Download the paper, postscript or pdf.
Recently Helmberg and Rendl developed a scheme that casts SDP's with a constant trace on the primal feasible set as eigenvalue optimization problems. These are convex nonsmooth programming problems and can be solved by bundle methods. In this paper we propose a linear programming framework to solving SDP's with this structure. Although SDP's are semi infinite linear programs, we show that only a small number of constraints, namely those in the bundle maintained by the spectral bundle approach, bounded by the square root of the number of constraints in the SDP, and others polynomial in the problem size are typically required. The resulting LP's can be solved rather quickly and provide reasonably accurate solutions. We present numerical examples demonstrating the efficiency of the approach on combinatorial examples.
Download the paper, postscript or pdf.
Return to my list of papers.