
1 SOLVING LINEAR ORDERING

PROBLEMS WITH A COMBINED

INTERIOR POINT/SIMPLEX CUTTING

PLANE ALGORITHM*

John E. Mitchell

Department of Mathematical Sciences

Rensselaer Polytechnic Institute

Troy, NY 12180 USA.y

http://www.math.rpi.edu/~mitchj

mitchj@rpi.edu

Brian Borchers

Mathematics Department

New Mexico Tech

Socorro, NM 87801 USA.

http://www.nmt.edu/~borchers

borchers@nmt.edu

�Supported in part by ONR grant N00014{94{1{0391.
ySupported in part by a grant from the Dutch NWO and Delft University of Technology for
the 1997{98 academic year, while visiting TWI/SSOR at Delft University of Technology.

1



2

Abstract: We describe a cutting plane algorithm for solving linear ordering
problems. The algorithm uses a primal-dual interior point method to solve
the �rst few relaxations and then switches to a simplex method to solve the
last few relaxations. The simplex method uses CPLEX 4.0. We compare the
algorithm with one that uses only an interior point method and with one that
uses only a simplex method. We solve integer programming problems with as
many as 31125 binary variables. Computational results show that the combined
approach can dramatically outperform the other two methods.

1.1 INTRODUCTION

The linear ordering problem has applications in economics, archaeology, schedul-
ing, the social sciences, and aggregation of individual preferences. A cutting
plane method provides a way to obtain a provably optimal solution to a linear
ordering problem. Such a method requires the solution of a sequence of linear
programming problems. It is now possible to solve linear ordering problems
of a size where these linear programming problems can be solved more e�-
ciently using an interior point method than by using simplex. In this paper we
describe an interior point cutting plane method for the linear ordering prob-
lem, we examine combining the interior point method with a simplex cutting
plane method, and we present computational results showing that the com-
bined method can dramatically outperform either a pure interior point cutting
plane method or a pure simplex cutting plane method.

In x1.2, we de�ne the linear ordering problem and discuss an integer pro-
gramming model. In x1.3, we describe the polyhedral structure of the linear
ordering polytope. In x1.4 and x1.5, we present our cutting plane algorithms
for the linear ordering problem. The combination of interior point and sim-
plex cutting plane algorithms is the subject of x1.6. Computational results are
presented in x1.7 and conclusions are given in x1.8.

The �rst authors to consider a cutting plane algorithm for the linear ordering
problem were Gr�otschel et al., 1984a, Gr�otschel et al., 1984b, J�unger, 1985, and
Reinelt, 1985. We have previously discussed interior point cutting plane algo-
rithms for this problem in Mitchell and Borchers, 1992, Mitchell and Borchers,
1996, and Mitchell, 1997. Computational investigations of interior point cut-
ting plane algorithms for other integer programming problems include Mitchell
and Todd, 1992, Mitchell, 1997, and Mitchell, 1998. Interior point column gen-
eration algorithms implemented in other contexts include Bahn et al., 1995,
Go�n et al., 1997, Gondzio, 1998, and Gondzio and Sarkissian, 1996. Many
of these references also contain discussions of the theoretical performance of
interior point column generation methods.

Christof and Reinelt, 1998, have developed a simplex-based branch-and-cut
algorithm for hard instances of the linear ordering problem where the cutting
planes come from small-dimensional versions of the problem, as in Christof
and Reinelt, 1997. The instances we examine in this paper are larger, but
they do not generally require branching or extensive separation routines to �nd
violated cutting planes. We are interested in large instances because they have



SOLVING LINEAR ORDERING PROBLEMS 3

large linear programming relaxations, so the amount of time spent solving the
relaxations will be a signi�cant proportion of the total solution time. We expect
that the methods described in this paper, in conjunction with the methods
described in Christof and Reinelt, 1998, will make it possible to solve large,
hard instances.

1.2 THE LINEAR ORDERING PROBLEM

1.2.1 Applications

Applications of the linear ordering problem include triangulation of input-
output matrices in economics (Gr�otschel et al., 1984b), archeological seriation,
minimizing total weighted completion time in one-machine scheduling, the so-
cial sciences (Fishburn, 1992), and aggregation of individual preferences. For
more discussion of the linear ordering problem, as well as description of a cut-
ting plane algorithm for solving the problem, see Gr�otschel et al., 1984a.

As an example of the aggregation of individual preferences, consider a tour-
nament between a number of sports teams, where each team plays every other
team. We wish to determine which team is the best, which is second best, and
so on. If Team A beats Team B then Team A should �nish ahead of Team B
in the �nal ordering. However, it may be that Team B beat Team C, who in
turn beat Team A. Therefore, it is not generally a simple matter to determine
the �nal ordering. We could just count the number of victories of each team,
but this may not truly represent the relative strength of some teams, and it
may well lead to ties in the ordering. Therefore, we usually take the margin of
victory into account when determining the �nal ordering.

An input-output matrix in economics measures the movement of goods from
one sector of the economy to another. In advanced economies there will gen-
erally be a rotation of goods and capital through the economy, whereas in less
advanced economies there will be a more pronounced ordering of the sectors,
with goods generally 
owing from Sector A to Sector B to Sector C, etc. The
objective is to �nd the ordering of the sectors of the economy that most closely
matches the data contained in the input-output matrix. The �nal solution can
be quanti�ed using its linearity:

The linearity of an input-output matrix is the proportion of the total
weight in the matrix that agrees with the optimal ordering.

For an advanced economy, the linearity can be as low as 70%; for less advanced
economies the linearity can be as high as 90%.

In archeological seriation, we have samples from di�erent sites of di�erent
artifacts belonging to various time periods. If object A is closer to the surface
than object B then the time period for object A was probably more recent
than that of object B. The objective is to aggregate the data of this form from
di�erent sites and determine the ordering of the time periods.



4

1.2.2 Modeling the problem

In a general linear ordering problem, we have p objects to place in order. If we
place i before j, we pay a cost of g(i; j). Conversely, if we place i after j, we
pay a cost g(j; i). The objective is to choose the ordering that minimizes the
total cost. This problem is NP -hard (Karp, 1972). Throughout this paper, we
will use p to refer to the number of objects.

A linear ordering problem with p objects can be considered as a problem
on the complete directed graph with p vertices. For each pair of vertices i and
j, we want to pick exactly one of the two arcs (i; j) and (j; i). Further, there
should be no directed cycles in the resulting directed subgraph. Such an acyclic
digraph is called a tournament.

The linear ordering problem can be modelled as an integer programming
problem in the following manner. We de�ne indicator variables xij for each
ordered pair of objects i and j, to indicate whether i is before j:

x(i; j) =

�
1 if i before j
0 otherwise.

We can then model the linear ordering problem as:

min
Pp

i=1

Pp

j=1

j 6= i

gijxij

subject to x is the incidence vector of a tournament.

Notice that in any feasible solution, we must have x(i; j) + x(j; i) = 1 for
each pair 1 � i < j � p. We can use this observation to eliminate the variables
x(j; i), j > i. With this modi�cation, we modify the objective function:

x(i; j), i < j, has cost coe�cient c(i; j) := g(i; j)� g(j; i).

The linear ordering problem can be restated

min
Pp�1

i=1

Pp

j=i+1 cijxij
subject to x is the incidence vector of a tournament. (LO)

1.3 THE POLYHEDRAL STRUCTURE OF THE LINEAR ORDERING

POLYTOPE

Gr�otschel et al., 1984a, J�unger, 1985, and Reinelt, 1985, have investigated the
polyhedral combinatorics of the linear ordering problem, and we recap their
results. They have shown that the convex hull of the set of feasible solutions to
(LO) is full dimensional and that the simple bounds 0 � xij � 1 de�ne facets
of this polyhedron.

In order to get a tournament, it is necessary to prevent solutions of the form:

i before j before k before i,
or, equivalently: x(i; j) = x(j;k) = x(k; i) = 1:

This can be prevented by the inequality x(i; j) + x(j; k) + x(k; i) � 2, which
must be satis�ed by any linear ordering. For the formulation in (LO), we get
two forms of this inequality when 1 � i < j < k � p:



SOLVING LINEAR ORDERING PROBLEMS 5

6@
@
@
@
@
@R�

i

j

k

Prevented by x(i; j) + x(j; k)� x(i; k) � 1.

? @
@
@
@

@
@I

-
i

j

k

Prevented by �x(i; j) � x(j; k) + x(i; k) � 0.

Thus, we get the two sets of triangle inequalities:

x(i; j) + x(j; k)� x(i; k) � 1 (1.1)

�x(i; j) � x(j; k) + x(i; k) � 0: (1.2)

Every incidence vector of a linear ordering satis�es these inequalities for all
1 � i < j < k � p. We call two such inequalities arc-disjoint if they involve
two non-intersecting sets of objects, fi1; j1; k1g and fi2; j2; k2g.

Gr�otschel et al., 1984a, showed that if x is integral and satis�es all the tri-
angle inequalities then it is the incidence vector of a linear ordering. Therefore,
the linear ordering problem can be written

min
Pp�1

i=1

Pp

j=i+1 cijxij
subject to x(i; j) + x(j; k)� x(i; k) � 1; 1 � i < j < k � p (IPLO)

�x(i; j) � x(j; k) + x(i; k) � 0; 1 � i < j < k � p
x = 0 or 1; 1 � i < j � p:

The 2

�
p
3

�
triangle inequalities are facets of the convex hull of incidence

vectors of linear orderings. However, they do not give a complete description
of the linear ordering polytope, and other families of inequalities are known. In
fact, since the linear ordering problem is NP -hard, there must be exponentially
many other facet de�ning inequalities, unless P = NP . Such inequalities have
been investigated by Leung and Lee, 1994, and Christof and Reinelt, 1997,
among others.

1.4 A BASIC CUTTING PLANE APPROACH

In a cutting plane approach, a sequence of linear programming relaxations of
the linear ordering problem are solved, and these relaxations are improved un-
til they give a su�ciently good approximation to the convex hull of incidence



6

vectors of linear orderings in the neighbourhood of the optimal ordering. Be-
cause there is a large number of triangle inequalities, these are only included as
necessary. We were able to solve most of our test problems using only triangle
inequalities; for other linear ordering problems it may well be necessary to use
other inequalities or to use branch and bound.

Thus, our relaxation always takes the form:

min
Pp�1

i=1

Pp

j=i+1 cijxij
subject to x satis�es some of the triangle inequalities (LPLO)

0 � x(i; j) � 1; 1 � i < j � p:

This relaxation has approximately p2=2 variables; for p = 100 we get 4950
variables and for p = 250 we have 31125 variables. The initial relaxation
includes none of the triangle inequalities. Notice that the optimal value of
(LPLO) gives a lower bound on the optimal value of (IPLO).

If the solution to (LPLO) is integral and if it satis�es all of the triangle
inequalities then it is optimal for the linear ordering problem. If the optimal
solution violates some triangle inequalities, then a subset of the violated in-
equalities is added to the relaxation, the modi�ed relaxation is solved and the
process repeated. If the solution is fractional, but it does not violate any tri-
angle inequalities, then the cutting plane approach is halted; in principle, the
method could be extended to this case by searching for other cutting planes,
or by using branch and bound. Our interior point solver does not do this, but
the CPLEX simplex solver does use branch and bound if the cutting plane
approach results in a fractional solution. Only 2 of our 30 test problems had
such a fractional solution.

Our complete algorithm takes the following form (the algorithm is discussed
in more detail in x1.5):

1. Initialize: We assume the data is integral.

2. Solve current relaxation, using either a primal-dual interior point
method, or the simplex method. This gives a lower bound on the op-
timal value of the linear ordering problem.

3. Separation: Check all triangle inequalities. Bucket sort resulting vio-
lated inequalities by violation and add a subset of arc-disjoint constraints
to the relaxation. Drop any constraints that no longer appear important.

4. Primal heuristic: Look for the incidence vector of a linear ordering close
to the solution to the current relaxation. Store the resulting solution if it
is better than the best ordering found previously.

5. Check for termination: If the di�erence between the lower bound
and the value of the best ordering found so far is less than one, STOP
with optimality. If no violated triangle inequalities are found and if the
di�erence is greater than one, use branch and bound to complete the
solution.



SOLVING LINEAR ORDERING PROBLEMS 7

6. Loop: return to step 2

1.5 REFINEMENTS WITH THE INTERIOR POINT CUTTING PLANE

METHOD

The algorithm given above works well when solving the relaxations using the
simplex method: the initial relaxation is solved using the primal simplex algo-
rithm and subsequent relaxations using the dual simplex algorithm. In order
to get the algorithm to perform well when an interior point method is used to
solve the relaxations, several re�nements are required, and we discuss those in
this subsection. We also discuss our primal heuristic and our bucket sort.

The most important modi�cation when using an interior point algorithm is
to only solve the relaxations approximately. Only the �nal relaxation needs to
be solved accurately, and, since the data are integral, it even su�ces to solve
the �nal relaxation to give a gap of less than one between the dual value and
the value of the best known linear ordering. This saves time on the current
relaxation. It also means that the separation heuristics try to �nd violated
constraints at a more central point.

The accuracy to which we solve the relaxations is controlled by a dynami-
cally altered tolerance on the duality gap: if many constraints are added, the
tolerance is increased because we probably don't need to solve the relaxations
as accurately, and if only a few violated constraints are found then the toler-
ance is decreased. The change in the tolerance also depends on the size of the
largest violation. We also insist that the primal value should be less than the
value of the best known linear ordering before looking for separating hyper-
planes, and we require that the average of the primal and dual values should
be at least one less than the value of the best known linear ordering. These
two criteria are designed to reduce the likelihood that we search for cutting
planes when instead solving the current relaxation to optimality would solve
the linear ordering problem.

All triangle inequalities are checked for feasibility. The prospective con-
straints are then bucket sorted by violation. We then go through the buckets
in order, selecting arc-disjoint inequalities, until we reach an upper limit on the
number of constraints. There are two advantages to choosing arc-disjoint in-
equalities: the inequalities are then orthogonal to one another, and the sparsity
of the Cholesky factor is not a�ected as much as if the constraints shared arcs
(see, for example, Mitchell, 1997). The criteria used to decide which buckets to
examine and how many cuts to add di�er between the simplex implementation
and the interior point implementation, because the simplex method returns an
extreme point and the interior point method returns an interior point, making
the nature of the violations di�er between the two algorithms (we return to
this point in x1.8).

Once cutting planes are added, the current solution is dual feasible but
primal infeasible. When using the simplex method, we would resolve using
the dual simplex algorithm. One option for restarting when using an interior
point method is to use an infeasible interior point algorithm, but we found



8

computationally that such a method was not very e�ective: it would often
concentrate on regaining feasibility, by which time it had moved far from the
original iterate. Therefore, we restart by moving towards the vector 0:5e, where
e denotes the vector of ones. This point is always an interior point in (LPLO).
Our restart point is an interior point which is a convex combination of this
point and the �nal iterate. We restart the dual problem with an earlier dual
iterate, so that the primal-dual pair are more centered. Gondzio, 1998, and
Gondzio and Sarkissian, 1996, have investigated other methods for restarting
interior point methods when constraints are added, which can be used in the
general case when there is not a good restart point available; these restart
methods perform no better than our methods for our problem because we can
exploit a known good restart point and we restart before getting too close to
the optimal face of the current relaxation.

Our primal heuristic is a modi�cation of that in Gr�otschel et al., 1984a. We
try to round the fractional interior point to the incidence vector of a linear
ordering, and then we use a local search technique to improve the solution.

1.6 COMBINING THE TWO SOLVERS

We investigated three di�erent cutting plane algorithms:

1. Use the interior point method exclusively to solve the relaxations.

2. Use the simplex method exclusively to solve the relaxations.

3. Combine the two methods: use the interior point method to solve the
�rst few relaxations and use the simplex method to solve the remaining
relaxations.

The rationale for a crossover method is that we observed experimentally
that the number of iterations that an interior point method requires for each
relaxation remains approximately constant, while the number required by a
simplex cutting plane algorithm drops dramatically. Often, the simplexmethod
may require only a handful of iterations on the last few stages. It appeared
that the interior point method was faster in the earlier stages and the simplex
method was faster in the later stages.

We experimented with several di�erent rules for crossing over from one al-
gorithm to the other, and di�erent rules worked better on di�erent classes of
linear ordering problems. Generally, the problems require between 10 and 20
stages. The rules we tested included:

Crossover after two stages.

Crossover after three stages.

Crossover when less than 3p constraints are added.

Crossover when less than p constraints are added.



SOLVING LINEAR ORDERING PROBLEMS 9

As we move down the list, the number of stages solved using the interior point
algorithm increases. As will be seen in x1.7, each one of these rules was superior
for at least one class of linear ordering problems; it is an interesting open
problem to determine a rule that works well for all linear ordering problems.

1.7 COMPUTATIONAL RESULTS

We solved randomly generated problems. There are some real-world linear
ordering problems available over the web from LOLIB:

http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/LOLIB/LOLIB.html

We describe computational experience with an interior point method for these
problems in Mitchell, 1997. The largest of these problems has 79 objects,
which is smaller than the size of problems we wish to investigate. Therefore, we
randomly generated linear ordering problems with between 100 and 250 objects.
Our generator and all the instances discussed in this paper are available at the
web site:

http://www.math.rpi.edu/~mitchj/generators/linord

Each instance was generated as follows:

For i < j, generate g(i; j) uniformly between 0 and 99.

For j < i, generate g(i; j) uniformly between 0 and 39.

Randomly permute so it is not easy to guess a very good solution.

Zero out a percentage of the entries.

The linearity of the resulting problems is around 72, which is similar to the
real world problems in LOLIB. The problems in LOLIB also have various entries
equal to zero, and their entries have a larger range than our randomly generated
problems.

We generated six di�erent classes of problems, varying by the number of
objects and by the percentage of entries zeroed out. Each class contained
�ve problems. For each problem within a particular class, we used the same
crossover criterion.

All runs were performed on a Sun SPARC 20/71. All runtimes will be quoted
in seconds. The interior point code was written in Fortran and the Fortran
command ETIMEwas used for timings. We do not use a publically available code
such as HOPDM (Gondzio, 1995) or PCx (Czyzyk et al., 1997), because none
of these codes make it easy to access the current solution after each iteration,
stop the process when desired, suggest a new starting point, and not preprocess
each relaxation, which are all required features of our algorithm. The simplex
code was written in C. It uses CPLEX 4.0 to solve the relaxations. The UNIX
command time was used for timings. For the crossover runs, the interior point
code wrote the problem out to �les and the simplex code read from the �les.
The times to write out and to read in the problem are included in the runtimes
we give. CPLEX has an option of using the point provided by the interior point



10

method as a warm start. We found that this was only a very marginal help
because several more stages are still needed when we crossover, and occasionally
it led to failure to terminate. Therefore, we report results that do not use this
feature.

The runtimes of the three algorithms on the thirty test problems are con-
tained in Table 1.1. Even including all the triangle inequalities in the relaxation
(LPLO) does not give an integral solution for the two problems r100b2 and
r200d1, so the means for the algorithms omit these problems. The simplex
solver has a branch and bound component, so the simplex and crossover codes
can solve these two problems, but the interior point code cannot. The interior
point code is also unable to solve the problems r200a1 and r200e1 because of
memory limitations: for each of these problems, the Cholesky factorization of
AAT contained more than our limit of 106 nonzeroes.

In Table 1.2, we give the percentage of the time used by the interior cutting
plane code within the combination cutting plane code. It appears to be best to
try to split the runtime somewhat evenly between the interior point code and
the simplex code.

To give a 
avour of the performance of the cutting plane algorithms, Table
1.3 contains more details of three runs for problem r150a1: one using just the
interior point code, one using just the simplex code, and one using a combina-
tion code. The reduction of the number of iterations required by simplex per
stage as the algorithm proceeds can be seen in the table. The reduction in the
number of simplex iterations when using the crossover code as opposed to the
pure simplex code is also interesting.

The relative times required by the interior point and simplex cutting plane
algorithms are portrayed in Figure 1.1. The graph uses a linear scale. The four
problems that the interior point code was unable to solve are omitted from
the graph. Notice that as the problems become more di�cult to solve, the
times required by the two algorithms become comparable, with the ratio of the
runtimes getting close to 1.

The relative times required by the combined and simplex cutting plane al-
gorithms are portrayed in Figure 1.2. The graph uses a linear scale. The two
problems for which a branch and bound solver was used are omitted from the
graph. It is clear from the graph that the combined code is as much as ten
times faster than the simplex code on the harder problems, that is, problems
that take the simplex algorithm at least about half an hour.

For the six di�erent classes of problems, we used the following criteria to
determine when to switch from the interior point solver to the simplex solver:

r150.0 and r200.0: switch after two stages.
r150.1 and r250.0: switch after three stages.
r200.1: switch after add < 600 constraints in a stage.

(On average, after 7 stages.)
r100.2: switch after add < 100 constraints in a stage.

(On average, after 7 stages.)



SOLVING LINEAR ORDERING PROBLEMS 11

Table 1.1 Times for the 3 algorithms

Objects % zeroes Name Interior Simplex Crossover

150 0 r150a0 185 89 70
r150b0 201 55 66
r150c0 219 96 72
r150d0 224 75 66
r150e0 203 62 65
Mean 206 75 68

200 0 r200a0 565 318 200
r200b0 1196 408 245
r200c0 610 276 193
r200d0 713 468 198
r200e0 690 455 209
Mean 755 385 209

250 0 r250a0 2382 3593 683
r250b0 4685 3574 548
r250c0 3924 4013 574
r250d0 7486 3860 524
r250e0 3983 3947 631
Mean 4492 3797 592

100 20 r100a2 1043 487 185
r100b2 frac 3886 426
r100c2 2216 794 214
r100d2 1040 669 132
r100e2 1322 645 192
Mean 1405 649 181

150 10 r150a1 1249 1496 218
r150b1 1717 1511 165
r150c1 2723 963 221
r150d1 4229 1441 237
r150e1 1316 1058 200
Mean 2247 1294 208

200 10 r200a1 dnf 10791 1101
r200b1 9167 9317 886
r200c1 8856 9142 692
r200d1 frac 33038 1667
r200e1 dnf 10687 836
Mean { 9984 879

It should be noted that each of the criteria resulted in improvement over pure
simplex for almost every set of problems.



12

Table 1.2 Breakdown of the time required by the combination code

Objects % zeroes Name Total time % Interior

150 0 r150a0 70 56.2
r150b0 66 58.9
r150c0 72 54.4
r150d0 66 56.6
r150e0 65 58.1
Mean 68 56.9

200 0 r200a0 200 51.1
r200b0 245 36.9
r200c0 193 45.9
r200d0 198 47.5
r200e0 209 44.3
Mean 208 45.1

250 0 r250a0 683 38.3
r250b0 548 46.1
r250c0 574 44.4
r250d0 524 51.0
r250e0 631 41.0
Mean 592 44.2

100 20 r100a2 185 89.2
r100b2 426 37.0
r100c2 214 83.8
r100d2 132 72.5
r100e2 192 86.6
Mean 230 73.8

150 10 r150a1 218 29.5
r150b1 165 39.2
r150c1 221 29.9
r150d1 237 27.7
r150e1 200 32.0
Mean 208 31.6

200 10 r200a1 1100 34.1
r200b1 886 73.4
r200c1 692 47.1
r200d1 1666 35.8
r200e1 836 52.3
Mean 1036 48.6

The �nal number of constraints for the pure interior point code are approx-
imately:



SOLVING LINEAR ORDERING PROBLEMS 13

Table 1.3 A typical run for r150a1

Stages Interior Simplex Crossover
Cuts Itns Cuts Itns Cuts Itns

1 1000 3 2151 2100 1000 3
2 1948 3 1365 977 1948 3
3 1001 3 942 718 1001 3
4 288 3 740 897 288 3
5 248 3 726 1703 248 3
6 194 4 1070 3285 194 4
7 145 3 1157 2363 145 6041
8 445 4 203 3569 143 104
9 79 4 1118 2074 121 132
10 38 3 132 2385 126 98
11 40 4 98 2762 97 131
12 30 4 540 903 110 130
13 34 4 26 880 104 147
14 23 4 16 345 38 126
15 23 4 9 236 97 76
16 55 3 10 127 18 36
17 9 5 1 58 7 1
18 17 5 4 75 8 1

r100.2: 3000 constraints.
r150.0: 4000 constraints.
r150.1: 5000 constraints.
r200.0: 6500 constraints.
r200.1: 8000 constraints.
r250.0: 10000 constraints.

1.8 CONCLUSIONS

For larger problems, the interior point and simplex codes require comparable
time. The interior point solver is a research code, and we believe based on our
experience in solving standard test problems that this interior point solver is
roughly half as fast as current high quality interior point solvers.

For su�ciently hard problems, combining the two codes performs signi�-
cantly better than either code individually. It appears that the interior point
method is faster in the early stages and the simplex method is faster in the
later stages. Furthermore, it appears that the interior point method is able to
add a better set of cutting planes in the early stages, because it is looking for
constraints at an interior point. There are at least two reasons why the interior
point is useful in the early stages:



14

Figure 1.1 Time to solve with the interior point solver versus time to solve with the

simplex solver. (No crossover.)

6

-

3

1

0

Simplex time (secs)

Int Pt/

Simplex

2000 4000 8000

Key:

y 0% zeroes

2 10% zeroes

4 20% zeroes

4

4

4

4y

y

y

y

y

2

2

2
2

2

y

y

y

yy

22

y

y

y

y

y

At the extreme point, most of the violated constraints are violated by
exactly one, so it is hard to discriminate between these constraints to
�nd the more important ones. With the interior point solver, there is a
greater range of violations, which provides more information about the
relative importance of the constraints.

Initially, the problem may have primal and dual degeneracy. This hurts
the simplex method by forcing it to take more iterations. Further, the
interior point method �nds an interior point close to the middle of the
optimal face, so it will �nd cuts that are useful over much of the optimal
face, rather than just at one vertex of this face.

References

[Bahn et al., 1995] Bahn, O., Merle, O. D., Go�n, J. L., and Vial, J. P. (1995).
A cutting plane method from analytic centers for stochastic programming.
Mathematical Programming, 69:45{73.

[Christof and Reinelt, 1997] Christof, T. and Reinelt, G. (1997). Low-
dimensional linear ordering polytopes. Technical report, IWR Heidelberg,
Germany.



SOLVING LINEAR ORDERING PROBLEMS 15

Figure 1.2 Combination time versus simplex time

6

-

1

0.10

0

Simplex time (secs)

Combo/

Simplex

2000 4000 8000

Key:

y 0% zeroes

2 10% zeroes

4 20% zeroes

4

4

4

4

y

y

y

y

y

2

2

2

2
2

y
y

y

y
y

22
2 2

y
y yyy

[Christof and Reinelt, 1998] Christof, T. and Reinelt, G. (1998). Algorithmic
aspects of using small instance relaxations in parallel branch-and-cut. Tech-
nical report, IWR Heidelberg, Germany.

[Czyzyk et al., 1997] Czyzyk, J., Mehrotra, S., Wagner, M., and Wright, S. J.
(1997). PCx user guide (version 1.1). Technical report, Optimization Tech-
nology Center, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, Argonne, Illinois 60439.

[Fishburn, 1992] Fishburn, P. C. (1992). Induced binary probabilities and the
linear ordering polytope: A status report. Mathematical Social Sciences,
23:67{80.

[Go�n et al., 1997] Go�n, J.-L., Gondzio, J., Sarkissian, R., and Vial, J.-P.
(1997). Solving nonlinear multicommodity network 
ow problems by the
analytic center cutting plane method. Mathematical Programming, 76:131{
154.

[Gondzio, 1995] Gondzio, J. (1995). HOPDM (ver 2.12) | A fast LP solver
based on a primal-dual interior point method. European Journal of Opera-

tional Research, 85:221{225.



16

[Gondzio, 1998] Gondzio, J. (1998). Warm start of the primal-dual method
applied in the cutting plane scheme. Mathematical Programming, 83:125{
143.

[Gondzio and Sarkissian, 1996] Gondzio, J. and Sarkissian, R. (1996). Col-
umn generation with a primal-dual method. Technical report, Logilab, HEC
Geneva, Section of Management Sciences, University of Geneva, 102 Bd Carl
Vogt, CH-1211 Geneva 4, Switzerland.

[Gr�otschel et al., 1984a] Gr�otschel, M., J�unger, M., and Reinelt, G. (1984a). A
cutting plane algorithm for the linear ordering problem. Operations Research,
32:1195{1220.

[Gr�otschel et al., 1984b] Gr�otschel, M., J�unger, M., and Reinelt, G. (1984b).
Optimal triangulation of large real-world input-output matrices. Statistiche
Hefte, 25:261{295.

[J�unger, 1985] J�unger, M. (1985). Polyhedral Combinatorics and the Acyclic

Subdigraph Problem. Heldermann, Berlin.

[Karp, 1972] Karp, R. M. (1972). Reducibility among combinatorial problems.
In Miller, R. E. and Thatcher, J. W., editors, Complexity of Computer Com-

putations, pages 85{103. Plenum Press, New York.

[Leung and Lee, 1994] Leung, J. and Lee, J. (1994). More facets from fences
for linear ordering and acyclic subgraph polytopes. Discrete Applied Mathe-

matics, 50:185{200.

[Mitchell, 1997] Mitchell, J. E. (1997). Computational experience with an inte-
rior point cutting plane algorithm. Technical report, Mathematical Sciences,
Rensselaer Polytechnic Institute, Troy, NY 12180{3590. Revised: April 1997.

[Mitchell, 1998] Mitchell, J. E. (1998). An interior point cutting plane algo-
rithm for Ising spin glass problems. In Kischka, P. and Lorenz, H.-W., editors,
Operations Research Proceedings, SOR 1997, Jena, Germany, pages 114{119.
Springer-Verlag.

[Mitchell and Borchers, 1992] Mitchell, J. E. and Borchers, B. (1992). A
primal-dual interior point cutting plane method for the linear ordering prob-
lem. COAL Bulletin, 21:13{18.

[Mitchell and Borchers, 1996] Mitchell, J. E. and Borchers, B. (1996). Solving
real-world linear ordering problems using a primal-dual interior point cutting
plane method. Annals of Operations Research, 62:253{276.

[Mitchell and Todd, 1992] Mitchell, J. E. and Todd, M. J. (1992). Solving com-
binatorial optimizationproblems using Karmarkar's algorithm.Mathematical

Programming, 56:245{284.

[Reinelt, 1985] Reinelt, G. (1985). The Linear Ordering Problem: Algorithms

and Applications. Heldermann, Berlin.


