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Abstract. Until recently, the study of interior point methods has dominated algorithmic research
in semidefinite programming (SDP). From a theoretical point of view, these interior point methods
offer everything one can hope for; they apply to all SDP’s, exploit second order information and offer
polynomial time complexity. Still for practical applications with many constraints k£, the number of
arithmetic operations, per iteration is often too high. This motivates the search for other approaches,
that are suitable for large k and exploit problem structure.

Recently Helmberg and Rendl developed a scheme that casts SDP’s with a constant trace on the
primal feasible set as eigenvalue optimization problems. These are convex nonsmooth programming
problems and can be solved by bundle methods. In this paper we propose a linear programming
framework to solving SDP’s with this structure. Although SDP’s are semi infinite linear programs,
we show that only a small number of constraints, namely those in the bundle maintained by the
spectral bundle approach, bounded by the square root of the number of constraints in the SDP, and
others polynomial in the problem size are typically required. The resulting LP’s can be solved rather
quickly and provide reasonably accurate solutions. We present numerical examples demonstrating
the efficiency of the approach on combinatorial examples.
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1. Introduction. Semidefinite programming (SDP) has been one of the most
exciting and active research areas in optimization recently. This tremendous activity
was spurred by the discovery of important applications in combinatorial optimization,
control theory, the development of efficient interior point algorithms for solving SDP
problems, and the depth and elegance of the underlying optimization theory. Excellent
survey articles for SDP include Vandenberghe and Boyd [42], the SDP handbook
edited by Wolkowicz et al [44], Helmberg [15] and Todd [40].

Since the seminal work of Alizadeh [1] and Nesterov and Nemirovskii [34], the
study of interior point methods has dominated algorithmic research in semidefinite
programming. However, for practical applications with many constraints k, the num-
ber of arithmetic operations per iteration is often too high. The main computational
task here, is the factorization of the Schur complement matrix M of size k, in comput-
ing the search direction. Typically this is a dense matrix, and a Cholesky factorization
would require ]”3—3 arithmetic operations. Moreover this matrix is to be recomputed
in each iteration and this takes O(kn® + k?n?) arithmetic operations, which is the
most expensive operation in each iteration where n is the problem size. For most
problems, the constraint matrices have a special structure, which can be exploited to
speed up the computation of this matrix. In particular in combinatorial applications,
these constraints often have a rank one structure. This reduces the computation time
of M to O(kn? + k*n) operations. Benson, Ye and Zhang [3] have proposed a dual
scaling algorithm that exploits this rank one feature, and the sparsity in the dual slack
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matrix. However even in their approach the matrix M is dense, and the necessity to
store and factorize this matrix limits the applicability of these methods to problems
with about 3000 constraints on a well equipped work station.

Consider the semidefinite programming problem

min CeX
subject to  A(X) = b (SDP)
X = 0,
with dual
max bTy
subject to ATy + S = C (SDD)
S = 0

where X, S € S", the space of real symmetric n X n matrices. We define

CeX = Trace(CTX) = Y0 _ CiiXyj

ij=1
where A : 8" — RF and AT : IRF — 8™ are of the form

Al.X
AX) = : and ATy = Zi‘c:lyiAi
AkOX

with A; € §",71 = 1,..., k. We assume that A;,..., Ay are linearly independent in
S™. C € 8™ is the cost matrix, b € IR* the RHS vector. The matrix X is constrained
to positive semidefinite (psd) expressed as X > 0. This is equivalent to requiring that
d¥Xd > 0, ¥d. On the other hand X = 0 denotes a positive definite (pd) matrix,
ie. dTXd > 0,Vd # 0. St and ST, denote the space of symmetric psd and pd
matrices respectively. Also diag(X) is a vector whose components are the diagonal
elements of X, and Diag(d) is a diagonal matrix, with the components of d. In the
succeeding sections we use Trace(X) and tr(X) interchangeably, to denote the trace
of the symmetric matrix X. Amin (M) denotes the minimum eigenvalue of the matrix
M € 8™ An excellent reference for these linear algebra preliminaries is Horn and
Johnson [21].

Recently Helmberg and Rendl [16] have developed a scheme known as the spectral
bundle, a nonsmooth optimization technique applicable to eigenvalue optimization
problems. This method is suitable for large k and exploits problem structure. We
provide a short overview of this scheme in section 3. However it is only a first order
method with no polynomial bound on the number of arithmetic operations. Other
large scale methods include Burer et al [5, 6, 7], who formulate SDP’s as nonconvex
programming problems using low rank factorizations of the primal matrix X. The
authors exploit the bound on the rank of optimal matrix X in ensuring that X = VVT,
where V' is a n X r matrix for some small . Vanderbei et al [43] factor the primal
matrix X as LDiag(d)L”, where L is unit triangular and d € IR". The constraint
that X > 0 is replaced with the requirement that d > 0. The authors show that d is
a concave function and give computational results for this reformulation. Finally we
must mention that Burer et al [8, 9] have come up with attractive heuristics for max
cut and maximum stable set problems, where they solve (SDP) with an additional
restriction on the rank of the primal matrix X.
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The spectral bundle method requires the following assumption 1.1, which enables
recasting (SDD) as an eigenvalue optimization problem. Since we need the bundle
method in the LP approach to generate some of our linear constraints, we shall make
the following assumption too.

ASSUMPTION 1.

(1.1) AX) = b implies trX = a

for some constant a > 0.

We shall also make the following strict feasibility assumption.

ASSUMPTION 2. Both (SDP) and (SDD) have strictly feasible points, namely
the sets {X € 8" : A(X) = b, X = 0} and {(y,S) € RF x S" : ATy + S =C,S = 0}
are nonempty.

This assumption guarantees that both (SDP) and (SDD) attain their optimal
solutions X* and (y*, S*), and their optimal values are equal, i.e. C o X* = bTy*.
Thus the duality gap X*5* = 0 at optimality.

A large class of semidefinite programs, in particular several important relaxations
of combinatorial optimization problems, can be formulated to satisfy (1.1), such as
max cut, Lovasz theta, semidefinite relaxations of box constrained quadratic programs
etc.

Since most of the combinatorial problems we discuss in this paper are graph
problems, we define some terminology. A graph is a pair G = (V, E), where V and
FE are the vertices and edges of the graph respectively. We denote the edge between
vertices i and j by {i,j}. Henceforth n and m refer to the number of vertices and
edges of the graph G. Also j € 6(i) refers to all the vertices j adjacent to vertex
i. L € 8™ refers to the Laplacian matrix of the graph. Let the edges have a weight
vector w = (w;;) € IRF associated with them. We shall assume that all our graphs
are complete, by setting w;; = 0 for all non edges {4, j}. The Laplacian matrix is
given by L = Diag(Ae) — A, where A is the weighted adjacency matrix with A;; =0,
Vi and A;; = w;j, V{4, j} € E. Thus the Laplacian matrix L is

L“' = Zj wij VZ
Lij = —Wij ) 7é ]
The set of symmetric matrices 8™ is isomorphic to R*“5™. Hence (SDP) is
n(nt1)

essentially a linear program in IR~ z  variables, except for the convex constraint
X > 0. Note that the convex constraint X = 0 in (SDP) is equivalent to

(1.2) d'Xd = dd"eX > 0 VdeR"

These constraints are linear inequalities in the matrix variable X, but there is an
infinite number of them. Thus SDP is a semi-infinite linear programming problem
in Bn(nzﬂ) . The term semi-infinite programming derives from the fact that the LP
has finitely many variables, with an infinite number of constraints. The survey paper
by Hettich and Kortanek [20] discusses theory, algorithms, and applications of semi-
infinite programming.

The main objective of this paper is to demonstrate that we can take a finite
number of constraints in (1.2), polynomial in the problem size n and yet obtain a
reasonable polyhedral approximation of the semidefinite cone.

Since dTXd > 0 can be rewritten as tr(dd? X) > 0, the definition of positive

semidefiniteness immediately gives the following :
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COROLLARY 1.1. The symmetric n X n matrixz S is positive semidefinite if and
only if S e M >0 for all symmetric rank one matrices M.

The paper is organized as follows. Section 2 explains the linear programming ap-
proach, section 3 presents a short overview of the bundle approach, section 4 discusses
how we can in practice get a lower bound from the LP relaxation, in section 5 we
generate the linear inequalities to be used in the LP framework, section 6 presents a
cutting plane LP framework to solving SDP, section 7 presents computational results
on combinatorial optimization problems which satisfy (1.1), and we conclude with
some observations and acknowledgements in sections 8 and 9 respectively.

2. A linear programming formulation. It follows from Corollary 1.1 that
(SDD) is equivalent to the following semi-infinite linear programming problem:

bT

max Y
subject to dd” e (C— ATy) > 0 for all vectors d. (LDD)
We propose looking at linear programming relaxations of (LDD). Given a finite
set of vectors {d;,i =1,...,m}, we obtain the relaxation
max by
subject to d;d} e ATy < d;dFeC fori=1,...,m. (LDR)

Since we have k variables, we need at least k constraints for (LDR) to have an
extreme point. Since (SDP) has M variables, a typical finite linear programming
relaxation would need at least O(n?) inequalities to get a basic feasible solution.
Since we have far fewer variables in the dual formulation, we typically get smaller
linear programs. Another reason for working with (SDD) is that the spectral bundle
method, to be introduced in section 3, employs (SDD), recasting it as an eigenvalue
optimization problem (3.1).

We now derive the linear programming dual to (LDR). We have

k
did? o ATy = d;dT « (3~ y;4;)

j=1

k
Jj=1

Thus, the constraints of (LDR) can be written as

k
> yidl Ajd; < dfCd; fori=1,....m.
j=1
It follows that the dual problem is
subject to Y.7' dTAjdix; = b; forj=1,...k
z > 0.
This can be rewritten as
min Ceo (X" adidl)
b (LPR)

subject to A", 2ididT)
x

(AVA|
o
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LEMMA 2.1. Any feasible solution x to (LPR) will give a feasible solution X to
(SDP).

Proof. Set X = Y"1 | x;d;d¥. From (LPR) it is clear that this X satisfies AX = b.
Moreover X is psd. To see this

0 vd

d¥Xd

(AVAN|

where the last inequality follows from the fact that z > 0. O

The optimal value to (LDR) gives an upper bound on the optimal value of (SDP).

Given an iterate y feasible in (LDR), a good way of generating cutting planes
25:1 y;dT Ajd < dTCd requires searching for d satisfying dd” e (C — ATj) = dTCd—
Z?:ly_deAjd < 0. One such choice for d would be to look at the eigenvectors d
corresponding to the negative eigenvalues of C' — AT, since these satisfy d”(C —
ATg)d = \(C — AT§) < 0, when the d’s are normalized.

In Krishnan and Mitchell [27] we develop a cutting plane framework, where we
add a number of d corresponding to the most negative eigenvalues of C' — AT7 to our
finite collection of linear inequalities and solve the new LP relaxation using an interior
point approach, with the initial LP’s being solved rather cheaply. Continuing in this
way, one can produce a sequence of LP’s whose solutions converge to the optimal
solution of the SDP. We present more details in section 6.

3. The spectral bundle method. Consider the eigenvalue optimization prob-
lem (3.1).

(3.1) max, amin(C — ATy) + by

Problems of this form are equivalent to the dual of semidefinite programs (SDP),
whose primal feasible set has a constant trace, i.e. Trace(X) = a for all X €
{X = 0: A(X) = b}. This can be easily verified as follows. From the variational
characterization of the minimum eigenvalue function, we have A, (C — ATy) =
miny trx—1 x»0(C — ATy) @ X. Thus (3.1) is equivalent to taking the Lagrangian
dual of (SDP) with y being the vector of dual variables corresponding to A(X) = b,
and observing that aAmin(C — ATy) = miny ¢y, xo(C — ATy) ¢ X.

An excellent survey on eigenvalue optimization appears in Lewis and Overton
[29]. The minimum eigenvalue function Apin(.) is a nonsmooth concave function. A
general scheme to minimize such a function is the bundle method; see Lemarechal [28],
Kiwiel [25], Schramm et al [39] and the books by Urruty and Lemarechal [22, 23]. The
spectral bundle method specializes the proximal bundle method to eigenvalue opti-
mization problems, and employs a semidefinite nonpolyhedral cutting plane model; it
is particularly well suited for large scale problems because of its aggregation possibil-
ities.

The method is due to Helmberg and Rendl [16]. Good references include Helmberg
et al [16, 15, 17], Helmberg and Oustry [18]. The following lemma, from Helmberg [15],
indicates the equivalence between (SDP) and the eigenvalue optimization problem
(3.1).

LeEMMA 3.1. If A satisfies ATy = I, for some § € R* then (SDD) is equivalent
to (3.1) for a = max{0,b75}. Furthermore, if (SDP) is feasible then all its feasible
solutions X satisfy trX = a, the primal optimum is attained and is equal to the

infimum of (SDD)
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At each step the function value and a subgradient of the function are computed
at a specific point y. A cutting plane model of the function is formed using the col-
lected subgradients. For the eigenvalue optimization problem (3.1), the subgradient
information is provided by the eigenvectors corresponding to the minimum eigenvalue
of C' — ATy. Since the cutting plane model is built from local information from a few
previous iterates, the model function is augmented with a regularization term, which
imposes a penalty for the displacement from the current iterate. The minimizer of
the cutting plane model, obtained by solving a semidefinite program with a concave
quadratic cost function, yields the new point. Here the minimum eigenvalue is ap-
proximated by means of vectors in the subspace spanned by the bundle P. Without
the regularization term, this amounts to solving the following problem (3.2) at each
iteration in lieu of (3.1) :

(3.2) max, aXmin(PH(C — ATy)P) + b7y
This is equivalent to solving the following (SDP)

(3.3) MWDty (X)=a,A(PXPT)=b,X>0 Ce (PXPT)

(3.3) implies that we are approximately solving (SDP), by considering only a subset of
the feasible X matrices. By keeping the number of columns r in P small the resulting
SDP can be solved quickly. Helmberg and Rendl [16] using results from Pataki [36]
were able to show that r is bounded by vk, i.e. the dimension of the subspace P is
roughly bounded by the square root of the number of constraints. Moreover they in-
troduce the concept of an aggregate subgradient, whereby the spectral bundle scheme
converges even for restricted bundle sizes. The idea here is to keep all the important
cutting planes in the bundle, and aggregate the least important ones. In the extreme
case the bundle P consists of one new eigenvector for the minimal eigenvalue alone.
The extremal eigenvalues and eigenvectors of C'— ATy are computed using some itera-
tive scheme such as the Lanczos method which involves only matrix vector operations.
However (3.2) requires that the dual slack matrix S be positive semidefinite only with
respect to a subspace of vectors in bundle P; thus it may be interpreted as a relaxation
of (SDD). The optimal solution of this relaxed SDP typically produces an indefinite
dual slack matrix. The negative eigenvalues and the corresponding eigenvectors of
the slack matrix are used to update the subspace in order to improve the relaxation,
and the process is iterated. Every iteration either corresponds to a serious step where
we update y, or a null step where we maintain the old y, but update the model with
valuable subgradient information.

To summarize, the essential idea of the spectral bundle method is the following
Todd [40]; it can be regarded as providing an approximation by considering only a
subset of the feasible X matrices, using this to improve the dual solution y, and using
this in turn to improve the subset of feasible solutions in the primal.

The restricted bundle size ensures that the spectral bundle method is only a first
order method. Helmberg and Kiwiel [17] were also able to extend the method to
problems with bounds. A second order bundle method which converges globally and
which enjoys asymptotically a quadratic rate of convergence was recently developed
by Oustry [35].

4. Getting a lower bound from our LP relaxation. When (SDP) is a
minimization problem, our LP approach gives an upper bound on the SDP objective
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value. In this section we discuss how we can generate a lower bound from our LP
relaxation. The SDP value lies somewhere in between these two LP objective values.
The approach makes use of Lemma 3.1.

We want a feasible solution to

max bTy
s.t. S = C-ATy (SDD)
S = 0

Our linear programming approach gives a candidate S and y, satisfying the linear
constraint but with S not necessarily psd. A procedure to make S psd, generating
bTy — AT, which serves as the lower bound is as follows

1. Solve the LP
min b7y
st. ATy =1

Let 7 be the optimal solution.

2. Find the most negative eigenvalue of S. Let A denote the absolute value of
this eigenvalue.

3. Change y to y — Ay, which changes S to S+ AI, a psd matrix. The objective
function value is now b”y — AbT7, a lower bound on the optimal value of
(SDP).

5. A set of linear constraints. A set of linear constraints for (LDR) can be
derived from the bundle information used by the spectral bundle method.

At iteration i of the spectral bundle method, we work with the following approx-
imation ¢;(y) of the convex function f(y) = a\pmin(C — ATy) + 0Ty

(5.1) ¢ily) = mingep, (C— ATy) e W
where Wi is
W, = {PZ-VPiT + aW; @ wtV+a=aVe 8:}',0420}.

We refer to P; as the bundle, the number of columns r; of P; as the size of the
bundle and to W; as the aggregate.

The following result due to Pataki [36] gives a bound on the rank of optimal X
matrices.

THEOREM 5.1. There ezists an optimal solution X* with rank r satisfying the
inequality ﬁr;—ll < k. Here k is the number of constraints in (SDP).

Note that if we were not using the aggregate matrix W, then P;V P! would be
our current approximation of the primal matrix X. To preserve the set of optimal
solutions, r; from Theorem 5.1 should be at least max{r > 0 : w < k}. Thus

P; is a n x r; matrix, with r; typically bounded by vk. We denote the columns of
P;as pj, j =1,...,r;. These columns represent a good subspace to approximate the
minimum eigenvalue of C' — ATy;. W; serves as the aggregate and contains the less
important subgradient information. This helps to keep the number of columns in P;
small, even lower than /k if necessary, so that the SDP (5.1) can be solved quickly.

When the stopping criteria is met W+ := PV PT 4+ o*W serves as the approx-
imation to the primal matrix X, where VT and a* are the final values of V and
a.
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We propose using the columns of P as the vectors {d;} ,j=1,...,7 in (LDR).
Since the number of vectors 7 in the bundle P, is O(vk), and we need at least
k constraints to guarantee a basic feasible solution with k variables in (LDR), we
need to look for other constraints as well. These other constraints, labeled as boz
constraints, are problem specific as we shall see in section 5. They are polynomial in
the problem size n.

The drawback of using the columns of P as vectors d in (LDR), is these d are
dense, leading to a dense linear programming problem. We try to compensate for
these dense constraints, by choosing d for our box constraints that are sparse.

The rationale for using the columns of P as d is discussed in detail in section 5.1.
We illustrate the LP procedure on the max cut problem (section 5.2), min bisection
(section 5.3), k equipartition problem (section 5.4), Lovasz theta (section 5.5), and
box constrained QP’s (section 5.6).

5.1. Rationale for using the columns of P as d. We propose the columns of
the bundle P as the vectors {d} in (LDR). Note that the columns of P are generated
as cutting planes, while solving (3.1). This section gives a stronger motivation for why
they may be good cutting planes in the limit. We first describe how the matrix P is
updated in each iteration. We will denote the value of P and y in the kth iteration
by P¥ and y* respectively.

1. Initially P° contains only the eigenvector corresponding to the Ain (AT y" —
).

2. In iteration k, if P¥ still contains less than maximum number of columns r
allowed, then we add the eigenvector corresponding to Amin(ATy* — C), and
orthonormalize it, with respect to the vectors already in the bundle. Else we
proceed to step 3.

3. If P* already uses the maximum number of columns r, then method of up-
dating P* to get P**! is as follows

(a) Solve the restricted eigenvalue problem with the quadratic regularization
term to obtain a**1 and V++1,

(b) Compute a spectral decomposition of V* namely V¥ = QAQT. Then
split the eigenvectors of ) into two parts @ = [Q1]|Q2], with Q1 contain-
ing the eigenvectors associated with the r — 1 large eigenvalues of V¥,
Let v*T! be the eigenvector corresponding to Ay, (C' — AfyF+1). pr+i
is then computed as

Pkt — Orth([Ple’vk—HD

Now the rationale for using the columns of P as the vectors {d} is as follows
1. Based on the procedure described above in updating P, we can look at the
columns of P as almost eigenvectors corresponding to the minimal eigenvalues
of (C —Aly). We use the word almost since in the procedure described above,
the vectors in P are eigenvectors corresponding to minimal eigenvalues of
S = (C — ATy), where the iterates y change only slightly (owing to the
quadratic regularization term) in each iteration. As a result the dual slack
matrix S changes in each iteration, and orthonormalizing the new vector
which is an eigenvector corresponding to the current S w.r.t. those already
in the bundle, changes the original eigenvectors (hopefully only slightly).
2. Since X and S € 8™ and satisfy XS = 0 at optimality, they commute and
hence are simultaneously diagonalizable. Thus they share the same set of
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eigenvectors P and have spectral decompositions PAxPT and PAgPT re-
spectively. Here P is a n x n orthonormal matrix. Let us rewrite P = [P|P],
where P is a n X r orthonormal matrix, essentially our optimal bundle. From
Theorem 5.1 we know that only the first r eigenvalues of X are nonzero,
with their corresponding r eigenvectors in P. Thus the columns of P form
a basis for the null space of X, while those in P are in the null space of
the dual slack matrix S at optimality. Thus the columns of the bundle P
should be especially useful in ensuring that S is psd. Thus we can write

- V o PT T .
X = [ P P ] 0 0 pr| = PV P*, which is precisely what the
spectral bundle method gives us at optimality, if we disregard the aggregate

matrix.

3. At termination the dual slack matrix S = C' —. Aty will be positive semidefinite
on the subspace spanned by the columns of P, but may well not be positive
semidefinite over the whole of IR™. However the spectral bundle method works
very well in practice, and so it seems to identify an important subspace namely
the subspace spanned by the columns of P on which S should be positive
semidefinite. Directions d not in the subspace do not seem as important.

We offer empirical evidence for this choice of d in section 7.

5.2. The Max Cut problem. The semidefinite programming relaxation of the
max cut problem was proposed by Goemans and Williamson [12] and is

max %OX
(5.2) subject to diag(X) = e
X = 0,
with dual
min eTy
(5.3) subject to —Diag(y) + S = %
S = 0

Here L is the Laplacian matrix of the graph defined in section 1. Note that the

a in tr X = @ is trivially n, the number of nodes in the graph.

Since S is psd, we have d¥'Sd = d”(Diag(y) — %)d > 0, Vd. In particular we
propose to use the following d for the max cut problem.

MC1 Setting d =e¢; ,7 =1...n, where ¢; is the ith standard basis vector for R". In
particular e; has a one in the ith position and zeros elsewhere. This generates
the constraint g; > L4“' ,i=1...n.

MC2 Setting d = (e; + ¢;) and (e; —¢;) , V{4,j} € E, gives rise to the constraints
yi +y; > % + % + L—2J- and y; +y; > % + % — % respectively. Together
these give y; +y; > &% + = + |%\

MC3 The constraints in the bundle namely the columns p; , i = 1,..., r of the matrix
P.

We consider two LP relaxations, LP1 containing MC1 and MC3 and LP2 contain-
ing MC2 in addition to the constraints in LP1. Both these relaxations are discussed
below.

LP1is
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min eTy
(5.4) subject to Y > L4“' Vi=1,...,n
Siapiy = pfEpy Vi=1,...r
with dual
T
) I'Lp;
max S B+ 0wy H
1 T
subject to : 2 2 . = e
(55) J ’ " pr --- Dr w
L] 1
MR
w
Here pj; refers to the jth component of vector p; and p?, i = 1,...,r are vectors
obtained by squaring all the components of p; , i = 1,...,r. (5.4) has n+r constraints

in all. Note that z € IR™ and w € IR" are the dual variables corresponding to
y > diag% and the bundle constraints respectively. To get a solution X to SDP, set
X = Diag(z) + Z;:1 wjpijT. This matrix X is positive semidefinite since 2 > 0 and
w > 0. Moreover

T
. 3 T Ip;
LeX = L e(Diag(z)+ Z;:1 wjpijT) = oo hig+ Z;:1 1Uj374—m

This is precisely the objective value in (5.5). We have thus generated the X which
could be used in the Goemans and Williamson rounding procedure [12] to generate
an approximate solution to the max cut problem.

LP2is
min eTy
subject to Yi > %}L - Vi=1,....n
(5.6) vity; = %+%+|%| i, j e E
Srapiy = Pl Ep; Vi=1,...,r

LP2 (5.6) has m+n-+r constraints in all. To generate a solution X to SDP, set
X = Diag(z)+>_7", wjddeT+Z;:1 Wy jpip] - Here d; i =1,...,m, corresponding
to the edge constraints, are either d = e; +¢; or e; — e; depending on the sign of L;;.
It is easy to verify that this X is psd and achieves the dual objective value.

Using the Goemans and Williamson [12] (GW) rounding procedure on the X
generated by solving the relaxation L P2, we can generate a cut that is at least 0.878
times the LP2 objective value. We cannot guarantee that the objective value of
relaxation L P2 is an upper bound on the maximum cut value. However, in practice the
LP2 objective is within 1% of the spectral bundle objective value, which incidentally
is an upper bound on the optimal SDP value. Thus we have some performance
guarantee on the cut produced by solving the LP relaxation LP2 followed by the GW
randomized rounding procedure.
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5.3. The Min Bisection problem. The semidefinite programming relaxation
for the min bisection problem was proposed by Frieze and Jerrum [11] and Ye [45]
and is

min % o X
subject to diag(X) = e
(5'7) ceTeX = 0
X = 0,
with dual
min €Ty
(5.8) subject to —yo(ee?) — Diag(y) + S

1Yl
oI

S

Note that Frieze and Jerrum [11] had the equipartition constraint as ee? e X < 0.
But since the optimal X is psd, we must have eT Xe = ee” o X > 0 at optimality,
which is equivalent to ec” @ X = 0.

Here L refers to the Laplacian matrix of the graph. g is the dual variable
corresponding to the constraint ee” « X = 0. To get the signs right, we need to take
the negative of the objective value of (SDD) to get the optimal solution to the min
bisection problem. Again a = n.

Since yp does not appear in the dual objective function, we rewrite the equiparti-
tion constraint in (5.7) as (ee? + I) @ X = n. This is true since TraceX = [ « X = n.

This gives the SDP

min %.X

(5.9) subject to diag(X) = e

’ (eeT+1)eX = n

X = 0,

with dual
min nyo —+ eTy

(5.10) subject to S = Diag(y) + wolee’ +1) + £
S = 0

Since S = yo(eeT + I) + Diag(y) + £ is p.s.d. we require d7Sd = d7 (yo(ee” +
I) + Diag(y) + £)d > 0, vd.
In particular we propose to use the following d for the min bisection problem.

MBL1 Settingd=¢; ,Vi=1...n, gives 2yg + y; > *%,ViZI...n.

MB2 Setting d = e; —e; , V{i,j} € E, we obtain y; + y; + 2yo > % — % — % ,
V{i,j} € E.

MB3 Setting d = e; +¢; , V{i, j} € E, we obtain 6yo + y; + y; > 7L2ij — %’s — % ,
V{i,j} € E.

MB4 Setting d = e, where e is the all ones vector gives (n? + n)yo + > ., yi > 0,
since Le = 0.

MB35 The constraints in the bundle namely the columns p; , i = 1,...,r of the matrix
P.
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The constraints in MB2 provide a lower bound on the LP objective value. To
see this sum up all these constraints along a cycle say {1,2,...,n,1}. This gives
nyo+ > » Yy > Be %, where B is a matrix with negative ones along the diagonal
and ones in certain off diagonal positions.

The resulting LP is

min nyo + e’y
subject to y0 +ys > -4 Vi=1...n
Lij i Ljj ..
(5.11) 290 tyity; =2 5 LT”L__* o vijterl
6yo+yi+y; = —=+— 4 -3 V{ijiel

; 2(nz +n)yo +HZ?:21 vy > 0 - '
((pje)* +Vyo + > i1 Pji¥i = —pj 1D; Vi=1,...,r
j j j

Note that the optimal face is unbounded, since there is a ray in the direction yg =
1,y = —1,4 = 1,...,n. This is not surprising since the dual SDP (5.8) has an
unbounded optimal face as well. To observe this set yg — oo in (5.8). Doing so keeps
S psd, and since yg does not appear in the objective function, this value remains
unchanged. Therefore we impose an upper bound for yg say w. This gives the LP

min nyo + €Ty
subject to 290 + 1y > ZLALH B Vi=1...n
200+ yi +y; > TL—LT—TL v{i,j} € E
(5.12) ) 6y0+yin+yj > —Hi-fu_Zu WijleE
(n*+n)yo+> 4 = 0
n .
(T + Dyo+ > 1 p3we = —pFip; Vi=1,....r
Yo < w
Here p;;,Vj = 1,...,n refers to the jth component of vector p;,Vi = 1,...,7.

(5.12) has 2m + n + r + 1 constraints in all.
If we set the upper bound constraint, we are in essence solving the following pair

of SDP’s
min 70 o X 0
0 u 0 =z
subject to diag(X) = e
(5.13) T+ D)o X ro =
X 0
[0 xs} =
with dual
max ny0+eTy
(5.14) subject to  Diag(y) +yo(ee” +1)+5 = %
S = 0
Yo = w

Here x5 is the dual variable corresponding to the upper bound constraint yo < u.
Since I « X = n, we have ee” @ X = —x, in (5.13). Similarly the dual variable
corresponding to this upper bound constraint in the LP (5.12) should provide an
estimate for ee” o X.
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5.4. The k equipartition problem. The k equipartition problem was intro-
duced by Donath and Hoffman [10] and Rendl and Wolkowicz [38]. Our SDP for-
mulation is taken from Lisser and Rendl [30]. It is interesting to note that that for
k = 2 we have the min bisection problem. The k equipartition problem corresponds
to a {0, 1} formulation, and the equivalence of (5.15) for k = 2 with the min bisection
SDP (5.7) can be easily established.

The Lisser and Rendl [30] formulation is based on the following quadratic program
in binary variables.

min %TraceZTLZ
subject to ZTe = e
Ze = e
Zi; = {0,1} Vi=1,...,n j=1,...q,

%, where n is the number of nodes and

q is the number of partitions desired. Also Z is a n x ¢, (0,1) matrix whose rows
correspond to the vertices V' of the graph and whose columns represent the ¢ equal
components in which V' is to be partitioned. An entry Z;; of this matrix is 1 if vertex
i belongs to component j in the partition.

A SDP relaxation is the following [30]

L is the Laplacian matrix of the graph, [ =

min %TraceLX
subject to diag(X) = e
(5.15) Xe = Ie
X > 0
This can also be written as
min % o X
(5.16) subject to cieleX = 1 Vi=1,...,n
’ T(eel +eeT)eX = 1 Vi=1,...,n
X =0
with dual
min Z?:l v + Z?:l Yn+i
(5.17) subject to S = Yo eelyi+ Y0 el +eie?)ynti + £
S = 0

We propose the following d
KEQ1 Setting d =¢; , ¥i = 1,...,n gives y; + yny: > — L, Vi.
kEQ2 Setting d =e, gives >, y; +n> | Yntsi > 0, since Le = 0.
KEQ3 Setting d = (e; + ¢;) , V{i,j} € E gives yi + yj + 2yn+i + 2Yn+; > —Ht —
Lis ..
2 ij
kEQ4 Setting d= (ei — 6]') 5 V{Z,j} cFrE gives Yi +yj Z 7L2“ - % + L2]
kEQ5 The vectors p; , i =1,...,r, in the bundle P.
The constraints in kEQ2 ensure that the y,4; , 2 =1,...,n don’t take arbitrarily
large negative values, making the LP unbounded.

The resulting LP is
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min S LY Ynti
subject to Yi + Ynti f% Vi=1,...,n
n n .
(5.18) i Py 200 pji(P] €)yn+ti —p] $p; Vi=1,...,r

Zi:l Yyi+n Z?:l Yn+i
Yi +y; + 2Yn+yi + 2yn+j
Yi + Y

IV IV IV IV IV

0
Ljj; ..
7—‘2&7[/1']' V{z,]}:l,...,m

(5.18) has n + 2m + r + 1 constraints in all.

5.5. The Lovasz theta function. The Lovasz theta function was introduced
by Lovasz [31] in connection with the Shannon capacity of the graph. There are
various formulations of the Lovasz theta function, and their equivalence is established
in Grotschel, Lovasz and Schrijver [13]. There are also a number of SDP’s whose
objective value gives the Lovasz theta function. We consider two such formulations
in this section. The first formulation is taken from Grotschel, Lovasz and Schrijver
[13] and also appears in Gruber and Rendl [14], and the SDPTS8 manual [41].

The Lovasz theta function is an upper bound on the independent set number of
a graph, and a lower bound on the chromatic number of the complementary graph.
The importance of the Lovasz theta function lies in the fact that computing the inde-
pendent set number and the chromatic number are NP complete problems, whereas
the Lovasz theta function, which is sandwiched in between these two numbers, can be
computed in polynomial time by solving an SDP. This SDP can be written as

min CeX
subject to [eX = 1,
(5.19) AyeX = 0, k=1,...,n
= 0,
with dual
min Yo
(5.20) subject to  —yol + > wdAr + S = C
S = 0

Here C' is the matrix of all minus ones, A = eiejT +e; el where the kth edge of
the graph (with m edges) is from vertex ¢ to vertex j. Here e; denotes the ith unit
vector. The a in tr(X) = a is 1, and appears as a constraint in the original SDP.

mSince S = yol + >3, ykAr + C is p.s.d., we require that d7Sd = dT (yol +
Db UkAr +C)d > 0,Vd.

In particular we propose to use the following d for the Lovasz theta problem.

LT1 Settingd =¢; , i = 1...n, gives yg > 1. This constraint implies that a lower
bound on the Lovasz theta number is one. (The Lovasz theta number is an
upper bound on the maximum clique number of the graph, and each graph
trivially has a clique of size 1.)

LT2 Settingd=e; +e¢; , V{i,j} € Egivesyo+yr > 2, k=1,...,m.

LT3 Settingd=e; —¢; , V{i,j} € Egivesyo—yr >0, k=1,...,m.

LT4 Setting d = e gives nyo +2> ., y; > n?.

LT5 The bundle constraints namely the columns p; , i = 1,...,r of the matrix P.

1] V{’L,]}Zl,m
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The constraints in LT2 and LT3 are required to force yo to move as y, move.
Otherwise the LP is trivial to solve. The optimal solution is yy = 1 for an objective
value of 1, adjusting the y,. , kK = 1,...,m so as to satisfy the remaining constraints.

The resulting LP is

min 0
Yo + Yk > 2 vk 15 y M
Yo—yr > 0 Vk=1,...,m
5.21
( ) nyo+2> iy > n?
pFol + 30 ykAr+Cpe > 0 Vi=1,....r
yo = 1

Here Ay, = eie] +ejel, Vk = {i,j}. (5.21) has 2m + 2 4 r constraints in all.

There is another SDP relaxation called the maximum stable set relaxation that
is equivalent to the Lovasz theta problem. We briefly mention this relaxation below.
This equivalence was established in Kleinberg and Goemans [26]. Also refer to Benson
and Ye [2] for more details.

The maximum stable set problem is

0.5 R 0 —0.25
max K : X
0 .. 0.5 —0.25
—-0.25 ... —=0.25 0
subject to diag(X) = e
%(eieﬁ +enel +ejel + eneJT — eieJT —cjel)eX = 1 V{i,jleFE
X = 0
with dual
min Syt Z{i,j}eE Yij

subject to S =
Y eiel Yi + 20 nep 3(€ieh +enel +ejel +ene] —ee] —ejel )y —C
S = 0

Here C' = 0.51 — 0.25(eel + e,eT). Here the underlying graph G has n — 1 vertices,

the nth vertex is artificial, with no edges connecting it to the other edges. This vertex

is definitely part of the maximal stable set, and is used to identify the stable set in

the graph. Moreover the a in Trace(X) = a is n.

We consider the following d.

MSS1 Setting d =ex ,Vk=1,...,n— 1 gives yx > 0.5

MSS2 Setting d = e, gives y, > 0

MSS3 Setting d = e gives > ., y; + Z{i’j}eE yi; > 0. This gives a trivial lower
bound on the LP objective value.

MSS4 Setting d = (e, — ¢;) , V{k,l} € E gives yx + y; + yrs > 1.

MSS5 Setting d = (e, + ¢;) , V{k,l} € E gives yx +y; — yri > 1.

MSS6 The bundle constraints, i.e. the columns p; , k = 1,...,r of the matrix
P. These give Y0 pi¥i + Ypi jyer (PkiDkn + PjDkn — PriPkj)Vij > 0.5 —
0.5(pf €) (Pkn)-
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The resulting LP is

min Y1 it D tijyer Yis
subject to YL yi + D4 hepYii >
Vit Y — Yy > 1 V{i,j} € E
(5.22) Yi +yj +yi; > 1 V{i,j} € E
. o o
D1 Pri¥i + 2i iyem(PriPkn + PrjPn — DriPkj)Vij
> 0.5 — 0.5(pLe)pin k=1,...,r
Y > 0.5 t=1,....,.n—1
Yn 2 0

(5.22) has 2m + r + 1 constraints in all.

This problem has a trivial objective value of 0. This is not surprising since our
objective was to minimize Y. | i+ (ijreE Yij: whereas constraint MSS3 indicates
that this should be greater than 0. We are unable to find any cutting planes that cut
off this trivial solution. Note that constraint MSS3 provides a trivial lower bound on
the objective function, in the absence of which the problem is unbounded.

5.6. Box constrained QP’s. Consider the the following box constrained QP

max T Quz
subject to —e < z < e

A SDP relaxation of this problem, proposed by Ye [46] is

max QeX
(5.23) subject to diag(X) < e,
X = o0,
with dual
min ety
(5.24) subject to Diag(y) = @
y =2 0

Note that we can rewrite the primal SDP in the standard form as

i Q 0 . [ X 0
* 0 0% 0 Diag(z,) |
. [ X 0 1 .
subject to A; e | 0 Disg(es) | 1 Vi=1,...,n
Fx 0 :
0 Diag(zs) | =z 0

Here A; € 82" and is given by e;el + enﬂ-efﬂ-.
The dual SDP is given by
min eTy

S —

subject. to = XiLivdi + [OQ 8} =0
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This problem is similar to the max cut problem, except that all the matrix sizes
have been doubled, and the A; matrices are now the sum of two rank one matrices.
The value of a = n.

We use the following d.

QPB1 Setting d = ¢, , Vi =1,...,ngivesy; > Qs and y; >0, Vi = 1,...,n.
Therefore set y; > max{Q;;,0}. Since @ is a typically a p.s.d. matrix, this
constraint is y; > Q.

QPB2 The columns p; , ¢ =1,...,r in the bundle P.

The resulting LP is

min eTy
. m 0 .
(5.25)  subject to pJT(Zi:1 yiA; — [ %2 0 })pj > 0 Vji=1,....r
vi = Qi

(5.25) has n + r constraints in all.

6. A cutting plane LP approach to solving SDP. In this section we de-
scribe a scheme to solve SDP, as a sequence of LP’s incorporated in a cutting plane
framework. The algorithm is outlined in Figure 6.1. For more details, we refer the
reader to Krishnan and Mitchell [27].

The objective of this section is twofold.

1. We wish to emphasize the importance of Helmberg’s bundle constraints and
the box constraints we considered in section 5.

2. We could in practice strengthen the LP relaxations we considered in section 5,
by incorporating them in this cutting plane framework. This is especially true
for the SDP’s with a large number of constraints such as the k equipartition
problem and the Lovasz theta problem. In this case the initial LP relaxation
LDR; is the relaxation considered in section 5.

We find that we are able to get tighter relaxations using an interior point code, as
compared to the simplex scheme. Moreover since we solve our LP relaxations initially
to reasonably high tolerances TOL, we find that it is better to solve the current LP
relaxation with a strictly feasible starting point, so as to guarantee primal and dual
feasibility, at these tolerances.

6.1. Generating a feasible starting point for LP relaxations. We now
illustrate how we generate a strictly feasible starting point for the max cut problem.
The technique is similar to the one used in [33]. For convenience we will consider
the max cut LP relaxation LP1. The primal and dual relaxations are (5.4) and (5.5)
respectively.

We generate a strictly feasible starting point for (5.4) by choosing A%y + C to be
positive definite. This can be done by appropriately increasing ¥y, and checking the
positive definiteness of S = ATy + C via a Cholesky factorization. This y is strictly
feasible for (5.4).

To generate a strictly feasible starting point for (5.5), we observe that we can
rewrite (5.5) as

n o Li; T
max » ., Hwi+clw
x

s.t. [I A] w = ¢

Y
o

w
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Cutting plane Algorithm
Input :
A(.), b, C, the optimal solution y; to the current relaxation LDR;.
Parameters :
TOL The starting tolerance to which we solve the LP relaxations. Typically le — 1.
s The number of eigenvectors i.e. cutting planes added in each iteration. Typically

s = (20, 30).
i The factor € (0,1) by which the tolerance is reduced in each iteration. Typically
w=0.95.

MAXITER The maximum number of iterations carried out.
for i =1 : MAXITER do
begin

1. Compute the current dual slack matrix S = C — Aly;.

2. Compute the s most negative eigenvalues \j,j =1,...,s of S, together with
the corresponding normalized eigenvectors d;, j = 1,..., s using the Lanczos
scheme. Note that dJT(C' —ATy)d; =X; <0,j=1,...,s.

if |\| < eor TOL < 1e—8 then exit. Here )\ is the most negative eigenvalue.

4. Add these cutting planes ddeT o (C—~ATy) >0,5=1,...,5s to the current
LP relaxation.

5. Solve LDR;; using an interior point LP code with a strictly feasible starting
point, to the desired tolerance TOL. We illustrate how we generate a strictly
feasible starting point for the max cut problem in section 6.1. Let the optimal
solution to LDR; 11 be y;t1.

6. TOL = u x TOL.

7. We drop constraints if necessary. For more details refer to [27].

end

@

Fi1G. 6.1. The cutting plane algorithm

Here x € IR™, w € IR? and I,A are the n x n identity and n x ¢ matrices respectively.
Set ag = Ae i.e. sum all the columns corresponding to w in (5.4).

Thus we have replaced the vector w with a single variable zo. Now generate a
strictly feasible starting point by solving the following LP

max o

subject to [I Go][j} = e
0

o)

The optimal solution to this LP is obtained, via a minimum ratio test, by setting

Tg = minq;zly___yn(#(i)). Hence to generate a strictly feasible starting point we set

A%
o

To = ,uminizly___’n(#(i)) where 1 € (0,1) and then assign this value xg for all the
variables in w and then compute z; = 1 — agxg,i = 1,...,n. This gives a strictly
feasible starting point to (5.5).

7. Computational results. In this section we test the linear programming ap-
proach on a number of combinatorial optimization problems, taken from the 7th DI-
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MACS Implementation Challenge [37] and Borchers’ SDPLIB [4]. For the k equiparti-
tion problem we take a random instance from Rendl [30] and a 32 node problem from
Mitchell [32]. The bundle constraints are computed using Helmberg’s spectral bundle
code SBmethod, Version 1.1 [19] available at http://www.zib.de/helmberq/index. html.
CPLEX 6.5 [24] is employed in solving the LP relaxations, within the MATLAB
framework. All tests are executed on a Sun Ultra 5.6, 440MHz machine with 128 MB
of memory.

The spectral bundle approach requires a number of parameters. We briefly men-
tion some of the important parameters together with their default values. For a
detailed description of these parameters, we refer the reader to Helmberg’s user’s
manual for SBmethod [19].

1. The relative tolerance (-te). The default value is le — 5.
2. The size of the bundle i.e. the number of columns in P. This in turn is
controlled by
(a) The maximum number of vectors kept ny (-mk). The default value is
20.
(b) The maximum number of vectors added (-ma). The default value is 5.
(¢) The minimum number of vectors added n;n (-mik). The default value
is 5.
3. The time limit in seconds (-tl).

It must be emphasized that the main computational task in the bundle approach
is computing the vectors in the bundle P. Solving the resulting LP relaxations is
relatively trivial.

For some of the problems the bundle approach failed to converge to the desired
tolerance (le — 5). For these problems, we provide run times in parentheses next to
the bundle size r , and also the objective value attained by the bundle approach next
to the optimal SDP objective value.

The columns in the tables represent
n Problem size i.e. the number of nodes in the graph.

k Number of SDP constraints.
m Number of edges in the graph.
r Bundle size, the number of columns in P.
% Error |2BI-LE 5 100].
Table 7.1 SDP LP1 LP2 The objective value of the various relaxations.
% Error 22L-LPZ 5 100.
Table 7.2 m1 m2 Number of constraints in LP’s (5.4) and (5.6) respectively.
Table 7.3 m1 Number of constraints in LP (5.12).
Table 7.4 q Number of equipartitions required.
m1l Number of constraints in LP (5.18).
Table 7.5 m1 Number of constraints in LP (5.21).
Table 7.6 m1 Number of constraints in LP (5.25).
Table 7.7 Bundle LP The objective value of LP relaxation (5.6).
Interior LDR The objective value of LDR in the interior point cutting
plane approach.
Interior LPR The objective value of LP R in the interior point cutting plane
approach.
Eig The most negative eigenvalue of the dual slack matrix S at the end of
Iter iterations.
Iter The number of iterations carried out.
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Table 7.8 mg, The number of constraints in the LP relaxation (5.6).

M4cp The number of constraints in LD R in the cutting plane approach.

| Name | n | m |r(Noofhrs) | SDP | LP1 | LP2 | % Error |
toruspm-8-50 ! 512 1536 16 527.81 525.91 526.37 0.27
toruspm3-15-50 1 | 3375 | 10125 21 3.47e+03 3.43e+03 | 3.45e+4-03 0.81
torusg3-8 ! 512 1536 13 4.57e+07 4.54e+07 | 4.55e+07 0.43
torusg3-15 1 3375 | 10125 18 3.13e+408 3.10e+08 | 3.11e4-08 0.69
mcpl00 2 100 269 10 226.16 225.75 225.86 0.13
mcpl24-1 2 124 149 20 141.99 141.06 141.95 0.03
mcpl24-2 2 124 318 11 269.88 268.97 269.21 0.25
mcpl24-3 2 124 | 620 11 467.75 467.37 467.44 0.06
mcpl24-4 2 124 1271 10 864.41 863.72 863.81 0.07
mcp250-1 2 250 331 10 317.26 317.18 317.21 0.02
mcp250-2 2 250 612 14 531.93 531.18 531.38 0.1
mcp250-3 2 250 1283 13 981.17 980.32 980.48 0.07
mcp250-4 2 250 2421 13 1681.96 1679.70 1680.00 0.12
mcp500-1 2 500 625 10 598.15 594.12 596.67 0.25
mep500-2 2 500 1223 13 1070.06 1069.90 1069.95 0.01
mcp500-3 2 500 2355 14 1847.97 1843.20 1844.13 0.21
mcp500-4 2 500 5120 15 3566.74 3559.80 3560.64 0.17
maxG11 2 800 1600 11 629.16 625.99 626.99 0.35
maxG32 2 2000 | 4000 14 1567.64 1557.91 1560.94 0.43
maxG51 ? 1000 | 5909 19 4003.81 3988.30 3992.60 0.3
maxGH5 2 5000 | 14997 25 (10) 12870 11523.66 | 12855.03 0.12
maxG60 ? 7000 | 17148 21 (1) 15222.27 5 (15318.40) | 8606.60 13837.29 9.1
maxG60 2 7000 | 17148 24 (2) 15222.27 9 (15298.20) | 8615.31 14286.71 6.15
maxG60 2 7000 | 17148 25 (6) 15222.27 5 (15270.29) | 5334.17 | 14796.33 2.79

TABLE 7.1

Maz Cut Test Results

In table 7.1 we compare the SDP objective value with the LP relaxations LP1
(5.4) and LP2 (5.6). It is seen that in most cases LP1 alone provides a fairly good
approximation to the SDP objective value. However for problems mcp124-1, mep500-
1, maxG11, maxG32 we need to work with the relaxation LP2. These examples
underline the importance of the m rank 2 constraints in LP2. The LP relaxation
LP2 provides an excellent approximation to the SDP with the %error well below 1%
of the SDP objective value.

The bundle approach fails to converge for problems mazG55 and maxG60. For
marG55 we run the bundle code for 10 hours. The bundle approach attains an
objective value of 12870 (reported SDP objective in SDPLIB is 9999.210). Moreover
since the LP relaxations LP1 and LP2 are larger than 9999.210 it appears that the
reported solution in SDPLIB is incorrect. For the maxzG60 problem we consider three

IDIMACS [37]

2SDPLIB [4]

3Rendl [30]

4Mitchell [32]

5Memory exceeded

6Spectral bundle failed to terminate



AN LP APPROACH TO SDP PROBLEMS 21

runs with the bundle code, of durations 1 hour, 2 hours and 6 hours respectively. It is
seen that longer the run, the closer the bundle objective to the SDP objective value.
The LP2 relaxation is also tighter.

Name SDP LP1 LP2

k n ml m2

toruspm-8-50 512 512 528 2064
toruspm3-15-50 | 3375 3375 | 3396 | 13521
torusg3-8 512 512 525 2061
torusg3-15 3375 3375 | 3393 | 13518

mcpl00 100 100 110 379

mcpl24-1 124 124 144 293

mcpl24-2 124 124 135 453

mcpl24-3 124 124 135 755
mcpl24-4 124 124 134 1405

mcp250-1 250 250 260 591

mcp250-2 250 250 264 876
mcp250-3 250 250 263 1546
mcp250-4 250 250 263 2684
mcp5H00-1 500 500 510 1135
mcp500-2 500 500 513 1736
mcp500-3 500 500 514 2869
mcp500-4 500 500 515 5635
maxG11 800 800 811 2411
maxG32 2000 2000 | 2014 | 6014
maxG51 1000 1000 | 1019 | 6928
maxGbb 5000 5000 | 5025 | 20022
maxG60 7000 7000 | 7025 | 24173

TABLE 7.2

Sizes of the max cut relazations

We list the sizes of the three max cut relaxations in table 7.2. The SDP has n
constraints, whereas LP1 and LP2 are LP relaxations with approximately (n++/n) =
O(n) and (n+m + Vk) = O(n?) constraints respectively.

In table 7.3 we compare the SDP objective value with the LP relaxation (5.12).
Here u = 1 is the upper bound on the variable yy. It is seen that the LP relaxation
provides an excellent approximation to the SDP objective value. The value of the dual
variable, corresponding to the upper bound constraint yo < 1 provides an estimate for
|eet @ X|. This value is below 0.1 for all but one of the reported instances. A typical
LP relaxation has approximately (m +n++v/k) = O(n?) constraints, where k = n+ 1.

In table 7.4 we compare the SDP objective value of the k equipartition problem
with the value of LP relaxation (5.18). It is interesting to note that the LP relaxation
of the bisection problem, i.e. k equipartition with ¢ = 2, does not have an unbounded
optimal face as the LP relaxation LP1 (5.11) of min bisection. However the SDP re-
laxation (5.15) which represents a {0, 1} formulation of min bisection, as opposed to
the {—1,1} SDP formulation (5.7) is relatively harder to solve, using the bundle ap-
proach, since we are dealing with more constraints. Among k equipartition problems,
we need a larger bundle P for the bipartition problems gpp124-1, gpp250-1. For these
problems we choose the maximum number of vectors ng = 50 and n,,;, = 25. With
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| Name | m | n | r | SDP | LP | ml | % Error | leeT o X]| |
bml ! 4711 882 10 23.44 24.99 10315 6.59 0.06
gppl100 2 264 100 10 44.94 45.14 639 0.44 0.02
eppl2412 | 149 | 124 | 10| 7.34 734 | 433 | 0.01 0.00
eppl24-22 | 318 | 124 |10 | 46.86 | 47.27 | 771 | 0.55 0.03
gppl24-3 3 620 124 11 153.01 153.40 1376 0.16 0.01
gppl24-4 2 1271 124 11 | 418.99 419.98 2678 0.14 0.04
gpp250-1 2 331 250 | 10 | 15.45 15.45 923 0.88 0.00
epp250-22 | 612 | 250 |12 | S1.87 | 82.09 | 1487 | 0.26 0.02
gpp250-3 2 1283 250 13 | 303.50 305.21 2830 0.56 0.02
gpp250-4 2 2421 250 | 13 | 747.30 | 750.58 | 5106 0.43 0.03
gpp500-1 2 625 500 11 25.30 26.25 1762 3.62 0.18
gpp500-2 2 1223 500 | 13 | 156.06 | 157.73 | 2960 1.06 0.06
gpp500-3 2 2355 500 15 | 513.02 517.91 5226 0.95 0.02
gpp500-4 2 5120 500 | 15 | 1567.02 | 1575.95 | 10756 0.57 0.01
biomedP T | 629839 | 6514 - 33.60 MM ° - - -
industry2 ' | 798219 | 12637 | - 65.61 MM ° - - -
TABLE 7.3

Min Bisection Test Results

| Name | m | n [q]|r(NoofHrs) | SDP | LP [ ml | % Error |

nfll 4 496 | 32 | 8 9 7.34e+05 7.32e+05 | 1034 0.23
nfl2 4 496 | 32 | 4 9 6.29e+-05 6.29e+05 | 1034 0
A100 3 4070 | 100 | 2 10 8.62e+05 8.62e+05 | 8251 0.00

gpp100 2 364 | 100 | 2 10 44.94 44.94 839 0.00

eppl24-12 | 149 | 124 | 2 10 7.34 43.04 | 433 | 486.09

gppl24-12 | 149 | 124 | 2 31 7.34 7.34 454 0.01

eppl24-22 | 318 | 124 | 2 8 46.86 46.86 | 769 | 0.00

epp250-12 | 331 | 250 | 2 10 (3) 15450 (15.41) | 18.76 | 953 | 21.44

epp250-22 | 612 | 250 | 2 11 8187 81.87 | 1486 | 0.00

TABLE 7.4

k Equipartition Test Results

these enhanced bundle sizes we are able to get tighter LP approximation for gpp1241.
With the default bundle size we are only able to get an LP approximation of 43.0370
(SDP objective value is 7.3431), but with the larger bundle size our LP relaxation is
now 7.3443 for a %error of 0.016. The larger bundle sizes however result in 7 much
larger than vk. A typical LP relaxation has approximately (m 4+ n + V&) = O(n?)
constraints, where k = 2n.

In table 7.5 we compare the SDP objective value of the Lovasz theta problem with
the value of the LP relaxation (5.21). Since the number of constraints in the Lovasz
theta problem is O(m) which could as large as O(n?), a larger bundle is typically
required. Thus the bundle method is fairly time consuming on these problems. For
instance theta3 the bundle approach requires about 4 hours to converge to the desired
tolerance, whereas it fails to converge for instances theta, thetad, theta6. For these
problems we utilize the bundles after a 6 hour run. The objective value attained by
the bundle approach during this period, is reported in parentheses next to the SDP
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| Name | m | n | r (No of Hrs) | SDP | LP | ml | % Error |

hamming-9-8 ! | 2304 | 512 23 224 221.68 | 4633 1.03

hamming-7-5-6 1 | 1792 | 128 12 42.67 42.53 | 3598 0.33

hamming-10-2 1 | 23040 | 1024 - 102.4 MM 5 - -

hamming-11-2 1 | 56320 | 2048 - 170.67 MM ° - -

hamming-8-3-4 1 | 16128 | 256 43 25.6 25.32 | 32301 1.09

hamming-9-5-6 1 | 53760 | 512 - 85.33 MM ° - -
thetal 2 103 50 10 23 22.95 | 218 0.22
theta2 2 497 | 100 20 32.87 32.84 | 1016 0.10
theta3 2 1105 | 150 25 42.17 40.14 | 2237 4.81
theta3 2 1105 | 150 47 42.17 42.11 | 2259 0.14
thetad 2 1948 | 200 25(6) 50.32 6 (50.35) | 38.12 | 3923 24.25
thetad 2 1948 | 200 51(6) 50.32 6 (50.33) | 49.63 | 3949 1.38
thetab 2 3027 | 250 25(6) 57.23 6 (57.28) | 33.30 | 6081 41.81
thetab 2 3027 | 250 51(6) 57.23 6 (57.58) | 51.87 | 6107 9.38
thetab 2 3027 | 250 51(10) 57.23 6 (57.39) | 54.64 | 6107 4.79
theta6 2 4374 | 300 25(6) 63.48 % (63.56) | 30.06 | 8775 52.64
theta6 2 4374 | 300 59(6) 63.48 % (65.05) | 50.54 | 8809 20.39
theta6 2 4374 | 300 58(10) 63.48 6 (64.32) | 54.57 | 8808 14.03
theta6 2 4374 | 300 58(15) 63.48 © (63.91) | 57.27 | 8808 9.78

TABLE 7.5

Lovasz theta Test Results

objective value. We retain the default bundle parameters. However for the DIMACS
Hamming instances, since the optimal solution can be computed analytically, the
bundle approach is able to find the optimal bundle in a few iterations. We are unable
to solve to solve hamming-10-2, hamming-11-2 and hamming9-5-6 where we run out
of memory. It is seen that in the instances where the bundle approach converges,
our LP solution is an excellent approximation to the SDP objective value with the
%error under 1%. To improve on the LP relaxations for the SDPLIB problems
theta4, thetab and theta6, we choose larger bundle sizes nyx = 50 and nymn = 25 and
Nadd = 25. However this slows down the bundle code. We compute the LP relaxations,
choosing the bundle after 6 and 10 hour runs respectively. We are able to considerably
strengthen our LP relaxation in all cases. A typical LP relaxation has approximately
(m++v'k) = O(n?) constraints, where k = O(m). It must be emphasized here that all
the SDPLIB Lovasz theta problems can be solved in under an hour using any interior
point package such as [41].

| Name | k | n | r | SDP LP | ml | % Error |
qpG11 21800 | 1600 | 11 2448.66 2434.50 811 0.57
qpGH1 211000 | 2000 | 10 | 1.18e+04 | 1.18e+04 | 1010 0.39
TABLE 7.6

Box QP Test Results

Table 7.6 compares the SDP objective of the box constrained QP with the value
of the LP relaxation (5.25). This LP provides an excellent approximation to the SDP
objective value and has approximately (n + vk) = O(n) constraints, where k = n.
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Name | SDP | Bundle LP | Interior LDR | Interior LPR | Eig | Iter |
mcpl00 2 226.16 225.85 226.13 226.11 -1.1e-3 | 200
mcpl24-1 2 141.99 141.95 141.94 141.88 -1.6e-3 | 185
mcpl24-2 2 269.88 269.21 269.76 269.72 -2.8e-3 | 200
mcpl24-3 2 467.75 467.44 467.40 467.35 -1.2e-2 | 200
mcpl24-4 2 864.41 863.81 862.69 862.67 -3.7Te-2 | 200
mcp250-1 2 317.26 317.21 316.95 316.91 -1.1e-2 | 200
mcp250-2 2 531.93 531.38 529.77 529.73 -2.7e-2 | 200
mcp250-3 2 981.17 980.48 976.98 976.92 -5.3e-2 | 200
mcp250-4 2 1681.96 1680.00 1675.23 1675.14 -8.5e-2 | 200
mcp500-1 2 598.15 596.67 594.28 586.68 -3.5e-2 | 100
mcp500-2 2 1070.06 1069.95 1059.51 1049.32 -5.3e-2 | 100
mcp500-3 2 1847.97 1844.13 1830.11 1823.00 -1.2e-1 | 100
mcp500-4 2 3566.74 3560.64 3534.11 3532.74 -1.8e-1 | 140
maxG11 ! 629.16 626.99 627.31 619.98 -1.8e-2 | 100
toruspm-8-50 ' | 527.81 525.91 516.90 508.87 -6e-2 | 100
TABLE 7.7

Strengths of various LP relazations on max cut

| Name | Mgp | Micp |
mcpl00 2 379 | 869
mcpl24-1 2 203 | 718
mcpl24-2 2 453 | 1026
mcpl24-3 2 755 | 1221
mcpl24-4 2 1405 | 1332
mcp250-1 2 591 | 1224
mcp250-2 2 876 | 1911
mcp250-3 2 1546 | 2312
mcp250-4 2 2684 | 2465
mcp500-1 2 1135 | 1626
mcp500-2 2 1736 | 1929
mcp500-3 2 2869 | 2253
mcpb00-4 2 5635 | 3195
maxG11 ! 2411 | 2610
toruspm-8-50 1 | 2064 | 2197
TABLE 7.8

Sizes of the various LP relaxations on max cut

Table 7.7 compares the LP relaxation with the bundle and box constraints dis-
cussed in section 5 which we will henceforth refer to as the bundle LP, with the cutting
plane LP relaxation introduced in section 6 for the max cut problem. For the cut-
ting plane approach the initial LP relaxation LDR; is obtained by setting y; = %i ,
Vi =1,...,n. The other cutting plane parameters discussed in section 6 are TOL = 1,
s =20, p = 0.95 and MAXITER = 100. We used Zhang’s LIPSOL [47], with a
strictly feasible starting point to solve the sequence of interior LP’s. Since we end up
with a tolerance TOL of (0.95)1%9 = 5¢—3 at the end of 100 iterations and the primal

and dual objective values need not necessarily agree, we provide the objective value
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of the dual (LPR), which is always a lower bound on the SDP objective value. It is
seen that the bundle LP provides a tighter relaxation than the interior LP for most
instances, and is also the smaller LP relaxation. However in some of the smaller test
cases such as mep124-1, we are able to do better with the interior point code. The
fact that the interior point LP is giving good SDP relaxations is reflected in the very
small negative eigenvalues of the dual slack matrix S, that we encounter. For most
cases this value is smaller than 0.1 in absolute value.

We also tried incorporating the cutting plane framework, where the sequence
of LP’s are solved using the CPLEX 6.5 [24] simplex solver. The interior cutting
plane LP relaxation clearly outperforms the simplex LP relaxation, and we are able
to generate better cutting planes using the former approach. Moreover since we are
solving the LP’s initially to high tolerances TOL in the interior approach, we seem to
get fairly quickly to the periphery of the positive semidefinite cone, reflected in the
small negative eigenvalues we encounter. As a result we add not only stronger, but
fewer cutting planes in the interior point cutting plane scheme as compared to the
simplex approach, with the result that the intermediate LP relaxations can be solved
quickly.

The main objective of table 7.7 is to emphasize that the bundle together with the
box constraints introduced in section 5 are optimal in a certain sense. To make the
interior cutting plane approach competitive with the bundle LP, further refinements
are necessary. We pursue this in Krishnan and Mitchell [27].

8. Conclusions. We have presented an LP approach to solving semidefinite
programming problems. This approach requires the bundle constraints generated
by the spectral bundle approach due to Helmberg and Rendl. The number of these
constraints is bounded by the square root of the number of constraints k£ in the
SDP. Typically fewer than these are required, due to the aggregation employed in the
bundle approach. In addition to the bundle constraints, a few others polynomial in
the problem size n are generally required. The main computational task in the LP
approach is in computing the optimal bundle P. Solving the resulting LP relaxations
is relatively trivial. We have also presented an interior cutting plane framework, which
could be used to solve SDP as a sequence of LP’s. We use this cutting plane approach
to demonstrate the importance of the bundle constraints in the LP formulation.

It appears from the results in the paper that

e The LP approach is very successful in solving the max cut and the box
constrained QP problems. A typical maxcut LP requires approximately
(n 4+ m + Vk) constraints, where k = n. For the box constrained QP in-
stances reported, we find that around (n + vk) constraints suffice. These
LP’s can be solved easily using any of the commercial packages available.

e The original LP relaxation of the min bisection problem (5.11), like the SDP
(5.7) has an unbounded optimal face. Hence we need to introduce an addi-
tional constraint yy < u in our LP relaxation. Here yq is the dual variable
corresponding to the equipartition constraint ee” @ X = 0. Thus we are in
practice, solving a variant of the min bisection problem. However on all the
reported problems the value |ee” o X| is very small of the order of 0.1. A
typical LP has approximately (m 4 n + v/k) constraints, where k = n + 1.

e The spectral bundle approach is fairly time consuming on Lovasz theta prob-
lems. This is because the number of constraints in the SDP is O(m). More-
over we need larger bundle sizes than those provided by the bundle approach
to tighten our LP relaxations. It appears that the traditional interior point
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methods outperform the spectral bundle method, especially on some of the
smaller Lovasz theta problems. A typical LP has approximately (m + vk)
constraints, where k = m + 1.

The k equipartition SDP (5.15) does not have an unbounded optimal face,
unlike the min bisection SDP (5.7). However (5.15) has more constraints k
and hence computing the optimal bundle is time consuming. A typical LP has
approximately (m +n + v/k) constraints where k = 2n. In certain instances,
we need larger bundle sizes > vk to tighten our LP relaxations.

For the maximum stable set formulation of the Lovasz theta number, we are
unable to find cutting planes, that cut off the point with a trivial objective
value zero. We intend to investigate, incorporating the bundle LP within the
cutting plane framework of section 6, and try to cut off this point. Also we
could in practice strengthen the bundle LP relaxations, by incorporating it
within the cutting plane framework. We investigate this in greater detail in
Krishnan and Mitchell [27].

The bundle LP, with the additional box constraints introduced in section 5, is
superior to the naive interior point cutting plane approach discussed in section
6. Not only are we are able to get tighter relaxations in the former case, but
the resulting LP’s are smaller as well. Thus the bundle constraints seem to
be optimal in a certain sense, in that they identify an important subspace
on which the matrix of dual slacks S should be positive semidefinite, and
directions not in subspace do not seem all that important.

The spectral bundle approach depends on a number of parameters, especially
the maximum and minimum bundle sizes, the number of Lanczos vectors
added in each iteration. In this paper we have experimented with various
bundle sizes r, especially with regard to the Lovasz theta and k equipartition
problems. Further investigation of the choice of these parameters, especially
the role they play with regard to the strength of our LP relaxations is neces-
sary.

Another interesting idea is in trying to estimate how much P in the spectral
bundle scheme changes in two consecutive iterations. Since in the restricted
eigenvalue problem (3.2) we have a quadratic regularization term, which pe-
nalizes us from going too far from the current iterate, we could in practice
utilize some of the intermediate bundles P in tightening our LP relaxations.
This is especially true for SDP’s with a large number of constraints such as
the Lovasz theta problem. We intend to investigate this in a future paper.

To conclude it is felt that a beginning is made to solve an SDP, with a constant

trace on the primal feasible set, as an LP. Although SDP’s are semi infinite LP’s, we
provide empirical evidence that only a few constraints, polynomial in the problem size
n, are typically required. Furthermore one could incorporate the above framework
in a cutting plane LP approach, to solving semidefinite programs. We pursue this in

[27].
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