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Abstract

There has been a great deal of success in the last twenty years with the use of cutting
plane algorithms to solve specialized integer programming problems. Generally, these
algorithms work by solving a sequence of linear programming relaxations of the integer
programming problem, and they use the simplex algorithm to solve the relaxations. In
this paper, we describe experiments using a predictor-corrector interior point method to
solve the relaxations. For some problems, the interior point code requires considerably
less time than a simplex based cutting plane algorithm.

Keywords: Interior point methods, integer programming, cutting planes, linear
ordering, Ising spin glasses, maxcut.

1 Introduction

Any integer linear programming problem can be written min{cTx : x ∈ S, xi = 0, 1∀i},
where S is a polyhedron. Often, a good solution can be found by heuristic methods such
as local search, tabu search, simulated annealing, genetic algorithms, or algorithms specific
to the particular problem; this heuristic solution may well be optimal. It is usually harder
to prove optimality. Algorithms such as branch and bound, cutting plane approaches, and
branch and cut can be used to obtain lower bounds on the optimal value, and if the algorithms
are allowed to run for long enough, they will reduce the gap between the upper and lower
bounds to zero and thus find the optimal solution. Cutting plane algorithms form a linear
programming relaxation of the integer programming problem, solve the relaxation to obtain
a lower bound on the optimal value of the integer program, and, if the upper and lower
bounds do not agree, improve the relaxation and repeat the process. Cutting plane methods
can be incorporated into a branch and bound method to give a branch and cut algorithm.
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Cutting plane and branch and cut algorithms have been successfully used to solve many
types of integer linear programming problems, including the traveling salesman problem [1,
20, 39], the linear ordering problem [21], clustering problems [24], and the maximum cut
problem [2]. See Jünger et al. [26] for a survey. The simplex algorithm was used to solve the
linear programming relaxations in all of these references.

Interior point algorithms are now a very good alternative to the simplex method for linear
programming problems, and they are superior for large problems where the structure of the
nonzeroes in the constraint matrix is not too unfavourable. (See, for example, [30].) It is
natural to investigate the use of interior point methods in a cutting plane algorithm. The
successful use of an interior point method in this setting requires the ability to exploit a warm
start: the solution to one relaxation should be close to the solution to the next relaxation
in some sense, so it should require relatively few iterations to solve the next relaxation
from this warm start as opposed to starting from a cold start that does not exploit this
information. The simplex method appears to be fairly adept at exploiting the warm starts
provided in a cutting plane algorithm, but equally efficient ways to restart when using an
interior point method are not known. A general methodology is proposed by Gondzio [19]
with encouraging computational results; as with the results we present in this paper, the
principal emphasis in a restart method has to be to restart with an iterate that is centered.
The principal technique we use is early termination: the relaxations are solved approximately,
which results in an initial iterate for the next relaxation that is somewhat centered, leading
to better performance.

Mitchell and Todd [38] presented a promising first attempt at using an interior point cut-
ting plane algorithm, solving matching problems. An interior point cutting plane algorithm
for the linear ordering problem was described in Mitchell and Borchers [35]. The computa-
tional times in that paper were comparable to those obtained by Jünger and Reinelt [21, 43]
with a cutting plane algorithm which used the simplex solver CPLEX3.0 [10] to solve the
linear programs. Interior point approaches to integer programming problems are surveyed
in [37]; this reference includes discussions of the theoretical performance of interior point
cutting plane algorithms and of other applications of interior point column generation meth-
ods.

In the current paper, we present results on two classical integer programming problems,
namely, the MAXCUT problem and the linear ordering problem. The MAXCUT instances
arise from finding the ground state of Ising spin glasses, a problem in statistical physics. Our
results appear to be considerably better under one distribution of the data than recent results
in the literature [13] obtained using the simplex solver in CPLEX3.0. These are the hardest
problems considered in this paper, requiring a more conservative choice of parameters than
the other problems in order to obtain a robust implementation. We improve somewhat on the
results in [35] for real-world linear ordering problems and also look at some larger randomly
generated problems, obtaining better runtimes on some of these problems with our interior
point method than with a cutting plane algorithm using the simplex solver in CPLEX4.0.
Because of extensive experimentation, we are able to be more confident and therefore more
specific about our choices of parameters than in [35]. Our algorithm is presented in §2. The
results for linear ordering problems and Ising spin glass problems are contained in §3.1 and
§3.2, respectively.
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Many different integer programming problems can be formulated using the framework
(IP ) that we present in §2; the great majority of research on polyhedral theory and cutting
plane algorithms is on problems that can be written in this form (see, for example, [7, 26, 34]).
Of course, not all of these problems are equally amenable to the interior point cutting plane
approach that we present in this paper. We return to the issue of determining appropriate
problems for the interior point approach in the conclusions §4. One requirement for this
investigation is that the linear programming relaxations should be large and yet the integer
programming problems are solvable, so we examined problems where the time required to
solve the linear programming relaxations is a substantial portion of the total solution time.
For this paper we restrict our attention to problems that can be solved at the root node
of a branch-and-cut tree, for several reasons, including the following two: interior point
branch-and-bound is not well understood (see, for example, [28]), and the time to solve large
problems that require branching is impracticable for this investigation.

2 An Interior Point Cutting Plane Algorithm

We assume we have an integer programming problem of the form

min cTx
subject to Ax = b (IP )

0 ≤ x ≤ u
xi = 0 or 1 for i ∈ I
x satisfies some additional conditions

where x, c, and u are n-vectors, b is an m-vector, A is an m×n matrix of rank m, and I is the
set of integer variables. We assume ui = 1 for i ∈ I . We assume the additional conditions
can be modelled as a (possibly exponential) set of linear constraints. Many problems can be
cast in this framework; for example, the traveling salesman problem can be represented in
this form, with the additional conditions being the subtour elimination constraints [20, 39]
and the conditions Ax = b representing the degree constraints that the tour must enter and
leave each vertex exactly once. Some problems do not need additional conditions, and we
regard such problems as also falling in our general framework. We let Q denote the convex
hull of feasible solutions to (IP ). We assume that the dimension of Q is n − m. The linear
programming relaxation (or LP relaxation) of (IP ) is

min cTx
subject to Ax = b (LP )

0 ≤ x ≤ u

with dual
max bTy − uTw
subject to ATy − w + z = c (LD)

w, z ≥ 0

where y is an m vector and w and z are n-vectors. The value of any feasible solution to
(LD) provides a lower bound on the optimal value of (IP ). We solve (LP ) and (LD) using
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a predictor-corrector primal-dual interior point method similar to those described in Lustig
et al.. [30] and Mehrotra [31]. This algorithm keeps x, w, z, and the primal slacks s := u−x
strictly positive. We call such a point an interior point. The method is a barrier method,
finding a sequence of approximate analytic centers in order to approach the optimal solution,
where an analytic center is a solution to min{cTx − µ

∑
i ln(xi(ui − xi)) : Ax = b} for some

positive scalar µ. All iterates generated by the algorithm will satisfy Ax = b, as described
later.

If the optimal solution to (LP ) is feasible in (IP ) then we can stop with optimality. If
the optimal basic feasible solution xLP to (LP ) is not in Q then we cut off xLP by adding an
extra constraint or cutting plane of the form a0T

x ≤ b0. If the integer programming problem
is NP-hard then it is also NP-hard to find a violated cutting plane [23], so heuristics are
usually used to generate cuts. This gives the relaxation

min cT x
subject to Ax = b

a0T
x + x0 = b0 (LPnew)
0 ≤ x ≤ u
0 ≤ x0 ≤ u0

where x0 is a new fractional variable giving the slack in the added constraint. The cutting
plane is a valid inequality for (IP ) but it is violated by the optimal solution xLP . We then
solve (LPnew), and repeat the process. In this paper, the cutting planes we add are generally
facets of Q, and we use specialized routines to find the cutting planes. The dual problem to
(LPnew) is

max bTy − uTw − u0w0

subject to ATy + a0y0 − w + z = c
y0 − w0 + z0 = 0 (LDnew)

w, z ≥ 0
w0, z0 ≥ 0

Every iterate x̂, ŷ, ŵ, ẑ generated by an interior point method before reaching optimality will
satisfy 0 < x̂ < u and ŵ > 0, ẑ > 0. These can be used to obtain a new feasible solution
to (LDnew) by taking y = ŷ, w = ŵ, z = ẑ, y0 = 0 and w0 = z0. If we pick w0 = z0 to
be strictly positive then all the nonnegativity constraints will be satisfied strictly. It is not
so simple to obtain a feasible solution to (LPnew) because we have a0T

x̂ > b0 if the new
constraint was a cutting plane.

It has been observed that if an interior point method is started from close to the boundary,
it will move towards the center of the feasible region before starting to move towards the
optimal solution. Thus, the optimal solution to (LP ) is not a very good starting point
for trying to solve (LPnew), so we search for cutting planes violated by x̂ before reaching
optimality. Such cutting planes may well be deeper cuts and cut off more of the part of the
feasible region that is close to the optimal solution to (LP ), because the iterate is further
than the optimal solution from the boundary of the polyhedron.

The two principal disadvantages of looking for cuts before solving the current relaxation
to optimality are, first, we may be unable to find any cuts, so the search is a waste of time,
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and second, the search may return cuts which are violated by the current iterate, but which
are not violated by the optimal solution, so we may end up solving additional relaxations.
The second disadvantage can be minimized by moving towards the optimal solution from
the center of the polyhedron, reducing the likelihood of violating cutting planes that are
satisfied by the optimal solution to (LP ). To reduce the impact of the first disadvantage, we
use a dynamically altered tolerance τ for deciding when to search for violated cutting planes,
searching only when the duality gap drops below this tolerance. This tolerance is increased
if we find a large number of violated constraints, and decreased if we find only a few violated
constraints.

As mentioned earlier, we can obtain a new feasible interior iterate for (LDnew) by setting
y0 = 0 and w0 = z0 = εD for some appropriate small positive value of εD. We chose
εD = 10−3, which is considerably larger than the 10−6 used in [35]. To improve stability and
performance, it is useful to also increase any small components of w and z up to εD.

We update the primal iterate using a point that is known to be feasible and interior
in (LPnew). Any interior point which is a convex combination of feasible integral points
will satisfy all cutting planes, so it will be feasible in (LPnew). In addition, it will be
interior in (LPnew) provided it satisfies all the cutting planes strictly. Any point in the
relative interior of Q will be feasible and interior in (LPnew). We used the vector of all
halves as an initial point of this type for both problem classes considered in this paper. This
point is updated as the algorithm progresses, by combining it with any iterate which is in
the convex hull. We can restart either at this feasible point or at an appropriate convex
combination of this point and the previous iterate. To improve stability and performance,
it is useful to also increase any small components of x and s to εP := 10−5.

In practice, many constraints are added at once. The same procedures for finding initial
solutions to the new primal and dual relaxations can still be used.

Cutting plane algorithms are useful for proving optimality by generating lower bounds
on the optimal value of (IP ). Fractional primal points x can also be used to generate new
feasible solutions to (IP ) by using problem-specific rounding heuristics. If the interior point
method is converging to a point in the interior of the optimal face of Q then the primal
heuristics may well provide one of the optimal solutions to (IP ), so we can terminate the
algorithm, because the value of the relaxation will agree with the value of the integer solution.
Without good primal heuristics, the algorithm may search in vain for cutting planes, and be
forced to branch, resulting in longer run times.

It is useful to drop constraints that no longer appear important. This has the advantage
of shrinking the size of the relaxation, with the principal benefit of reducing the time required
for each iteration, and the marginal benefit of very slightly reducing the number of iterations
to solve a relaxation. Generally, we do not discard a constraint for several stages, and we
drop the constraint if its slack variable is large — see §3 for more details. Note that if the
slack variable is large then the corresponding dual variable y will be close to zero. More
sophisticated tests are available, but the costs of these outweigh the benefits of the reduction
in the size of the relaxations.

Simplex branch and cut methods can use reduced costs to fix variables at zero or one.
The reduced costs are not available at the current interior solution to the relaxation (LP ),
but the dual variables are available, and these can be used to fix variables, as described
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in [32]. Fixing variables has the practical disadvantage of making the old restart point for
(LPnew) no longer feasible, because this restart point is interior. Fixing some variables may
impose logical constraints on other variables, so the restart point usually has to be modified
and these additional logical constraints sometimes have to be added to the model. We did
not find it necessary to fix variables for problems with integral objective function coefficients.

We summarize the complete algorithm in Figure 1. Note that more details can be found
in §3 for the two problem classes considered in this paper. We say that we have completed
a stage every time we enter Step 10. We complete the final stage when we enter Step 5 for
the last time. The set of appropriate constraints in Step 7 is usually obtained using a bucket
sort. The results in this paper represent an improvement over those obtained with a similar
algorithm for linear ordering problems in [35], with a reduction in the number of iterations
as well as the runtime. The principal differences are the use of larger restart parameters εP

and εD in Step 10, keeping constraints for more stages before allowing them to be dropped in
Step 8, slightly changing the method for updating τ in Step 7, and using different parameters
to choose the appropriate subset, including adding a larger number of constraints.

3 Computational results

We have used this algorithm to solve several different problems in combinatorial optimiza-
tion. In this section, we describe the modifications made to the basic algorithm and give
computational results for each problem. The computer code was written in FORTRAN 77.
We have a framework where the majority of the code remains the same for each problem,
and we use problem specific subroutines for initializing the problem, finding primal integral
solutions using heuristics, finding cutting planes, and modifying the relaxation by adding
and dropping constraints. All the computational testing was performed on a Sun SPARC
20/71 UNIX workstation. All runtimes are reported in seconds.

We use the Yale Sparse Matrix Package [16] to calculate the projections, using the routine
mmd due to Liu [29] to find an ordering of the columns of ADAT for the Cholesky factor-
ization of this matrix, where D is an appropriate diagonal matrix. Our interior point linear
programming solver could be improved. It is probably about two to three times slower than
commercial solvers such as CPLEX [10]. In particular, some of the linear algebra routines
could be improved. We do not use a publically available code such as HOPDM ([18]) or PCx
([11]), because none of these codes makes it easy to access the current solution after each
iteration, stop the process when desired, suggest a new starting point, and not preprocess
each relaxation, which are all required features of our algorithm.

3.1 The linear ordering problem

3.1.1 Definition of the problem

The linear ordering problem is a combinatorial optimization problem with a wide variety of
applications, such as triangulation of input-output matrices, archeological seriation, minimiz-
ing total weighted completion time in one-machine scheduling, and aggregation of individual
preferences. It is NP-hard (Karp [27]), and a complete description of the facets of its con-
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1. Initialize. Set up the initial relaxation. Find initial interior primal and dual points.
Find a feasible point in Q. Find a restart point xFEAS in the relative interior of Q for
use in Step 10.

2. Inner iteration. Perform one iteration of the primal dual algorithm.

3. Check for early termination. If the relative duality gap is larger than the toler-
ance τ , return to Step 2.

4. Primal heuristics. Use the primal heuristics to try to improve on the current best
solution to (IP ).

5. Check for optimality. The current dual solution provides a lower bound and the
value of the best known feasible point provides an upper bound. If the difference
between these two is sufficiently small, Stop with optimality.

6. Look for cutting planes. If possible, also update the known feasible point xFEAS.

7. Add cutting planes. If any cutting planes were found in Step 6 then add an appro-
priate subset; otherwise, reduce τ and return to Step 2.

8. Drop cutting planes. If any cutting plane appears to no longer be important, drop
it.

9. Fix variables. If possible, fix variables at zero or one.

10. Modify current iterate. Increase any small components of w and z to a small
value εD. If necessary, increase appropriate components of w and/or z to regain dual
feasibility. Update the primal solution to a convex combination of the current iterate
and xFEAS, giving a point which is interior in the new relaxation. Increase any small
components of x and the vector of primal slacks to εP . Modify the tolerance τ . Return
to Step 2.

Figure 1: An interior point cutting plane algorithm
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vex hull is not known. The polyhedral structure of the linear ordering problem has been
investigated by Grötschel, Jünger and Reinelt [21, 25, 42].

The problem requires placing p sectors (or objects) in order, where there is a cost gij for
placing sector i before sector j. It was shown by Grötschel et al. [21] that the linear ordering
problem with p sectors is equivalent to the following integer programming problem:

min
∑

1≤i<j≤p cijxij

subject to xij + xjk − xik ≤ 1 for 1 ≤ i < j < k ≤ p (LO) (1)

−xij − xjk + xik ≤ 0 for 1 ≤ i < j < k ≤ p (2)

xij = 0 or 1 for 1 ≤ i < j ≤ p

where cij = gij − gji for 1 ≤ i < j ≤ p. Here, we obtain xij = 1 if i is before j in the
ordering, and xij = 0 otherwise. Equations (1) and (2) are called triangle inequalities; they
prevent solutions x which correspond to, for example, sector i before sector j, sector j before
sector k and sector k before sector i.

3.1.2 Details of the algorithm

The initial linear programming relaxation of (LO) is min{cTx : 0 ≤ x ≤ e}, where c and
x are p(p − 1)/2 vectors, and e is the p(p − 1)/2 vector of ones. (Throughout, we use e to
denote the vector of ones of an appropriate dimension.)

The only cutting planes we add are triangle inequalities of the form given in equations
(1) and (2) — these were sufficient to solve most of the problems in our test set. We first
called the separation routines when the relative duality gap (the duality gap divided by the
larger of the absolute value of the dual value and 1) was below τ = 0.3. When cutting planes
were found, this tolerance τ was multiplied by 1.4k, where k = b10(MAXV IOL + 0.1)c − 9
and MAXV IOL is the maximum cutting plane violation.

The separation routine comprised complete enumeration of all the triangle inequalities.
These were bucket sorted by violation. We only add constraints that have violation at least
0.5MAXV IOL. The algorithm proceeds through the inequalities in order of decreasing
violation until an edge-disjoint set of at most 500 constraints has been found, which is then
added to the relaxation. (We say several constraints are edge-disjoint if they use distinct
sets of variables.) Adding an edge-disjoint subset has the beneficial effect of reducing the
amount of fill-in in the matrix product AAT , and thus reducing the linear algebra required
to calculate projections when finding the next interior point iterate. Note that if we chose
to translate the cutting planes so that they are satisfied at equality then it is easy to find a
restart direction if the cuts are orthogonal [41, 17], as they are if they are edge-disjoint.

Our primal heuristics are similar to those suggested in Grötschel et al. [21]. We round
the current iterate. An ordering is constructed from this rounded solution using a greedy
heuristic: at step k it picks the kth element in the ordering, breaking ties arbitrarily. A local
optimization routine is then applied to this greedy ordering, where each sector is examined
in a different position in the ordering.

We dropped any constraint which had been in the relaxation for at least five stages and
which still had a slack of at least 0.4.
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Sectors 44 50 56 60 79
Number 29 3 11 2 1
Iterations 53 64 62 67 104
Time (seconds) 9.1 21.1 32.1 52.9 487.4
Stages 14 17 17 18 24
Cuts added 322 539 732 891 1985
Cuts dropped 77 140 225 269 646

Table 1: Results on real-world input-output matrices

We initialized the restart point to be xFEAS
ij = 0.5. This was updated at each iteration to

x if x did not violate any of the cutting planes. If x violated any triangle constraint then we
updated xFEAS by taking a step of length α from xFEAS in the direction towards x, where
α is 90% of the distance to the closest triangle inequality.

Christof and Reinelt [9] have developed a simplex-based branch-and-cut algorithm for
hard instances of the linear ordering problem where the cutting planes come from small-
dimensional versions of the problem, as in Christof and Reinelt [8]. The instances we ex-
amine in this paper are larger, but they do not generally require branching or extensive
separation routines to find violated cutting planes. We are interested in large instances be-
cause they have large linear programming relaxations, so the amount of time spent solving
the relaxations will be a significant proportion of the total solution time. We expect that
the methods described in this paper, in conjunction with the methods described in [9], will
make it possible to solve large, hard instances.

3.1.3 Real world problems

Table 1 contains the results of our algorithm on 46 real-world linear ordering problems. All
the problems come from input-output tables in economics; except for the 79-sector problem
usa79, they are all available from LOLIB at the URL

http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/LOLIB/LOLIB.html

For a discussion of the origins of these problems, see Grötschel et al. [21] or Mitchell and
Borchers [35]; for a discussion of the economic interpretation of the results see Grötschel et
al. [22]. All the problems in Table 1 except for those with 50 sectors were attacked using the
algorithm discussed in [35]. The costs in all of these input-output tables are integral, so we
terminated when the gap between our upper and lower bounds was smaller than one.

The rows of the tables convey the following information. The first row gives the number of
sectors and the second row the number of instances of that particular size that were solved.
The rows labelled Iterations, Time (seconds), and Stages give the means of, respectively,
the total number of primal-dual predictor corrector iterations required to solve the integer
programming problem, the total time in seconds required to solve the problems, and how
often the LP relaxation was modified so the total number of LP relaxations formed for a
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particular problem is one more than the number of stages. The row labelled Cuts added and
Cuts dropped give, respectively, the total number of cutting planes added to the relaxations
and the number of these cuts that were subsequently dropped. The numbers are rounded to
the number of digits shown.

As can be seen, all these problems can be solved easily with our code. The algorithm only
requires around four iterations per stage; as would be expected, the number of iterations
required on a stage increases as the algorithm proceeds, so the last stage may well require
about ten iterations. Of course, this last stage is the only one that has to be solved exactly.
The proportion of time spent actually solving the linear programming relaxations increases
as the problem size increases, accounting for over 90% of the time on the largest problem
usa79. The number of stages is larger than in some simplex based implementations because
we add a set of edge-disjoint constraints at each stage, which keeps the Cholesky factor from
becoming too dense.

The iteration counts and the number of stages are better than those contained in [35].
The SUN SPARC 20/71 used in the experiments in this paper is about twice as fast as the
SUN SPARC 10/30 used for the experiments in [35]. After adjusting for this, the runtimes
for the 44 and 56 sector problems in Table 1 are similar to those in the earlier paper, but
the runtimes for the larger problems are two to three times better than those in [35]. It
was argued in [35] that the runtimes in that paper were comparable to those obtained by
the simplex based cutting plane algorithm due to Jünger and Reinelt [21, 43] — they were
somewhat worse, but the difference was shrinking as the problem size increased. Thus, the
new results give a runtime that is very similar to that in [43] for the largest problem usa79.

Our results can also be compared with a simplex based cutting plane algorithm for these
problems [6], which is written in C and uses the simplex solver in CPLEX4.0 to solve the
relaxations. It adds all the violated constraints to the relaxation and resolves. We obtained a
copy of this code and used it to solve the problems in our test set. Most of them only required
two or three stages, and the runtimes are better than those obtained with the interior point
code — the ratio decreases as the problem size increases, but the runtimes are still perhaps
three times better for the problem usa79. This is still a good result for the interior point
code, since it was all written “in-house” whereas CPLEX4.0 is an excellent commercial code.
We are also comparing runtimes of codes written in different languages, so it is hard to draw
definitive conclusions. For these problems, CPLEX4.0 uses devex pricing in the dual and it
introduces perturbations in the data; these choices aid the solution procedure considerably.

3.1.4 Random problems

We also solved some larger randomly generated problems, and in addition some of these
problems were solved using the code described in [6]. We generated these problems by first
setting pz% of the entries gij to zero and generating a random permutation τ ; the remaining
entries were then uniformly distributed integers between 0 and 99 if τ (i) < τ (j) or between
0 and 39 if τ (i) > τ (j). The problems become harder as pz increases. Many of the real
world problems contain a number of zeroes in the gij entries. The generated problems all
had linearity between 70.9 and 74.2 — the linearity measures the proportion of the total
weight accounted for by the ordering. The extreme cases are, first, that every entry in the



An interior point cutting plane algorithm 11

pz Sectors Interior point Simplex
Time Iters Stages Added Time

0 50 6.0 26.0 7.0 236.0 3.3
0 75 20.2 30.2 8.2 543.2 13.8
0 100 51.1 33.6 9.2 1003.2 98.4
0 150 206.4 44.8 12.2 2919.0 —
0 200 754.8 46.2 12.4 6406.4 —

10 50 10.1 35.8 9.6 362.2 6.1
10 75 50.8 47.5 13.0 871.5 73.9
10 100 155.6 53.0 13.8 1510.0 280.9
10 150 2071.9 72.4 12.4 6406.4 —
20 50 19.7 50.8 12.6 500.2 10.4
20 75 240.7 90.5 17.3 1247.5 119.6
20 100 1405.4 89.5 18.5 2313.8 —
30 50 70.1 73.6 15.2 732.6 29.5
30 75 771.3 102.3 17.8 1588.0 251.9

Table 2: Results for random linear ordering problems

matrix takes the same value, when the linearity would be 50, and second, when there are
no nonzero entries below the diagonal, in which case the linearity is 100. The randomly
generated problems had similar linearity to the real world problems.

The results are contained in Table 2. We let pz take the values 0, 10, 20, and 30, and the
number of sectors was set to 50, 75, 100, 150, and 200; five problems were generated with
each combination. The table contains the mean results for each set of problems. Because
of memory limitations, we were unable to solve problems with more than 100 sectors using
the simplex code, and we were also unable to solve problems with 150 sectors and pz ≥ 20
or with 200 sectors and pz ≥ 10 using the interior point code. In addition, again because of
memory limitations, we could not solve problems with 100 sectors and pz = 30 with either
code, and we were only able to solve one problem with 100 sectors and pz = 20 using the
simplex code — on the remaining problems, the code ran for roughly 1000 seconds before
running out of memory. The triangle inequalities were not sufficient to solve four of the
problems, one each with 75 sectors and pz equal to 10, 20 and 30, and one with 100 sectors
and pz = 20; we have omitted these problems from the tables. It appears that the simplex
code spends well over 90% of its time within CPLEX, at least for the harder problems. The
columns in Table 2 contain the same information as the rows in Table 1, with the addition
that the last column contains the runtimes with the cutting plane code that uses the simplex
solver in CPLEX 4.0. Runtimes are quoted in seconds.

As can be seen, the interior point code outperforms the simplex based code for problems
with at least 100 sectors where pz is no bigger than 10. Furthermore, it can be seen that the
rate of increase in the runtimes as the problem size increases is far smaller for the interior
point code than for the simplex code. When pz is as big as 30, the Cholesky factors become
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dense and the simplex code outperforms the interior point code. For pz = 20, the simplex
code outperforms the interior point code for 50 and 75 sector problems, but it appears
that the codes would take similar times for 100 sector problems, were it not for memory
limitations.

As the proportion of zeroes pz increases, the linear ordering problems should become
more dual degenerate, with multiple optimal solutions. For linear programming problems,
degeneracy is normally favourable for an interior point method. However, for these problems,
the degeneracy results in the addition of many cutting planes that use the same variables so
the constraint matrix A eventually contains several dense columns and there is considerable
fill in the Cholesky factor of the matrix AAT . This increases the time for one iteration of
the interior point method, and thus the simplex code outperforms the interior point code
when pz = 30. One possible remedy for this problem is to use a preconditioned conjugate
gradient algorithm to calculate the directions in the interior point method; this is a subject
for future research.

We have recently investigated combining an interior point cutting plane method with a
simplex cutting plane method [36], with results that appear to be superior to using either
method on its own. The random problems used in both [36] and this paper are available at
the URL

http://www.math.rpi.edu/~mitchj/generators

We also examined a formulation of a clustering problem proposed by Grötschel and
Wakabayashi [24]. This problem can be written in a manner similar to the linear ordering
problem, with triangle inequalities, although the triangle inequalities have a different struc-
ture. The computational results were similar to those for the linear ordering problem, in
that they were comparable to the results obtained with a simplex method, and the relative
performance of the interior point code improved as the problems increased in size. The al-
gorithm appears to perform worse than one described by Palubeckis [40], at least for smaller
problems. As the problem sizes increased, the gap between the algorithms decreased. The
random instances of both this clustering problem and also the Ising spin glass problem used
in this paper are also available from the URL given above.

3.2 The ground states of Ising spin glasses

3.2.1 Definition of the problem

Finding the ground states of Ising spin glasses is an important problem in physics. We
examine two-dimensional Ising spin glasses. This problem was originally discussed in the
operations research literature by Barahona et al. [3], who modelled the problem as a max-
cut problem and developed a simplex-based cutting plane algorithm to solve the problem.
Recently, some of these authors and other colleagues have returned to this problem, and have
improved their computational results considerably [44, 12, 13]. We have previously sketched
our experience on a smaller set of these problems in [33]. Facets of the cut polytope are
described in [4, 14, 15].

We are given a collection of points, and we know the interaction between the points; we
want to determine which points have a positive charge and which points have a negative
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charge. Our model places vertices at points of an L × L grid on a torus. Each vertex has
four neighbours: to the left, to the right, above and below. There are weights on the edges
joining a vertex to its neighbours which correspond to the bonds or interactions between the
vertices. We generate edge weights using two different distributions, and we report results
for problems with grids of size up to 100 × 100. We assume there is no external field — it
was shown by Barahona et al. [3] that an external field can be modeled by including an extra
vertex; the resulting problem appears to be easier to solve than a problem with no external
field, at least when the edge weights have a Gaussian distribution.

The problem can be modelled on an undirected graph G = (V, E) as

min
∑p

i=1

∑
j>i,(i,j)∈G cijxij

subject to x is the incidence vector of a cut

where p is the number of vertices, there is a variable xij for each edge, and the cost cij of each
edge is derived from the interaction between the vertices. Each vertex has four neighbours,
so a k × k grid will have k2 vertices and 2k2 edges.

Cutting planes can be derived by using the observation that every cycle and every cut
intersect in an even number of edges. Every subset F of odd cardinality of every chordless
cycle C gives the facet-defining inequality

x(F ) − x(C \ F ) ≤|F | −1 (3)

where x(S) denotes
∑

(i,j)∈S xij for any subset S ⊆ E. The cycles of length four (the squares)
in the graph are chordless cycles, and there are many other chordless cycles. There are other
families of facet defining inequalities; we only searched for facets of the form (3).

3.2.2 Details of the algorithm

The initial relaxation is min{cT x : 0 ≤ x ≤ e}. All the cutting planes are of the form (3).
The separation routine consists of three parts. We first search for cutting planes corre-

sponding to the squares in the graph using complete enumeration. The violated constraints
are bucket sorted by violation and the most violated constraints are added. We are prepared
to add constraints that correspond to squares that share edges. We add at most 500 square
constraints; further, if k < 500 constraints are violated by at least 0.1 then we add at most
max{L − k, 0} constraints with violation less than 0.1. If this does not return at least L
constraints which are violated by cutting planes or if the largest violation of a square con-
straint is no more than 0.2, we then use a heuristic procedure similar to that described in
Barahona et al. [3] to find longer chordless cycles with violated constraints. The heuristic is
restricted to add at most 100 violated constraints; further, we restrict it so that it adds at
most L2 nonzeroes to the constraint matrix A (excluding the columns corresponding to the
slack variables).

If the heuristic was called and it did not find at least 20 cutting planes, we use an
implementation of the exact algorithm due to Barahona and Mahjoub, which has complexity
O(p3) (p is the number of nodes), and is guaranteed to find a violated cycle inequality, if one
exists. We place an upper limit of L on the number of these constraints that we will add,
and we only add a constraint if it has a violation that is at least half of the violation of the
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most violated constraint found by this exact procedure on this stage. The routine looks for
cycles starting from each vertex in the graph; to limit the time spent on this, we start from
a maximum of 50 further vertices after finding a constraint with violation at least 0.05. We
insist that the set of added constraints arising from longer cycles be edge-disjoint at each
stage. The non-square constraints usually contain many more than four edges. We found it
advantageous to scale an added constraint with | C | edges, normalizing so that the L1-norm

of the constraint was 4/
√
| C |.

We solved every tenth LP relaxation to a relative duality gap of 10−8. Several of the
problems took a large number of stages, and solving the relaxations accurately is a way to
limit the number of stages, at a cost of an increased number of iterations. This approach
reduces the variability of the runtimes.

Adding the longer cycles makes it hard to update the restart point: the restart point
found in one stage may well be infeasible at a future stage because we do not check every
possible constraint. Thus, we restarted in Step 10 of the algorithm by moving towards the
point 0.5e. We move so that the restart point is 5% of the way from the boundary of the
feasible region of the new relaxation towards 0.5e. The dual iterate was updated to an earlier
dual iterate, namely the last point where the relative duality gap was at least 10%.

Our primal heuristic used the primal point x to generate the incidence vectors of several
cuts. Edges with xij smaller than 0.01 or greater than 0.99 forced vertices onto the same side
or opposite sides of the cut and then unassigned vertices were assigned in a greedy manner.
In order to get several cuts, the order in which initially unassigned vertices were examined
was randomized. The number of cuts generated at stage k is (1 + (k/6)). Once an incidence
vector has been generated, it is modified using a local improvement process. The local
improvement process looks for paths of vertices — all vertices on a path are moved to the
other side of the cut if this results in improvement. We start off looking for paths consisting
of just a single vertex, and eventually we look for paths containing up to ten vertices. We
use each vertex in turn as the starting vertex. We use a breadth first search to explore all
paths starting from the vertex; if a path results in an increase in the size of the cut of at
least 2.5 then we stop searching along this branch and backtrack. If we are unable to find
an improving path starting from any vertex, we look for paths that do not hurt the solution.
If we are then still unable to find improving paths, we terminate the local improvement
process. This idea of looking for paths was proposed by Berry and Goldberg [5].

Each edge only appears in eight of the possible cycle constraints of length 4, so the
columns of the constraint matrix did not become dense. Therefore, we only dropped a
constraint if none of the corresponding edge variables remained unfixed.

3.2.3 Computational results

We generated random problems using two different probability distributions. First, we gen-
erated random edge weights with a Gaussian distribution with mean zero and standard
deviation 1. Second, we generated edge weights of ±1, with 1 or -1 equally likely. Our
results were far better for the second class. The principal properties of real spin glasses (for
example, amorphous alloys) are represented well by the ±1 spin glass model on a rectangular
lattice. The results in [12] are far better than our results with the first distribution, so we
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L NL Time Iters Stages Added Energy

10 1946 0.47 9 2.0 69.0 -1.3895
20 1946 4.79 21 4.0 327.7 -1.3985
30 1546 24.38 39 6.7 809.4 -1.4003
40 1200 93.08 64 9.8 1550.6 -1.4001
50 720 290.75 99 13.8 2502.9 -1.4005
60 440 772.37 154 19.5 3670.0 -1.4019
70 384 2245.92 216 25.8 5294.2 -1.4012
80 310 5787.28 310 34.5 7219.3 -1.4012
90 280 11320.24 400 42.8 9501.6 -1.4017

100 229 11873.59 391 44.1 10975.0 -1.4023

Table 3: Results for Ising spin glass problems

do not report these results in detail.
The results from problems where the edge weights were ±1 are contained in Table 3. We

give the number NL of problems of each size solved, the number of primal-dual iterations
required, the total CPU time to solve the problems, the number of stages, the number of
cuts added, and the average ground state energy. Typically, over 40% of the total CPU time
for the larger instances was spent on the primal heuristics. In addition, we were unable to
solve 2, 18, 10, and 7 instances with L = 70, 80, 90, 100 respectively using just cutting planes
of type (3), so these instances are omitted from the table.

When solving these problems, we exploited the fact that every cut will have even value,
so we can terminate the algorithm with the optimal solution when the gap between the
upper and lower bounds falls below two. With this termination criterion, we found that we
were rarely able to fix any edges in Step 9 of the algorithm. (This contrasts markedly with
our experience with problems with a Gaussian distribution of edge weights, where fixing
variables made it possible to solve problems which were otherwise beyond the reach of our
implementation due to memory requirements.)

These results compare very favourably with those in De Simone et al. [13], who used
the simplex solver in CPLEX3.0 in a branch and cut algorithm for problems with the same
distribution, on a Sun SPARC 10, which is approximately half as fast as our machine. They
report results for problems of size up to 70×70. Problems of size 50×50 took them roughly
an hour, problems of size 60 × 60 took roughly two to three hours, and problems of size
70 × 70 required on the order of fifteen hours.

One reason for the better results for the problems with ±1 edge weights than with
Gaussian edge weights is that the problems do not have to be solved as accurately: we can
terminate if the gap becomes less than two. An interior point method is good at getting
close to an optimal solution, but it may take a while in the cutting plane setting to get a
relative gap of, say, 10−6. Our primal heuristic worked well for the ±1 problems, almost
always finding the optimal solution at least one or two stages before it was possible to prove
optimality; this was not the case for the Gaussian problems, with the optimal solution often
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not discovered until the final stage.
The number of stages and iterations for problems with either distribution are sensitive

to slight changes in the parameters of the algorithm. We found a slight change may well
halve the number of iterations required to solve one problem but double the number of
iterations required to solve another. The table contains the results with a set of parameters
that appeared to produce reasonable results, producing some of the better runs for most
problems and respectable results for most of the remaining problems.

4 Conclusions

We have presented cutting plane algorithms for several integer programming problems. These
algorithms use a predictor-corrector interior point method to solve the LP relaxations. For
some MAXCUT problems and linear ordering problems, we have obtained runtimes that are
comparable with or better than those obtained using a cutting plane method that employs
the simplex solver in CPLEX to solve the relaxations.

It appears from the results detailed in the current paper and from other experiments,
that the most suitable problems are those where:

• The linear programming relaxations are large, with the number of variables and/or
constraints numbering in the thousands. This is because of the well-documented ob-
servation that the performance of interior point methods relative to simplex methods
for linear programs improves as the problem size increases.

• The objective function coefficients are integer. It then suffices to reduce the duality
gap to be less than one in order to prove optimality. This is useful for an interior point
cutting plane method because such an approach can typically get close to optimality
quickly but then may take a long time to reduce the duality gap to, for example, 10−6.
Problems with integral coefficients are more likely to suffer from primal or dual degen-
eracy, which is more harmful to the performance of a simplex cutting plane algorithm
than an interior point cutting plane algorithm. When the objective function coefficients
are fractional, an appropriate method may be to use an interior point cutting plane
algorithm initially and switch over to a simplex cutting plane algorithm as optimality
is approached.

• It should be possible to find a strictly feasible point in the convex hull of feasible integral
points efficiently, because such a point can then be used to restart the algorithm after
cutting planes have been added. If it is not possible to restart in this manner, the
method proposed by Gondzio [19] can be used.

We have recently experimented with combining interior point cutting plane algorithms
with dual simplex cutting plane algorithms, using the interior point solver for the early
stages and the simplex solver for the later stages. The performance of this algorithm has
been outstanding for linear ordering problems [36]. It may well be that such a hybrid cutting
plane method is an appropriate choice for a wide variety of integer programming problems.
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