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Abstract It is not straightforward to find a new feasible solution when several conic

constraints are added to a conic optimization problem. Examples of conic constraints

include semidefinite constraints and second order cone constraints. In this paper, a

method to slightly modify the constraints is proposed. Because of this modification,

a simple procedure to generate strictly feasible points in both the primal and dual

spaces can be defined. A second benefit of the modification is an improvement in the

complexity analysis of conic cutting surface algorithms. Complexity results for conic

cutting surface algorithms proved to date have depended on a condition number of the

added constraints. The proposed modification of the constraints leads to a stronger

result, with the convergence of the resulting algorithm not dependent on the condition

number.

Keywords Semidefinite programming · conic programming · column generation ·
cutting plane methods

1 Introduction

Given an m-dimensional Hilbert space (Y, 〈·, ·〉Y ) and a nonempty convex set C ⊆ Y ,

the convex feasibility problem is to find a point in the set. Many algorithms for this
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problem generate a point ȳ ∈ Y and determine whether the point is in C. If the point

is not in C, extra information is provided which can be used to modify the point. We

assume that if C is nonempty then it contains a ball of fixed radius ε > 0. In particular,

there exists ŷ ∈ C such that ŷ + εu ∈ C for any u ∈ Y of norm one. We assume that

at least part of the domain C is strictly included in a larger set Ω0. This larger set is

either a box of the form

Ω0 := {y ∈ Y : −c0 ≤ y ≤ c0}

or a ball of the form

Ω0 := {y ∈ Y : ||y|| ≤ R0}.

In this paper, we consider setting up a conic programming relaxation in order to

determine the point ȳ. If ȳ is not in C, we assume the extra information available takes

the form of conic constraints that separate ȳ from C. Thus, we generate a sequence of

relaxations of the form

Find y satisfying A∗y �K c (1)

where K is a convex, self-dual cone in an n-dimensional Hilbert space (X, 〈·, ·〉X), the

linear operator A : X → Y has adjoint A∗, the vector c ∈ X, and u �K v if and only

if v − u ∈ K. (Self-dual cones are defined formally in Appendix A.) The initial set Ω0

can be expressed in the form (1). The point ȳ is chosen to be an approximate analytic

center of the system given in (1). The effect of the cut is illustrated in Figures 1 and 2.

Note that K may be the cartesian product of a number of lower dimensional convex

cones. Note that a linear programming relaxation is of this form, with K = IRn
+, the

cartesian product of n nonnegative half-lines requiring that the slack variable in the

linear constraint be nonnegative.
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Fig. 1 Adding a conic cut at the current approximate analytic center ȳ of the current outer

approximation to C.
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Fig. 2 Updated outer approximation after adding a single conic cut

For more information on cone programming, see [11] and [15]. Cones of particu-

lar interest are the cone of positive semidefinite matrices and the second order cone

of vectors (x0, x1, . . . , xn) satisfying x0 ≥
√∑n

i=1 x2
i . These are examples of closed

convex cones which possess strongly nondegenerate intrinsically self-concordant barrier

functionals.

Conic programming problems arise in many practical problems, with positive semidef-

initeness and restrictions on norms of vectors being common requirements. For prob-

lems where the number of constraints is large compared to the number of variables,

a cutting plane approach can be useful. Cutting plane methods can also be employed

to replace a large conic constraint with several smaller constraints; for example, a

semidefinite constraint can be replaced by linear and/or second order cone constraints.

Primal-dual interior point approaches to semidefinite programming problems are

limited by computational and storage requirements, with parallel algorithms used for

the solution of larger problems (see, for example, Borchers and Young [3].) Cutting

surface algorithms give an alternative that may scale better than direct methods.

In a cutting surface method, the solution to the current relaxation may violate the

semidefinite constraint. The subdifferential to the constraint can be represented as a

lower-dimensional semidefinite constraint, and this constraint or approximations to it

can be added to the relaxation (1). For more information on cutting plane methods for

semidefinite programming and second order cone programming, see [1,2,4,7,8,12,13,

14,16,17,18].

We’ve previously described a selective orthonormalization procedure for polyhedral

relaxations of the convex feasibility problem [9]. In this paper, we generalize the proce-

dure to conic relaxations. The method for modifying the constraints is presented in §2,

and the exploitation of this modification to regain strict feasibility is demonstrated

in §3. Analysis of the resulting cutting surface algorithm requires potential functions,

which are introduced in §4. Convergence to a new approximate analytic center is shown

in §5 and convergence of the cutting plane algorithm to a point in C is shown in §6. The

specialization of the algorithm to the cases of semidefinite programming and second

order cone programming is the subject of §7.
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Fig. 3 A conceptual cutting surface algorithm for finding a point in C

1. Initialize Ω = Ω0, K = K0. Choose tolerance ε > 0.

2. If Ω is too small to contain a ball of radius ε, STOP, and conclude that C is empty.

3. Find a point ȳ in the interior of Ω.

4. If ȳ ∈ C, STOP, and return the point ȳ.

5. Find conic constraints A∗i y �Ki
ci for i = 1, . . . , q with q ≥ 1, each of which is satisfied

by all points in C and violated by ȳ.

6. Update Ω ← Ω ∩q
i=1 {y : A∗i y �Ki

ci} and K ← K ⊕q
i=1 Ki.

7. Return to Step 2

Notation and scaling

Given two points u and v in a Hilbert space (X, 〈·, ·〉X), and given a positive definite

operator M of the appropriate size, define 〈u, v〉M := 〈u, Mv〉X . Further, ||u||2M :=

〈u, Mu〉. Each cone K ⊆ X with barrier f has a fixed vector e in its interior with

norm one, and we will use the local inner product between two points u and v in X,

so 〈u, v〉 := 〈u, v〉H(e) = 〈u, H(e)v〉X , where H(e) is the Hessian of f evaluated at e.

When we denote a cone as Ki, we denote the corresponding fixed vector in its interior

as ei. Let x be a point in the interior of K; then 〈u, v〉x := 〈u, v〉H(x) = 〈u, H(x)v〉.
Define

M := {y ∈ Y : y + εu ∈ C, ∀u ∈ Y with ||u|| = 1}

and

Ms := {s : s = c−A∗y with y ∈M}.

2 A selective Gram-Schmidt orthonormalization procedure

A conceptual cutting surface algorithm is given in Figure 3. The set Ω is the current

outer approximation to the set of interest C. The set Ω is defined by a cone K, a linear

operator A and a vector c, with

Ω = {y ∈ Y : A∗y �K c}. (2)

The initial cone corresponding to Ω0 is denoted K0. The cone K is constructed as the

Cartesian product of cones returned at the steps of the algorithm. The determination

of violated constraints in Step 5 of the algorithm is sometimes called a separation

routine. The selective Gram-Schmidt orthonormalization procedure discussed in this

paper modifies the violated constraints before moving on to Step 6. This modification

makes it easier to find a feasible point ȳ in the next call to Step 3. Further, we show in

§6 that it enables us to prove a better bound on the number of calls to the separation

routine.

Given a point ȳ in the interior of Ω, define s̄ := c− A∗ȳ. We assume the operator

A is surjective. The cone K has a barrier function f , with Hessian H(s), well-defined
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for s in the interior of K. We define the positive definite operator

Γ := (AH(s̄)A∗)−1. (3)

This operator is used in the restart directions defined below to scale the directions. It

is used because of its relationship with the Dikin ellipsoid, and hence it allows some

control over the change in potential function values.

An oracle returns q conic constraints

A∗
i y �Ki

ci, i = 1, . . . , q

which separate ȳ from C. Each cone Ki is assumed to be convex and self-dual. We

want to modify the constraints so that we can find primal and dual strictly feasible

iterates easily. In order to find a feasible solution, we will weaken the cuts if necessary

to make them central (this is a standard assumption in the analysis of interior point

and ellipsoid cutting plane algorithms). Thus, the cuts have the form

A∗
i y �Ki

A∗
i ȳ, i = 1, . . . , q.

In order to regain a strictly feasible solution, it is sufficient to find a direction d satis-

fying

A∗
i d ≺Ki

0, i = 1, . . . , q.

The purpose of the selective orthonormalization procedure is to modify the added

constraints in order to make it straightforward to find such a direction d.

Let’s introduce the following notation. For all a ∈ X, b ∈ Y , we define the operator

abT : Y → X by:

(abT )u = 〈b, u〉a (4)

for all u ∈ Y . The conjugate (transpose) of this operator is given by:

(abT )∗ = baT . (5)

The proof is immediate; in particular for all u ∈ Y, v ∈ X:

〈v, (abT )u〉 = 〈v, 〈b, u〉a〉 = 〈〈v, a〉b, u〉 = 〈(baT )v, u〉. (6)

We first need the following assumption.

Assumption 1 Aixi 6= 0, for all xi ∈ int(Ki).

A justification for Assumption 1 is contained in the following theorem of the al-

ternative. In particular, the assumption must hold if the set of feasible solutions to

A∗
i d ≺Ki

0 is to be nonempty.

Theorem 1 Let K̄ be a self-dual cone with interior point x. Let A be an operator

defining a constraint A∗d �K̄ 0. If Ax = 0 then there is no direction d satisfying

A∗d ≺K̄ 0.
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Proof Let v = A∗d ∈ K̄. Assume v 6= 0. Since x is in the interior of K̄, the point

x−αv is also in K̄ for α sufficiently small and positive. The inner product 〈v, x−αv〉 =

−α〈v, v〉+〈d, Ax〉 = −α〈v, v〉 < 0. This contradicts the assumption that K̄ is self-dual.

Therefore, we must have v = 0. ut

It should be noted that the assumption is only necessary for cuts that are added

centrally. For example, Oskoorouchi and Goffin [13] initialize their cutting plane algo-

rithm for second order cone programming (SOCP) by requiring that y satisfy a ball

constraint ||y|| ≤ M for some scalar M . This constraint can be written in the form

A∗y �K c with K the second order cone and Ae = 0 where e = [1; 0, . . . , 0]T . Assump-

tion 1 holds for any SOCP cut that has the first column of Ai not equal to the zero

vector.

If the added constraint is an SDP conic constraint, of the form
∑m

j=1 Ajyj �∑m
j=1 Aj ȳj , Assumption 1 requires that the trace of at least one of the matrices Aj

be nonzero: consider x = I. It is clear that this is a necessary requirement for the

existence of a vector d with
∑m

j=1 Ajdj positive definite.

The following lemma shows how a cutting surface can be modified without cutting

off any feasible points. The modification takes a nonnegative combination of the original

constraint with a linearization of another valid constraint.

Lemma 1 Let el be the selected interior points for Kl, k = 1, 2. Let Al be linear

operators from IRpl → IRm for l = 1, 2. Let Ā1 = A1 + λA2e2eT
1 for some λ ≥ 0. If d

satisfies A∗
l d �Kl

0 for l = 1, 2 then Ā∗
1d �K1 0.

Proof We have

Ā∗
1d = A∗

1d + λe1eT
2 A∗

2d �K1 0

since A∗
1d �K1 0, A∗

2d �K2 0 so 〈e2, Ā∗
2d〉 ≤ 0 from the self-duality of K2, λ ≥ 0, and

e1 �K1 0. ut

Note that this lemma applies even if K1 = K2 and A1 = A2; that is, the lemma can

also be used to modify a single constraint so that it is easier to restart. The Selective

Gram-Schmidt Orthonormalization process that we define in Figure 4 is designed to

modify the constraints using a construction as in Lemma 1, with the purpose of creating

a set of constraints that satisfies the criterion given in Theorem 2 below. We show in

Section 3 how the algorithm can be restarted if such a criterion is satisfied.

The criteria we require of the constraints are that Ā∗
i ΓĀjej be in cone Ki for each

pair i and j and that Ā∗
i ΓĀiei be in the interior of cone Ki for each i. If we then take

d = −
q∑

j=1

ΓĀjej (7)

then Ā∗
i d ≺Ki

0 for each i. Hence, the direction d is in the interior of the cone of feasible

directions at y. (The actual direction dy defined in (13) is a slight modification of d.)



Selective Gram-Schmidt for conic cuts 7

The following lemma shows that for a given ordered pair of constraints, a multiplier λ

can be chosen using a line search so that the modified constraint operators will satisfy

the first criterion, at least for this ordered pair.

Lemma 2 Let el be the selected interior points for Kl, l = 1, 2. Let Al be linear

operators from IRpl → IRm for l = 1, 2. Let M be a symmetric positive definite operator

from IRm → IRm. Let

λ̄ := max{0, min{λ : λe1 +
1

||A2e2||2M
A∗

1MA2e2 �K1 0}}.

Let Ā1 = A1 + λ̃A2e2eT
1 with λ̃ ≥ λ̄. Then Ā∗

1MA2e2 �K1 0.

Proof We have

Ā∗
1MA2e2 = (A∗

1 + e1eT
2 λ̃A∗

2)MA2e2

= ||A2e2||2M (λ̃e1 +
1

||A2e2||2M
A∗

1MA2e2)

�K1 0.

ut

Note that the conclusion of the lemma still holds even if K2 = K1 and A2 = A1,

as we show explicitly in the next lemma.

Lemma 3 Let el be the selected interior point for Kl. Let Al be a linear operator from

IRpl → IRm. Let M be a symmetric positive definite operator from IRm → IRm. Let

λ̄ := max{0, min{λ : λel +
1

||Alel||2M
A∗

l MAlel �Kl
0}}.

Let Āl = Al + λ̃Alele
T
l where λ̃ ≥ λ̄. Then Ā∗

l MĀlel �Kl
0.

Proof We have

Ā∗
l MĀlel = (A∗

l + ele
T
l λ̃A∗

l )M(Al + λ̃Alele
T
l )el

= (1 + λ̃〈el, el〉)||Alel||2M (λ̃el +
1

||Alel||2M
A∗

l MAlel)

�Kl
0

as required. ut

The Selective Gram-Schmidt Orthonormalization algorithm is contained in Fig-

ure 4. The algorithm modifies a linear operator based on its interaction with another

operator. This modification occurs in Steps 3 and 4, where the subroutine is called.

The update in Step 5 of the subroutine weakens the ith constraint and makes the cone

of feasible directions larger, in order to ensure that the direction d defined in (7) is in

the cone of feasible directions. Step 5 of the main algorithm normalizes the constraints
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Fig. 4 Selective Gram-Schmidt Orthonormalization (SGSO)

Main algorithm:

1. Take ν and ω to be scalars between 0 and 1.

2. Set Āi = Ai for i = 1, . . . , q.

3. Let first=1, last=q. Call SelOrth(first,last).

4. Let first=q, last=1. Call SelOrth(first,last).

5. For i = 1, . . . , q:

(a) If Ā∗i Āiei 6�Ki
0, set λ̄ := min{λ : λei + 1

||Āiei||
Ā∗i Āiei �Ki

0}. Update Āi ←
Āi + λ̄Āieie

T
i and renormalize so that ||Āi|| = 1.

(b) If Ā∗i Āiei 6�Ki
ωei, update Āi ← (1 −

√
ω)Āi +

√
ω

||Āiei||
Āieie

T
i . Renormalize so that

||Āi|| = 1.

(c) Let ηi = ||Āiei||Γ . If Ā∗i ΓĀiei 6�Ki
νη2

i ei, update Āi ← (1− ν)Āi + νĀieie
T
i . Renor-

malize so that ||Āi|| = 1.

6. End.

Subroutine SelOrth(first,last):

1. For i =first,. . . ,last:

2. For j =first,. . . ,i:

3. If Ā∗i ΓĀjej 6�Ki
0 then

4. λij := min{λ : λei + 1
||Ājej ||2Γ

Ā∗i ΓĀjej �Ki
0}.

5. Āi ← Āi + λijĀjejeT
i

6. End if.

7. End for.

8. Normalize Āi, so ||Āi|| = 1.

9. End for, and Return.

and also ensures Ā∗
i ΓĀiei �Ki

0 for each i so d is in the interior of the cone of feasible

directions. The parameters ω and ν ensure that d is “sufficiently interior” and are used

in the proofs of the convergence results in §5 and §6.

If all the added constraints are single linear constraints, then each ei is just a pos-

itive scalar, and the desired direction d is the sum of the normals of the constraints,

multiplied by Γ . The process is a selective orthogonalization procedure where an op-

erator is only modified if the normals of the corresponding constraints make negative

inner product. In this case, the check at step 3 of the subroutine determines whether

the constraints make nonnegative inner product, and if not then the standard Gram-

Schmidt update is performed in steps 4 and 5. When the normals make negative inner

product, the cone of feasible directions is small, so one of the normals is modified

in order to make the cone of feasible directions larger. Mitchell and Ramaswamy [9]

explored this case.

Examples of the use of this procedure for semidefinite and second order constraints

can be found in §7. In the SDP case, the effect of the modification is to add additional

weight to the diagonals of the matrices Ai defining the added constraints; as the di-
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agonals become larger relative to the off-diagonal entries, it becomes more likely that

decreasing each component of y will lead to a strictly feasible solution.

The proof of the correctness of the algorithm repeatedly uses the following technical

lemma.

Lemma 4 Let el be the selected interior points for Kl, l = 1, 2, 3. Let Al be linear

operators from IRpl → IRm for l = 1, 2, 3. Let λ ≥ 0. Let Ā1 = A1 + λA2e2eT
1 .

1. If A∗
3ΓA2e2 �K3 0 then A∗

3ΓĀ1e1 �K3 A∗
3ΓA1e1.

2. If A∗
2ΓA3e2 �K2 0 then Ā∗

1ΓA3e3 �K1 A∗
1ΓA3e3.

3. Ā∗
1ΓA2e2 �K1 A∗

1ΓA2e2.

4. If Ā∗
1ΓA2e2 �K1 0 then Ā∗

1ΓĀ1e1 �K1 A∗
1ΓA1e1.

5. If A∗
2ΓA2e2 �K2 0 then A∗

2ΓĀ1e1 �K2 A∗
2ΓA1e1.

Proof We prove the first two parts.

1. We have

A∗
3ΓĀ1e1 = A∗

3ΓA1e1 + λA∗
3ΓA2e2eT

1 e1

and the result follows from the conditions of the lemma.

2. Similarly,

Ā∗
1ΓA3e3 = A∗

1ΓA3e3 + λe1eT
2 A∗

2ΓA3e3

leading to the required result.

The proofs of the remaining parts are similar. ut

The operator Āi is updated using Āj , which affects the value of Ā∗
i ΓĀjej . It also

affects the value of Ā∗
i ΓĀkek for all other values of k, and the proof that this term is

in Ki will require induction.

Proposition 1 After the first call to the subroutine SelOrth(.,.), we have Ā∗
i ΓĀjej �Ki

0, for 1 ≤ j ≤ i ≤ q.

Proof We use induction.

Base cases: From Lemmas 2 and 4, we have Ā∗
1ΓĀ1e1 ∈ K1, Ā∗

2ΓĀ1e1 ∈ K2,

Ā∗
2ΓĀ2e2 ∈ K2, and Ā∗

3ΓĀ1e1 ∈ K3 prior to the update given in step 5 of subroutine

SelOrth with i = 3 and j = 2.

Inductive step: Given i and j with i ≥ j. Assume Ā∗
kΓĀlel �Kk

0 for k ≤ i and

l < j before the the update given in step 5 of subroutine SelOrth. After the update, we

have Ā∗
i ΓĀjej �Ki

0 from Lemma 2 and Ā∗
i ΓĀpep �Ki

0 for p < j from Lemma 4.

ut

Now we can analyze the effect of the second call to the subroutine SelOrth.

Theorem 2 After the second call to the subroutine SelOrth, we have Ā∗
i ΓĀjej �Ki

0,∀i, j = 1, . . . , q.
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Proof From Proposition 1 and Lemma 4, we must have Ā∗
i ΓĀjej �Ki

0 for i ≥ j when

the algorithm terminates. The proof that Ā∗
i ΓĀjej �Ki

0 for 1 ≤ i < j ≤ q is then

very similar to the proof of Proposition 1. ut

The updates in Step 5 leave Ā∗
jΓĀ∗

kek �Kj
0, ∀j, k = 1, . . . , q from Lemma 4.

The update in step 5c of the algorithm enables the construction of a strictly feasible

dual iterate, as shown in §3. The update in step 5b is needed in §6 to prove global

convergence of the cutting plane algorithm. Note first that it follows from Lemma 3

that the update in Step 5a results in Ā∗
i Āiei �Ki

0. We now show that Steps 5b and 5c

result in Ā∗
i Āiei � ωei and Ā∗

i ΓĀiei �Ki
νη2

i ei for i = 1, . . . , q.

Lemma 5 Let Āi = (1−
√

ω)Ai+
√

ω
||Aiei||Aieie

T
i . Assume 0 ≤

√
ω ≤ 1, A∗

i Aiei �Ki
0,

||ei|| = 1, and ||Ai|| = 1. Then ||Āi|| ≤ 1 and Ā∗
i Āiei �Ki

ωei.

Proof The proof is by direct calculation. Note that

Ā∗
i Āiei = ((1−

√
ω)2 +

√
ω(1−

√
ω)

||Aiei||
)A∗

i Aiei + (1−
√

ω)
√

ω||Aiei||ei + ωei �Ki
ωei

where we used the fact that 〈ei, ei〉 = 1.

Further, we have ||Āi|| ≤ (1−
√

ω)||Ai||+
√

ω
||Aiei|| ||Aiei||||ei|| = 1. ut

Lemma 6 Let Āi = (1 − ν)Ai + νAieie
T
i . Assume 0 ≤ ν ≤ 1, A∗

i ΓAiei �Ki
0,

A∗
i Aiei �Ki

ωei, and ||Ai|| = 1. Then ||Āi|| ≤ 1, Ā∗
i ΓĀiei �Ki

νη2
i ei and Ā∗

i Āiei �Ki

ωei.

Proof The proof is by direct calculation. First, ||Āi|| ≤ (1−ν)||Ai||+ν||Ai||||ei||2 = 1.

Note that Āiei = Aiei and so

Ā∗
i ΓĀiei = (1− ν)A∗

i ΓAiei + νη2
i ei �Ki

νη2
i ei

and

Ā∗
i Āiei = (1− ν)A∗

i Aiei + ν||Aiei||2ei � (1− ν)ωei + νωei = ωei

where we used the facts that 〈ei, ei〉 = 1 and ||Aiei||2 = 〈ei, A
∗
i Aiei〉 ≥ 〈ei, ωei〉 = ω,

since ei and A∗
i Aiei are both in Ki. ut

If it is necessary to modify Āi in Step 5c of the algorithm, the subsequent rescaling

of Āi will also change ηi, but it will keep Ā∗
i ΓĀiei �Ki

νη2
i ei.

We summarize various properties of the constraints after the Selective Orthonor-

malization procedure is completed in the following theorem. These results follow from

Lemmas 1, 5, and 6, and Theorem 2.



Selective Gram-Schmidt for conic cuts 11

Theorem 3 When the algorithm terminates, we have

{y : A∗
i y �Ki

A∗
i ȳ} ⊆ {y : Ā∗

i y �Ki
Ā∗

i ȳ}. (8)

||Āi|| = 1 for i = 1, . . . , q. (9)

Ā∗
i ΓĀiei �Ki

νη2
i ei for i = 1, . . . , q, with ηi = ||Āiei||Γ (10)

Ā∗
i Āiei �Ki

ωei for i = 1, . . . , q. (11)

Ā∗
i ΓĀjej �Ki

0 for i = 1, . . . , q and j = 1, . . . , q. (12)

3 Finding a new feasible point

After modifying the constraints as detailed in §2, we have the conic feasibility problem

max 0

subject to A∗y �K c (Dq)

Ā∗
i y �Ki

c̄i i = 1, . . . , q

where c̄i = Ā∗
i ȳ, i = 1, . . . , q. The corresponding dual problem is

min 〈c, x〉 +
∑q

i=1〈c̄i, xi〉
subject to Ax +

∑q
i=1 Āixi = 0 (Pq)

x �K 0

xi �Ki
0, i = 1, . . . , q.

We assume we have a point ȳ with c − A∗y �K 0, and a corresponding primal

solution x̄ �K 0 with Ax = 0. Taking y = ȳ, x = x̄, and xi = 0 for i = 1, . . . , q is

feasible in (Dq) and (Pq), but it is not interior. So we use the direction

dy = −
q∑

i=1

1

ηi
ΓĀiei (13)

dx = H(s̄)A∗dy (14)

dxi =
1

ηi
ei (15)

This gives interior feasible solutions to (Pq) and (Dq) for small positive step lengths.

The direction dy is illustrated in Figure 5. For simplicity, we use the same steplength

α in both the primal and the dual. The restart point is then

y(α) = ȳ + αdy (16)

s(α) = s̄− αA∗dy (17)

si(α) = −αA∗
i dy (18)

x(α) = x̄ + αdx (19)

xi(α) =
α

ηi
ei (20)

for some α > 0.



12 John E. Mitchell, Vasile L Basescu

dC

PPPP

r ȳ��
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dy = −ΓĀe

Fig. 5 Direction dy for regaining a strictly feasible dual solution when adding a single conic

cut

Theorem 4 The directions defined in (13)–(15) result in strictly feasible primal and

dual iterates for small positive steplengths.

Proof Note that Adx = Γ−1dy = −
∑q

i=1
1
ηi

Āiei = −
∑q

i=1 Āidxi so the equality

constraints in (Pq) hold for any steplength. Further, dxi �Ki
0 from the choice of ei,

so the primal solution is strictly feasible for any sufficiently small positive steplength.

Further, Ā∗
jdy = −

∑q
i=1

1
ηi

ĀjΓĀiei �Ki
−νηjej from Theorem 3, showing strict

feasibility in (Dq) for any sufficiently small positive steplength. ut

The steplengths can be chosen to ensure the iterates remain within appropriately

defined Dikin ellipsoids. Given a cone K with barrier function f , the Dikin ellipsoid

around a point ŝ in the interior of K is

E := {s : ||s− ŝ||H(ŝ) ≤ 1}

and is contained in K.

Lemma 7 Let y(α) = ȳ + αdy. If 0 < α < 1/q then y(α) is strictly feasible in (Dq).

Proof Note that −Ā∗
jdy �Kj

0 for j = 1, . . . , q, from Theorem 3. The change in the

dual slack variable s = c−A∗y is ds = −A∗dy. We have

||ds||H(s̄) = ||
q∑

i=1

1

ηi
A∗ΓĀiei||H(s̄) ≤

q∑
i=1

1

ηi
||A∗ΓĀiei||H(s̄) = q

from (3) and (10). Feasibility then follows from the observation about the Dikin ellipsoid

centered at s̄. ut

It is also useful to obtain a valid lower bound on the maximum possible primal

steplength, using the Dikin ellipsoid centered at x̄. Rather than looking at a bound

based on ||dx||H(x̄), we construct one based on a slightly different norm, namely

||dx||H(s̄)−1 . The two norms can be related using the fact that the current iterate

is an approximate analytic center; for details see [11] or [15].
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Lemma 8 We have ||dx||H(s̄)−1 ≤ q.

Proof Note that

||dx||H(s̄)−1 = ||
q∑

i=1

1

ηi
H(s̄)A∗ΓĀiei||H(s̄)−1 ≤

q∑
i=1

1

ηi
||H(s̄)A∗ΓĀiei||H(s̄)−1 = q

from (3). ut

The results of this section show that if the constraints are modified using the SGSO

procedure then it is straightforward to find a new strictly interior primal-dual feasible

solution for the modified Ω. If the SGSO procedure was not used and the constraints

did not satisfy equations (8)–(12), then a nonlinear program would have to be solved

to find a restart point. The variables of this problem are the primal directions dxi and

it is necessary to include constraints based on Dikin ellipsoids in order to ensure that

the restart point has an appropriate potential function value. For details, see [12,13,

14,2].

4 Potential function preliminaries

In this section we give some properties of potential functions. Most of the results on

potential functions are taken from Renegar [15], and the remainder can be found in

Basescu and Mitchell [2]. These results are used in §5 and §6. In §5, we look at the

change in the potential function when moving in the direction given in §3, and hence

show that the algorithm is able to regain an approximate analytic center quickly. Global

convergence of an interior point cutting plane method using selective orthonormaliza-

tion is the subject of §6.

The definitions of self-concordant barrier functionals, logarithmically homogeneous

functionals, conjugate functions, and self-dual cones can be found in Appendix A.

Lemma 9 Let f be a self-concordant logarithmically homogeneous barrier functional

with domain Df . Let D̄f denote the closure of Df . If x ∈ Df , y ∈ D̄f , then for all

t ≥ 0,

f(x + ty) ≤ f(x). (21)

If the domain of f is a cone K then the geometrical interpretation of Lemma 9 is

that x maximizes f over the cone x + K.

Adding a scalar to an intrinsically self-conjugate barrier functional results in an-

other such function. Therefore, we can make the following assumption without loss of

generality.

Assumption 2 Given a cone K with fixed vector e in its interior, the conjugate barrier

function satisfies f∗(e) = 0.
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Let ϑf denote the parameter of the intrinsically self-concordant barrier functional

f : int(K)→ IR, in the terminology of Nesterov and Nemirovskii [11]. This parameter

is called the complexity value of f by Renegar [15]. A single linear constraint has ϑ = 1,

a single second order cone constraint has ϑ = 2, and a semidefinite constraint on a q×q

matrix has ϑ = q.

Lemma 10 (Proposition 3.5.1. [15].) If f : int(K) → IR is an intrinsically self-

conjugate barrier functional, then

f∗(s) = f(s) + ϑf .

Note that a consequence of Assumption 2 and Lemma 10 is that f(e) = −ϑf . The

standard dual barriers for linear programming, semidefinite programming, and second

order cone programming satisfy Assumption 2. For example, for semidefinite program-

ming the dual slack matrix S = I satisfies f∗(S) = − ln det(S) = 0. The assumption is

stated using the conjugate function rather than the original barrier function because

the dual barrier function f∗(·) is used in §6 to prove global convergence.

In analyzing the complexity of the algorithm (for both local and global conver-

gence) we will make use of primal-dual potentials. The way potentials change from

one approximate analytic center to the next one will give us a measure for the total

number of cuts that can be introduced before the algorithm stops with a solution. We

will also use potential functionals in finding the number of steps required to get to a

new approximate analytic center after new cuts are added in the problem. We refer to

approximate analytic centers as θ - analytic centers, and these are defined formally in

Appendix A.

Definition 1 For an instance of the algorithm described by the functional f , the

vector c and the linear operator A, we define the primal-dual potential to be:

ΦPD(x, s) := 〈c, x〉+ f(x) + f∗(s) for any x, s ∈ K.

It is customary to call 〈c, x〉 + f(x) the primal potential and f∗(s) the dual potential.

Note that if Ax = 0 and s = c−A∗y for some y then 〈c, x〉 = 〈s, x〉.

We conclude this section with an upper bound on the potential function value of a

θ - analytic center.

Theorem 5 Let (x, y, s) be a θ - analytic center corresponding to an instance of the

algorithm described by the functional f , the linear operator A and the vector c. Then,

ΦPD(x, s) ≤ θ3

3(1− θ)
+

θ2

2
. (22)
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5 Local convergence

In this section, we show that the algorithm can quickly recover an approximate ana-

lytic center if the added cuts are those returned by the selective orthonormalization

procedure. Let (x̄, ȳ, s̄) be the current θ - analytic center for (P ) and (D) with the

corresponding primal-dual potential:

φ̄ := 〈c, x̄〉X + f(x̄) + f∗(s̄).

Note that Theorem 5 gives an upper bound on the value of φ̄. After adding the cuts

described by fi, Ai and ci for i = 1, . . . , q, we take a scaled step to get back into the

feasible region. At this new point, the primal-dual potential is:

φnew := 〈c, x(α)〉+
q∑

i=1

〈ci, xi(α)〉+ f(x(α)) +

q∑
i=1

fi(xi(α)) + f(s(α)) +

q∑
i=1

f∗i (si(α))

= φ̄ + α(〈c, dx〉+
q∑

i=1

〈ci, dxi〉) +

q∑
i=1

fi(xi(α)) +

q∑
i=1

f∗i (si(α)) + F

with

F := f(x(α))− f(x̄) + f∗(s(α))− f∗(s̄). (23)

Because the cuts are central, A∗
i ȳ = ci for i = 1, . . . , q. Hence

q∑
i=1

〈ci, dxi〉 =

q∑
i=1

〈A∗
i ȳ, dxi〉 = 〈ȳ,

q∑
i=1

Aidxi〉 = −〈ȳ, Adx〉 = −〈A∗ȳ, dx〉

and so

〈c, dx〉+
q∑

i=1

〈ci, dxi〉 = 〈s̄, dx〉.

So, finally:

φnew = φ̄ +

q∑
i=1

fi(xi(α)) +

q∑
i=1

f∗i (si(α)) + F + α〈s̄, dx〉. (24)

Now let’s evaluate F + α〈s̄, dx〉. From [2], we have

α〈s̄, dx〉+ f(x(α))− f(x̄) ≤ θζ +
1

2
ζ2 +

ζ3

3(1− ζ)
. (25)

and

f∗(s(α))− f∗(s̄) ≤ θζ +
1

2
ζ2 +

ζ3

3(1− ζ)
(26)

where 0 < ζ < 1 and

α < (1− θ√
ϑf

)
ζ

q
(27)

The contributions to the new potential function value in (24) from the new primal

variables and dual slacks can be bounded above.
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Lemma 11 The sum of the primal and dual barrier function values fi(xi(α)) and

f∗i (si(α)) is bounded above for i = 1, . . . , q. In particular, fi(xi(α)) + f∗i (si(α)) ≤
−ϑfi

− 2ϑfi
ln α− ϑfi

ln ν.

Proof Note from the proof of Theorem 4 that si(α) �Ki
ανηiei. The result then follows

immediately from Lemmas 9 and 10, and the logarithmic homogeneity of fi and f∗i .

ut

This bound is the final piece that enables us to show that the algorithm can regain

a new approximate analytic center efficiently.

Theorem 6 After the addition of q new cuts with barrier functionals with complexity

values ϑfi
, a new θ - analytic center can be obtained in O(ln(q)

∑q
i=1 ϑfi

) Newton

steps.

Proof Equations (24), (25), and (26), Theorem 5, and Lemma 11 enable us to place

a bound on φnew. The factor of ln(q) arises from the upper bound on α in (27). As

shown in [2], this allows us to find a new approximate analytic center in a proportional

number of steps. ut

6 Global convergence

The proofs of global convergence in the literature have examined upper and lower

bounds on the dual potential function value (see, for example, [2,5,6,12,13,14]). The

lower bound increases more quickly than the upper bound, and the algorithm must

terminate before the two bounds meet. In all of these references, the lower bound

depends only on the barrier parameters of the added constraints, and not on any

other property of these constraints. Hence, these lower bounds are still valid when the

constraints are modified using selective orthonormalization.

The analysis of the upper bound on the dual potential function has to consider

certain cases that can lead to significant increases in the bound. The use of selective

orthonormalization prevents these cases and hence the upper bound does not grow as

fast, so it is possible to prove a stronger convergence result. We first give an upper

bound on the size of the contribution to the dual barrier function of the additional

terms due to the cuts.

Lemma 12 Assume ŷ + εu is feasible in (Dq) for any u with norm no greater than 1.

Let ŝi = c̄i − Ā∗
i ŷ for i = 1, . . . , q. Then f∗i (ŝi) ≤ −ϑfi

ln εω for i = 1, . . . , q.

Proof For any such u we have c̄i �Ki
Ā∗

i (ŷ + εu), so ŝi �Ki
εĀ∗

i u. Let u = Āiei. Then

ŝi �Ki
εĀ∗

i Āiei �Ki
εωei from (11). The result follows from Lemma 9, the logarithmic

homogeneity of f∗i , and Assumption 2. ut



Selective Gram-Schmidt for conic cuts 17

In order to extend this lemma to the complete dual barrier function, the algorithm

must be described in more detail. First, we discuss initialization.

Assumption 3 The algorithm is initialized with either a box −2Le ≤ y ≤ 2Le or with

a ball ||y|| ≤ R, for some positive constants L and R.

If a box is used, the initial dual barrier consists of 2m linear barriers, each with barrier

function parameter ϑ = 1. The ball constraint is a second order cone constraint, with

barrier function parameter ϑ = 2. In either case, the initial dual analytic center is y = 0.

The initial cone is denoted K0. The dual slack for the initial dual barrier function is

denoted s0 and the initial dual barrier function is denoted f∗0 (s0).

Lemma 13 Assume ŷ + εu is feasible in (Dq) for any u with norm no greater than 1.

Let ŝ0 denote the dual slack corresponding to the initial set of constraints. Then f∗0 (ŝ0) ≤
−ϑf0 ln ε.

Proof For either initialization, we have ŝ0 ≥ εe. The result follows. ut

Conic constraints are added to the current formulation. The current cone K in (Dq)

and (Pq) is the cartesian product of several cones. The algorithm finds an approximate

analytic center, adds several violated conic constraints if the current approximate center

is not in C, and repeats the process. At stage j the algorithm adds pj conic constraints;

we denote their barrier functions by fj
i (xj

i ) for i = 1, . . . , pj . After t stages, the dual

barrier function is

f∗(s) = f0(s0) +

t∑
j=1

pj∑
i=1

fj
i (sj

i ).

An upper bound on this function follows from Lemmas 12 and 13.

Theorem 7 Assume ŷ + εu is dual feasible for any u with norm no greater than 1.

Then the dual barrier function is no larger than

−ϑf0 ln ε− ln(εω)

t∑
j=1

pj∑
i=1

ϑ
fj

i

Note that this upper bound is valid for the analytic center, from our assumption

that C contains a ball of radius ε as long as it is nonempty.

A lower bound can be constructed by establishing an upper bound on the primal

potential function, since the optimal value of ΦPD(x, s) is zero. This upper bound

comes from the restart point in (19) and (20). Before adding the cuts, we have an

approximate analytic center so (22) holds. Lemma 11 and (25) give an upper bound

in the change in the primal potential function, so a valid lower bound on the increase

in the barrier function value of the dual analytic center is contained in the following

lemma.
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Lemma 14 In moving from an approximate analytic center for (D) to one for (Dq),

the dual potential function increases by at least

Λ +

q∑
i=1

ϑfi
(1 + ln(α/ηi))

where

Λ = − θ3

3(1− θ)
− θ2

2
− θζ − 1

2
ζ2 − ζ3

3(1− ζ)
.

Proof Let (xAC , {xAC
i : i = 1, . . . , q}) and (yAC , (sAC , {sAC

i : i = 1, . . . , q})) denote

the analytic center after the addition of the q cuts. The new analytic center after the

addition of the cuts has dual barrier function value

f∗(sAC) +

q∑
i=1

f∗i (sAC
i ) = −〈c, xAC〉 −

q∑
i=1

〈ci, x
AC
i 〉 − f(xAC)−

q∑
i=1

fi(x
AC
i )

≥ −〈c, x(α)〉 −
q∑

i=1

〈ci, xi(α)〉 − f(x(α))−
q∑

i=1

fi(xi(α))

≥ −〈c, x̄〉 − f(x̄)− θζ − 1

2
ζ2 − ζ3

3(1− ζ)
−

q∑
i=1

fi(
α

ηi
ei)

≥ f∗(s̄) + Λ−
q∑

i=1

fi(
α

ηi
ei).

The result follows from Lemmas 9 and 10, and the logarithmic homogeneity of fi. ut

Similar bounds have been derived without exploiting the restart point given by

the SGSO construction. Nesterov [10] provided such a bound for linear programming,

and this was used in the work of Goffin et al. [5,6]. This result was generalized by

Oskoorouchi and Goffin to the case of a single semidefinite cut [12] and a single SOCP

cut [13], and then to the case of multiple SOCP cuts by Oskoorouchi and Mitchell [14].

Basescu and Mitchell [2] extended the result further to general conic cuts. For larger

values of t, the lower bound result from Basescu and Mitchell [2] can be simplified to:

f̄∗t (s̄t) ≥ f̄∗0 (s̄0) + 0.5

t∑
j=1

pj∑
i=1

ϑ
fj

i
(ln(

t∑
j=1

pj)− ln
2C0ΘP 3

α2
− ln(m ln

t∑
j=1

pj

m
)) (28)

where Θ is an upper bound on arg max{ϑfi
j
}, C0 = 16||c0||2 with ||c0|| an upper bound

on the norm of y derived from Assumption 3, and P = arg max{pj}. Comparing this

lower bound with the upper bound in Theorem 7 leads to the following complexity

result.
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Theorem 8 The Selective Gram-Schmidt Orthonormalization cutting plane algorithm

terminates as soon as

(

t∑
j=1

pj∑
i=1

ϑ
fj

i
)(ln(Hm ln

t∑
j=1

pj

m
)− ln

t∑
j=1

pj) ≤ 2f̄∗0 (s̄0) + 2ϑf0 ln ε

where H = 2C0ΘP 3

α2ε2ω2 . The number of cuts added is at most O∗(mC0ΘP 3

ε2 ) (here O∗

means that low orders are ignored).

The upper bound in Theorem 7 only uses the fact that (11) holds after the SGSO

procedure. The lower bound result in (28) does not exploit the SGSO procedure. There-

fore, the global convergence result in Theorem 8 holds even if only steps 5(a) and 5(b)

of the SGSO procedure are performed.

The complexity of the algorithms of Oskoorouchi and Goffin for semidefinite pro-

gramming [12] and second order cone programming [13] and the algorithm of Basescu

and Mitchell [2] depend on a condition number. If the selective Gram-Schmidt or-

thonormalization procedure is used to modify the cuts, a fixed positive lower bound

(namely a simple function of ω) can be placed on these condition numbers, so the

dependence on the condition number can be removed. The condition number is needed

in the appropriate analogues of Theorem 7, and plays exactly the same role as our

parameter ω. Without the SGSO procedure, the condition number has to appear in

the complexity bound, since it is not under control. The condition numbers for SDP

and SOCP are considered in more detail in the next section. Ye [19] showed that the

solution to the feasibility problem can be obtained after the addition of no more than

O∗(m2P 2

ε2 ) linear cuts, if only linear cuts are added, and no more than P cuts are added

at any iteration, and if ||c0|| = O(
√

m). This is only slightly better than the bound

obtained from applying the general Theorem 8 to the restrictive case of linear cuts.

7 SGSO applied to SDP and SOCP

In this section, we specialize the SGSO algorithm to semidefinite programming and

second order cone programming. In particular, we look at the construction of the

selectively orthonormalized constraints and examine the complexity of the resulting

algorithms.

7.1 Semidefinite programming

We consider the case of adding a single semidefinite programming cut of the form

A∗y :=

m∑
j=1

Ajyj �
m∑

j=1

Aj ȳj (29)
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where each Aj is a q×q symmetric matrix, where q may vary from iteration to iteration.

An element in the interior of the semidefinite cone is the q × q identity matrix I. The

quantity Ā∗ĀI constructed in the selective orthogonalization procedure is equal to

A∗A(I) =

m∑
j=1

Ajtrace(Aj). (30)

Let σ be the smallest eigenvalue of this matrix. If σ < 0 the update given in step 5a of

the SGSO procedure gives

Aj ← Aj + λtrace(Aj)I, (31)

where

λ :=
−σ∑m

k=1 trace(Ak)2
. (32)

Note that if trace(Aj) was negative then the update will serve to make it more negative,

and if it was zero then Aj is not changed. With this update, we obtain:

Ā(X) = A(X) + λtrace(X)


trace(A1)

...

trace(Am)

 (33)

Ā∗(y) = A∗(y) + λtrace(A∗y)I (34)

Ā∗(Ā(I)) = (1 + λp)(

m∑
j=1

Ajtrace(Aj)− σI). (35)

Thus, from (35) the matrix Ā∗(Ā(I)) is positive semidefinite (as must be the case from

Lemma 2). Any y satisfying (29) will also satisfy the linear constraint

trace(A∗(y)) ≤ trace(A∗(ȳ)). (36)

Therefore, it follows from (34) that it will also satisfy the modified constraint Ā∗(y) �
Ā∗(ȳ) (as must be the case from Lemma 1).

Let β be a fixed positive scalar. If we choose

λ̄ =
max{0, β − σ}∑m
k=1 trace(Ak)2

(37)

and update Aj ← Aj + λ̄trace(Aj)I, then the smallest eigenvalue of Ā∗(Ā(I)) is at

least β.

The condition number defined in [12] is

µ := max{det(Ā∗u) : ||u|| = 1, Ā∗u � 0} (38)

where the operator Ā is normalized so that trace(Aj) ≤ 1 and ||alq|| ≤ 1, with alq =

vec(A1
lq, A2

lq, . . . , Am
lq), and at least one of these inequalities holds at equality. The
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algorithm in [12] requires the addition of no more than O(p2m3

µ2ε2
) cuts to get within ε

of optimality, where p and µ are upper bounds on their values for each cut.

The SGSO procedure allows the condition number µ to be controlled. As long as

||Ā|| ≤ 1, the condition number can be underestimated by choosing u = Ā(I). The

update in Step 5b allows us to choose any value for ω < 1, and then µ ≥ det(Ā∗Ā(I)) ≥
ωp. For example, choosing ω = (1 − 1/p) for p ≥ 4 and ω = 0.67 for p = 1, 2, 3 gives

µ ≥ 0.3 for any cut. Thus, the SGSO cutting plane algorithm requires the addition of

no more than O(p2m3

ε2
) cuts to get within ε of optimality.

7.2 SOCP

In a second order cone program, the additional cut takes the form

AT y �K AT ȳ (39)

where A is an m× (1+q) matrix and q may vary from cut to cut. We write A = [a; Â].

The usual element in the interior of the second order cone of dimension 1 + q is the

vector e = (1; 0, . . . , 0)T . The vectors calculated in Step 5a of the SGSO procedure are

A∗Ae = [aT a; aT Â]T and AeeT = [a; 0], so the effect of the procedure is to rescale the

first column of A. Thus, Ā = ξ[ā; Â] where ā = ra for some r ≥ 1 and ξ = 1/||[ā; Â]||.
The condition number defined in [13] is

µ := max{det(A∗u) := (aT u)2 − ||ÂT u||2 : ||u|| = 1, ĀT u � 0} (40)

and the algorithm requires the addition of no more than O( m
ε2µ

) cuts. With an SGSO

approach, note that µ ≥ det(Ā∗Āe) ≥ ω det(e) = ω provided (11) is satisfied. Hence

the parameter ω can be chosen to be any fixed positive number between 0 and 1 in

Step 5b and it will follow that the cutting plane algorithm with the SGSO procedure

requires no more than O( m
ε2 ) cuts.

8 Conclusions

A cutting surface algorithm using SGSO results in the addition of slightly weaker

constraints. There are two benefits: first it is easy to restart the algorithm, and second

the overall complexity of the algorithm can be shown to be independent of any condition

number of the cuts returned by the oracle.

The complexity of the original algorithms should be at least as good as these

weakened versions, at least in terms of the number of outer iterations. However, the

current analysis framework can’t be used to get rid of the condition number. The upper

bound on the dual potential function is smaller when SGSO cuts are added because

these cuts better relate s and y: if y is at least some distance from the boundary then the

corresponding slack must have a reasonable value, leading to the bound on the potential
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function. The lower bound doesn’t depend on the condition number explicitly, it just

uses the fact that some constraint was added, with no exploitation of the structure of

the constraint. If the lower bound could be improved to reflect the condition number

then it may be possible to prove a complexity result for unmodified cuts that does not

depend on a condition number.
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A Appendix: Definitions

In this appendix, we define various properties of barrier functions, self-dual cones, conjugate

functions, and approximate analytic centers. These definitions are taken from Renegar [15]

unless otherwise stated. Renegar [15] builds on the work of Nesterov and Nemirovskii [11]. It is

shown in §2.5 of [15] that the definitions given in [15] (and here) are equivalent to the original

definitions given in [11].

Let Bx(y, r) be the open ball of radius r centered at y given by:

Bx(y, r) = {z : ‖z − y‖x ≤ r}. (41)

Definition 2 A functional f is said to be (strongly nondegenerate) self-concordant if for all

x ∈ Df we have Bx(x, 1) ⊆ Df , and if whenever y ∈ Bx(x, 1) we have:

1− ‖y − x‖x ≤
‖v‖y
‖v‖x

≤
1

1− ‖y − x‖x
, for all v 6= 0.

Let SC be the family of such functionals.

Let g(y) be the gradient of the functional f defined using the original inner product 〈·, ·〉.
In the local intrinsic inner product 〈·, ·〉x, the corresponding gradient gx(y) and hessian Hx(y)

are given by:

gx(y) := H(x)−1g(y), (42)

Hx(y) := H(x)−1H(y). (43)

Definition 3 A functional is a (strongly nondegenerate self-concordant) barrier functional if

f ∈ SC and

ϑf := sup
x∈Df

‖gx(x)‖2x <∞. (44)

Let SCB be the family of such functionals.

Definition 4 Let K be a closed convex cone and f ∈ SCB, f : int(K)→ IR. f is logarithmi-

cally homogeneous if for all x ∈ int(K) and t > 0:

f(tx) = f(x)− ϑf ln(t). (45)

Definition 5 Let K be a cone and z ∈ int(K). The dual cone of K is

K∗ = {s ∈ X : 〈x, s〉X ≥ 0 for all x ∈ K}. (46)

The dual cone of K with respect to the local inner product 〈·, ·〉z is given by

K∗
z := {s ∈ X : 〈x, s〉z ≥ 0, for all x ∈ K}. (47)

The cone K is intrinsically self-dual if K∗
z = K for all z ∈ int (K).
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Definition 6 The conjugate of f ∈ SCB with respect to 〈·, ·〉 is

f∗(s) := − inf
x∈int(K)

(〈x, s〉+ f(x)) with s ∈ int(K∗
z ).

In particular, the conjugate of f ∈ SCB with respect to 〈·, ·〉z is

f∗z (s) := − inf
x∈int(K)

(〈x, s〉z + f(x)) with s ∈ int(K∗
z ).

Definition 7 A functional f ∈ SCB is intrinsically self-conjugate if f is logarithmically

homogeneous, if K is intrinsically self-dual, and for each z ∈ int(K) there exists a constant Cz

such that f∗z (s) = f(s) + Cz for all s ∈ int(K). A cone K is self-scaled or symmetric if int(K)

is the domain of an intrinsically self-conjugate barrier functional.

Let (X, 〈·, ·〉X) and (Y, 〈·, ·〉Y ) be two Hilbert spaces of finite dimensions: dim X = n,

dim Y = m. In X consider a full-dimensional self-scaled cone K, pointed at zero (i.e. K∩−K =

{0}) with the corresponding intrinsically self-conjugate barrier functional f : X → IR. Let

A : X → Y be a surjective linear operator.

Definition 8 The analytic center (the AC) of the domain FP := {x ∈ int(K) : Ax = 0} with

respect to f(x) + 〈c, x〉X is the exact solution to the problem:

min f(x) + 〈c, x〉
subject to Ax = 0 (P ),

x ∈ K.

Alternatively, the analytic center can be defined using the dual formulation of the previous

problem. The analytic center of FD := {s ∈ int(K) : A∗y + s = c} with respect to f∗(s) :=

f∗e (s) is the solution to:

min f∗(s)

subject to A∗y + s = c, (D)

s ∈ K.

For simplicity we will say that x or y or s is an analytic center if they are the components

of an analytic center. We can introduce the notion of θ - analytic center by relaxing some of

the previous equalities. First we will define this notion, then the following lemma will give an

insight for this definition.

Definition 9 [2] (x, y, s) is a θ - analytic center for FP , FD iff x ∈ FP , s ∈ FD and

‖I −H(x)−
1
2 H(s)−

1
2 ‖ ≤

θ√
ϑf

. (48)

Lemma 15 [2] Let (x, y, s) be a θ - analytic center. Then:

‖x + g(s)‖−g(s) ≤ θ, ‖s + g(x)‖−g(x) ≤ θ.

The motivation for using this definition for a θ - analytic center should be clear if we

compare it with the usual definition used in linear programming for a θ - analytic center:

‖e− xs‖ ≤ θ.

with e being the vector of all ones and xs the Hadamard product of the vectors x and s. Our

definition for a θ analytic center is equivalent to requiring that the ∞-norm of (e− xs) be no

larger than θ√
ϑf

. Note that if (x, y, s) is the analytic center for the intrinsically self-conjugate

barrier functional f then H(s)H(x) = I.
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