
An analytic center cutting plane approach for conic programming

Vasile L Basescu
email: vbasescu@comcast.net

John E Mitchell
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

email: mitchj@rpi.edu http://www.rpi.edu/~mitchj

We analyze the problem of finding a point strictly interior to a bounded, fully dimensional set from a finite
dimensional Hilbert space. We generalize the results obtained for the LP, SDP and SOCP cases. The cuts added
by our algorithm are central and conic. In our analysis, we find an upper bound for the number of Newton steps
required to compute an approximate analytic center. Also, we provide an upper bound for the total number
of cuts added to solve the problem. This bound depends on the quality of the cuts, the dimensionality of the
problem and the thickness of the set we are considering.

Key words: cutting plane, cutting surface, analytic center, conic programming, feasibility problem

MSC2000 Subject Classification: Primary: 90C51, 90C25; Secondary: 90C05, 90C22

OR/MS subject classification: Primary: theory and algorithms of nonlinear programming; Secondary: convexity

1. Introduction In this paper we will analyze the feasibility problem:

“Given an m-dimensional Hilbert space (Y, 〈·, ·〉Y), find a point y in the convex bounded set Γ ⊂ Y .”

Feasibility problems can be as hard to solve as optimization problems. In fact, once we have an
algorithm for solving the feasibility problem, we can use it for solving optimization problems by using
binary search.

Because the set Γ is convex, the problem we analyze is of interest in the larger context of non-
differentiable convex optimization.

The first assumption made in any feasibility problem is that at least part of the domain Γ is strictly
included in a larger set Ω0. This larger set can be described using a set of so called “box-constraints”.
These “box-constraints” have different forms, depending on the nature of the Hilbert space (Y, 〈·, ·〉Y).
In the most general setting, the set Ω0 is given by

Ω0 := {y ∈ Y : c1 ≤ y ≤ c2}.

The inequality sign “≤” used in describing Ω0 is a partial order defined on Y . This partial order
generates a cone of “positive” vectors K (hence the name of conic programming),

K := {x ∈ Y : x ≥ 0}.

Note here that u ≥ v ⇔ u− v ≥ 0. This partial order is what distinguishes different classes of feasibility
problems.

The most basic class of such problems is linear programming. Linear programming deals with prob-
lems that have a linear objective and linear constraints. One of the multiple equivalent forms a linear
programming problem can have is:

max bT y,
subject to AT y ≤ c.

In this setting, the inequality between two vectors is to be understood componentwise,

u ≥ v iff ui ≥ vi for all i.

This vector inequality “≥” introduces a partial ordering on the vector space IRn. The first orthant is
the corresponding cone of positive vectors.

More general than linear programming is second order cone programming. The partial order involved
in this case is given by

1

mailto:vbasescu@comcast.net
mailto:vbasescu@comcast.net
http://www.rpi.edu/~mitchj
mailto:mitchj@rpi.edu
http://www.rpi.edu/~mitchj

2 Basescu and Mitchell: ACCPM for conic programming

u ≥ 0, u ∈ IRn ⇔ u1 ≥
√

n∑
i=2

u2
i .

The induced cone is called the second order cone or the Lorentz cone or the ice-cream cone. Linear
programming can be considered a special case for second order cone programming. To see this it is
enough to observe that if n = 1 the second order cone is IR+. Then the first orthant IRn

+ can be
represented as a cartesian product of n lines IR+ or of n one dimensional second order cones.

Even more general is semidefinite programming. In this case the cone K is the cone of positive
semidefinite matrices Sn. The partial order, denoted � is given by

A � B ⇔ A−B ∈ Sn.

To see that second order cone programming is a subcase of semidefinite programming it is enough to
notice that the second order cone can be embedded in the cone of positive semidefinite matrices because

un ≥

√
n−1∑
i=1

u2
i ⇔

(
unI v
vT un

)
� 0,

where v is a n− 1 - dimensional vector with vi = ui for i = 1, . . . , n− 1.

All these cases are part of the conic programming family of problems. In this general case, the cone
considered is a so called self-scaled cone (it will be defined later). The second order cone, the cone of
positive semidefinite matrices and their cartesian products are examples of such cones.

This is the general context in which we intend to analyze the feasibility problem. We assume that this
problem has a solution. One way of insuring that is to require that Γ contains a small ball of radius ε.
This assumption insures that the set is not too flat. Any point from the interior of Γ is called a feasible
point.

Next we will describe the main idea of our approach (most of the terms encountered here will be
defined later on, in the second section).

Going back to our problem we assume that

Ω0 := {y ∈ Y : −c̃0 ≤ y ≤ c̃0 with c̃0 ∈ int(K̃0)}

Here K̃0 is a full-dimensional self-scaled cone in the Hilbert space (X̃0, 〈·, ·〉0) with dim(X̃0) = m. We
assume the existence of an oracle which, given a point ŷ either recognizes that the point is in Γ or returns
a p-dimensional Hilbert space (X, 〈·, ·〉X) together with an injective linear operator A : X → Y such that:

Γ ⊆ {y ∈ Y : A∗(ŷ − y) ∈ K}.

HereK is a full-dimensional self-scaled cone in the Hilbert space (X, 〈·, ·〉X). We will say that the operator
A defines p central cuts.

In solving the problem we will generate a sequence of closed, bounded sets Ωi such that Γ ⊆ Ωi ⊂ Ωi−1

for any i ≥ 1. Each set Ωi is obtained from the previous set Ωi−1 by introducing pi central cuts through
a special point ŷi−1 ∈ Ωi−1:

Ωi := Ωi−1 ∩ {y ∈ Y : A∗i (ŷi−1 − y) ∈ Ki}. (1)

The operator Ai : (Xi, 〈·, ·〉i) → Y is injective and linear, Xi is a pi-dimensional Hilbert space and Ki is
a full-dimensional self-scaled cone in Xi.

The special chosen points ŷi are θ - analytic centers of the corresponding domains Ωi with respect to

an intrinsically self-conjugate functional fi :
i⊕

j=0

Kj → IR.

We will prove that if the total number of cuts added is big enough then the θ - analytic center of the
last generated set Ωi is guaranteed to be in Γ. We will get an estimate on the number of cuts that are
added in order to solve the problem. Also we will study the complexity of obtaining one θ - analytic
center ŷi from the previous one ŷi−1.

Basescu and Mitchell: ACCPM for conic programming 3

We will prove that the algorithm will stop with a solution after no more than O∗(mP 3Θ3

ε2Λ2) (O∗ means
that terms of low order are ignored) cuts are added. Here P is the maximum number of cuts added at any
of the iterations, Θ is a parameter characterizing the self-concordant functionals and Λ is the minimum
eigenvalue of all A∗iAi (Ai is the injective operator describing the cuts added at step i). The complexity
result we obtain is comparable with the results obtained for less general cases.

Our presentation starts by introducing some previous results corresponding to some particular cases
(LP, SDP, SOCP). We will start our analysis by setting up the theoretical background. We will present
the notion of self-concordant functional and some related results in Section 3. The entire analysis is based
on using local inner-products. This notion together with some properties are introduced in Section 4.
After setting up the theoretical structure we will define in Section 5 the notion of analytic center. Because
computationally it is impossible to work with exact analytic centers, the notion of an approximate analytic
center will be introduced. We will analyze then some its properties. In Section 6 we will introduce more
carefully all the assumptions we make about the problem.

After describing the algorithm in Section 7, we will analyze in Section 8 how feasibility can be recovered
after the cuts are added centrally, right through the analytic center. In order to keep track of changes
in the potentials (another name for the self-concordant functionals used to define the analytic centers)
some scaled recovery steps need to be taken.

Section 9 is dedicated to analysis of potentials. The main result will characterize how the potentials
at two consecutive analytic centers are related. Using a primal-dual potential and two types of Newton
steps we will prove in Section 10 that a new analytic center can be easily recovered

We will derive an upper bound for the potentials evaluated at the corresponding analytic centers in
Section 11. This upper bound will be the one that will be used to prove that the algorithm eventually
stops with a solution. As expected, this bound depends on the radius ε of the ball we assumed that
Γ contains, on the characteristics of the potentials introduced and also on the condition number of the
operators describing the cuts.

Finally, in Section 12 we prove that the algorithm will arrive at a solution in a certain number of
steps. We will use the approach employed by Ye in [17] in deriving the bound for the total number of
constraints that can be introduced before the algorithm stops with a solution.

2. Previous Work The notion of analytic center was introduced for the first time by Sonnevend
in [15] in the context of LP feasibility problems. Atkinson and Vaidya are the ones to introduce for the
first time in [1] a complete analysis of a cutting plane method using analytic centers. In their approach
the cuts are introduced one by one and “short-steps” are used. Dropping cuts is also allowed. The set Γ
is included in a cube of side 2L+1 and contains a ball of radius 2−L. The complexity obtained is O(mL2)
iterations. Mitchell and Ramaswamy extended this result in [6] to “long-steps”. The complexity was the
same but the “long-steps” method is more promising from the computational point of view.

The first analysis of the complexity of the analytic center cutting plane method with multiple cuts
was done by Ye in [17]. He proved that by adding multiple cuts, the solution to the feasibility problem
can be obtained in no more than O∗(m2P 2

ε2) iterations. The same complexity was obtained by Goffin and
Vial in [2]. They proved that the recovery of a new analytic center can be done in O(p ln(p+1)) damped
Newton steps. This number of steps is the same regardless of the scaling matrix that is used (primal,
dual or primal-dual). In our approach we will use a primal-dual approach.

The SOCP case is treated by Oskoorouchi and Goffin in [11]. They analyze the case when one SOCP
cut is added at each call of the oracle. They prove that the analytic center of the new domain can be
recovered in one Newton step and the total number of analytic centers generated before getting a feasible
point is fully polynomial. This was generalized to multiple SOCP cuts by Oskoorouchi and Mitchell [12].

The semidefinite programming case is treated by Toh et. al. [16]. They consider the case of adding
multiple central linear cuts. In this case the cuts are added centrally through the analytic center Ŷ . The
form of these cuts is given by {Y ∈ Sm

+ : Ai •Y ≤ Ai • Ŷ , i = 1, . . . , p}. If P is the maximum of all p, the
complexity they obtain is O(m3P

ε2). Oskoorouchi and Goffin proved in [10] that when cuts corresponding
to SDP cones are added centrally, the analytic center can be recovered in O(p ln(p+ 1)) damped Newton
steps and the total number of steps required to obtain the solution is O(m3P 2

ε2).

4 Basescu and Mitchell: ACCPM for conic programming

Peton and Vial extend the analytic center cutting plane method to the general case of convex program-
ming. In [13] they study the introduction of multiple central cuts in a conic formulation of the analytic
center cutting plane method. They prove that the new analytic center can be recovered in O(p lnwp)
damped Newton iterations, where w is a parameter depending of the data.

A general survey of non-differentiable optimization problems and methods with a special focus on the
analytic center cutting plane method is presented by Goffin and Vial in [3]. This paper presents also the
case of multiple cuts and the case of deep cuts.

The analytic center cutting plane class of methods is a member of the larger class of interior point
cutting plane methods. Mitchell in [5] gives an overview of polynomial interior point cutting plane
methods, including methods based on the volumetric center.

3. Preliminaries on self-concordant functionals Self-concordant functionals are of the utmost
importance for optimization theory. In this section we will define this notion and will give some results
regarding them that are relevant for our analysis. Most of the definitions/theorems presented in this
section are taken from or inspired by [14] and [9].

Let (X, 〈·, ·〉X) be a finite dimensional Hilbert space and let f : X → IR be a strictly convex functional
with the following properties: Df , the domain of f is open and convex, f ∈ C2 and its hessian H(x) is
positive definite for all x ∈ Df . Using the functional f we introduce for each x ∈ Df the local (intrinsic)
inner product (at x):

〈u, v〉x := 〈u, v〉H(x) = 〈u,H(x)v〉X
with the corresponding induced norm:

‖u‖2x = 〈u, u〉x = 〈u,H(x)u〉X .
More generally, for any positive definite operator S we can define a new inner product given by

〈u, v〉S = 〈u, Sv〉. (2)

Let Bx(y, r) be the open ball of radius r centered at y given by:

Bx(y, r) = {z : ‖z − y‖x ≤ r}. (3)

Definition 3.1 A functional f is said to be (strongly nondegenerate) self-concordant if for all x ∈ Df

we have Bx(x, 1) ⊆ Df , and if whenever y ∈ Bx(x, 1) we have:

1− ‖y − x‖x ≤
‖v‖y

‖v‖x
≤ 1

1− ‖y − x‖x
, for all v 6= 0.

Let SC be the family of such functionals.

Let g(y) be the gradient of the functional f defined using the original inner product 〈·, ·〉. In the local
intrinsic inner product 〈·, ·〉x, the corresponding gradient gx(y) and hessian Hx(y) are given by:

gx(y) := H(x)−1g(y), (4)
Hx(y) := H(x)−1H(y). (5)

Definition 3.2 A functional is a (strongly nondegenerate self-concordant) barrier functional if f ∈ SC
and

ϑf := sup
x∈Df

‖gx(x)‖2x <∞. (6)

Let SCB be the family of such functionals.

Definition 3.3 Let K be a closed convex cone and f ∈ SCB, f : int(K) → IR. f is logarithmically
homogeneous if for all x ∈ int(K) and t > 0:

f(tx) = f(x)− ϑf ln(t). (7)

Equivalently, f is logarithmically homogeneous if, for all x ∈ int(K) and all t > 0:

gx(tx) =
1
t
gx(x). (8)

Basescu and Mitchell: ACCPM for conic programming 5

Theorem 3.1 (Theorem 2.3.9. [14].) If f is a self-concordant logarithmically homogeneous barrier
functional then:

H(tx) =
1
t2
H(x), gx(x) = −x and ‖gx(x)‖x =

√
ϑf .

In linear programming such a logarithmically homogeneous self-concordant barrier functional is: f :

IRn
+ → IR with f(x) := −

n∑
i=1

ln(xi). In this case ϑf = n. For the SOCP case, the functional is given

by f(x) := − ln(x2
1 −

n∑
i=2

x2
i), with ϑf = 2. In the case of semidefinite programming such a functional is

given by f(X) := − ln det(X), with X a positive semidefinite matrix, X ∈Sn. The corresponding value
for ϑf is ϑf = n.

Most of the following results (taken from [14]) are technical in nature. They are needed in our analysis
of the algorithm.

Theorem 3.2 (Theorem 2.2.2. [14].) If f ∈ SC, x ∈ Df and y ∈ Bx(x, 1), then

|f(y)− f(x)− 〈g(x), y − x〉X − 1
2
‖y − x‖2x| ≤

‖y − x‖3x
3(1− ‖y − x‖x)

.

If we take y = x+ d with ‖d‖x < 1 then

f(x+ d)− f(x) ≤ 〈g(x), d〉X +
1
2
‖d‖2x +

‖d‖3x
3(1− ‖d‖x)

. (9)

Theorem 3.3 (Theorem 2.3.8. [14].) Assume f ∈ SCB and x ∈ Df . If y ∈ D̄f , then for all 0 < t ≤ 1,

f(y + t(x− y)) ≤ f(x)− ϑf ln t. (10)

If the functional f is also logarithmically homogeneous, then a direct consequence of Theorem 3.3 is
the next lemma.

Lemma 3.1 Let f ∈ SCB be a logarithmically homogeneous functional. If x ∈ Df , y ∈ D̄f and for all
t ≥ 0 then

f(x+ ty) ≤ f(x). (11)

If the domain of f is a cone K then the geometrical interpretation of Lemma 3.1 is that x maximizes
f over the cone x+K.

Definition 3.4 Let K be a cone and z ∈ int(K). The dual cone of K is

K∗ = {s ∈ X : 〈x, s〉X ≥ 0 for all x ∈ K}. (12)

The dual cone of K with respect to the local inner product 〈·, ·〉z is given by

K∗
z := {s ∈ X : 〈x, s〉z ≥ 0, for all x ∈ K}. (13)

The cone K is intrinsically self-dual if K∗
z = K for all z ∈ int (K).

Definition 3.5 The conjugate of f ∈ SCB with respect to 〈·, ·〉 is

f∗(s) := − inf
x∈int(K)

(〈x, s〉+ f(x)) with s ∈ int(K∗
z).

In particular, the conjugate of f ∈ SCB with respect to 〈·, ·〉z is

f∗z (s) := − inf
x∈int(K)

(〈x, s〉z + f(x)) with s ∈ int(K∗
z).

A final definition:

6 Basescu and Mitchell: ACCPM for conic programming

Definition 3.6 A functional f ∈ SCB is intrinsically self-conjugate if f is logarithmically homogeneous,
if K is intrinsically self-dual, and for each z ∈ int(K) there exists a constant Cz such that f∗z (s) =
f(s) + Cz for all s ∈ int(K).

A cone K is self-scaled or symmetric if int(K) is the domain of an intrinsically self-conjugate barrier
functional.

Lemma 3.2 Let K be a self-scaled cone. Then

K = K∗
z = H(z)−1K∗ = H(z)−1K. (14)

Hence, for any z ∈ int(K), H(z) is a linear automorphism of K.

Lemma 3.3 (Proposition 3.5.1. [14].) If f : int(K) → IR is an intrinsically self-conjugate barrier
functional, then for all z ∈ int(K),

f∗z (s) = f(s)− (ϑf + 2f(z)).

As a direct consequence:

g∗ ≡ g and H∗ ≡ H.

Theorem 3.4 (Theorem 3.3.4. [14].) Assume f is self-concordant. Then f∗ ∈ C2. Moreover, if x and
s satisfy s = −g(x), then

− g∗(s) = x and H∗(s) = H(x)−1.

Starting now, all the functionals we will deal with will be intrinsically self-conjugate barrier functionals.

For each cone K we will consider a fixed vector e ∈ int(K) and we will take all the inner products to
be scaled by e.

Starting now, unless explicitly stated otherwise, each time we deal with an intrinsic self-conjugate
functional f defined on a Hilbert space (X, 〈·, ·〉X), the inner product will be thought to be the one
induced by e (i.e. 〈u, v〉 = 〈u,H(e)v〉X where 〈·, ·〉X is the original inner-product on X). Accordingly, we
will denote K∗ := K∗

e , g(x) := ge(x) to be the gradient of f , H(x) := He(x) to be the hessian and so on.

Also if A∗X is the adjoint operator of A in the original inner product, then H(e)−1A∗X is the adjoint
operator of A in the local inner product induced by e. We will denote

A∗ := H(e)−1A∗X . (15)

With this notation in mind, the vector e has some immediate and useful properties:

‖e‖ =
√
ϑf , g(e) = −e,H(e) = I. (16)

Renegar proved in [14] the following result

Theorem 3.5 Let f be an intrinsically self-conjugate barrier functional. Then, for any x ∈ int(K):

H(x)
1
2 e = −g(x). (17)

with H and g being the hessian and gradient of f considered in the local inner product induced by e.

4. On scaled inner products Let (X, 〈·, ·〉X) be a finite dimensional Hilbert space, with K a self-
scaled cone and f : X → IR the corresponding self-conjugate functional. Let e ∈ int(K) be a fixed point
chosen arbitrarily.

Define the inner product 〈·, ·〉 := 〈·, ·〉H(e) to be the local inner product induced by e, i.e.:

〈u, v〉 = 〈u,H(e)v〉X .

For this point e define the set B := {v ∈ X : e± v ∈ int(K)}. Using this set define a new norm on X:

|v| := inf{t ≥ 0 :
1
t
v ∈ B}.

Basescu and Mitchell: ACCPM for conic programming 7

Lemma 4.1 (Theorem 3.5.7. [14].) Assume K is self-scaled. If x ∈ K satisfies |x− e| < 1, then for all
v 6= 0:

1
1 + |x− e|

≤ ‖v‖x

‖v‖
(18)

and
‖v‖−g(x)

‖v‖
≤ 1 + |x− e|. (19)

Note here that ‖v‖x = ‖H(x)
1
2 v‖ with H(x) and ‖ · ‖ being the ones induced by e.

This lemma gives a lower bound on the minimum eigenvalue for the Hessian of f computed in the
norm induced by e at any point x such that |x− e| < 1:

λmin(H(x)) = inf
v 6=0

‖H(x)
1
2 v‖2

‖v‖2
= inf

v 6=0

‖v‖2x
‖v‖2

>
1
4
. (20)

e

B

1
v

2
=

K

O

K

e - K

Figure 1: The sets B, K and the level set |v| = 1
2 .

Now let’s take a look at the domain described by |x− e| < 1. We claim that:

Lemma 4.2 K :=int(K) ∩ (e−K) ⊆ {x ∈ int(K) : |x− e| < 1}.

Proof. Let y ∈ int(K) ∩ (e − K). Then y = e − z, with z ∈ K. The point y − e ∈ B because
e+ y − e = y ∈ int(K) and e− (y − e) = z + e ∈ int(K).

Let y′ be the point of intersection between ∂K and the line that goes through e and has the direction
y − e. Then y′ − e = τ(y − e) for some τ > 1. The middle point between y and y′ is clearly a point
interior to K. Moreover,

e+
y + y′

2
− e =

y + y′

2
∈ int(K)

and

e− y + y′

2
+ e = e+

e− y

2
+
e− y′

2
∈ int(K).

8 Basescu and Mitchell: ACCPM for conic programming

So

1 + τ

2
(e− y) = e− y + y′

2
∈ B.

Then:

|y − e| = inf{t ≥ 0 :
1
t
(e− y) ∈ B} ≤ 2

τ + 1
< 1.

So |y − e| < 1. �

As a direct consequence of the previous analysis:

Corollary 4.1 Let f ∈ SCB be intrinsically self-conjugate. Then, for any x ∈ int(K) ∩ (e−K):

λmin(H(x)) >
1
4
. (21)

5. Analytic centers Let (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y) be two Hilbert spaces of finite dimensions:
dimX = n, dimY = m. In X consider a full-dimensional self-scaled cone K, pointed at zero (i.e.
K ∩ −K = {0}) with the corresponding intrinsically self-conjugate barrier functional f : X → IR. Let
A : X → Y be a surjective linear operator.

The analytic center (the AC) of the domain FP := {x ∈ K : Ax = 0} with respect to f(x) + 〈c, x〉X
is the exact solution to the problem:

min f(x) + 〈c, x〉
subject to Ax = 0 (P1),

x ∈ K.

Alternatively, the analytic center can be defined using the dual formulation of the previous problem. The
analytic center of FD := {s ∈ K : A∗y + s = c} with respect to f∗e (s) is the solution to:

min f∗e (s)
subject to A∗y + s = c, (D1)

s ∈ K.

One last thing to note here. The functional f is intrinsic self-conjugate. Then, by definition, f∗e (s)−f(s)
is constant. So minimizing f∗e (s) is equivalent to minimizing f(s). In what will follow we will keep using
the notation f∗(s) although we are actually using f∗e (s).

Both problems have the same set of KKT conditions. Hence, for any analytic center the next equalities
hold:

g(x) + s = 0,
g(s) + x = 0,

Ax = 0, (22)
A∗y + s = c,

x, s ∈ K.

For simplicity we will say that x or y or s is an analytic center if they are the components of an analytic
center.

We can introduce the notion of θ - analytic center by relaxing some of the previous equalities. First
we will define this notion, then the following lemma will give an insight for this definition.

Definition 5.1 (x, y, s) is a θ - analytic center for FP , FD iff x ∈ FP , s ∈ FD and

‖I −H(x)−
1
2H(s)−

1
2 ‖ ≤ θ√

ϑf

. (23)

Basescu and Mitchell: ACCPM for conic programming 9

Lemma 5.1 Let (x, y, s) be a θ - analytic center. Then:

‖x+ g(s)‖−g(s) ≤ θ,

‖s+ g(x)‖−g(x) ≤ θ. (24)

Proof. We will prove only the first inequality. The second inequality then follows from Theorem
3.7.1 in Renegar [14]. Note that the inner product 〈·, ·〉X is the one induced by e. Using Theorem 3.4:

‖x+ g(s)‖2−g(s) = 〈x+ g(s),H(s)−1(x+ g(s))〉X .

Next we will use the fact that, from Theorems 3.1 and 3.5 and (4), for any x ∈ K:

g(x) = H(x)
1
2 e and x = −gx(x) = −H(x)−1g(x).

Based on these:

‖x+ g(s)‖2−g(s) = 〈−H(x)−1g(x) + g(s),H(s)−1(−H(x)−1g(x) + g(s))〉X
= 〈−H(x)−1H(x)

1
2 e+H(s)

1
2 e,H(s)−1(−H(x)−1H(x)

1
2 e+H(s)

1
2 e)〉X

= 〈−H(s)−
1
2H(x)−

1
2 e+ e,−H(s)−

1
2H(x)−

1
2 e+ e〉X .

So:

‖x+ g(s)‖−g(s) ≤ ‖I −H(s)−
1
2H(x)−

1
2 ‖‖e‖ ≤ θ.

�

The motivation for using this definition for a θ - analytic center should be clear if we compare it with
the usual definition used in linear programming for a θ - analytic center:

‖e− xs‖ ≤ θ.

with e being the vector of all ones and xs the Hadamard product of the vectors x and s.

Using the fact that in linear programming case the hessian is given byH(x) = diag(x−2) (where diag(x)
is the diagonal matrix with the vector x being the diagonal and x−1 is the vector with components x−1

i)
our definition reduces to:

‖I −H(x)−
1
2H(s)−

1
2 ‖ = ‖diag(e− xs)‖ = max

i
(1− xisi) ≤

θ√
ϑf

.

Note here that, in the linear case, our definition for a θ analytic center becomes the standard definition
form the LP case, the only difference being that we use the infinity norm instead of the Euclidean norm.
Using Lemma 5.1 it is clear that our definition is close to the one used in the linear programming case:

‖x+ g(s)‖2−g(s) = (x− s−1)T diag(s2)(x− s−1) = ‖e− xs‖2.

Lemma 5.2 If (x, y, s) is the analytic center for the intrinsically self-conjugate barrier functional f then
H(s)H(x) = I.

Proof. Note that g∗ ≡ g andH∗ ≡ H because f is an intrinsically self-conjugate functional. Because
(x, y, s) is an analytic center then s = −g(x) so, using Theorem 3.4 we get that H(s) = H∗(s) = H(x)−1.
Hence the conclusion. �

In a linear programming formulation H(s)H(x) = I translates into xisi = 1 for all i. This is the exact
expression that defines the exact analytic center in the linear programming case.

Lemma 5.3 Let f be an intrinsically self-conjugate barrier functional defined on a self-scaled cone K.
Let x, s ∈ K such that x = −g(s). Then:

f(x) + f∗(s) = −ϑf . (25)

10 Basescu and Mitchell: ACCPM for conic programming

Proof. Because f is self-conjugate we have g∗(s) = g(s). Renegar proved in Theorem 3.3.4 of [14]
that regardless of the inner product, the conjugate functional satisfies:

f∗(s) = 〈g∗(s), s〉 − f(−g∗(s)).

So f∗(s) = 〈g(s), s〉 − f(x) = −ϑf − f(x). �

Suppose that x is a feasible point in FP . If f is a self-concordant functional, then, by definition,
‖∆x‖x ≤ 1 implies that x+ ∆x is feasible.

This inequality describes an ellipsoid around the point x (also known as Dikin’s ellipsoid). This
ellipsoid defines a region around the point x where x+∆x is feasible too. The following lemmas will give
sufficient conditions on ∆x and ∆s to get x+ ∆x, s+ ∆s feasible, given that x and s are feasible in FP

and FD respectively.

Lemma 5.4 Let EP = {∆x ∈ X : A∆x = 0, ‖∆x‖x ≤ 1}. Let (x, y, s) be a θ - analytic center. Then:

(1 +
θ√
ϑf

)−1EP ⊆ {∆x ∈ X : A∆x = 0, ‖∆x‖H(s)−1 ≤ 1} ⊆ (1− θ√
ϑf

)−1EP .

Proof.

‖∆x‖H(s)−1 = ‖H(s)−
1
2 ∆x‖X = ‖H(s)−

1
2H(x)−

1
2H(x)

1
2 ∆x‖X

≤ ‖H(s)−
1
2H(x)−

1
2 ‖‖H(x)

1
2 ∆x‖X ≤ (1 +

θ√
ϑf

)‖H(x)
1
2 ∆x‖X

= (1 +
θ√
ϑf

)‖∆x‖x.

Also:

‖∆x‖x = ‖H(x)
1
2 ∆x‖X = ‖H(x)

1
2H(s)

1
2H(s)−

1
2 ∆x‖X

≤ ‖H(x)
1
2H(s)

1
2 ‖‖∆x‖H(s)−1 ≤ 1

(1− θ√
ϑf

)
‖∆x‖H(s)−1 .

�

A similar result holds for the Dikin’s ellipsoid around s.

Let ED = {∆s ∈ X : ∆s = −A∗∆y, ‖∆s‖s ≤ 1}.

Lemma 5.5 Let (x, y, s) be a θ - analytic center. Then:

(1 +
θ√
ϑf

)−1ED ⊆ {∆s : ∆s = −A∗∆y, ‖∆s‖H(x)−1 ≤ 1} ⊆ (1 +
θ√
ϑf

)−1ED.

Because analytic centers are minimizers of convex functionals defined on closed, bounded, convex sets,
the method of choice for computing them is the Newton method. The Newton step is defined to be the
vector H(x)−1g(x). This vector is the same as gx(x). Immediately we can see that, for logarithmically
homogeneous barrier functionals the Newton step has constant length if measured in the norm induced
by x: ‖gx(x)‖x =

√
ϑf . One advantage of using a self concordant barrier functional is that the Newton

step doesn’t change when the local inner product changes. This gives us more flexibility in the way we
choose the local inner product.

When computing approximate analytic centers we need a way of estimating distances to the exact
analytic center. When working with general functionals it is impossible to achieve this without knowing
the exact analytic center. This problem is eliminated when using self-concordant functionals. This is
because we can use local inner products instead of the original one. We can compute the distance between
two points x and y without knowing y. All we need to do is to use ‖x− y‖y to measure the distance.

All these properties will play an important role when we will analyze the complexity of recovering the
analytic center after adding cuts.

Basescu and Mitchell: ACCPM for conic programming 11

6. Assumptions and Notations We assume that all the operators Ai : Xi → Y , i ≥ 1 defining
the cuts are injective, hence the adjoint operators A∗i are surjective. Also, wlog we assume that ‖Ai‖ = 1.
The fact that Ai is injective gives also a bound on how many cuts we can add at a certain moment:
pi ≤ m.

For each space (Xi, 〈·, ·〉i) we will use the local norm induced by an arbitrary element ei ∈ int(Ki). So
whenever we use 〈·, ·〉i we will actually mean 〈·, ·〉ei . If there is no danger for confusion, we will also use
〈·, ·〉 instead of 〈·, ·〉ei .

The following assumptions are not critical for our analysis. We use them just to keep the analysis
simpler and easier to understand. The analysis would be the same without these assumptions but the
notation would be more complicated.

We assume that ‖Hi(ei)−1‖ = 1 for i ≥ 0, where Hi are the hessians corresponding to the intrinsically
self-conjugate functionals that are generated by the algorithm. The hessians are computed in the original
inner product (not the scaled one). To ensure this, it is enough to pick an arbitrary e′i ∈ int(Ki). Then
take ei := ‖H−1

i (e′i)‖−
1
2 e′i. Because fi is logarithmically homogeneous (hence H−1

i (tx) = t2H−1
i (x)) for

ei we have ‖H−1
i (ei)‖ = 1. We can scale e0 in a similar way to get ‖H0(e0)‖ = 1.

Let σi :=
√

pi

ϑi
ei. The length of this vector, measured in the local inner product induced by ei is

‖σi‖ =
√
pi. Without loss of generality, we can assume that fi(σi) = 0. We can do this easily. If fi

evaluated at this point is different from zero, then we can replace fi(x) by fi(x) − fi(σi). Note that we
can do this because the sum between a constant and an intrinsically self-conjugate barrier functional is
an intrinsically self-conjugate barrier functional.

7. The Algorithm The algorithm starts with the initial set

Ω0 := {y ∈ Y : −c̃0 �K̃0
y �K̃0

c̃0 with c̃0 ∈ int(K̃0)}

as the first outer-approximation of Γ. The cone K̃0 is a self-scaled cone in (X̃0, 〈·, ·〉0) - an m - dimensional
Hilbert space.

Let X0 := X̃0 ⊕ X̃0, K0 := K̃0 ⊕ K̃0 and let f0 be the intrinsically self-conjugate barrier functional
corresponding to K0, f0 : int(K0) → IR. The set Ω0 can be described by

Ω0 := {y ∈ Y : A∗0y + s = c0 with s ∈ K0}.

Here, A0 is a linear operator defined on X0, A0 : X0 → Y such that, its adjoint A∗0 : Y → X0 describes
Ω0 (i.e. A0 := Im ⊕ (−Im)).

Let ẽ0 ∈ int(K̃0) be an arbitrary point chosen such that the inverse of the hessian H̃0 of f̃0 has unit
norm at ẽ0: ‖H̃−1

0 (ẽ0)‖ = 1. Let’s take e0 := ẽ0 ⊕ ẽ0. Then e0 ∈ K0 and ‖H−1
0 (e0)‖ = 1 too.

Now, we change the inner product to be the one induced by e0. Because of this change, the adjoint of
the operator A0 changes from A∗0 to H0(e0)−1A∗0. In order not to complicate the notation, we will define
A∗0 to be the adjoint of A0 in the new inner product. Also, we will use c0 instead of the scaled vector
H0(e0)−1c0.

Using this new notation, the set Ω0 has the same description as before:

Ω0 = {y ∈ Y : A∗0y + s = c0, with s ∈ K0}.

Let (x0, y0, s0) be the θ - analytic center corresponding to f0. In order to obtain this point, we can take
a sequence of primal-dual Newton steps, starting at the strictly feasible point (e0, 0, c0) ∈ K0 ×Ω0 ×K0.
Note that e0 and c0 are strictly interior to K0. Also, the origin is a point strictly feasible in Ω0.

Once at y0, the oracle is called. If y0 ∈ Γ the oracle returns y0 and the algorithm stops with the
solution to our problem. If y0 /∈ Γ, the oracle returns p1 - central cuts. That is, the oracle returns a p1-
dimensional Hilbert space (X1, 〈·, ·〉1) together with a self-scaled cone K1, the corresponding intrinsically
self-conjugate barrier functional f1 : K1 → IR and a linear injective operator A1 : X1 → Y such that

Γ ⊆ {y ∈ Y : A∗1y + s = A∗1y0 with s ∈ K1}.

12 Basescu and Mitchell: ACCPM for conic programming

The equality A∗1y+s = A∗1y0 defines a central cut. It is called central because the point (y, s) := (y0, 0)
lies on the cut with s being the vertex of the cone K1.

We change the inner product on the space X1 with a local one induced by a vector e1 ∈ int(K1) chosen
arbitrarily such that the norm of the hessian of f1 computed in the original norm at e1 is unitary. Also
we change the functional f1 by adding a constant such that the modified functional:

f1(
√
p1

ϑ1
e1) = 0.

(as already discussed in Section 6).

Now we build the new instance of the algorithm. First, let X̄1 := X0⊕X1 be an (2m+p1) - dimensional
Hilbert space with the inner product induced by the inner products of X0 and X1. Let K̄1 := K0⊕K1 be
the new self-scaled cone with the corresponding intrinsically self-conjugate barrier functional f̄1 := f0⊕f1.
After adding the new cuts Ω0 becomes

Ω1 := Ω0 ∩ {y ∈ Y : A∗1y + s = A∗1y0 with s ∈ K1}.

For the new instance of the algorithm, the old θ - analytic center (x0, y0, s0) becomes (x0⊕0p1 , y0, s0⊕
0p1) (with 0p1 being the zero vector in X1).

The point y0 lies on the boundary of the new set Ω1. First we will take a step to recover strict feasibility
for this point. After that we generate a sequence of Newton steps that will take the point to (x1, y1, s1),
the θ - analytic center of the new domain Ω1. We will discuss more about these steps in sections 8, 9 and
10.

At this point we call the oracle again. If y1 ∈ Γ, we stop with the solution to our problem. If y1 /∈ Γ,
the oracle returns p2 central cuts that are added to the old instance of the algorithm, generating a new
set Ω2. Then the algorithm proceeds as before.

We will prove that the algorithm must stop with a solution after a sufficiently large number of cuts
has been added. The analysis of the number of cuts generated is presented in sections 9, 11, and 12.

After i iterations, the i-th instance of the algorithm is described by a Hilbert space X̄i =
i
⊕

j=0
Xj together

with a self-scaled cone K̄i =
i
⊕

j=0
Kj , the domain of an intrinsically self-conjugate barrier functional

f̄i =
i
⊕

j=0
fj . The current set Ωi is described by the linear operator Āi : X̄i → Y , with Āi =

i
⊕

j=0
Aj .

All linear operators Aj : Xj → Y , j ≥ 1, are injective and the inner products considered in the pj-
dimensional Hilbert spaces Xj are the ones induced by fixed elements ej ∈ int(Kj). These vectors ej

are strictly interior to the respective cones Kj and ‖Hj(ej)−1‖ = 1,∀j ≥ 1 (here Hj is the hessian of fj

computed in the original norm of Xj , not in the local norm induced by ej).

The idea behind our analysis is quite simple. As the algorithm proceeds, the sequence of sets Ωi is
generated. We will use the exact analytic centers sc

i of these sets. It is not necessary to generate exact
analytic centers, we only consider them for the analysis to go through. The main steps are:

• Get an upper bound UBi for f∗i (sc
i), for any i

• Compare two consecutive f∗i at the corresponding AC sc
i :

f∗i+1(s
c
i+1) ≥ f∗i (sc

i) + LBi

• After k steps :

UBk ≥ f∗0 (sc
0) +

k−1∑
i=0

LBi

• We prove that UBk →∞ slower than
k−1∑
i=0

LBi does

• The algorithm stops and concludes the problem is infeasible as soon as

UBk < f∗0 (sc
0) +

k−1∑
i=0

LBi

Basescu and Mitchell: ACCPM for conic programming 13

8. The recovery of feasibility In this section we will study the impact of the central cuts added
through an θ - analytic center and how feasibility can be restored.

Consider an instance of the algorithm described by an intrinsically self-conjugate functional f1 defined
on a Hilbert space (X1, 〈·, ·〉1) with the corresponding full-dimensional self-scaled cone K1 pointed at
zero. We consider here the case i = 1 for notational convenience. This analysis applies to any stage i of
the algorithm. The outer-approximation of the domain of interest Γ in this instance is

Ω1 = {y ∈ Y : A∗1y + s = c1, s ∈ K1},

with A1 : X1 → Y a linear operator. Let (x1, y1, s1) be the θ - analytic center for FP , FD. So its
components must verify:

A1x1 = 0, (26)
A∗1y1 + s1 = c1, (27)

x1, s1 ∈ K1 and y1 ∈ Y. (28)

We add p central cuts at this point: A∗2y + s = c2 with A∗2y1 = c2. The operator A2 is defined on a p
- dimensional Hilbert space (X2, 〈·, ·〉2). We assume that A2 is injective and linear.

The outer-approximation domain Ω1 becomes

Ω2 := Ω1 ∩ {y ∈ Y : A∗2y + s = c2, s ∈ K2}.

K2 is a self-scaled cone in X2 and let f2 : X2 → IR be the corresponding intrinsically self-conjugate
functional.

After adding the cuts, the primal and dual feasible sets FP and FD are changed:

FP := {x⊕ β : A1x+A2β = 0 with x ∈ K1, β ∈ K2}

and

FD := {s⊕ γ : A∗1y + s = c1, A
∗
2y + γ = c2 with s ∈ K1, γ ∈ K2, y ∈ Y }.

Let f := f1 ⊕ f2, X := X1 ⊕X2. After adding the cuts the old point (x1, y1, s1) becomes (x2, y2, s2):

x2 = x1 ⊕ β, y2 = y1, s2 = s1 ⊕ γ,

with y2 on the boundary of the new domain Ω2. At this new point, β = 0 and γ = 0 hence both f and f∗

are infinitely large. One step to recover feasibility is needed. Let this step be: ∆x⊕ β, ∆y and ∆s⊕ γ.
The new point must be feasible in FP and FD so:

A1(x1 + ∆x) +A2β = 0, (29)
A∗1(y1 + ∆y) + s1 + ∆s = c1, (30)

A∗2(y1 + ∆y) + γ = c2, (31)

with x1, x1 + ∆x, s1, s1 + ∆s ∈ K1 and β, γ ∈ K2. So, in order to get back feasibility we need to have:

A1∆x+A2β = 0, (32)
A∗1∆y + ∆s = 0, (33)
A∗2∆y + γ = 0. (34)

In moving away from the boundary of Ω2 we should try to minimize as much as possible the contribution
of β and γ to the potential functions. One way of doing this is to set-up the next problems:

min f2(β)
subject to A1∆x+A2β = 0

β ∈ K2

and
min f∗2 (γ)

subject to A∗2∆y + γ = 0
γ ∈ K2

14 Basescu and Mitchell: ACCPM for conic programming

These two formulations do not describe completely our problem. What is needed is a constraint that
insures that x1 + ∆x and s1 + ∆s stay feasible in K1 too. Using the analysis of the Dikin’s Ellipsoids we
have already made, it is enough to add ‖∆x‖H1(s1)−1 ≤ 1 − θ√

ϑf

and ‖∆s‖s1 ≤ 1 to keep x1 + ∆x and

s1 + ∆s feasible in K1. Next we will analyze the problems using ‖∆x‖H1(s1)−1 ≤ 1. We do this to keep
the analysis clear. Later we will scale the steps by α < 1− θ√

ϑf

so the feasibility will be preserved.

So a good choice is to take β and γ to be the solutions to the following problems:

min f2(β)
subject to A1∆x+A2β = 0, (P2)

‖∆x‖H1(s1)−1 ≤ 1,
β ∈ K2

and
min f∗2 (γ)

subject to A∗2∆y + γ = 0, (D2)
‖∆s‖s1 ≤ 1,
γ ∈ K2.

These two problems are well posed. The feasible regions are not empty because A1 is surjective, A2 is
injective and the equality constraints are homogeneous. The objectives are convex functionals so, if the
minimum exists, it is unique. The cone K2 is the domain for both f2 and f∗2 . The second constraint in
each problem ensures that the feasible sets don’t contain rays. So both problems have a unique optimal
value.

This approach is similar to the one proposed for the linear programming case by Goffin and Vial in
[2]. It is a generalization of the approach used by Mitchell and Todd in [7] for the case p2 = 1 (only one
cut is added at each iteration).

Now, let’s analyze (P2). The KKT conditions are:

g2(β) +A∗2λ = 0, (35)
A∗1λ+ νH1(s1)−1∆x = 0, (36)

ν(1− 〈∆x,H1(s1)−1∆x〉1) = 0, (37)
A1∆x+A2β = 0. (38)

If we take

∆x = −H1(s1)A∗1(A1H1(s1)A∗1)
−1A2β, (39)

ν = ϑf2 , (40)
λ = ϑf2(A1H1(s1)A∗1)

−1A2β (41)

both equations (36) and (38) are verified.

For β we use the approach used by Goffin and Vial in [2] and we will take it to be the solution to the
next problem:

min
β∈K2

ϑf2

2
〈β, V β〉2 + f2(β) (42)

with V = A∗2(A1H1(s1)A∗1)
−1A2. (43)

The optimality condition for this minimization problem is given by:

ϑf2V β + g2(β) = 0. (44)

It is easy to verify that the equation (35) holds true for β the solution for problem (42). For equation
(37) it is enough to note that

‖∆x‖2H1(s1)−1 = 〈∆x,H1(s1)−1∆x〉1 = 〈β, V β〉2 = − 1
ϑf2

〈β, g2(β)〉2 = 1. (45)

Basescu and Mitchell: ACCPM for conic programming 15

Now, let’s look at the second problem (D2). The optimality conditions are:

g∗2(γ) + µ = 0, (46)
A2µ+ νA1H1(s1)A∗1∆y = 0, ν ≥ 0, (47)

A∗2∆y + γ = 0, (48)
ν(1− 〈∆y,A1H1(s1)A∗1∆y〉Y) = 0. (49)

The solution to this problem is given by:

∆y = −(A1H1(s1)A∗1)
−1A2β, (50)

γ = V β = A∗2(A1H1(s1)A∗1)
−1A2β, (51)

µ = ϑf2β, (52)
ν = ϑf2 . (53)

Here β is the solution of problem (42). The equations (48) and (47) are obviously satisfied. For
equation (49):

〈∆y,A1H1(s1)A∗1∆y〉Y = 〈β,A∗2(A1H1(s1)A∗1)
−1A2β〉2 = 〈β, V β〉2 = 1.

Finally, for equation (46) it is enough to notice that −g2(−g2(β)) is equal to both β (because −g2 is
an involution, as can be seen from Theorem 3.4) and −g2(ϑf2γ) (as given by equation (44)). Using the
fact that f2 is logarithmically homogeneous, the conclusion follows immediately:

g2(γ) = ϑf2g2(ϑf2γ) = ϑf2g2(−g2(β)) = −ϑf2β = −µ. (54)

Instead of full steps ∆x, ∆s, some scaled steps α∆x, α∆s are taken. The next lemma gives a charac-
terization of such scaled steps.

Lemma 8.1 Let ∆x and ∆s be the steps considered in the problems (P2) and (D2). For any α < (1 −
θ√
ϑf

)ζ with 0 < ζ < 1:

‖α∆x‖x1 < ζ and ‖α∆s‖s1 < ζ.

Proof. Here we will use Lemma 5.4.

‖α∆x‖x1 = α‖∆x‖x1 ≤ α
1

1− θ√
ϑf

‖∆x‖H(s1)−1 < ζ.

The second inequality is immediate:

‖α∆s‖s1 = α‖∆s‖s1 ≤ α < ζ.

�

We have that g2(β) = −ϑf2γ, with β, γ ∈ K2. So we can use Lemma 5.3:

f2(β) + f∗2 (ϑf2γ) = −ϑf2 . (55)

The fact that f2 and f∗2 are logarithmically homogeneous implies:

f2(αβ) + f∗2 (αγ) = f2(β) + f∗2 (γ)− 2ϑf2 lnα (56)
= −ϑf2 − 2ϑf2 lnα+ f∗2 (γ)− f∗2 (ϑf2γ). (57)

So we proved that:

f2(αβ) + f∗2 (αγ) = −ϑf2 − 2ϑf2 lnα+ ϑf2 lnϑf2 . (58)

This equality provides a measure of the influence the added cut has over the self-concordant barrier
functional.

16 Basescu and Mitchell: ACCPM for conic programming

9. Potentials In analyzing the complexity of the algorithm (for both local and global convergence)
we will make use of primal-dual potentials. The way potentials change from one analytic center to the
next one will give us a measure for the total number of cuts that can be introduced before the algorithm
stops with a solution. We will also use potential functionals in finding the number of steps required to
get to the θ - analytic center after new cuts are added in the problem.

Definition 9.1 For an instance of the algorithm described by the functional f , the vector c and the
linear operator A, we define the primal-dual potential to be:

ΦPD(x, s) := 〈c, x〉+ f(x) + f∗(s) for any x, s ∈ K.

It is customary to call 〈c, x〉+ f(x) the primal potential and f∗(s) the dual potential. Note that if Ax = 0
and s = c−A∗y for some y then 〈c, x〉 = 〈s, x〉.

Let (x1, y1, s1) be the current θ - analytic center with the corresponding primal-dual potential:

φ1 := 〈c1, x1〉1 + f1(x1) + f∗1 (s1).

After adding the cuts described by f2, A2 and c2 we take a scaled step to get back into the feasible
region. At this new point, the primal-dual potential is:

φnew := 〈c1, x1 + α∆x〉1 + 〈c2, αβ〉2 + f1(x1 + α∆x) + f2(αβ)
+ f∗1 (s1 + α∆s) + f∗2 (αγ).

Using equation (58) the new potential can be written as

φnew = φ1 + ϑf2 ln
ϑf2

α2
− ϑf2 + α(〈c1,∆x〉1 + 〈c2, β〉2) + F, (59)

with

F = f1(x1 + α∆x) − f1(x1) + f∗1 (s1 + α∆s)− f∗1 (s1). (60)

Because the cuts are central: A∗2y1 = c2, hence

〈β, c2〉2 = 〈A2β, y1〉Y = −〈A1∆x, y1〉Y = −〈∆x,A∗1y1〉1.

Therefore,

〈c1,∆x〉1 + 〈c2, β〉2 = 〈c1 −A∗1y1,∆x〉1 = 〈s1,∆x〉1.

So, finally:

φnew = φ1 + α〈s1,∆x〉1 + ϑf2 ln
ϑf2

α2
− ϑf2 + F.

Now let’s evaluate F + α〈s1,∆x〉1. Let’s start with α〈s1,∆x〉1 + f1(x1 + α∆x) − f1(x1). Note that
the recovery step is scaled by α < (1− θ√

ϑf

)ζ so we can use the inequality (9):

α〈s1,∆x〉1 + f1(x1 + α∆x)− f1(x1)

≤ α〈s1,∆x〉1 + α〈g1(x1),∆x〉1 +
1
2
‖α∆x‖2x +

‖α∆x‖3x
3(1− ‖α∆x‖x)

.

Basescu and Mitchell: ACCPM for conic programming 17

Now:

〈s1 + g1(x1),∆x〉1 = 〈s1 + g1(x1),H1(x1)−
1
2H1(x1)

1
2 ∆x〉1

≤ ‖H1(x1)−
1
2 (s1 + g1(x1))‖1‖∆x‖x1

= ‖s1 + g1(x1)‖H1(x1)−1‖∆x‖x1

= ‖s1 + g1(x1)‖−g1(x1)‖∆x‖x1

≤ θ‖∆x‖x1 .

Here, we used Lemma 5.1 and the fact that H(x)−1 = H(−g(x)) (see Theorem 3.4).

So:

α〈s1,∆x〉1 + f1(x1 + α∆x)− f1(x1) ≤

≤ θ‖α∆x‖x1 +
1
2
‖α∆x‖2x1

+
‖α∆x‖3x1

3(1− ‖α∆x‖x1)
.

Next we use the fact that the function θx+ 1
2x

2 + x3

3(1−x) is increasing on the open interval (0, 1) and
the recovery step is scaled to satisfy ‖α∆x‖x1 ≤ ζ < 1. This implies that

α〈s1,∆x〉1 + f1(x1 + α∆x)− f1(x1) ≤ θζ +
1
2
ζ2 +

ζ3

3(1− ζ)
. (61)

A similar analysis for the second part of F : f∗1 (s1 + α∆s)− f∗1 (s1) gives:

f∗1 (s1 + α∆s)− f∗1 (s1) ≤ θζ + 1
2ζ

2 + ζ3

3(1−ζ) . (62)

Using inequalities (61) and (62) we get:

φnew ≤ φ1 + ϑf2 ln
ϑf2

α2
− ϑf2 + 2θζ + ζ2 +

2ζ3

3(1− ζ)
. (63)

This upper bound on the primal-dual potential function will enable us to show a bound of O(ϑf2 ln(ϑf2))
on the number of Newton steps required to obtain a new θ - analytic center in Theorem 10.4 in the next
section. First, we conclude this section with an upper bound on the potential function value of a θ -
analytic center, which thus provides an upper bound on φ1.

Theorem 9.1 Let (x, y, s) be a θ - analytic center corresponding to an instance of the algorithm described
by the functional f , the linear operator A and the vector c. Then,

ΦPD(x, s) ≤ θ3

3(1− θ)
+
θ2

2
. (64)

Proof. Because (x, y, s) is a θ - analytic center we can use Lemma 5.1 to get

‖x+ g(s)‖−g(s) ≤ θ.

This inequality implies, using (3), that x ∈ B−g(s)(−g(s), θ). Because θ < 1 we can use Theorem 3.2
to get: ∣∣∣∣f(x)− f(−g(s)) + 〈−g(−g(s)), x+ g(s)〉 − 1

2
G(x, s)2

∣∣∣∣ ≤ G(x, s)3

3 (1−G(x, s))
.

where G(x, s) = ‖x+ g(s)‖−g(s).

Because f is an intrinsically self-conjugate barrier functional we have:

f∗(s) = 〈g(s), s〉 − f(−g(s)) and − g(−g(s)) = s.

Using these equalities together with the fact that 〈x, s〉 = 〈c, x〉 we can write:

f(x) + f∗(s) + 〈c, x〉 ≤ 1
2
G(x, s)2 +

G(x, s)3

3(1−G(x, s))
.

The functional G(x, s) is bounded above by θ. Using this together with the fact that the function
1
2x

2 + x3

3(1−x) is increasing for 0 < x < 1, we get the desired conclusion. �

18 Basescu and Mitchell: ACCPM for conic programming

10. Complexity of recovering the θ - analytic center After the current point is moved back
in the feasible region obtained from the old one by adding central cuts, a sequence of steps is required
to get in the vicinity of the analytic center of the new domain. One way of obtaining such a point is to
take some Newton steps. In this section we will prove that one way to achieve this is to use two different
sequences of steps. We will use potential functionals in this analysis.

At the beginning, when the point is still far away from the analytic center, the directions used are
the Nesterov-Todd directions. These directions were first used in interior-point algorithms in linear
programming. Nesterov and Todd generalized them later for the general case of conic programming (see
[4], [8] for more details). These directions will ensure that the primal-dual potential decreases by a fixed
amount at each iteration. Once close enough to the analytic center, a different sequence of steps will
bring the point to a θ - analytic center.

As before, let the primal-dual potential functional be:

Φ(x, s) := 〈x, s〉+ f(x) + f∗(s).

Before defining the Nesterov-Todd direction we will introduce some notation. Let L denote the null
space of A (the surjective operator defining the feasible region) and L⊥ the corresponding orthogonal
space. Let PL,v(u) be the orthogonal projection of u onto L in the local inner product induced by v.

Let (x, y, s) be the current point with w the corresponding scaling point for the ordered pair (x, s) (i.e.
H(w)x = s). Such a point is uniquely defined by x and s. Similarly we take w∗ to be the scaling point
for the ordered pair (s, x) (i.e. H(w∗)s = x). Renegar in [14] gives a detailed discussion about scaling
points and their properties.

With these notations, the primal and dual Nesterov-Todd directions are given by:

dx := −PL,w(x+ gw(x)), (65)
ds := −PL⊥,w∗(s+ gw∗(s)). (66)

Note here that if we use the inner products induced by x and s instead of the ones induced by w and
w∗, the Nesterov-Todd directions become the usual Newton directions.

One important property of these directions is that they provide an orthogonal decomposition w.r.t.
〈·, ·〉w for −(x+ gw(x)) (see [14]) :

dx +H(w)−1ds = −(x+ gw(x)). (67)

Using the local inner product induced by w we define for all x̃, s̃ ∈ int(K):

Φw(x̃, s̃) = 〈x̃, s̃〉w + f(x̃) + f∗(s̃). (68)

Now for any x,w ∈ K, f(H(w)x) = f(x) + 2(f(w)− f(e)) (see [14], formula (3.34)) so

f(s̃) = f(H(w)(H(w)−1s̃)) = f(H(w)−1s̃) + 2f(w)− 2f(e).

Combining the previous expressions we conclude that:

Φw(x̃,H(w)−1s̃) = Φ(x̃, s̃) + 2f(e)− 2f(w). (69)

Our goal is to prove that by taking a scaled Nesterov-Todd step, the primal-dual potential functional
decreases by a constant value. We will use

φ(t) := Φ(x+ tdx, s+ tds) (70)

to find the scaling parameter t that minimizes the primal-dual potential.

Let’s define:

φ̆w(t) := Φw(x+ td̆x, x+ tH(w)−1d̆s), (71)
φ̆(t) := Φ(x+ td̆x, x+ td̆s) (72)

Basescu and Mitchell: ACCPM for conic programming 19

with d̆x, d̆s, the scaled vectors:

(d̆x, d̆s) :=
1

‖Hw(x)‖
1
2
w‖x+ gw(x)‖w

(dx, ds) (73)

Now:

φ̆w(t) := Φw(x+ td̆x, x+ tH(w)−1d̆s)
= Φw(x+ td̆x,H(w)−1(H(w)x+ td̆s))
= Φw(x+ td̆x,H(w)−1(s+ td̆s))
= Φ(x+ td̆x, s+ td̆s) + 2f(e)− 2f(w)
= φ̆(t) + 2f(e)− 2f(w).

Using the approach from [14], let’s denote:

ψ1(t) := 〈x+ td̆x, x+ tH(w)−1d̆s〉w, (74)
ψ2(t) := f(x+ td̆x), (75)
ψ3(t) := f(x+ tH(w)−1d̆s)− ϑf − 2f(e). (76)

(77)

Using the fact that f∗(s) = f(s)− (ϑf + 2f(e)) (as given in Lemma 3.3), we have:

φ̆w(t) = ψ1(t) + ψ2(t) + ψ3(t). (78)

Because 〈d̆x,H(w)−1d̆s〉w = 0, the first functional ψ1(t) can be written as

ψ1(t) = ψ1(0) + t〈x, d̆x +H(w)−1d̆s〉w

= ψ1(0)− t
〈x, x+ gw(x)〉w

‖Hw(x)‖
1
2
w‖x+ gw(x)‖w

.

Renegar proved in [14] (Theorem 3.8.2) that:

ψ2(t) ≤ ψ2(0) + t〈gw(x), d̆x〉w +
t2

1− t
, (79)

ψ3(t) ≤ ψ3(0) + t〈gw(x),H(w)−1d̆s〉w +
t2

1− t
. (80)

Using all these relations we can relate φ̆w(t) and φ̆w(0):

φ̆w(t) ≤ φ̆w(0)− t
‖x+ gw(x)‖w

‖Hw(x)‖
1
2
w

+
2t2

1− t
. (81)

Then, immediately:

φ̆(t) ≤ φ̆(0)− t
‖x+ gw(x)‖w

‖Hw(x)‖
1
2
w

+
2t2

1− t
.

or

Φ(x+ td̆x, s+ td̆s) ≤ Φ(x, s)− t
‖x+ gw(x)‖w

‖Hw(x)‖
1
2
w

+
2t2

1− t
.

Next we will introduce a variant of Theorem 3.5.11 from [14]:

Theorem 10.1 Let K be a self-scaled cone. If x,w ∈ int(K) then:

‖x+ gw(x)‖w ≥ max{‖Hw(x)
1
2 ‖w, ‖Hw(x)−

1
2 ‖w}min{1

5
,
4
5
‖x− w‖w}. (82)

20 Basescu and Mitchell: ACCPM for conic programming

We are ready now to prove the following theorem:

Theorem 10.2 If ‖x− w‖w ≥ 1
4 then:

Φ(x+ td̆x, s+ td̆s) ≤ Φ(x, s)− 1
250

. (83)

Proof. The proof is based on the previous analysis and the fact that

min
0<t<1

(
2t2

1− t
− t

5
) < − 1

250
.

�

We know that, if (x, y, s) is the exact analytic center, then x = w. Also, the exact analytic center is
the minimizer for the primal-dual potential functional Φ(x, s). Theorem 10.2 says that, as long as the
point is sufficiently far away from the exact analytic center, the primal-dual potential is guaranteed to
decrease by a constant quantity.

Because of the assumption made about the problem, the analytic center exists, so the primal-dual
potential functional has a strictly feasible minimizer. This implies that, after a number of scaled Nesterov-
Todd steps for the current point (x, y, s), ‖x− w‖w < 1

4 .

As soon as this happens, we will switch from using Nesterov-Todd steps to a new kind of step, suggested
in [14]:

δx := 2PL,w(w − x), (84)
δs := 2PL⊥,w∗(w

∗ − s), (85)

where PL,w is the orthogonal projection onto L (in the local product 〈·, ·〉w).

The key element here is the following theorem (see Theorems 3.7.2 and 3.7.1 from [14] for a detailed
proof):

Theorem 10.3 If at the current point (x, y, s):

‖x− w‖w < α <
1
4

then at the new point (x+, s+) := (x+ δx, s+ δs):

‖s+ + g(x+)‖−g(x+) < (1 + α)
α2

1− α
<

1
5
. (86)

If w+ is the scaling point for the ordered pair (x+, s+), then:

‖x+ − w+‖w+ <
5α2(1 + α)
4(1− α)

< 3α2 <
1
5
. (87)

It is easy to see, using Theorem 10.3 that, as soon

‖x− w‖w <
1
4
, (88)

the sequence of points generated by using the new steps will converge quadratically to the exact analytic
center. In practical terms, if the parameter θ defining the θ - analytic center is of order 10−10, then we
need only 6 such steps to get to a θ - analytic center.

Let (xc, yc, sc) denote the exact analytic center. Lemma 5.3 gives a connection between the values of
f(xc) and f∗(sc):

f(xc) + f∗(sc) = −ϑf .

Now let’s analyze 〈xc, c〉:
〈xc, c〉 = 〈xc, A∗yc + sc〉 = 〈xc, sc〉 = 〈xc,−g(xc)〉 = ϑf .

It follows that the primal-dual potential functional Φ(x, s) has value zero at the exact analytic center.
The following upper bound on the number of Newton steps required to obtain a new θ - analytic center
after the addition of the cuts is then a consequence of (63) and Theorems 10.2 and 10.3. By taking
arbitrarily θ = 0.9 and ζ = 0.9, we can choose the step length α = 0.09.

Basescu and Mitchell: ACCPM for conic programming 21

Theorem 10.4 After the addition of new cuts with a barrier functional with complexity value ϑf2 , a new
θ - analytic center can be obtained in O(ϑf2 ln(ϑf2)) Newton steps.

11. An upper bound on the dual barrier functional In this section we will derive an upper
bound on the value of the dual potential f∗i evaluated at the analytic center of the set Ωi. This bound
together with the fact that the values of the potential functionals keep increasing as the algorithm proceeds
will help us prove that the algorithm will eventually stop with a solution.

Let (xk, yk, sk) be the exact analytic center of Ωk (the outer-approximation set of Γ after k iterations).

This analytic center corresponds to the self-concordant barrier functional f :=
k⊕

i=0

fi and the cone K :=

k⊕
i=0

Ki that is in the space X =
k⊕

i=0

Xi. Ωk is described by the operator A :=
k⊕

i=0

Ai, and the vector

c :=
k⊕

i=0

ci. Our initial assumption that Γ contains a closed ball of radius ε implies that:

M := {y ∈ Y : y ∈ Ωk, BY (y, ε) ⊂ Ωk} 6= ∅.

Because (xk, yk, sk) is the analytic center of Ωk, sk = c− A∗yk is the minimizer of f∗ over the set of
all feasible points. Then,

f∗(sk) ≤ f∗(s),∀s ∈Ms := {s : s = c−A∗y with y ∈M}.

Lemma 11.1 Let s be an arbitrary point in the set Ms, with si ∈ Ki the corresponding components.
Then the distance (measured using the local inner product) from si to the boundary of the cone Ki, for
i ≥ 1, satisfies:

d(si, ∂Ki) ≥ ε
√
λmin(A∗iAi). (89)

Here λmin(A∗iAi) is the minimum eigenvalue of A∗iAi. For the initial case i = 0:

d(s0, ∂K0) ≥ ε. (90)

Proof. Let s ∈Ms with the corresponding y ∈M (s = c−A∗y). So:

y + εu ∈ Ωk,∀u ∈ Y, ‖u‖Y = 1. (91)

The point s is strictly interior to the cone K. This implies that each of its components si is strictly
interior to its corresponding cone Ki.

Then

∃sε ∈ Ki such that A∗i (y + εu) + sε = ci. (92)

At the same time:

si := ci −A∗i y ∈ Ki.

Using the last two relations we conclude that:

sε = si − εA∗i u is feasible ,∀u ∈ Y, ||u||Y = 1.

Our goal is to get an estimate for the distance between si and the boundary of Ki. Two cases arise,
one for i = 0 and one for i ≥ 1. The difference between these two cases is that Ai is injective only for
i ≥ 1. However, for i = 0 the operator A0 is the ⊕ - sum of two bijective operators I and −I. So, this
case can be treated the same way as the general case if we are using the components of A0.

Now let’s consider the case i ≥ 1. Let v be a vector parallel to the direction which projects si onto
∂Ki. The operator A∗i is surjective so there exists a vector u ∈ Y , with ‖u‖Y = 1 such that A∗i u is
parallel to v (for the case when dim(Xi) = 1, this means A∗i u 6= 0). We observe here that we can take u

22 Basescu and Mitchell: ACCPM for conic programming

to be a vector in the range of Ai (because any component of u from Ker(A∗i) will have no contribution
to A∗i u). The size of A∗i u gives a lower bound for the distance from si to ∂Ki.

A lower bound for the size of ‖A∗i u‖ is given by the solution to the next problem:

min ‖A∗i u‖
such that u ∈ Range(Ai),

‖u‖Y = 1.

We can reformulate this problem as:

min ‖A∗iAiw‖
such that ‖Aiw‖Y = 1,

w ∈ Xi.

The operator A∗iAi : Xi → Xi is positive definite (because Ai is injective hence Ker(Ai) = {0}).

Let {w1, w2, . . . , wpi
} be an orthogonal basis formed by eigenvectors of A∗iAi with the corresponding

eigenvalues λi. Any vector w ∈ Xi can be written as:

w =
pi∑

j=1

αjwj .

Using this decomposition:

‖Aiw‖2Y =
pi∑

j=1

α2
jλj = 1 (93)

and

‖A∗iAiw‖2 =
pi∑

j=1

α2
jλ

2
j . (94)

The equalities (93) and (94) imply:

‖A∗iAiw‖2 =
pi∑

j=1

α2
jλ

2
j ≥ λmin

pi∑
j=1

α2
jλj = λmin(A∗iAi).

Now we can conclude that:

min{‖A∗i u‖ : ‖u‖Y = 1 and u ∈ Range(Ai)} ≥
√
λmin(A∗iAi).

So, the distance from si to the boundary of the cone Ki is greater than or equal to ε
√
λmin(A∗iAi).

�

Next we will analyze the implications of the assumption we made that fi(σi) = 0 where σi is a vector
of norm

√
pi described by σi =

√
pi

ϑi
ei, ei being the vector in Xi that induces the scaled inner product.

Lemma 11.2 Let σi ∈ ∂B(0,
√

dim(Xi))∩Ki be the point where fi(σi) = 0. Then f∗i (σi) = ϑi(ln ϑi

pi
−1),

for all i ≥ 0 (we take here p0 = 2m).

Proof. If we use Lemma 3.3 together with fi(σi) = 0:

f∗i (σi) = fi(σi)− ϑi − 2fi(ei) = −ϑi − 2fi(ei).

The functional fi is logarithmically homogeneous and ei =
√

ϑi

pi
σi. So

fi(ei) = fi(σi)−
ϑi

2
ln
ϑi

pi
= −ϑi

2
ln
ϑi

pi
.

The conclusion follows immediately. �

Basescu and Mitchell: ACCPM for conic programming 23

Lemma 11.3 At any instance k of the algorithm described by the Hilbert space X with the corresponding
cone K and barrier functional f there exists a point x ∈ ∂B(0,

√
dim(X)) ∩K such that f(x) = 0.

Proof. Let x ∈ X be the vector with components xi = σi, for i ≥ 0. Clearly, x ∈ K. Also
f(x) = f0(σ0) + f1(σ1) + . . .+ fk(σk). Then, immediately we can see that f(x) = 0.

Because ‖x‖2 =
k∑

i=0

‖σi‖2i =
k∑

i=0

dim(Xi), it follows that x ∈ ∂B(0,
√

dim(X)). �

Now we can prove the main result of this section:

Theorem 11.1 At any instance k of the algorithm described by the space X, the cone K and the func-

tional f (where X := X0⊕X1⊕ . . .⊕Xk, K := K0⊕K1⊕ . . .⊕Kk and f∗(s) =
k∑

i=0

f∗i (si), si ∈ Ki), for

all s̄ ∈Ms,

f∗(s̄) ≤
k∑

i=0

ϑfi ln
ϑfi

εi

where εi = ε
√
λmin(A∗iAi) for i ≥ 1 and ε0 = ε. In particular, if sAC is the analytic center,

f∗(sAC) ≤
k∑

i=0

ϑfi ln
ϑfi

εi
.

Proof. Let s̄ be a point in K such that the distance from ȳ to the boundary of Ωk is greater than
or equal to ε (i.e. BY (ȳ, ε) ⊂ Ωk). We have:

f∗(s̄) =
k∑

i=0

f∗i (s̄i),

where s̄i are the components of s̄ from Ki, s̄i ∈ Ki.

Using Lemma 11.1 we get Bi(s̄i, εi) ⊂ Ki.

For each fi we know that there exists a point σi ∈ Ki ∩ ∂Bi(0,
√
pi) such that fi(σi) = 0. It is easy to

see that the point εi√
pi
σi ∈ Ki ∩ ∂Bi(0, εi), so s̄i − εi√

pi
σi ∈ Ki. Using Lemma 3.1, Lemma 11.2 and the

fact that the functional f∗i is logarithmically homogeneous we have:

f∗i (s̄i) ≤ f∗i (
εi√
pi
σi) = f∗i (σi)− ϑfi ln

εi√
pi

= ϑfi ln
ϑfi

εi
√
pi
− ϑfi ≤ ϑfi ln

ϑfi

εi
.

So

f∗(s̄) ≤
k∑

i=0

ϑfi
ln
ϑfi

εi
.

The last statement of the theorem is immediate because sAC is the analytic center, hence it minimizes
f∗ over Ms. �

Corollary 11.1 Let Λ := min
i=1,...,k

√
λmin(A∗iAi). Then:

f∗(sAC) ≤
k∑

i=1

ϑfi
ln
ϑfi

εΛ
+ ϑf0 ln

ϑf0

ε
. (95)

12. Complexity Analysis In this section we will derive an upper bound for the number of cuts
that may be added to the problem before we are guaranteed to have a solution.

First we start by getting a lower bound for the minimum eigenvalue of the hessian of any potential
functional evaluated at any feasible point.

24 Basescu and Mitchell: ACCPM for conic programming

Let s̄ ∈ int(K) be any strictly feasible point for the k-th iteration of the algorithm. At this stage, the
dual potential is given by

f∗(s) := f∗0 (s0) + f∗1 (s1) + f∗2 (s2) + . . .+ f∗k (sk)

where s =
k⊕

i=0

si, with si ∈ Ki, i = 0, . . . , k.

H(s̄), the hessian of the barrier functional f∗, has a block diagonal matrix representation, each block
corresponding to a hessian Hi(s̄i). Because of this structure, the minimum eigenvalue of H(s̄) is equal to
the minimum of all eigenvalues of Hi(s̄i), i = 0, . . . , k.

Now let’s look at the hessian Hi(s̄i), s̄i ∈ int(Ki). The norm used is the one induced by a vector
ei ∈ Ki. In this norm ‖ei‖ =

√
ϑfi (see (16)). Moreover, the distance (measured in the norm induced by

ei) from ei to the boundary of the cone Ki is greater than or equal to 1. Let

d = max{‖z‖ : z ∈ ∂Ki ∩ (s̄i −Ki)},

s̄i is strictly interior to Ki so d 6= 0. We define s̄d := 1
d s̄i.

The next lemma will give a description for the position of s̄d in the cone Ki.

Lemma 12.1 s̄d ∈ K := {int(Ki) ∩ (ei −Ki)}.

Proof. Suppose s̄d /∈ K. Then, because the origin is on the boundary of the convex set K, the line
containing both s̄d and the origin intersects the boundary of ei−Ki in a unique point se, with ‖se‖ < ‖s̄d‖.
Let P be the plane determined by ei and s̄d together with the origin. Then P ∩ Ki={OA,OB}, with
OA and OB being two rays of the cone Ki (see Fig. 2). Take OA and OB such that ei is in the angle
determined by OA and Os̄d. Next:

C1 = OA ∩ ∂(s̄d −Ki),
C2 = OB ∩ ∂(s̄d −Ki),
D1 = OA ∩ ∂(ei −Ki),
D2 = OB ∩ ∂(ei −Ki).

With these notations we have:

1 ≥ ‖OC2‖ > ‖OD2‖ = ‖D1ei‖ ≥ d(ei, AO) ≥ 1. (96)

So we arrived at a contradiction. This means that s̄d ∈ K.

�

Note here that

‖s̄d‖2 = ‖OC1‖2 + ‖OC2‖2 + 2〈OC1, OC2〉 ≥ ‖OC1‖2. (97)

This inequality holds for any point C1 ∈ Ki ∩ ∂(s̄d −Ki). Hence ‖s̄d‖ ≥ 1. This implies that ‖s̄i‖ ≥ d.

Now, as already proved in Lemma 4.2, any point z ∈ K has the property that |z − ei| < 1. For such a
point Corollary 4.1 shows that the minimum eigenvalue of Hi(z) is greater than 1

4 . So:

λmin(Hi(s̄d)) >
1
4
. (98)

Next:

λmin(Hi(s̄d)) = λmin(Hi(
1
d
s̄i)) = d2λmin(Hi(s̄i))

so

λmin(Hi(s̄i)) >
1

4d2
≥ 1

4‖s̄i‖2
. (99)

In order to get a lower bound for the minimum eigenvalue of Hi(s̄i) we need to find an upper bound for
‖s̄i‖.

Basescu and Mitchell: ACCPM for conic programming 25

i
K

d
s

i
s

i
e

e
s

i i
s K-

d i
s K-

i i
e K-

1
D

2
D

1
C

K

O

A B

2
C

Figure 2: Position of s̄d relative to K.

26 Basescu and Mitchell: ACCPM for conic programming

Because s̄ is feasible, we have that A∗ȳ + s̄ = c, for some ȳ ∈ Ωk. Here A = A0 ⊕A1 ⊕A2 ⊕ . . .⊕Ak

and c = c0 ⊕ c1 ⊕ c2 ⊕ . . .⊕ ck. So, componentwise, for each i = 0, . . . , k, s̄i = ci −A∗i ȳ.

Two different cases arise: one corresponding to i = 0 (this is right at the beginning, before adding any
cuts to the initial set Ω0) and one corresponding to i > 0.

Let’s look at the second case. In this case there exists at least one previous θ - analytic center. Let’s
denote it (x̂, ŷ, ŝ). The cuts added through this point have the property: A∗i ŷ = ci. We mention here
one more time that the inner product used is the local one induced by ei ∈ Ki for which ‖Hi(ei)−1‖ = 1.
The norm of Ai in the original inner product is one so

‖s̄i‖2ei
= ‖A∗i ȳ −A∗i ŷ‖2ei

≤ ‖Hi(ei)−1‖‖A∗i ‖2‖ȳ − ŷ‖2 = ‖ȳ − ŷ‖2.

In the above sequence of inequalities, the index ei is for the norms induced by the local inner product. If
the index ei is missing, then the inner product used is the original one.

This implies:

‖s̄i‖ei ≤ ‖ȳ − ŷ‖. (100)

Now, both ŷ and ȳ are in Ωi which is a subset of the initial set Ω0. The next lemma will give a bound
for the size of any point y ∈ Ω0.

Lemma 12.2 Let Ω0 := {y ∈ Y : y + s1 = c̃0,−y + s2 = c̃0 with c̃0, s1, s2 ∈ K̃0}. Then ‖y‖ ≤ ‖c̃0‖ for
any y ∈ Ω0.

Proof. The proof is rather immediate. If we take the square of the equalities defining Ω0,

‖c̃0‖2 = ‖y‖2 + ‖s1‖2 + 2〈y, s1〉,
‖c̃0‖2 = ‖y‖2 + ‖s2‖2 − 2〈y, s2〉.

This implies

2‖c̃0‖2 = 2‖y‖2 + ‖s1‖2 + ‖s2‖2 + 2〈y, s1 − s2〉. (101)

Because K̃0 is a self-scaled cone, and s1, s2 ∈ K̃0, their inner product is positive:

〈s1, s2〉 ≥ 0.

Using this observation together with the fact that s1 + s2 = 2c̃0, we get a bound on the sum of norms of
s1 and s2:

‖s1‖2 + ‖s2‖2 ≤ 4‖c̃0‖2.

Using this inequality and the fact that s1 − s2 = −2y the conclusion follows immediately:

‖y‖ ≤ ‖c̃0‖.

�

Using the previous lemma and (100) we finally get:

‖s̄i‖ ≤ 2‖c̃0‖ for any i > 0.

For the case i = 0 we have that s̄0 ∈ K0 := K̃0 ⊕ K̃0. So we can decompose s̄0 in two parts: s1 and
s2, both elements in K̃0. For s̄0 there exists y ∈ Ω0 such that:

y + s1 = c̃0,

−y + s2 = c̃0.

We know that s1, s2, c̃0 ∈ K̃0, with K̃0 a self-conjugate cone. Using this and the fact that s1 +s2 = 2c̃0
it follows that

‖s̄0‖2 = ‖s1‖2 + ‖s2‖2 ≤ 4‖c̃0‖2. (102)

Basescu and Mitchell: ACCPM for conic programming 27

Hence,

‖s̄0‖ ≤ 2‖c̃0‖.

It follows from inequality (99) that the smallest eigenvalue of the hessian can be bounded away from
zero.

Lemma 12.3 For any strictly feasible point s̄ ∈ K:

λmin(H(s̄)) ≥ 1
16‖c̃0‖2

. (103)

Now we compare the value of the dual - potential functionals f∗ at two consecutive analytic centers.

Let’s consider Ω and Ω̃ to be two consecutive outer-approximations of Γ. These two sets correspond
to two instances of the algorithm described by (f,X,K,A, c) and (f̃ , X̃, K̃, Ã, c̃). The second instance is
obtained from the first one by adding central cuts through the θ - analytic center of Ω. Let these cuts be
described by: (f̂ , X̂, K̂, Â, ĉ). So f̃ = f ⊕ f̂ , X̃ = X ⊕ X̂ and so on. Let (xc

θ, y
c
θ, s

c
θ) be the θ - analytic

center for f . After adding the cuts right through (xc
θ, y

c
θ, s

c
θ) a scaled step is taken to recover feasibility.

Let (x(α), y(α), s(α)) be the point right after this step is taken so

x(α) = (xc
θ + α∆x)⊕ (αβ),

y(α) = yc
θ + α∆y,

s(α) = (sc
θ + α∆s)⊕ (αγ).

Using all these notations we are ready to prove the following theorem, which gives a bound for the
change in the barrier functional evaluated at two consecutive exact analytic centers.

Theorem 12.1 Let (xc, yc, sc) and (x̃c, ỹc, s̃c) be two consecutive analytic centers for the domains Ω and
Ω̃. Then,

f̃∗(s̃c) ≥ f∗(sc)− f̂(αβ)− θζ − 1
2
ζ2 − ζ3

3(1− ζ)
− θ3

3(1− θ)
− 1

2
θ2. (104)

Proof. Because (x̃c, ỹc, s̃c) is an exact analytic center for f̃ , x̃c minimizes the value of f̃(x) + 〈x, c̃〉
f̃(x̃c) ≤ f̃(x(α)) + 〈x(α), c̃〉 − 〈x̃c, c̃〉. (105)

Since Φ(x̃c, s̃c) = 0, we can rewrite inequality (105) as:

f̃∗(s̃c) ≥ −f(xc
θ + α∆x)− f̂(αβ)− 〈xc

θ + α∆x, c〉 − 〈αβ, ĉ〉.

We can use now the bound on f(xc
θ +α∆x) given by the inequality (61). Before doing this let’s notice

that:

〈ĉ, β〉 =
〈
Â∗yc

θ, β
〉

=
〈
yc

θ, Âβ
〉

= −〈yc
θ, A∆x〉 =

= −〈A∗yc
θ,∆x〉 = 〈sc

θ,∆x〉 − 〈c,∆x〉 .

So

f̃∗(s̃c) ≥ −f(xc
θ)− f̂(αβ)− 〈xc

θ, c〉 − θζ − 1
2
ζ2 − ζ3

3(1− ζ)
.

In order to get the desired result we have to use Theorem 9.1 and use the fact that f∗(sc
θ) ≥ f∗(sc)

(this is because (xc, yc, sc) is an exact analytic center). �

The step required to move the point back in the feasible region after the cuts are added depends upon
the vector β. This vector is the solution to the minimization problem (42). So, using the fact that
〈β, V β〉 = 1 (from equation (45)),

f̂(β) ≤ f̂(β′) +
ϑf̂

2
〈β′, V β′〉 −

ϑf̂

2
, for any β′ ∈ K̂ (106)

28 Basescu and Mitchell: ACCPM for conic programming

with V given by:

V = Â∗(AH(s1)A∗)
−1
Â. (107)

Taking in account all these observations, the fact that f̂ is logarithmically homogeneous and α < 1,
the previous theorem can be restated as:

f̃∗(s̃c) ≥ f∗(sc)− f̂(β′)−
ϑf̂

2
〈β′, V β′〉+

ϑf̂

2
+ ϑf̂ lnα−F(θ, ζ) (108)

with

F(θ, ζ) = θζ +
1
2
ζ2 +

ζ3

3(1− ζ)
+

θ3

3(1− θ)
+

1
2
θ2 (109)

for any β′ ∈ K̂.

Now we are ready to get an estimate for the number of cuts required to be added in order to find
an interior point in Γ. Before this we will reintroduce some notation. Let (Xi, 〈·, ·〉i), Ki, Ai and fi,
i = 0, . . . , k, be the elements that describe the initial instance of the algorithm and the cuts that are

added during the first k - iterations of the algorithm. Let X̄i =
i
⊕

j=0
Xj , K̄i =

i
⊕

j=0
Kj , Āi =

i
⊕

j=0
Aj ,

f̄i =
i
⊕

j=0
fj be the elements that describe the instance of the algorithm after adding the i-th cut. Let s̄i

and sθ
i be the exact analytic center and a θ - analytic center of the domain Ωi respectively.

After i iterations of the algorithm, using formula (108) we get:

f̄∗i (s̄i) ≥ f̄∗i−1(s̄i−1)− fi(β′i)−
ϑfi

2
(〈β′i, Viβ

′
i〉i − 1) + ϑfi

lnα−F(θ, ζ), (110)

where Vi = A∗i (Āi−1H̄i−1(s̄i−1)Ā∗i−1)
−1Ai, β′i is any point in the interior of Ki and F(θ, ζ) is given in

(109).

One of the assumptions we made about the functionals fi was that, for each of them, there exists a
point σi ∈ Ki (σi :=

√
pi

ϑi
ei)with norm equal to

√
pi such that fi(σi) = 0.

Notice here that unlike βi (the exact solution for problem (42)) for which both βi and Viβi have to be
in Ki, the only requirement for β′i is to be an element from Ki. This gives us more choices for picking a
suitable vector.

Now we can choose β′i to be:

β′i =
ei√

〈ei, Viei〉i
. (111)

Clearly 〈β′i, Viβ
′
i〉i − 1 = 0. Moreover, using the fact that fi is logarithmically homogeneous:

fi(β′i) = fi(σi) +
ϑfi

2
ln〈σi, Viσi〉i =

ϑfi

2
ln〈σi, Viσi〉i. (112)

The inequality (110) can be further simplified to:

f̄∗i (s̄i) ≥ f̄∗i−1(s̄i−1)−
ϑfi

2
ln〈σi, Viσi〉i + ϑfi lnα−F(θ, ζ). (113)

Now, in each space Xi we can choose an orthonormal basis {ei
j}j=1,...,pi

such that

σi =
pi∑

j=1

ei
j , (114)

Basescu and Mitchell: ACCPM for conic programming 29

To do this it is enough to pick an orthonormal basis and then rotate it until
pi∑

j=1

ei
j overlaps with σi. It

is clear that ‖σi‖i =
√
pi, for any i ≥ 0. Let’s look now at 〈σi, Viσi〉i:

〈σi, Viσi〉i =
pi∑

j=1

pi∑
l=1

〈ei
j , Vie

i
l〉i =

pi∑
j=1

pi∑
l=1

〈ei
j , e

i
l〉Vi ≤

pi∑
j=1

pi∑
l=1

‖ei
j‖Vi‖ei

l‖Vi . (115)

Using the mean inequality:

〈σi, Viσi〉i ≤
pi∑

j=1

pi∑
l=1

‖ei
j‖2Vi

+ ‖ei
l‖2Vi

2
= pi

pi∑
j=1

‖ei
j‖2Vi

. (116)

So:

f̄∗i (s̄i) ≥ f̄∗i−1(s̄i−1)−
ϑfi

2
ln(pi

pi∑
j=1

‖ei
j‖2Vi

) + ϑfi
lnα−F(θ, ζ). (117)

This inequality gives a relationship between the dual potential functionals evaluated at two consecutive
exact analytic centers. A direct relationship between the potential at the initial analytic center s̄0 and
the potential at the k-th analytic center s̄k can be easily obtained by taking the sum of the previous
inequalities from i = 1 to i = k:

f̄∗k (s̄k) ≥ f̄∗0 (s̄0)−
k∑

i=1

(
ϑfi

2
ln(pi

pi∑
j=1

‖ei
j‖2Vi

)) + lnα
k∑

i=1

ϑfi
− kF(θ, ζ). (118)

Let P = max
i=1,...,k

pi (i.e. at each stage we do not add more than P cuts). Then:

f̄∗k (s̄k) ≥ f̄∗0 (s̄0)−
1
2
(lnP − lnα2)

k∑
i=1

ϑfi
−

k∑
i=1

(
ϑfi

2
ln

pi∑
j=1

‖ei
j‖2Vi

)− kF(θ, ζ). (119)

We can simplify this inequality by using the concavity of the logarithm function together with the fact
that ϑfi ≥ 1:

f̄∗k (s̄k) ≥ f̄∗0 (s̄0)−
1
2
(lnP − lnα2)

k∑
i=1

ϑfi
−

k∑
l=1

ϑfl

2
ln

k∑
i=1

(ϑfi

pi∑
j=1

‖ei
j‖2Vi

)

k∑
t=1

ϑft

− kF(θ, ζ).

For any i: ϑfi
≥ 1. So

k∑
i=1

pi ≤ P
k∑

i=1

ϑfi
. Let Θ := max

i=1,...,k
ϑfi

. Then:

f̄∗k (s̄k) ≥ f̄∗0 (s̄0)−
1
2
(lnP − lnα2)

k∑
i=1

ϑfi −

k∑
l=1

ϑfl

2
lnPΘ

k∑
i=1

(
pi∑

j=1

‖ei
j‖2Vi

)

k∑
t=1

pt

− kF(θ, ζ).

So:

f̄∗k (s̄k) ≥ f̄∗0 (s̄0)−

k∑
l=1

ϑfl

2
(2 lnP + ln

Θ
α2

+ ln

k∑
i=1

(
pi∑

j=1

‖ei
j‖2Vi

)

k∑
t=1

pt

)− kF(θ, ζ). (120)

30 Basescu and Mitchell: ACCPM for conic programming

By taking arbitrarily θ ≤ 0.9 and ζ ≤ 0.9, the value of F(θ, ζ) can be made smaller than 6.5. Then,

for this choice of θ and ζ, kF(θ, ζ) ≤ 7k ≤ 7
k∑

l=1

ϑfl
.

So:

f̄∗k (s̄k) ≥ f̄∗0 (s̄0)−

k∑
l=1

ϑfl

2
(2 lnP + 14 + ln

Θ
α2

+ ln

k∑
i=1

(
pi∑

j=1

‖ei
j‖2Vi

)

k∑
t=1

pt

). (121)

Now we have to get an estimate for:
k∑

i=1

(
pi∑

j=1

‖ei
j‖2Vi

). We will take the same approach used by Ye in

[17]. Because of the specifics of our problem, we will present here the entire scheme.

Let C0 := 16‖c̃0‖2. Each term ‖ei
j‖2Vi

can be bounded from above if we use Lemma 12.3:

‖ei
j‖2Vi

≤ C0〈ei
j , A

∗
i (Āi−1Ā

∗
i−1)

−1Aie
i
j〉i.

Let Ai be the matrix representation of the operator Ai with respect to the basis {ei
j}, j = 1, . . . , pi

for i = 1, . . . , k. Let A0 be the matrix representation for A0 with respect to an orthonormal basis

{e0j}, j = 1, . . . , 2m ofX0. The corresponding matrix representation for Āi is given by them×(2m+
k∑

i=1

pi)

block matrix Āi = [A0,A1, . . . ,Ak]. Let ai
j be the j-th column of Ai. Using this notation we have:

k∑
i=1

(
pi∑

j=1

‖ei
j‖2Vi

) ≤ C0

k∑
i=1

pi∑
j=1

(ai
j

T
(
i−1∑
l=0

AlAT
l)−1ai

j).

Let B0 := A0AT
0 and Bi+1 = Bi +Ai+1AT

i+1, for i ≥ 0.

With this notation:

k∑
i=1

(
pi∑

j=1

‖ei
j‖2Vi

) ≤ C0

k∑
i=1

pi∑
j=1

(ai
j

T
(Bi−1)−1ai

j). (122)

Lemma 12.4 Let CB = 1
1+(P+2)‖B−1

0 ‖ . Then

k∑
i=1

(
pi∑

j=1

‖ei
j‖2Vi

) ≤ 4C0

3CB
(2m ln

tr(B0) +
k∑

i=1

pi

2m
− ln(detB0)). (123)

Proof. Notice that: AiAT
i =

pi∑
j=1

ai
ja

i
j
T . If we denote:

ω2 = ai+1
1

T
(Bi +

pi+1∑
j=2

ai+1
j ai+1

j

T
)−1ai+1

1

then, as shown by Ye in [17],

detBi+1 = det(Bi +
pi+1∑
j=1

ai+1
j ai+1

j

T
) = (1 + ω2) det(Bi +

pi+1∑
j=2

ai+1
j ai+1

j

T
).

We know from the initial assumptions that ‖Ai‖ = 1 for all i > 0 so:

‖ai+1
j ‖ ≤ ‖Ai+1‖ = ‖Ai+1‖ = 1.

Basescu and Mitchell: ACCPM for conic programming 31

We can rewrite ω2 as:

ω2 = ai+1
1

T
B
− 1

2
i (I +

pi+1∑
j=2

B
− 1

2
i ai+1

j ai+1
j

T
B
− 1

2
i)−1B

− 1
2

i ai+1
1 .

Next, for any y with ‖y‖ = 1:

yT (I +
pi+1∑
j=2

B
− 1

2
i ai+1

j ai+1
j

T
B
− 1

2
i)y = 1 +

pi+1∑
j=2

(yTB
− 1

2
i ai+1

j)2

≤ 1 +
pi+1∑
j=2

‖B− 1
2

i ai+1
j ‖2

= 1 +
pi+1∑
j=2

ai+1
j

T
B−1

i ai+1
j

≤ 1 +
pi+1∑
j=2

ai+1
j

T
B−1

0 ai+1
j

≤ 1 + ‖B−1
0 ‖

pi+1∑
j=2

‖ai+1
j ‖2

≤ 1 + (pi+1 − 1)‖B−1
0 ‖

≤ 1 + (P + 2)‖B−1
0 ‖.

where the last line is a conservative overestimate chosen to simplify the following exposition. So the

maximum eigenvalue of I+
pi+1∑
j=2

B
− 1

2
i ai+1

j ai+1
j

T
B
− 1

2
i is less than or equal to 1+(P +2)‖B−1

0 ‖. This allows

us to write:

ω2 ≥ 1
1 + (P + 2)‖B−1

0 ‖
ai+1
1

T
B−1

i ai+1
1 . (124)

Hence:

detBi+1 ≥ (1 +
ai+1
1

T
B−1

i ai+1
1

1 + (P + 2)‖B−1
0 ‖

) det(Bi +
pi+1∑
j=2

ai+1
j ai+1

j

T
). (125)

Repeating this process inductively, we finally get

ln detBi+1 ≥
pi+1∑
j=1

ln(1 +
ai+1

j

T
B−1

i ai+1
j

1 + (P + 2)‖B−1
0 ‖

) + ln det(Bi).

or, using CB :

ln detBi+1 ≥
pi+1∑
j=1

ln(1 + CBa
i+1
j

T
B−1

i ai+1
j) + ln det(Bi). (126)

We know that Bi −B0 is a positive semidefinite matrix for any i ≥ 1. So:

ai+1
j

T
B−1

i ai+1
j ≤ ai+1

j

T
B−1

0 ai+1
j ≤ ‖B−1

0 ‖‖ai+1
j ‖2 ≤ ‖B−1

0 ‖.

Based on this, it is clear that, for any P ≥ 1:

CBa
i+1
j

T
B−1

i ai+1
j ≤ ‖B−1

0 ‖
1 + (P + 2)‖B−1

0 ‖
<

1
3
< 1.

Now, the inequality ln(1 + x) ≥ x− x2

2(1−x) holds true for any x ∈ [0, 1). Using it and the fact that the
function 1− x

2(1−x) is decreasing, we get, for any i = 0, . . . , k − 1

32 Basescu and Mitchell: ACCPM for conic programming

ln(1 + CBa
i+1
j

T
B−1

i ai+1
j) ≥ CBa

i+1
j

T
B−1

i ai+1
j (1− 1/3

2(1− 1/3)
)

or

ln(1 + CBa
i+1
j

T
B−1

i ai+1
j) ≥ 3

4
CBa

i+1
j

T
B−1

i ai+1
j .

So, for any i = 0, . . . , k − 1

ln detBi+1 ≥ ln det(Bi) +
3
4
CB

pi+1∑
j=1

ai+1
j

T
B−1

i ai+1
j .

After we add the inequalities corresponding to i = 0 to i = k − 1, we get:

ln detBk ≥ ln det(B0) +
3
4
CB

k∑
i=1

pi∑
j=1

ai
j

T
B−1

i−1a
i
j .

Now:

tr(Bk) =
k∑

i=0

tr(AiAT
i) =tr(B0) +

k∑
i=1

pi∑
j=1

‖ai
j‖2 ≤tr(B0) +

k∑
i=1

pi.

Using the mean inequality (for the sum and the product of eigenvalues of Bk):

ln(detBk) ≤ m ln
tr(B0) +

k∑
i=1

pi

m
.

The conclusion follows immediately from (122).

Note that ln(detBk) is well defined since Bk is positive definite being the sum of the positive definite
matrix A0AT

0 and positive semidefinite matrices AiAT
i . �

Using Lemma 12.4 and inequality (121) we get:

f̄∗k (s̄k) ≥ f̄∗0 (s̄0)

−0.5
k∑

l=1

ϑfl
(ln

4C0ΘP 2

3CBα2
+ 14 + ln(m ln

tr(B0) +
k∑

i=1

pi

m
− ln(detB0))− ln(

k∑
i=1

pi)).

Corollary 11.1 gives an upper bound for f̄∗k (s̄k):

f̄∗k (s̄k) ≤
k∑

i=1

ϑfi
ln
ϑfi

εΛ
+ ϑf0 ln

ϑf0

ε
.

Theorem 12.2 The algorithm stops with a solution as soon as:

(
k∑

l=1

ϑfl
)(ln(H(m ln 1

m (tr(B0) +
k∑

i=1

pi)− ln(detB0))− ln(
k∑

i=1

pi)) ≤ 2f̄∗0 (s̄0)− 2ϑf0 ln ϑf0
ε .

with H = 4C0Θ
3P 2e14

3ε2Λ2CBα2 . The number of cuts added is at most O∗(m2P 3Θ3

ε2Λ2) (here O∗ means that terms of
low order are ignored). Here we assumed that ‖c̃0‖ has the size of order

√
m. Also we used the fact that

‖B−1
0 ‖ has size O(1).

Basescu and Mitchell: ACCPM for conic programming 33

Proof. This result follows directly from the previous analysis. Note here that CB = 1
1+(P+2)‖B−1

0 ‖
has a contribution in the complexity result. �

This result is similar to the ones for linear, semidefinite, or second order cone programming. Θ and
Λ are the only extra terms. The reason for this is straightforward. In the linear or semidefinite case the
potential functions are separable. In general this is not necessarily the case. This explains the presence
of Θ which characterizes the barrier functional as a whole. The only assumption we made on the cuts
that are added was that the operators describing them have unit norms. This assumption is not critical.
We use it only to keep the analysis simple. In the linear programming approach a similar assumption
often made is that the matrices describing the cuts are assumed to have columns of norm one. This gives
more structure to the cuts. In our general case we cannot work at the “column” level, so we had to use
an overall characterization of the cuts. The parameter Λ characterizes the quality of the cuts that are
generated by the oracle.

13. Conclusions and future work In this paper we proposed and analyzed an algorithm for
solving feasibility problems that arise in conic programming. The approach is based on an analytic
center cutting plane method. We generalized here the particular cases of linear programming, second
order cone programming and semidefinite programming. Our algorithm can be easily adjusted to these
particular cases.

The assumptions we made about the problem are usual ones. Although we are dealing with a general
case we didn’t need to impose any extra conditions on the problems. The feasibility problems have convex,
closed, bounded, fully dimensional sets of interest. These sets are described by an oracle that either
recognizes that a point is strictly interior to the set or returns a set of violated constraints. Multiple cuts
are added centrally when the current point is infeasible. These cuts can be linear, quadratic, semidefinite
or any combination of these types.

The complexity results are similar to the ones obtained for less general cases. We proved that our
algorithm generates no more than O∗(m2P 3Θ3

ε2Λ2) analytic centers before a solution is obtained. This result
compares favorably with O∗(m2P 2

ε2) (obtained for the linear case) and O(m3P 2

ε2) (for the semidefinite case).
The extra terms we have are Θ and Λ, which characterize the self-concordant functionals and the cuts
that are introduced, respectively.

Results in the literature for semidefinite and SOCP problems depend on a condition number for the
added cuts. Our parameter Λ can be regarded as a similar condition number, and it would be of interest
to relate the various measures more closely.

Our proof for the number of Newton steps required to obtain a new θ - analytic center depended on
an exact solution to problems (P2) and (D2), found by solving (42). It is not necessary to solve this
problem to optimality; all that is required is that the new value of the primal-dual potential function be
bounded by a function of size O(ϑf2 ln(ϑf2)). The bound on the number of cuts added in Theorem 12.2
is independent of the solution of (42).

Open questions remain to be addressed in future work. It would be interesting to analyze how the
algorithm changes if deep cuts are used (instead of central ones) or if some of them are dropped. In our
analysis the operators describing the cuts had to be injective. This requirement limits the size of second
order cones that can be added by the oracle.

Acknowledgments. The research of the first author was supported in part by the National Science
Foundation’s VIGRE Program (Grant DMS-9983646). The research of the second author was supported
in part by NSF grant numbers CCR-9901822 and DMS-0317323. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

References

[1] D. S. Atkinson and P. M. Vaidya, A cutting plane algorithm for convex programming that uses
analytic centers, Mathematical Programming 69 (1995), 1–43.

[2] J.-L. Goffin and J.-P. Vial, Multiple cuts in the analytic center cutting plane method, SIAM Journal

34 Basescu and Mitchell: ACCPM for conic programming

on Optimization 11 (2001), no. 1, 266–288.
[3] , Convex nondifferentiable optimization: a survey focussed on the analytic center cutting

plane method, Optimization Methods and Software 17 (2002), no. 5, 805–867.
[4] M. Kojima, S. Mizuno, and A. Yoshise, A primal-dual interior point method for linear program-

ming, Progress in Mathematical Programming (New York) (N. Megiddo, ed.), Springer-Verlag, 1989,
pp. 29–47.

[5] J. E. Mitchell, Polynomial interior point cutting plane methods, Optimization Methods and Software
18 (2003), no. 5, 507–534.

[6] J. E. Mitchell and S. Ramaswamy, A long-step, cutting plane algorithm for linear and convex pro-
gramming, Annals of Operations Research 99 (2000), 95–122.

[7] J. E. Mitchell and M. J. Todd, Solving combinatorial optimization problems using Karmarkar’s
algorithm, Mathematical Programming 56 (1992), 245–284.

[8] R. D. C. Monteiro and I. Adler, Interior path following primal-dual algorithms. Part I: Linear
programming, Mathematical Programming 44(1) (1989), 27–41.

[9] Y. E. Nesterov and A. S. Nemirovsky, Interior point polynomial methods in convex programming:
Theory and algorithms, SIAM Publications, SIAM, Philadelphia, USA, 1993.

[10] M. R. Oskoorouchi and J.-L. Goffin, The analytic center cutting plane method with semidefinite cuts,
SIAM Journal on Optimization 13 (2003), no. 4, 1029–1053.

[11] , An interior point cutting plane method for convex feasibility problem with second-order
cone inequalities, Tech. report, College of Business Administration, California State University San
Marcos, California, April 2003.

[12] M. R. Oskoorouchi and J. E. Mitchell, A second-order cone cutting surface method: complexity
and application, Tech. report, College of Business Administration, California State University San
Marcos, California, May 2005.

[13] O. Péton and J.-P. Vial, Multiple cuts with a homogeneous analytic center cutting plane method,
Computational Optimization and Applications 24 (2003), no. 1, 37–61.

[14] J. Renegar, A mathematical view of interior-point methods in convex optimization, MPS-SIAM Series
on Optimization, no. 1, SIAM, Philadelphia, 2001.

[15] G. Sonnevend, New algorithms in convex programming based on a notion of center and on rational
extrapolations, International Series of Numerical Mathematics 84 (1988), 311–327.

[16] K. C. Toh, G. Zhao, and J. Sun, A multiple-cut analytic center cutting plane method for semidefinite
feasibility problems, SIAM Journal on Optimization 12 (2002), no. 4, 1126–1146.

[17] Y. Ye, Complexity analysis of the analytic center cutting plane method that uses multiple cuts, Math-
ematical Programming 78 (1997), 85–104.

