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Abstract

Nonconvex quadratic constraints can be linearized to obtain relaxations in a well-
understood manner. We propose to tighten the relaxation by using second order cone
constraints, resulting in a convex quadratic relaxation. Our quadratic approximation to
the bilinear term is compared to the linear McCormick bounds. The second order cone
constraints are based on linear combinations of pairs of variables. With good bounds on
these linear combinations, the resulting constraints strengthen the McCormick bounds.
Computational results are given, which indicate that the convex quadratic relaxation
can dramatically improve the solution times for some problems.
Keywords: quadratically constrained quadratic programs; second order cones; convex
outer approximations.

1 Introduction

We are interested in quadratically constrained quadratic programs of the form

minx cT0 x + 1
2
xTQ0x

subject to cTi x + 1
2
xTQix ≤ gi i = 1, . . . , p

Ax ≥ b

(1)

where x and each ci are n-vectors, g is a p-vector, b is an m-vector, the matrices A and Qi

are dimensioned appropriately, and each Qi is symmetric. If each Qi is positive semidefinite

∗Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180-1590,
U.S.A. Email:mitchj@rpi.edu. The work of this author was supported by the National Science Foundation
under grant DMS-0715446 and by the Air Force Office of Sponsored Research under grant FA9550-08-1-0081.
†Department of Industrial and Enterprise Systems Engineering, University of Illinois, Urbana, Illinois

61801, U.S.A. Email: jspang@illinois.edu. The work of this author was supported by the National Science
Foundation grant CMMI-0969600 and by the Air Force Office of Sponsored Research under grant FA9550-
08-1-0061.
‡Department of Industrial and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York

12180-1590, U.S.A. Email:yub@rpi.edu.

1



then (1) is convex; otherwise in general it is nonconvex. This is perhaps the simplest type
of nonconvex optimization problem and arises in many contexts. For example, Adjiman et
al. [1] describe applications in chemical engineering, Al-Khayyal et al. [3] list a number of
applications, Bao et al. [5] give references to several applications, and many other formu-
lations are discussed by Floudas et al. [13]. When the constraints are all linear, the best
stationary point can be found by solving a linear program with complementarity constraints;
see [10, 11, 14, 27, 28], for example. The paper [14] also contains a method for handling the
case when the feasible region is unbounded.

To simplify the presentation, we work with the following equivalent form which has a
linear objective:

minx cT0 x

subject to cTi x + 1
2
xTQix ≤ gi i = 1, . . . , p

Ax ≥ b

(2)

Quadratically constrained quadratic programs with a quadratic term 1
2
xTQ0x in the objective

can be expressed as an equivalent problem of the form (2) using the standard technique of
introducing a variable x0 and a constraint −x0 + 1

2
xTQ0x ≤ 0 and then modifying the

objective.
Kojima and Tunçel [15] describe several successive convex relaxation procedures for de-

termining the convex hull of the feasible region of (2). However, these routines are compu-
tationally expensive, and so there is interest in finding good valid convex relaxations using
simpler methods. McCormick [20] gave some linear inequalities based only on the bounds on
the variables x and Al-Khayyal et al. [3] showed that this gives the convex hull of a bilinear
inequality xjxk ≤ σjk. Belotti et al. [8] looked at linear inequalities for bilinear and higher
degree products of variables. Bao et al. [5] derived linear constraints based on combining
together several of the original inequalities, solving linear programs to derive the inequalities.
The same authors [6] also examined various semidefinite relaxations of (2). Linderoth [18]
extended results in Sherali and Alameddine [24] to give second order cone constraints that
are valid on certain types of triangular regions, and showed that these inequalities give the
best convex underestimators or concave overestimators of xjxk in certain cases; he then used
these inequalities in a branch-and-bound approach. Richard and Tawarmalani [21] discussed
methods for extending inequalities valid for subsets of the variables to inequalities valid for
all the variables. Burer [9] showed that nonconvex quadratic programs are equivalent to
convex programs over the cone of completely positive matrices, and extended these results
to certain types of quadratically constrained convex programs.

The general quadratic constraint in (2) can be written

n∑
j=1

cijxj + 1
2

n∑
j=1

Qi
jjx

2
j +

n−1∑
j=1

n∑
k=j+1

Qi
jkxjxk ≤ gi. (3)

Our focus in this paper is the derivation of a method for relaxing the bilinear terms xjxk using
convex quadratic and second order cone constraints. The construction involves writing xjxk
as a difference of two squares and then using a linear overestimator for one of the squares.
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We derive a family of second order cone constraints in §2 and compare it to a standard
set of linear inequalities. We show how to choose good members of the family of constraints
in §3. We describe an alternative convex underestimator in §4. We develop an alternative
motivation of the family of constraints in §5, and present computational results in §6. The
computational results demonstrate the benefit of the alternative convex underestimator, in
terms of its effect on the quality of the relaxation and on the ability to determine a globally
optimal solution.

2 Convex quadratic bounds on a product of variables

It is standard to linearize bilinear terms by replacing them by a new variable and then
developing linear constraints relating this new variable to the original variables (see for
example Balas [4], Sherali and Adams [23], Lovász and Schrijver [19], and Laurent [17]).
We introduce variables yj for j = 1, . . . , n and σjk for 1 ≤ j < k ≤ n. Using the σ and y
variables, constraint (3) is equivalent to the convex constraint

n∑
j=1

cijxj + 1
2

n∑
Qi

jj>0,j=1

Qi
jjx

2
j +

n−1∑
j=1

n∑
k=j+1

Qi
jkσjk ≤ gi + 1

2

n∑
Qi

jj<0,j=1

|Qi
jj|yj (4)

together with the nonconvex constraints

xjxk = σjk for 1 ≤ j < k ≤ n (5)

x2
j = yj for j = 1, . . . , n. (6)

Constraints (5) and (6) can then be approximated using convex constraints, to give a convex
relaxation of (2). We assume the linear constraints Ax ≥ b imply bounds xL ≤ x ≤
xU . (These bounds are either given to us, or we can calculate them by minimizing and
maximizing the individual components of x subject to the linear constraints.) The concave
upper envelope of (6) is

(xLj + xUj )xj − xLj xUj ≥ yj. (7)

McCormick[20] introduced the following valid linear constraints to relax (5):

xLkxj + xLj xk ≤ σjk + xLj x
L
k

xUk xj + xUj xk ≤ σjk + xUj x
U
k

xLkxj + xUj xk ≥ σjk + xUj x
L
k

xUk xj + xLj xk ≥ σjk + xLj x
U
k

 1 ≤ j < k ≤ n. (8)

It was proved in [3] that these inequalities give the convex lower envelope and concave
upper envelope of (5) when only simple bound constraints are available. These constraints
are exploited in packages for nonconvex optimization, including BARON [22, 25], αBB [2],
and COUENNE [7]. Tightening the bounds xLj and xUj can be very useful [7]. Inequalities
combining together terms for several indices j have been investigated by Bao et al. [5]. In
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this paper, we show that inequalities that strengthen (8) can be derived when the variables
x are restricted to lie in a more complicated convex set than the simple box.

The derivation will exploit the convex set

P := {x : xL ≤ x ≤ xU , Ax ≥ b, cT0 x ≤ ḡ0, ∃ y, σ satisfying (4), (7), and (8)}

and its projection Pjk onto (xj, xk) space, where ḡ0 is a valid upper bound on the optimal
value of (2). We would like to use the structure of Pjk to obtain a convex outer approximation
of the set

Ξjk := {(xj, xk, σjk) : (xj, xk) ∈ Pjk, σjk = xjxk}
which is tighter than that provided by (8). An important observation is that constraint (5)
is equivalent to the following constraint, for any α 6= 0,

(xj + αxk)
2 = 4ασjk + (xj − αxk)2 (9)

as can be seen by expanding the squares. This constraint can be relaxed to a convex quadratic
constraint if upper and lower bounds αU and αL on xj − αxk are known. In particular, we
obtain the valid convex constraint

(xj + αxk)
2 ≤ 4ασjk + (αL + αU)(xj − αxk)− αLαU (10)

from the concave upper envelope (7) of (xj−αxk)2. Positive choices for α give lower bounds
on σjk, and negative choices give upper bounds. We define

fα(xj, xk) := (xj + αxk)
2 − (αL + αU)(xj − αxk) + αLαU (11)

so (10) can be written
fα(xj, xk) ≤ 4ασjk. (12)

Valid upper and lower bounds on xj − αxk can be constructed trivially as

αL = xLj − αxUj and αU = xUj − αxLk . (13)

However, using such weak bounds in (10) will not improve on (8), since the latter constraints
define the convex envelope. We summarize this in the following lemma.

Lemma 1. If the bounds (13) are used for xj − αxk then (10) is implied by (8).

It follows that it is essential to improve on the bounds (13), perhaps by solving the second
order cone programs

min
x,y,σ
{±(xj − αxk) : Ax ≥ b, cT0 x ≤ ḡ0, (4), (7), and (8)}.

For example, assume the projection Pjk is given by

xLj ≤ xj ≤ xUj , xLk ≤ xk ≤ xUk , Ljk ≤ xj − xk ≤ U jk

and the bounds are such that the projection can be represented as illustrated in Figure 1.
The McCormick lower bounds (8) agree with the bilinear term xjxk on the horizontal and
vertical boundaries of the region in the figure. On the diagonal boundaries, the lower bound
given by (10) is equal to the bilinear term, as we show in the following lemma.
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L
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(xUk + Ljk, xUk )

Figure 1: An outer approximation of the feasible region in (xj, xk)-space.

Lemma 2. Let fα(xj, xk) be given by (11). If xj − αxk = U jk or xj − αxk = Ljk then
fα(xj, xk) = 4αxjxk.

Proof. If xj − αxk = U jk then

4αxjxk = (xj + αxk)
2 − (xj − αxk)2

= (xj + αxk)
2 − (U jk)2

= (xj + αxk)
2 − ((U jk)2 + LjkU jk − U jkLjk)

= fα(xj, xk).

The case of xj − αxk = Ljk follows similarly.

We have the following corollary for facet-defining inequalities of Pjk that follows directly
from the lemma.

Corollary 1. Constraint (10) is a convex underestimator of the inequality xjxk ≤ σjk if
α > 0, and it is a concave overestimator of xjxk ≥ σjk if α < 0. Further, if xj − αxk = U jk

or xj − αxk = Ljk is a facet-defining inequality of Pjk then constraint (10) is tight on the
facet.

The quadratic function strengthens the McCormick bounds (8). Assume for example the
feasible region Pjk is of the form

0 ≤ xj ≤ 3, 0 ≤ xk ≤ 3, −1 ≤ xk − xj ≤ 1

At the point (xj, xk) = (1, 2), the McCormick bounds only constrain σjk ≥ 0. Conversely, the
quadratic function bound with α = 1 restricts σjk ≥ 2, exactly agreeing with the function
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Figure 2: (a) Feasible region. (b) Relaxation with the McCormick inequalities. (c) Relax-
ation with constraint (10).

value. In this example, the constraint (11) characterizes the lower envelope of Ξjk (see
Proposition 1 below). The lower bounding constraints on σjk are

σjk ≥ 0 (14)

σjk ≥ 3xk + 3xj − 9 (15)

4σjk ≥ (xj + xk)
2 − 1 (16)

with (14) and (15) specializations of (8), and (16) coming from (10) with α = 1. Knowing
the lower envelope of Ξjk enables the solution of the quadratically constrained problem

minx1,x2 −x1 − x2

subject to x1x2 ≤ 2
x1 − x2 ≤ 1
−x1 + x2 ≤ 1

0 ≤ xi ≤ 3 i = 1, 2

with feasible region shaded in Figure 2(a). Omitting the quadratic constraint gives a relax-
ation with optimal value -6, achieved at (3, 3). Adding the constraints (14) and (15) gives
the linear program

minx1,x2 −x1 − x2

subject to σ12 ≤ 2
σ12 ≥ 0

3x1 + 3x2 ≤ σ12 + 9
3x1 − σ12 ≥ 0
−σ12 + 3x2 ≥ 0
x1 − x2 ≤ 1
−x1 + x2 ≤ 1

0 ≤ xi ≤ 3 i = 1, 2
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whose feasible region is shaded in Figure 2(b). This LP has optimal value −32
3
, achieved

at x = (11
6
, 11

6
), σ12 = 2. Adding the further constraint (16) then gives the feasible region

shaded in Figure 2(c) with optimal value −3, achieved at the extreme points x = (1, 2) and
x = (2, 1) of the relaxation, with σ12 = 2, which are optimal in the original problem.

Proposition 1. Assume xUj − xLj = xUk − xLk and Pjk has six extreme points, at (xLj , x
L
k ),

(xLj + γ, xLk ), (xUj , x
U
k − γ), (xUj , x

U
k ), (xUj − γ, xUk ), and (xLj , x

L
k + γ). Then the lower convex

underestimator of σjk over Pjk is given by (8) together with (10) with α = 1.

Proof. Note that by the definition of the bounds xLj , xUj , xLk , and xUk , we must have that γ
is a positive constant smaller than xUj − xLj . Any point x̄ in Pjk is a convex combination of
two points on the boundary of Pjk of the form x̄1 := x̄+ θ(1,−1) and x̄2 := x̄− ν(1,−1) for
some θ, ν ≥ 0. At each of these boundary points x̄1 and x̄2, the lower bound on σjk given by
the constraints (8) and (10) is equal to xjxk, so the convex underestimator is tight. Further,
the same constraint is active at both x̄1 and x̄2 and it is linear on the line segment between
the two points, so the lower convex underestimator of σjk at x̄ cannot be larger than that
given by the constraint that is active at x̄1 and x̄2.

The following proposition gives a concave overestimator of σjk for a particular Pjk. The
proof is similar to that for Proposition 1 and is therefore omitted.

Proposition 2. Assume Pjk = {(xj, xk) : xLj ≤ xj ≤ xUj , x
L
k ≤ xk ≤ xUk , x

L
j + xLk + γ ≤

xj + xk ≤ xUj + xUk − γ} for some positive constant γ < 0.5(xUj + xUk − xLj − xLk ) Then the
upper concave overestimator of σjk over Pjk is given by (8) together with (10) with α = −1.

Propositions 1 and 2 exploit the linearity of (10) along line segments orthogonal to the
line xj−αxk = β for some constant β, when α = ±1. If α 6= ±1 then this property no longer
holds, so constraint (10) will not in general be a tight underestimator or overestimator of
the convex hull of Ξjk throughout the line segment.

Nonetheless, Proposition 1 can be generalized to regions Pjk of the form

xLj ≤ xj ≤ xUj , x
L
k ≤ xk ≤ xUk , L

jk ≤ xj − αxk ≤ U jk

when α > 0, xUj − xLj = α(xUk − xLk ), and Ljk + U jk = xLj + xUj − α(xLk + xUk ). In this case,
each point in Pjk with xj − αxk = Ljk can be joined to a point in Pjk with xj − αxk = U jk

along a direction where xj + αxk is constant, and conversely. Now, (10) is linear along such
line segments, so it provides the tightest possible convex underestimator of the the bilinear
form. Hence we obtain the tightest convex underestimator over the whole of Pjk, using
an argument similar to the earlier proposition. This is illustrated in Figure 3. Similarly,
Proposition 2 can be generalized to regions Pjk of the form

xLj ≤ xj ≤ xUj , x
L
k ≤ xk ≤ xUk , L

jk ≤ xj − αxk ≤ U jk

when α < 0, xUj −xLj = −α(xUk −xLk ), and Ljk +U jk = xLj +xUj −α(xLk +xUk ). We summarize
this in the following proposition.
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Figure 3: The feasible region Pjk. Constraint (10) gives a tight linear underestimator of the
bilinear form along the dotted line xj + αxk = β for some β.

Proposition 3. Let Pjk have the form

xLj ≤ xj ≤ xUj , x
L
k ≤ xk ≤ xUk , L

jk ≤ xj − ᾱxk ≤ U jk

1. If ᾱ > 0, xUj −xLj = ᾱ(xUk −xLk ), and Ljk +U jk = xLj +xUj − ᾱ(xLk +xUk ) then the lower
convex underestimator of σjk over Pjk is given by (8) together with (10) with α = ᾱ.

2. If ᾱ < 0, xUj −xLj = −ᾱ(xUk −xLk ), and Ljk+U jk = xLj +xUj − ᾱ(xLk +xUk ) then the upper
concave overestimator of σjk over Pjk is given by (8) together with (10) with α = ᾱ.

If Pjk is diamond-shaped then combining the two parts of this proposition shows that
inequality (10) gives the convex envelope of the function xjxk. In particular, we have the
following proposition.

Proposition 4. Let Pjk have the form

Ljk1 ≤ xj − ᾱxk ≤ U jk
1 , Ljk2 ≤ xj + ᾱxk ≤ U jk

2

for some ᾱ > 0. If Pjk is nonempty then the convex envelope of Ξjk is given by (10) with
α = ±ᾱ.

3 Choosing constraints

Every positive value of α leads to a convex lower bound (10) on σjk for x ∈ Pjk, and each
negative value leads to a concave upper bound. In this section, we discuss methods for de-
termining which values of α to use. First note that the facets of Pjk lead to nondominated
bounds, from Corollary 1. If xj − ᾱxk = β is a facet for some choice of β then the corre-
sponding inequality (10) provides a tight bound throughout the facet, and no other value of
α gives a constraint that is tight at any interior point of the facet.
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Values of α that do not correspond to facets of Pjk may also lead to nondominated
inequalities. In what follows, we assume Pjk is a polyhedron. Each extreme point of Pjk
is either arg min{xj − αxk : (xj, xk) ∈ Pjk} or arg max{xj − αxk : (xj, xk) ∈ Pjk} for an
interval of values of α of positive length. Let (α1, α2) be an open interval not containing the
origin such that there are two extreme points x1 and x2 of Pjk with x1 = arg min{xj −αxk :
(xj, xk) ∈ Pjk} and x2 = arg max{xj − αxk : (xj, xk) ∈ Pjk} for each α in the interval. It
follows that for each such α, we have αL = x1

j − αx1
k and αU = x2

j − αx2
k, so from (11) and

(12) we obtain the following bound on σjk:

1

4α
fα(xj, xk) =

1

4α
((xj + αxk)

2 − (x1
j − αx1

k + x2
j − αx2

k)(xj − αxk)

+(x1
j − αx1

k)(x
2
j − αx2

k))

=
1

4
α(xk − x1

k)(xk − x2
k) +

1

4α
(xj − x1

j)(xj − x2
j)

+
1

4
(xj(xk + x1

k + x2
k) + xk(xj + x1

j + x2
j)− x1

jx
1
k − x2

jx
2
k).

This is a lower bound on σjk if α > 0 and an upper bound if α < 0. We want to determine
the value of α in the interval that gives the best bound at a given point (xj, xk). The only
possible stationary point in the interval is

ᾱ =

√
(xj − x1

j)(xj − x2
j)

(xk − x1
k)(xk − x2

k)
(17)

where the sign of the square root coincides with the sign of the interval. For the square root
to exist and be in the interval, the numerator and denominator of the fraction must be of
the same sign and nonzero. We argue using second order conditions that they must both be
negative if ᾱ is to give the best bound in the interval (α1, α2). Consider first the case that
the interval is contained in the positive half-line, so we are looking for the greatest lower
bound. In this case we want the second derivative to be negative, that is

(xj − x1
j)(xj − x2

j)

ᾱ3
< 0.

Since ᾱ > 0, we obtain the conditions that

(xj − x1
j)(xj − x2

j) < 0 and (xk − x1
k)(xk − x2

k) < 0 (18)

for ᾱ to exist and be a minimizer. If α1 < ᾱ < α2 then ᾱ gives the best lower bound at the
point (xj, xk) over all constraints of the form (10).

When the interval is contained in the negative half-line, the sufficient condition for ᾱ to
give the least upper bound is that the second derivative be positive. This gives again the
requirement (18).

There may be a continuum of values of α that lead to nondominated inequalities. In
the construction above, the value of ᾱ is determined by the point (xj, xk). If the point
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is changed slightly then ᾱ would be changed slightly, and still be in the interval. This
observation implies that such ᾱ must occur in intervals of positive length, as we summarize
in the following proposition.

Proposition 5. Let ᾱ 6= 0. If xj − ᾱxk = β is not a facet of Pjk for any β and if there is
a point (x̄j, x̄k) ∈ Pjk where (10) using ᾱ uniquely provides the best bound on σjk over all
inequalities of the form (8) or (10) then there is an interval (α1, α2) 3 ᾱ such that each α
in the interval gives an inequality (10) that uniquely realizes the best bound on σjk for some
point (xj, xk) ∈ Pjk over all inequalities of the form (8) or (10).

We now give an example where a non-facet defining α gives the best bound.

Example 1. Take Pjk to be given by 0 ≤ xj ≤ 6, 0 ≤ xk ≤ 3, xj − 6xk ≥ −12. Taking
ᾱ = 2

√
2 gives the greatest lower bound of 2.5−

√
2 on σjk at x̄ = (4, 1). The best lower bound

from (8) at this point is 0. The lower bound from (10) with α = 6 is 2/3, corresponding to
the facet defining inequality.

A parametric pivoting approach for finding the facets and extreme points can be used
when Pjk is a polyhedron. The finite set of facets can be used to define an initial set of
constraints (10). Additional constraints of this form can be added in a cutting plane or
cutting surface framework. In particular, if the solution to the current relaxation of (2)
violates (5) for some triple (xj, xk, σjk) then equation (17) can be used to obtain a better
bound on σjk. The use of the formula requires determination of the points x1 and x2,
which can be obtained by examining pairs of the extreme points of Pjk found during the
parametric pivoting approach. Heuristic methods could be used to speed up the search for
an appropriate pair of points.

4 Second order cone constraints and triangles

In the following example, the constraints (8) and (10) do not suffice to give the lower convex
underestimator of σjk on Pjk. Assume the feasible region Pjk is

0 ≤ xj ≤ 5, 0 ≤ xk ≤ 6, xk − xj ≤ 1

as illustrated in Figure 4. The maximum value of xj−xk is achieved at (5, 0). Equation (10)
with α = 1 holds at equality with σjk = xjxk on the line xj − xk = 5 through this point.
The constraint underestimates the convex hull of σjk at points in the interior of Pjk where
xj + xk 6= 5 and xj − xk < 5. In order to rectify this, a constraint can be constructed that is
linear between any feasible point on the line xj−xk = −1 and the point (5, 0). Linderoth [18]
showed that this constraint can be represented as a rotated second order cone constraint,
which gives the best possible convex underestimator on the triangle with vertices at (−1, 0),
(5, 0), and (5, 6).

Given a facet of Pjk, the polyhedron Pjk can be embedded in a right-angled triangle,
with the facet lying on the hypotenuse of the triangle. A valid second order cone constraint
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Figure 4: The feasible region of a nonsymmetric example in (xj, xk)-space.
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Figure 5: Illustration of (10) and the constraint from [18] derived from one facet of Pjk.
(a) Feasible region Pjk. (b) Constraint (10) gives the best convex underestimator that is
valid throughout the shaded rectangle. (c) The second order cone constraint from [18] gives
the best convex underestimator that is valid throughout the shaded triangle.
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can then be constructed from the results in [18]. This construction is illustrated in Figure 5.
Both the constraint on the triangle and the constraint (10) are constructed so that they are
valid throughout a particular polyhedron that typically strictly contains Pjk, with the result
that in general they do not give the best convex underestimator of the function xjxk on Pjk.
In the general case, neither inequality dominates the other. In the case of Example 1, the
lower bound from the rotated second order cone constraint at the point (4, 1) is 1.5.

5 Using diagonalization

In this section, we present an alternative approach to obtain convex quadratic relaxations
of nonconvex quadratic constraints and relate this approach to the constraints (10). The
approach is to look at a change of variables, under which the quadratic constraints in (2)
can be replaced by quadratic constraints having no bilinear terms.

Each of the symmetric matrices Qi could be diagonalized, so Qi = V iDiV iT where Di

is a diagonal matrix and V i is an orthogonal matrix. Introducing variables xi = V iTx, the
general quadratic constraint in (2) is equivalent to the constraint

cTi x+
1

2

n∑
Di

jj>0,j=1

Di
jj(x

i
j)

2 ≤ gi +
1

2

n∑
Di

jj<0,j=1

|Di
jj|(xij)2

where the right hand side can be upper-bounded using a linear function of the form (7),
resulting in a convex quadratic constraint.

It is interesting to compare this approach to the approach based on (10). The diagonal-
ization approach introduces an extra pn variables in the form of the xi terms. The bilinear
term approach introduces an extra n(n − 1)/2 variables σjk. The bilinear term approach
can exploit sparsity: if Qi

jk = 0 for all i then there is no need to introduce σjk. The extra

linear constraints xi = V iTx in the diagonalization approach will typically be dense. The
strength of the diagonalization approach depends on the strength of the bounds on the xij
terms where Di

jj < 0; such bounds can be calculated using P .
For example, for a single quadratic constraint of the form xjxk ≤ b, the diagonalization

approach would result in the following:

b ≥ xjxk

=
1

2

[
xj xk

] [ 0 1
1 0

] [
xj
xk

]
=

1

4

[
xj xk

] [ 1 −1
1 1

] [
1 0
0 −1

] [
1 1
−1 1

] [
xj
xk

]
=

1

4

[
xj xk

] [ 1
1

] [
1 1

] [ xj
xk

]
− 1

4

[
xj xk

] [ −1
1

] [
−1 1

] [ xj
xk

]
=

1

4
(xj + xk)

2 − 1

4
(xj − xk)2
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which is equivalent to (10) with α = 1. Thus, in this case the diagonalization approach will
exploit only upper and lower bounds on xj − xk, not bounds using more general α. More
generally, the diagonalization approach exploits upper and lower bounds on the specific linear
combinations of the original variables that correspond to eigenvectors of Qi with negative
eigenvalues, and is unable to exploit more general linear combinations of the variables.

6 Computational results

Computational tests were conducted on three classes of problems. For these tests, a feasible
solution was found which provides an upper bound ḡ0 on the optimal value, and then a
relaxation consisting of the constraints Ax ≥ b together with (4), (7), and (8) was solved
to obtain a lower bound. The lower bound relaxation was then tightened in two ways: by
tightening the bounds xL and xU used in (8) and by adding constraints of the form (10).
The bounds used in these tightenings were obtained by solving linear programs or second
order cone programs which include the constraint cT0 x ≤ ḡ0. We report the proportion of the
gap between the upper and lower bounds that was closed using these two tightenings.

CPLEX 11.0 was used to solve the second order cone programs. When possible, the
student version of KNITRO was used to find a feasible solution to (2). Default settings were
used for the solvers. The tests in §6.1 and §6.2 on the quality of the relaxations were run
on one core of an Apple Mac Pro with a 2x2.8 GHz Quad-Core Intel Xeon processor, using
AMPL to call the solvers. The global optimization tests in §6.1 were performed using the
NEOS server [12]. The tests in §6.3 were run on a single core of an AMD Phenom II X4
955@3.2GHZ with 4GB memory, using C++ with callable CPLEX. All times are reported
in seconds.

6.1 Diamond problems

The first class of problems are quadratically constrained quadratic programs, with 0 ≤ xi ≤
1, and with linear constraints −0.5 ≤ xi − xj ≤ 0.5 and 0.5 ≤ xi + xj ≤ 1.5 for each pair
of variables 1 ≤ i < j ≤ n. All entries in ci, i = 0, . . . , p are uniformly generated between
-1 and 1. All entries above the leading diagonal in Qi, i = 1, . . . , p are uniformly generated
between -0.5 and 0.5, the leading diagonals are zero, and the entries below the leading
diagonal are chosen to make the matrices symmetric. The right hand side parameters gi are
chosen so that x = 0.5e is feasible, with a slack of 0.1 in each quadratic constraint (here e
denotes the vector of ones).

6.1.1 Global optimality

Smaller instances were solved to global optimality using the solver BARON [26], using the
default parameters, including a tolerance of 10% on the optimality gap. A time limit of 1000
seconds was placed on each run. In these tests, the problems were solved in two ways:

1. The original formulation (2) was submitted.
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Original formulation Modified formulation
n p # solved time BaR # solved time BaR gapH gapO

15 5 5 47.9 2503 5 76.8 363 48% 74%
20 1 3 291.4 8708 4 51.1 52 55% 82%
20 5 1 378.9 8227 4 251.0 358 57% 81%

Table 1: Solving diamond problems to optimality. Times are measured in seconds. Columns
headed “BaR” give the number of BaR iterations reported by BARON. The column headed
“gapH” gives the percentage of the gap between the heuristic solution and the relaxation
with McCormick constraints (8) that was closed using the constraints (10). Similarly, the
column headed “gapO” gives the percentage of the gap between the upper bound on the
optimal value reported by BARON and the relaxation with McCormick constraints (8) that
was closed using the constraints (10).

2. Variables σjk are added for 1 ≤ j < k ≤ n, the quadratic constraints are replaced
by versions of (4), the linear constraints (8) are used for 1 ≤ j < k ≤ n, the convex
quadratic constraints (10) are included for α = ±1 and 1 ≤ j < k ≤ n, and the
nonlinear equality constraints (5) are explicitly included.

The two formulations gave identical upper and lower bounds on the optimal value, when they
were both able to solve the problem. The results can be found in Table 1. Each row represents
an average of five instances. The averages are taken over the instances actually solved by
the code. BARON solved the modified formulation for 13 of the 15 problems in the 1000
second time limit, whereas BARON was only able to solve 9 of the original formulations.
The modified formulation led to greatly reduced runtimes for the larger instances. The
number of iterations required by BARON was dramatically reduced through the use of the
convex quadratic constraints (10). It should also be noted from the table that the modified
formulation is able to close about 80% of the optimality gap. Thus, these constraints are
very effective for these problems.

6.1.2 Improvement in the quality of the relaxations

We also examined the quality of the relaxations for larger instances, which were too large to
solve to optimality. The upper bound for these problems is given by the point x = 0.5e. (The
student version of KNITRO was unable to solve larger versions of these problems because
they have many linear constraints.) Refining the bounds used in the constraints (8) was not
helpful for these problems. The constraints (10) were used with α = ±1 for each pair of
variables. Five problems were run for each of five sizes, with n = p = 25, 50, 75, 100, 125,
and each entry in Table 2 is an average over the five problems of that size. It is notable that
the error in the objective function value is reduced by approximately 70%, with the results
improving as the problem instances get larger. This is the gap compared to the initial
solution 0.5e (labelled “gapH” in Table 1), so the gap with respect to the optimal solution
(“gapO” in Table 1) would be reduced by a greater amount. Further, the error in (5) is
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size %gap closed relative error LB time SOCP time %gap closed tri
25 61.9% 0.195 0.09 0.47 45.3%
50 69.6% 0.210 1.60 5.01 49.5%
75 70.7% 0.213 12.12 23.30 49.9%

100 72.3% 0.226 97.40 72.14 50.0%
125 72.8% 0.229 768.17 199.08 50.0%

Table 2: Computational results for QCQPs with diamond constraints for larger instances.
The columns give the proportion of the duality gap closed, the value of

∑n−1
i=1

∑n
j=i+1 |σjk −

xjxk| after adding (10) relative to this quantity before adding these constraints, the time
required to solve the initial relaxation, the time required to solve the final relaxation, and
the percentage of the initial gap closed using the inequalities in [18].

reduced by at least 77%, as can be seen from the third column. Even the relative runtime
for the SOCP relaxation with (10) improves as the size of the problems grows (although
this may be due to the difference in tolerances in CPLEX for linear programs as opposed
to second order cone programs, and that CPLEX uses simplex for the LPs and an interior
point method for the quadratically constrained problems). The constraints (10) give the
convex envelope of xjxk for these problems (see Proposition 4), and it can be seen that
these constraints dramatically outperform the triangle-based constraints from [18] for these
problems.

6.2 Random QCQP’s

The second class of problems constrain 0 ≤ xi ≤ 1 for i = 1, . . . , n. The entries in ci and
Qi were generated as in §6.1. The right hand side coefficients gi were uniformly distributed
between 1 and 100, as in [5]. The entries in the m × n matrix A were uniformly generated
between 0 and 1, and the entries in b uniformly between 1 and 10. The origin is feasible in
these problems, and we used KNITRO to find a better feasible solution and an upper bound.
The initial lower bound is the optimal value of the convex QCQP using the McCormick linear
constraints without refining the bounds.

Refining the bounds used in (8) was somewhat helpful for these problems. We only
refined the bounds for variables that were at least 0.02 from their boundaries; this weakened
the lower bound on the optimal value slightly, but greatly reduced the computational time.
We generated second order cone constraints (10) for five choices of α, namely, ±1,±3 and
1
3
. It is expensive to find the upper and lower bounds αU and αL for all of the pairs of

variables, so we only generated the constraints for the pairs where (5) was most violated
in the solution to the relaxation with the refined bounds on the variables. This limited
constraint generation appeared to be about as effective as generating the constraints for all
pairs. For these problems, the constraints from [18] were about as effective as (10), and
combining the two sets of constraints is slightly better than either set alone; because of
the small difference, these results are omitted. The computational results are contained in
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n p m %gap closed relative error (8) time (10) time
(8) (8)+(10) (8) (8)+(10)

20 20 80 63 71 0.44 0.16 0.13 0.96
20 50 160 68 77 0.55 0.26 0.13 0.95
40 20 80 53 73 0.49 0.23 0.48 7.72
40 50 160 61 78 0.66 0.30 0.43 10.4
60 20 80 36 55 0.64 0.42 2.48 77.8
60 50 160 26 41 1.55 1.15 1.27 57.5

Table 3: Computational results for QCQPs with approximately 30% of entries in each Qi

being nonzero. The columns give the proportion of the duality gap closed and the value of∑n−1
i=1

∑n
j=i+1 |σjk − xjxk| after refining the bounds used in the McCormick constraints and

after adding the convex quadratic constraints (10), relative to this quantity before refining
the bounds used in the McCormick constraints, the time required to find the refined bound
from (8), and the time required to find the bounds for (10) and solve the resulting second
order cone program.

Table 3.
It is clear that refining the bounds used for the McCormick constraints is helpful, and that

the constraints (10) can help considerably with closing the remaining gap. Constraint (10)
also succeeds in decreasing the relative error in

∑n−1
i=1

∑n
j=i+1 |σjk−xjxk| when compared to

the value after using the refined McCormick constraints. Refining the McCormick constraints
does not always help this measure, possibly because of some outlier coordinates.

6.3 Linear programs with complementarity constraints

The third test set of problems arise from linear programs with linear complementarity con-
straints. A standard formulation for such a problem has variables x ∈ IRn and y ∈ IRm, and
is the following:

minimize
(x,y)

cTx+ dTy

subject to Ax+By ≥ b

and 0 ≤ y ⊥ q +Nx+My ≥ 0,

(19)

in which N ∈ IRm×n, M ∈ IRm×m, q ∈ IRm, c ∈ IRn, d ∈ IRm, b ∈ IRk, A ∈ IRk×n and
B ∈ IRk×m. This is equivalent to the quadratically constrained quadratic program

minimize
(x,y)

cTx+ dTy

subject to Ax+By ≥ b

0 ≤ y, q +Nx+My ≥ 0,

yT (q +Nx+My) ≤ 0.

(20)
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Note that this QCQP has just a single quadratic constraint, which can be expressed equiv-
alently as

qTy + ỹTx+
1

2
yT (M +MT )y ≤ 0, ỹ = NTy.

In the problems we generated, M +MT is positive semidefinite and n = 2, so there are only
two bilinear terms. Problems of this type arise, for example, in parameter selection with
support vector regression [16]. Burer [9] has shown that problems of this type are equivalent
to convex optimization problems over the cone of completely positive matrices, provided y
and q +Nx+My are bounded.

The parameters in (19) were generated as follows. The variables x and y are constrained
to be nonnegative. The entries in c and d are uniformly distributed integers between 0
and 9, which ensures the problem is not unbounded. The entries in A, B, and N are
uniformly generated integers between -5 and 5, with a proportion of the entries zeroed out.
The matrix 1

2
(M + MT ) is set equal to LLT where L is an m × r matrix whose entries

are uniformly generated integers between -5 and 5, with a proportion of the entries zeroed
out. This construction ensures that 1

2
(M + MT ) is positive semidefinite. The matrix M is

then obtained from 1
2
(M +MT ) by adjusting the nonzero off-diagonal entries by a uniformly

distributed random integer between -2 and 2. To ensure feasibility of (19), a solution x̄,
ȳ is generated. The entries in x̄ are integers uniformly distributed between 0 and 9. Two
thirds of the entries in ȳ are set equal to zero, and the remainder are integers uniformly
distributed between 0 and 9. The entries in the right hand side b are chosen so that each
slack with the generated solution is an integer uniformly distributed between 1 and 10.
The third of the entries in q corresponding to the positive components of ȳ are chosen so
that complementarity is satisfied. Another third of the entries in q are chosen so that the
corresponding components of q + Nx̄ + Mȳ are zero. The final third of the entries of q
are chosen so that the corresponding slack in q + Nx̄ + Mȳ ≥ 0 is an integer uniformly
distributed between 1 and 10. The construction is designed so that it is unlikely that the
generated solution x̄, ȳ is optimal.

KNITRO was used to find a feasible solution to (20). The LP relaxation of (19) was
solved to give an initial lower bound. This bound was improved in three stages:

1. Use the constraints (8).

2. Refine the bounds on x and ỹ used in (8).

3. Add constraints of the form (10) for the same five choices of α as in §6.2, namely ±1,
±3, and 1

3
.

Refining the bounds on x and ỹ was very effective for this class of problems, so we repeatedly
refined, for a total of 8 refinements.

Computational results are contained in Table 4. Problems with m = 100, 150, and 200
complementarities were solved. The matrices A, B, N , and L were either 20% or 70% dense.
The rank r of L was either 30 or 60 for m = 100, either 30 or 100 for m = 150, and either 30 or
120 for m = 200. Five problems were solved for each choice of m, sparsity, and rank, leading
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% gap % time (secs) sufficient

closed 100 150 200

McCormick 47.0 0.2 0.5 1.2 0

+ 8 refines 88.2 9.7 29.4 67.6 6

+ quadratic 88.4 10.0 30.3 69.3 8

Table 4: Computational results for linear programs with complementarity constraints

to a total of 60 problems. For one problem with m = 150 and four problems with m = 200,
CPLEX reported that the matrix M + MT was not positive semidefinite, due to numerical
errors, and so these problems were not solved. The results did not appear to be greatly
affected by the choice of sparsity or rank, so the results are aggregated in the table, and each
entry in the “time” columns represents a mean of 20, 19, or 16 instances. The effectiveness
of the approach also did not appear to be greatly affected by the problem size m, so the “%
gap closed” column reports the average value over all 55 solved instances. We were able to
determine the optimal solution for these problems using a branch-and-cut approach, so the
“gap” is the gap between the optimal value and the value of the LP relaxation.

For these problems, refining the McCormick bounds is very powerful, with constraint
(10) providing some additional help. As shown in the last column of the table, this approach
is able to determine the optimal solution for 8 of the 60 test problems. The nonconvex
quadratic constraint yTw ≤ 0 is a powerful modeling tool for these problems. Even with just
the McCormick bounds, we are able to close 47% of the gap; refining the bounds and using
constraint (10) closes most of the remaining gap.

7 Conclusions

Convex quadratic relaxations of nonconvex quadratic constraints can be powerful compu-
tationally, often closing much of the gap between a lower and upper bound on the optimal
value of a nonconvex quadratically constrained quadratic program. They allow the solution
to global optimality of some instances that cannot be solved directly within a time limit. For
certain classes of problems, the constraints introduced in this paper give the convex envelope
of a bilinear function. Care is still needed with the use of these constraints, because gen-
eral codes for convex quadratic programming problems are not quite as reliable and highly
developed as codes for linear programming and these problems may not satisfy constraint
qualifications, so it would perhaps be necessary to build in a tolerance before employing
these constraints in a branch-and-bound code to find an optimal solution.
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