [34].

4.2 Heuristics for generating good incidence cut vectors

We briefly mention the Goemans-Williamson rounding procedure and the Kernighan-

Lin local search heuristic in this section. These heuristics will be employed in gener-

ating good incidence cut vectors in step 3 of Algorithm 1.

Algorithm 3 (The Goemans-Williamson rounding procedure)

1. We assume we have a feasible solution X in (9) to start with.

2. Compute V such that X = ZT Z. Let zi, i = 1, . . . , n be the ith column of the

matrix Z.

3. Generate a random vector r on the unit sphere in IRn. Assign vertex i to S if

zT
i r ≥ 0, and V \S otherwise. Repeat this procedure for all the vertices in the

graph.

In practice, one repeats Step 3 a number of times, and picks the best cut that was

generated. We refer the reader to Goemans and Williamson [13] for more details.

Algorithm 4 (The Kernighan and Lin (KL) heuristic)

1. We assume that we have a cut to start with; this is given by the bipartition S and

V \S of the vertex set V . For each vertex i, i = 1, . . . , n, compute the external

and internal costs E(i) and I(i). For a vertex a in S this is the following (the

other case is treated similarly):

E(a) =
∑

i∈V \S
wai,

I(a) =
∑
i∈S

wai,

where wij is the weight of edge {i, j}.
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2. For each vertex i, compute D1(i) = E(i) − I(i), i = 1, . . . , n. This can be

interpreted as follows: Sending the vertex a from S to V \S will reduce the

objective value of the cut by a factor of D(a).

3. In the k iteration, choose a vertex b such that Dk(b) = mini D
k(i) (not nec-

essarily negative). Suppose that b goes from S to V \S (the other case can be

handled similarly). Let g(k) = Dk(b).

4. Mark b as tabu, implying that this vertex will not be considered in future inter-

changes. Update D(v) for all vertices v adjacent to b as follows :

Dk+1(v) = Dk(v) + 2wbv, ∀v ∈ S,

Dk+1(v) = Dk(v)− 2wbv, ∀v ∈ V \S.

Also, Dk+1(v) = Dk(v), for all vertices v not adjacent to b.

5. If k < n return to step 3, else go to step 6.

6. When k = n, we are done considering all the vertices. We are back to the

original cut, since we have swapped all the vertices, i.e. roles of S and V \S are

reversed. Thus, we have
∑n

i=1 g(i) = 0.

7. Examine the cumulative function G(k) =
∑k

i=1 g(i), k = 1, . . . , n, and see where

it is a minimum. If G(k) ≥ 0, k = 1, . . . , n we stop. Else, choose k such

that G(k) is most negative (break ties arbitrarily), and perform the k first in-

terchanges. This will give a cut, which is better than what we started with.

One can repeat this procedure until it runs out of steam. In our implementation,

we repeat the procedure 5 times in all. We refer the reader to Papadimitriou and

Steiglitz [37] for more details on the K-L heuristic.

5 Details of the algorithm

In this section, we describe the steps of Algorithm 1 in more detail.

Our initial dual LP relaxation is

min
n∑

i=1

yi

s.t. yi ≥ Lii

4
, i = 1, . . . , n.

(20)

The initial constraints in (20) define one-sided box constraints. They suffice for the

maxcut problem since the objective function is the all ones vector, and an optimal
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solution is (x0, y0, z0) = (e, diag(L
4
), 0) ∈ IRn × IRn × IRn. This corresponds to initial

matrices X0 = I, and S0 = L
4
− Diag(L

4
). We note that for other problems we will

in general need two sided box constraints to ensure that the initial relaxation has a

bounded objective value.

The current dual maxcut SDP relaxation is not solved to optimality in step 2

of Algorithm 1; we mentioned some reasons in §4.1. We use a dynamically altered

tolerance on the required accuracy of the solution (for specifics, see §6). However,

if we do not solve the SDP accurately enough, then the objective value of the LP

relaxation is not guaranteed to be an upper bound on the maxcut value. In fact

we typically have the following inequalities on the objective values of the various

relaxations.

Cheap LP approximation to SDP ≤ Optimal Maxcut value ≤
Good LP approximation to SDP ≤ SDP objective value.

The accuracy to which the SDP is solved also affects the performance of the Goemans-

Willamson rounding procedure. Using the same analysis as Goemans and Williamson

[13], we can show that the value of the cut generated by the procedure is at least 0.878

times the value of the current LP approximation, if all the edge weights are nonnega-

tive. However, we cannot always guarantee that the value of our LP approximation is

an upper bound on the maxcut value. Thus, we do not have a performance guarantee

out here. Nevertheless, we can say in a weak sense that the more accurately we solve

the SDP as an LP in the cutting plane scheme, the more likely that a better cut is

produced.

It should be noted that we add cutting planes in both the primal and dual spaces.

We add cutting planes of the form (11) (based on the polyhedral structure of the

maxcut polytope) in the primal space, while the cutting planes added in the dual are

sometimes low dimensional faces of the dual SDP cone (in y space), and not always

facets (see also Krishnan and Mitchell [28]); this amounts to column generation

(pricing) in the primal space.

As regards the primal, we cannot guarantee that our primal LP feasible region

always contains the entire maxcut polytope; in most cases it does not. The primal

LP feasible region increases, when we solve the dual SDP as an LP (pricing), and

decreases when we add cutting planes in the primal.

When we are adding cutting planes in the dual, we update the primal matrix

X =
m∑

i=1

xidid
T
i . On the other hand, when we add cutting planes in the primal we

are updating the dual slack matrix S = Diag(y) +
p∑

i=1

yn+iAi −
L

4
, where Ai is the
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coefficient matrix associated with ith odd cycle inequality. In each iteration of the

algorithm, we have an LP formulation of the dual maxcut SDP of the form

min
n∑

i=1

yi +
p∑

i=1

(|Ci| − 2)yn+i

s.t.


I 0 . . . 0

dn+1.
2 dT

n+1A1dn+1 . . . dT
n+1Apdn+1

...
...

. . .
...

dm.2 dT
mA1dm . . . dT

mApdm





y1

...

yn

yn+1

...

yn+p



≥


diag(L

4
)

dT
n+1

L
4
dn+1

...

dT
m

L
4
dm


yn+i ≥ 0, i = 1, . . . , p,

(21)

and its dual

max L
4
• (

m∑
j=1

xjdjd
T
j )

s.t. diag(
m∑

j=1

xjdjd
T
j ) = e

Ai • (
m∑

j=1

xjdjd
T
j ) ≤ (|Ci| − 2), i = 1, . . . , p

xj ≥ 0, j = 1, . . . ,m.

(22)

An odd cycle inequality (11) is written as A • X ≤ (|C| − 2), where A is a sym-

metric matrix, and |C| is the cardinality of the cycle. Also xj is the primal variable

corresponding to the jth dual constraint.

In step 2 of Algorithm 1, we improve the LP approximation to the SDP using the

pricing strategy outlined in §4.1. The LPs are solved approximately using a primal-

dual interior point method. Cutting planes are added to (21), which try and force

the dual slack matrix S = Diag(y(1 : n)) +
p∑

i=1

Aiyn+i −
L

4
to be psd. Appropriate

cuts can be found by looking for eigenvectors of the current dual slack matrix with

negative eigenvalues. At the end of step 2, we have a solution (X, y), where X is

feasible in the current primal SDP relaxation of the maxcut problem.

To ensure that the feasible region of the current LP approximation has a nonempty

intersection with the maxcut polytope, we add good incidence cut vectors to the
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LP approximation in step 3 of Algorithm 1. We run the Goemans and Williamson

rounding procedure on X, and generate a number of good cut vectors. We then

improve these cuts using the Kernighan and Lin (KL) heuristic. We then add the 5

best incidence vectors as cuts in (21). These heuristics were described in §4.2. We

resolve the new LP for (X, y).

The value of the best cut found so far gives a lower bound on the optimal value

of the maxcut problem. The value of any dual feasible vector ŷ for which the corre-

sponding slack matrix Ŝ is psd gives an upper bound on this optimal value. Such a

vector can be constructed from the current solution y by increasing its first n com-

ponents appropriately. To compute ŷ we proceed as follows: Compute the dual slack

matrix S at the point y. Let λ be the minimum eigenvalue of S. Then set

ŷi = yi − λ, i = 1, . . . , n,

ŷi = yi, i = n + 1, . . . , n + p.

The objective value at ŷ gives us our current upper bound. The best such upper

bound is stored, and when the upper bound and lower bound are close enough the

algorithm is terminated in step 4 of Algorithm 1.

Cutting planes for (22) are found in step 5 of Algorithm 1. These odd cycle

inequalities are violated by the current solution X. We use the exact Barahona-

Mahjoub separation oracle which returns violated odd cycle inequalities (11), which

are facets of the maxcut polytope. These odd cycle inequalities are bucket sorted by

violation, and the most violated ones are added to (22).

In order to keep the size of the relaxations manageable, the constraint matrix is

modified in step 6 of Algorithm 1. The rule is to drop those constraints whose primal

variables xj are zero or small. We sort these constraints based on their x values and

retain the q (an upper bound is given below) best constraints ensuring that the best

integer vector is among these constraints. The modified LP formulation (21) has the

following constraints :

1. The box constraints, i.e. the first n constraints in the earlier (21).

2. The q best constraints from the earlier (21).

3. The eigenvectors vi, i = 1, . . . , r corresponding to nonzero eigenvalues of X (r

here is the rank of X). In a sense, the eigenvectors corresponding to the nonzero

eigenvalues aggregate the important information contained in all the constraints

added so far.
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The number q is chosen as q =
√

2n − r. Note that,
√

2n is an upper bound for

the rank of at least one extreme point optimal solution for (14) with p odd cycle

inequalities (see Pataki [38]).

The overall SDP cutting plane method for maxcut is best summarized in Figure 1.

The figure illustrates how the primal LP feasible region evolves during the course of

the algorithm. Since we are solving a constrained version of the primal SDP relaxation,

the LP feasible region is always within the corresponding primal SDP cone. The

polytope shaded is the maxcut polytope. Suppose we are in the kth iteration, and

the LP feasible region is the polytope abcdea. Since we have solved the current dual

SDP only approximately as an LP, the polytope abcdea does not contain the entire

maxcut polytope. The Barahona separation oracle returns an odd cycle inequality,

that is violated by the current LP solution xk+1. The new LP feasible region is now the

polytope abcgha. We then try and grow this LP feasible region, by adding cuts in the

dual to try and force the new dual slack matrix Sk+1 to be positive semidefinite. At

the end of the process, let abefgh be the new LP feasible region. Although, abefgha

does not contain the entire maxcut polytope either, it is a better approximation than

the earlier polytope abcdea. Proceeding in this manner, we eventually hit the optimal

vertex i.

6 Computational results

In this section we report our preliminary computational experience. All results were

obtained on a Sun Ultra 5.6, 440 MHz machine with 128 MB of memory. We carried

out our tests on a number of maxcut problems from SDPLIB [6], the DIMACS Im-

plementation Challenge [39], and some randomly generated Ising spin glass problems,

i.e. maxcut problems with ±1 edge weights from Mitchell [35]. We compare our

results with a traditional SDP cutting plane scheme that uses SDPT3 (Toh et al [43])

to solve the SDP relaxations.

We implemented our entire approach within the MATLAB environment. The LP

solver was Zhang’s LIPSOL [45]. The SDP separation oracle used in step 2 of Algo-

rithm 1 employs MATLAB’s Lanczos solver. Finally, we used the Barahona-Mahjoub

separation oracle to generate valid cutting planes in the primal; our implementation

was based on the CPLEX [8] network optimization solver to solve the shortest path

problem as an LP. In practice, one uses heuristics (see Berry and Goldberg [5]) to

generate the violated cuts, but we used the exact separation oracle in our experiments.

The computational results are summarized in Table 1. The columns in the table
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PRIMAL SDP CONE

MAX CUT
polytope

odd cycle
inequality

violated

b

c

de

a e

f

g

h

optimal solution
i

abcde  :   Initial LP relaxation
abcgh  :   LP region after adding violated odd cycles
abefgh :  after the interior point sdp cutting plane scheme
Max Cut Polytope :  Shaded in red
i  :  Optimal integer cut vector

Figure 1: The polyhedral cut and price algorithm for the maxcut problem
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represent

Name: Problem name

n: Number of nodes

m: Number of edges

Maxcut: Objective value of the best incidence vector found.

If not optimal, the optimal value is noted.

SDP1: Objective value over the elliptope (9)

SDP2: Objective value over the elliptope and odd cycles (14)

UB: The upper bound returned by the cutting plane scheme

Name n m Maxcut(Opt) SDP1 SDP2 UB

gpp100 1 100 269 210 221.69 211.27 212.56

gpp1241 1 124 149 137 141.91 137 137.45

gpp1242 1 124 318 256 269.64 257.66 258.60

gpp1243 1 124 620 446 467.68 458.35 458.90

gpp1244 1 124 1271 834 864.26 848.92 850.08

gpp2501 1 250 331 305 317.23 305 307.83

gpp2502 1 250 612 502 531.78 511.12 520.19

gpp5001 1 500 625 574 598.11 576.64 4 584.91

toruspm-8-50 2 512 1536 456 527.81 464.70 4 472.28

torusg3-8 2 512 1536 412.75 (416.84) 457.36 417.69 4 428.18

ising10 3 100 200 70 79.22 70 70.70

ising201
3 400 800 282 314.25 282 288.04

ising202
3 400 800 268 305.63 268 271.82

ising30 3 900 1800 630 (632) 709.00 632

Table 1: Test Results on Maxcut

We ran 10 cutting plane iterations in all. In our LP subroutine for the SDP, we

add 5 cutting planes in each iteration, our starting tolerance is 1, and this is lowered

by a factor of 0.9 in each iteration. Initially, we solve our SDP relaxations very

cheaply, i.e. perform only 5 LP cutting plane iterations, and we increase this number

1SDPLIB
2DIMACS
3Random Ising Spin glass problems (Mitchell)
4Best results obtained using an interior point approach
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if we are unable to improve the best incidence cut vector. Also, we add the n
4

most

violated odd cycle inequalities returned by the Barahona-Mahjoub approach in each

iteration. Interestingly, we were able to obtain the optimal integer solution in most

cases (except problems torusg3-8 and ising30). The former problem is not easy, since

the maxcut solution is not integer, whereas the latter problem is currently as big as

we can handle. For most of the problems we do not have a proof of optimality, since

the SDP relaxation over the elliptope and odd cycles is not enough, and there is yet

some gap involved. For the Ising spin glass problems optimizing over the intersection

of the elliptope and the odd cycle polytope is sufficient to give the optimal solution.

To give an estimate of the times involved we performed the following experiment:

1. We ran our code against a standard SDP cutting plane scheme that employed

SDPT3 [43] version 2.3 to solve the SDP relaxations.

2. We chose eight problems from SDPLIB.

3. We ran 10 cutting plane iterations in all.

4. In our approach, we solve the SDP relaxations very cheaply (5 LP cutting plane

iterations), and in every 5th iteration we solve this SDP relaxation more accu-

rately (25 iterations). In SDPT3 we solve the SDP relaxations to a moderate

tolerance 10−2, and in every 5th iteration we solve the SDP more accurately

(10−6).

5. We add the n
4

most violated odd cycle inequalities returned by the Barahona-

Mahjoub approach in each iteration.

The results can be found in table 2. Table 2 shows how our cutting plane approach

scales with the problem size, and the increase in runtime with problem size compares

quite well with a traditional interior point SDP cutting plane approach. The interior

point approach solved the problem gpp1241 to optimality in just 5 iterations. On the

other hand on problem gpp5001, the interior point method was unable to complete

the stipulated 10 iterations.

7 Conclusions

We have presented a polyhedral cut and price technique for approximating the maxcut

problem; the polyhedral approach is based on a SDP formulation of the maxcut

problem which is much tighter than traditional LP relaxations of the maxcut problem.
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Problem SDPT3 Our approach

Name UB LB Time UB LB Time

gpp100 212.26 210 321 216.86 210 485

gpp1241 137 137 197 138.33 137 488

gpp1242 258.4 256 423 263.73 256 620

gpp1243 458.86 446 409 461.92 446 832

gpp1244 851.01 834 468 857.35 834 902

gpp2501 305 305 2327 309.95 304 1073

gpp2502 512.06 502 1739 521.06 502 1687

gpp5001 - - - 583.65 574 2893

Table 2: Comparing two SDP cutting plane schemes for maxcut

This linear approach allows one to potentially solve large scale problems. Here are

some conclusions based on our preliminary computational results

1. It is worth reiterating that although our scheme behaves like an SDP approach

for the maxcut problem, it is entirely a polyhedral LP approach. The SDP

relaxations themselves are solved within a cutting plane scheme, so our scheme

is really a cutting plane approach within another cutting plane approach. We

refer to the inner cutting plane approach as our pricing phase.

2. The cutting plane approach is able to pick the optimal maxcut incidence vector

quickly, but the certificate of optimality takes time.

3. We are currently working on a number of techniques to improve our upper

bounding procedure using information from the eigenvector based on the most

negative eigenvalue. Nevertheless, we believe that if we are able to handle this

difficulty, then our approach can be effective on large scale maxcut problems.

4. The main computational task in our approach is the time taken by the SDP

separation oracle. Another difficulty is that the oracle returns cutting planes

that lead to dense linear programs. One way is to use a variant of the matrix

completion idea in Gruber and Rendl [16], and examine the positive semidefi-

niteness of SK for any clique K ⊆ V (here SK is a sub-matrix of S corresponding

to only those entries in the clique). This should speed up the separation oracle,

which will also return sparser constraints, since any cutting plane for Sk can be
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lifted to Sn by assigning zero entries to all the components of the cutting plane

not in K.

5. We are also trying to incorporate this approach in a branch and cut approach

to solving the maxcut problem, i.e. we resort to branching when we are not

able to improve our best cut values obtained so far, or our upper bounds.

6. Helmberg [19] shows that better SDP relaxations can be obtained by enlarging

the number of cycles in the graph, i.e. adding edges of weights 0 between non-

adjacent nodes. This gives rise to a complete graph, and the only odd cycles

now are triangle inequalities, which can be inspected by complete enumeration.

Again, this in sharp contrast to the LP case, where adding these redundant

edges does not improve the relaxation. We hope to utilize this feature in our

cutting plane approach, in the near future.

7. We hope to extend this approach to other combinatorial optimization problems

such as min bisection, k way equipartition, and max stable set problems based

on a Lovasz theta SDP formulation.
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