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Abstract

Branch-and-cut methods are very successful techniques for solving a
wide variety of integer programming problems, and they can provide a
guarantee of optimality. We describe how a branch-and-cut method can
be tailored to a specific integer programming problem, and how families
of general cutting planes can be used to solve a wide variety of problems.
Other important aspects of successful implementations are discussed in
this chapter. The area of branch-and-cut algorithms is constantly evolv-
ing, and it promises to become even more important with the exploitation
of faster computers and parallel computing.

1 Introduction

Many combinatorial optimization problems can be formulated as mixed inte-
ger linear programming problems. They can then be solved by branch-and-cut
methods, which are exact algorithms consisting of a combination of a cutting
plane method with a branch-and-bound algorithm. These methods work by solv-
ing a sequence of linear programming relaxations of the integer programming
problem. Cutting plane methods improve the relaxation of the problem to more
closely approximate the integer programming problem, and branch-and-bound
algorithms proceed by a sophisticated divide and conquer approach to solve
problems. Branch-and-bound methods are discussed elsewhere in this Hand-
book. In this chapter, we discuss cutting plane methods and their integration
with branch-and-bound into branch-and-cut methods. Many problems in the
various application areas discussed in this Handbook have been attacked using
these methods.

Cutting plane algorithms for general integer programming problems were
first proposed by Gomory (1963) (see §4.1). Unfortunately, the cutting planes
proposed by Gomory did not appear to be very strong, leading to slow conver-
gence of these algorithms, so the algorithms were neglected for many years. The
development of polyhedral theory and the consequent introduction of strong,
problem specific cutting planes led to a resurgence of cutting plane methods

1To appear in the Handbook of Applied Optimization, Oxford University Press, 2000.
2Research supported in part by NSF Grant CCR–9901822
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in the 1980’s, and cutting plane methods are now the method of choice for a
wide variety of problems. Perhaps the best known branch-and-cut algorithms
are those that have been used to solve the traveling salesman problem (TSP)
(see §4.2). This approach is able to solve and prove optimality of far larger
instances than other methods. Two papers that describe some of this research
and also serve as good introductions to the area of branch-and-cut algorithms
are Grötschel and Holland (1991); Padberg and Rinaldi (1991). A more recent
work on the branch-and-cut approach to the TSP is Applegate et al. (1994).
The successful research on the TSP is based upon the use of polyhedral theory
to find strong cutting planes.

Branch-and-cut methods have also been used to solve other combinatorial
optimization problems, again through the exploitation of strong cutting planes
arising from polyhedral theory. Problems attacked recently with cutting plane
or branch-and-cut methods include the linear ordering problem, maximum cut
problems, scheduling problems, network design problems, packing problems, the
maximum satisfiability problem, biological and medical applications, and finding
maximum planar subgraphs. Recent surveys include Caprara and Fischetti
(1997); Jünger et al. (1995).

Branch-and-cut methods for general integer programming problems are also
of great interest (see, for example, Balas et al., 1996a; Ceria et al., 1998; Cordier
et al., 1997; Crowder et al., 1983; Jünger and Thienel, 1998; Nemhauser et al.,
1994). It is usually not possible to efficiently solve a general integer program-
ming problem using just a cutting plane approach, and it is therefore necessary
to also branch, resulting in a branch-and-cut approach. A pure branch-and-
bound approach can be sped up considerably by the employment of a cutting
plane scheme, either just at the top of the tree, or at every node of the tree,
because the cutting planes lead to a considerable reduction in the size of the
tree.

For general problems, the specialized facets used when solving a specific
combinatorial optimization problem are not available. Useful families of general
inequalities include cuts based on knapsack problems (Crowder et al., 1983),
Gomory cutting planes (Gomory, 1963; Balas et al., 1996b), and lift and project
cutting planes (Balas et al., 1996a). Cutting planes and polyhedral theory are
discussed in more detail in §4. Before that, an example of a branch-and-cut
algorithm is given in §2, and an algorithm is outlined in §3.

The software packages MINTO (Nemhauser et al., 1994) and ABACUS (Jün-
ger and Thienel, 1998) implement branch-and-cut algorithms to solve integer
programming problems. The packages use standard linear programming solvers
to solve the relaxations and they have a default implementation available. They
also offer the user many options, including how to add cutting planes and how to
branch. The commercial packages CPLEX and XPRESS-MP have also incorpo-
rated cutting plane generation into their branch-and-bound algorithms. Many
refinements are required for an efficient implementation of a branch-and-cut
algorithm and some of these are detailed in §5.

Nemhauser and Wolsey (1988) and Wolsey (1998) provide excellent and de-
tailed descriptions of cutting plane algorithms and the other material in this
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entry, as well as other aspects of integer programming. Schrijver (1986) is an
excellent source of additional material.

One aspect of a branch-and-cut approach that should not be overlooked is
that it can be used to provide bounds. In particular, if we are minimizing but
we are unable to prove optimality, a lower bound on the optimal value can be
deduced from the algorithm, which can be used to provide a guarantee on the
distance from optimality. Therefore, for large and/or hard problems, branch-
and-cut can be used in conjunction with heuristics or metaheuristics to obtain
a good (possibly optimal) solution and also to indicate how far from optimality
this solution may be.

2 A simple example

The integer programming problem

min z := −6x1 − 5x2

subject to 3x1 + x2 ≤ 11 (Eg0)
−x1 + 2x2 ≤ 5

x1, x2 ≥ 0, integer.

is illustrated in Figure 1. The feasible integer points are marked. The linear
programming relaxation (or LP relaxation) is obtained by ignoring the integrality
restrictions and is indicated by the polyhedron contained in the solid lines.

A branch-and-cut approach first solves the linear programming relaxation,
giving the point (2 3

7
, 3 5

7
), with value −33 1

7
. There is now a choice: should the

LP relaxation be improved by adding a cutting plane, for example, x1 +x2 ≤ 5,
or should the problem be divided into two by splitting on a variable?

If the algorithm splits on x1, two new problems are obtained:

min z := −6x1 − 5x2

subject to 3x1 + x2 ≤ 11
−x1 + 2x2 ≤ 5 (Eg1)
x1 ≥ 3

x1, x2 ≥ 0, integer.

and

min z := −6x1 − 5x2

subject to 3x1 + x2 ≤ 11
−x1 + 2x2 ≤ 5 (Eg2)
x1 ≤ 2

x1, x2 ≥ 0, integer.

The optimal solution to the original problem will be the better of the solutions
to these two subproblems. The solution to the linear programming relaxation
of (Eg1) is (3, 2), with value −28. This solution is integral, so it solves (Eg1),
and becomes the incumbent best known feasible solution. The LP relaxation of
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Figure 1: A two dimensional integer programming problem
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(Eg2) has optimal solution (2, 3.5), with value −29.5. This point is nonintegral,
so it does not solve (Eg2), and it must be attacked further.

Assume the algorithm uses a cutting plane approach and adds the inequality
2x1 + x2 ≤ 7 to (Eg2). This is a valid inequality, in that it is satisfied by every
integral point that is feasible in (Eg2). Further, this inequality is violated by
(2, 3.5), so it is a cutting plane. The resulting subproblem is

min z := −6x1 − 5x2

subject to 3x1 + x2 ≤ 11
−x1 + 2x2 ≤ 5 (Eg3)

x1 ≤ 2
2x1 + x2 ≤ 7

x1, x2 ≥ 0, integer.

The LP relaxation of (Eg3) has optimal solution (1.8, 3.4), with value −27.8.
Notice that the optimal value for this modified relaxation is larger than the
value of the incumbent solution. The value of the optimal integral solution to
the second subproblem must be at least as large as the value of the relaxation.
Therefore, the incumbent solution is better than any feasible integral solution
for (Eg3), so it actually solves the original problem.

The progress of the algorithm is illustrated in Figure 2.
Of course, there are several issues to be resolved with this algorithm. These

include the major questions of deciding whether to branch or to cut (§5.5)
and deciding how to branch and how to generate cutting planes (§4). Notice
that the cutting plane introduced in the second subproblem is not valid for the
first subproblem. This inequality can be modified to make it valid for the first
subproblem by using a lifting technique, which is discussed in §5.6.

3 Outline of an algorithm

We regard the mixed integer linear programming problem

min cT x
subject to Ax ≤ b (ILP )

x ≥ 0
xi integer, i = 1, . . . , p.

as our standard form, where x and c are n-vectors, b is an m-vector, and A
is an m × n matrix. The first p variables are restricted to be integer, and the
remainder may be fractional. If p = n then this is an integer programming
problem. If a variable is restricted to take the values 0 or 1 then it is a binary
variable. If all variables are binary then the problem is a binary program. There
is no loss of generality with restricting attention to such a format.

A branch-and-cut algorithm is outlined in Figure 3. Notice that L is the
set of active nodes in the branch-and-cut tree. The value of the best known
feasible point for (ILP ) is z̄, which provides an upper bound on the optimal
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1. Initialization: Denote the initial integer programming problem by ILP 0

and set the active nodes to be L = {ILP 0}. Set the upper bound to be
z̄ = +∞. Set zl = −∞ for the one problem l ∈ L.

2. Termination: If L = ∅, then the solution x∗ which yielded the incumbent
objective value z̄ is optimal. If no such x∗ exists (i.e., z̄ = +∞) then ILP
is infeasible.

3. Problem selection: Select and delete a problem ILPl from L.

4. Relaxation: Solve the linear programming relaxation of ILPl. If the re-
laxation is infeasible, set zl = +∞ and go to Step 6. Let zl denote the
optimal objective value of the relaxation if it is finite and let xlR be an
optimal solution; otherwise set zl = −∞.

5. Add cutting planes: If desired, search for cutting planes that are violated
by xlR; if any are found, add them to the relaxation and return to Step 4.

6. Fathoming and Pruning:

(a) If zl ≥ z̄ go to Step 2.

(b) If zl < z̄ and xlR is integral feasible, update z̄ = zl, delete from L all
problems with zl ≥ z̄, and go to Step 2.

7. Partitioning: Let {Slj}j=k

j=1 be a partition of the constraint set Sl of prob-

lem ILPl. Add problems {ILPlj}j=k

j=1 to L, where ILPlj is ILPl with feasible
region restricted to Slj and zlj for j = 1, . . . , k is set to the value of zl for
the parent problem l. Go to Step 2.

Figure 3: A general branch-and-cut algorithm

value of (ILP ). Further, zl is a lower bound on the optimal value of the current
subproblem under consideration. The value of the LP relaxation of the sub-
problem can be used to update zl. In some situations, a very large number of
violated cutting planes are found in Step 5, in which case it is common to sort
the cutting planes somehow (perhaps by violation), and add just a subset. The
subproblems formed in Step 7 are called child subproblems, with the previous
problem ILP l being the parent subproblem. Usually, the partitioning takes the
form of a variable disjunction: xi ≤ a versus xi ≥ a+1 for some variable xi and
integer a, as in the example. Other choices are possible, and they are discussed
more in the branch-and-bound Chapter.

The relaxations can be solved using any method for linear programming
problems. Typically, the initial relaxation is solved using the simplex method.
Subsequent relaxations are solved using the dual simplex method, since the
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dual solution for the relaxation of the parent subproblem is still feasible in the
relaxation of the child subproblem. Further, when cutting planes are added in
Step 5, the current iterate is still dual feasible, so again the modified relaxation
can be solved using the dual simplex method. It is also possible to use an
interior point method, and this can be a good choice if the linear programming
relaxations are large — see §5.8 for more discussion of this option.

If the objective function and/or the constraints in (ILP ) are nonlinear, the
problem can still be attacked with a branch-and-cut approach. For more in-
formation about such problems, see the Chapter on mixed integer nonlinear
programming problems.

4 Polyhedral theory and cutting planes

We say that any inequality πT x ≤ π0 that is satisfied by all the feasible points
of (ILP ) is a valid inequality. The convex hull of the set of feasible solutions to
(ILP ) is a polyhedron. Every valid inequality defines a face of this polyhedron,
namely the set of all the points in the polyhedron that satisfy πT x = π0. A facet
is a face of a polyhedron that has dimension one less than the dimension of the
polyhedron, and it is necessary to have an inequality that represents each facet
in order to have a complete linear inequality description of the polyhedron. If
all the facets of the convex hull of the set of integer feasible points are known,
then the integer problem can be solved as a linear programming problem by
minimizing the objective function over this convex hull. Unfortunately, it is not
easy to obtain such a description. In fact, for an NP-Complete problem, such a
description must contain an exponential number of facets, unless P=NP.

In the example above, the convex hull of the set of feasible integer points has
dimension 2, and all of the dashed lines represent facets. The valid inequality
3x1 + x2 ≤ 11 represents a face of the convex hull of dimension 0, namely the
point (3, 2).

Chvátal-Gomory, strong, and general cutting planes are described in §4.1,
§4.2, and §4.3, respectively.

4.1 Chvátal-Gomory cutting planes

Cutting planes can be obtained by first combining together inequalities from
the current linear programming relaxation and then exploiting the fact that the
variables must be integral. This process is known as integer rounding, and the
cutting planes generated are known as Chvátal-Gomory cutting planes. Integer
rounding was described implicitly by Gomory (1963), and described explicitly
by Chvátal (1973).

Consider again the example problem given earlier. The first step is to take
a weighted combination of the inequalities. For example,

1
6
(3x1 + x2 ≤ 11) +

5
12

(−x1 + 2x2 ≤ 5)

8



gives the valid inequality for the relaxation:

1
12

x1 + x2 ≤ 3
11
12

.

Since all the variables are constrained to be nonnegative, rounding down the left
hand side of this inequality will only weaken it, giving x2 ≤ 3 11

12 , also valid for
the LP relaxation. In any feasible solution to the integer programming problem,
the left hand side of this inequality must take an integer value. Therefore, the
right hand side can be rounded down to give the following valid inequality for
the integer programming problem:

x2 ≤ 3.

Gomory originally derived constraints of this form directly from the optimal
simplex tableau. These constraints are then added to the tableau and the mod-
ified relaxation is solved. For example, after introducing slack variables x3 and
x4, the optimal simplex tableau for the example problem can be written

min 2 3
7x3 + 1 2

7x4 =: z + 33 1
7

subject to x1 + 2
7x3 − 1

7x4 = 2 3
7

x2 + 1
7x3 + 3

7x4 = 3 5
7

xi ≥ 0, i = 1, . . . , 4

Since x1 and x2 are constrained to be integer, it follows that z, x3, and x4 must
also all be integer. For each row, the fractional parts of the left hand side and
the right hand side must be equal. Thus, the objective function row of this
tableau indicates that the constraint

3
7
x3 +

2
7
x4 ≥ 1

7
(1)

must be satisfied. This constraint can be added to the tableau and the modified
relaxation solved using the dual simplex method. The constraint can be written
in terms of the original variables:

1
7
≤ 3

7
x3 +

2
7
x4 =

3
7
(11− 3x1 − x2) +

2
7
(5 + x1 − 2x2) = 6

1
7
− x1 − x2,

or, rearranging,
x1 + x2 ≤ 6.

If this constraint is added to the relaxation, the optimal value is z = −32.5,
achieved at x = (2.5, 3.5). The Gomory cutting plane generated at this new
point can be written 2x1 + x2 ≤ 8. Adding this constraint gives an optimal
point of x = (2.2, 3.6) with value z = −31.2, and the process can be iterated
further.

Cutting planes can be generated from any constraint where the correspond-
ing basic variable is fractional. The two constraint rows of the tableau given
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above imply the constraints

2
7
x3 +

6
7
x4 ≥ 3

7
(2)

1
7
x3 +

3
7
x4 ≥ 5

7
, (3)

which are equivalent to

2x2 ≤ 7
x2 ≤ 3,

respectively.
Every valid inequality for the convex hull of the set of feasible points for

(ILP ) can be derived by repeatedly applying the Chvátal-Gomory rounding
procedure (Chvátal, 1973). If a cutting plane is always generated from the
first possible row then Gomory’s cutting plane algorithm will solve an integer
program in a finite number of iterations (Gomory, 1963). Balas et al. (1996b)
have shown that the algorithm can be made competitive with other methods
if certain techniques are used, such as adding many Chvátal-Gomory cuts at
once. In the example, adding all three of the cuts (1)–(3) would give an optimal
solution of x = (2 2

3
, 3) with value z = −31; the Gomory cuts that would next

be generated are equivalent to x1 + x2 ≤ 5 and 2x1 + x2 ≤ 8, and adding these
constraints would lead to the optimal solution x = (3, 2), z = −28. Gomory
cuts can contain a large number of nonzeroes, so care is required to ensure that
the LP relaxation does not become very hard with large memory requirements.
The cuts are generated directly from the basis inverse, so care must also be
taken to avoid numerical difficulties.

Gomory cutting planes can also be derived for mixed integer linear program-
ming problems. See, for example, Nemhauser and Wolsey (1988); Wolsey (1998)
for more details.

4.2 Strong cutting planes from polyhedral theory

The resurgence of interest in cutting plane algorithms in the 1980’s was due to
the development of polyhedral combinatorics and the consequent implementa-
tion of cutting plane algorithms that used facets of the convex hull of integral
feasible points as cuts. Typically, a partial polyhedral description of the convex
hull of the set of integer feasible points is determined theoretically. This descrip-
tion will usually contain families of facets of certain types. Separation routines
for these families can often be developed; such a routine will take as input a
point (for example, the optimal solution to the LP relaxation), and return as
output violated constraints from the family, if any exist.

In the remainder of this subsection, we illustrate the use of this approach
through consideration of the traveling salesman problem (TSP). In this problem,
a set of cities is provided along with distances between the cities. A route that
visits each city exactly once and returns to the original city is called a tour. It
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Figure 4: A traveling salesman example

is desired to choose the shortest tour. One application of the TSP is in printed
circuit board (PCB) production: a PCB needs holes drilled in certain places
to hold electronic components such as resistors, diodes, and integrated circuits.
These holes can be regarded as the cities, and the objective is to minimize the
total distance traveled by the drill.

The traveling salesman problem can be represented on a graph, G = (V, E),
where V is the set of vertices (or cities) and E is the set of edges (or links
between the cities). Each edge e ∈ E has an associated cost (or length) ce. If
the incidence vector x is defined by

xe =
{

1 if edge e is used
0 otherwise

then the traveling salesman problem can be formulated as

min
∑

cexe

subject to x is the incidence vector of a tour.

The incidence vector of a tour must satisfy the degree constraints that the sum
of the edge variables must be two at each vertex, giving the following relaxation:

min
∑

cexe

s.t.
∑

e∈δ(v) xe = 2 for all vertices v (TSP 1)
xe = 0 or 1 for all edges e,

where δ(v) denotes the set of all edges incident to vertex v. All tours are feasible
in this formulation, but it also allows infeasible solutions corresponding to sub-
tours, consisting of several distinct unconnected loops. Consider, for example
the graph shown in Figure 4, where the labeled edge lengths are a = 1, b = 2,
and unshown edges have length 10. The point x12 = x23 = x13 = x45 = x46 =
x56 = 1, xij = 0 for all other edges, solves (TSP 1).

Any tour must use two of the edges between the set of vertices {1, 2, 3} and
the set of vertices {4, 5, 6}. In general, subtour elimination constraints can be
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added to the relaxation. These take the form∑
e∈δ(U)

xe ≥ 2 (4)

for every subset U ⊆ V with cardinality 2 ≤| U |≤ |V |
2 , where δ(U) denotes

the set of edges with exactly one endpoint in U . Any feasible solution to the
relaxation given above which also satisfies the subtour elimination constraints
must be the incidence vector of a tour. All of these inequalities are facets of the
convex hull of the set of incidence vectors of tours. Now, the number of subtour
elimination constraints is exponential in the number of cities, so the subtour
elimination constraints are added as cutting planes as needed.

The degree constraints and the subtour elimination constraints, together
with the simple bounds 0 ≤ xe ≤ 1, are still not sufficient to describe the convex
hull of the set of incidence vectors of tours. Consider again the graph shown in
Figure 4, where now the edge lengths are a = 2 and b = 1. All edges that are
not shown have length 10. The point x12 = x23 = x13 = x45 = x46 = x56 = 0.5,
x14 = x25 = x36 = 1 is feasible in (TSP 1) and satisfies (4). However, this point
is not in the convex hull of the set of incidence vectors of tours. It violates the
2-matching inequality

x12 + x23 + x13 + x14 + x25 + x36 ≤ 4. (5)

To obtain the general form of this inequality, consider Figure 5. Here, U is a
subset of the vertices and Ê is an odd set of disjoint edges, each with exactly
one endpoint in U . Let E(U) be the set of edges that have both endpoints in
U . A tour can use at most | U | −1 of the edges in E(U), in which case it can
use only two of the edges from Ê. If more edges are used from Ê, then fewer
edges must be used from E(U). The general form of constraint (5) is

∑
e∈E(U)

xe +
∑
e∈Ê

xe ≤| U | +
| Ê | −1

2
. (6)

This is a facet defining inequality, provided Ê contains at least three edges.
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It can be generalized further to give the family of generalized comb inequali-
ties (Nemhauser and Wolsey, 1988), which are also facet defining.

Many other families of valid inequalities have been discovered. Branch-and-
cut methods search for violated inequalities from these families. These are the
most successful methods for solving large instances of the traveling salesman
problem (Applegate et al., 1994; Grötschel and Holland, 1991; Padberg and
Rinaldi, 1991) and similar ideas have been used to solve a variety of prob-
lems (Caprara and Fischetti, 1997; Jünger et al., 1995; Nemhauser and Wolsey,
1988).

4.3 Alternative general cutting planes

A knapsack problem is an integer programming problem with just one linear
inequality constraint. A general integer programming problem can be regarded
as the intersection of several knapsack problems, one for each constraint. This
observation was used in the breakthrough paper by Crowder et al. (1983) to
solve general integer programming problems. The approach consists of finding
facets and strong cutting planes for the knapsack problem and adding these con-
straints to the LP relaxation of the integer program as cutting planes. These
inequalities have been extended to knapsacks with general integer variables and
one continuous variable (Ceria et al., 1998) and to binary problems with gener-
alized upper bounds.

Another family of useful inequalities are lift-and-project or disjunctive in-
equalities. These were originally introduced by Balas, and it is only in the last
few years that the value of these cuts has become apparent for general integer
programming problems (Balas et al., 1996a). Given the feasible region for a
binary programming problem S := {x : Ax ≤ b, xi = 0, 1 ∀i}, each variable
can be used to generate a set of disjunctive inequalities. Let S0

j := {x : Ax ≤
b, 0 ≤ xi ≤ 1 ∀i, xj = 0} and S1

j := {x : Ax ≤ b, 0 ≤ xi ≤ 1 ∀i, xj = 1}.
Then S ⊆ S0

j ∪ S1
j , so valid inequalities for S can be generated by finding valid

inequalities for the convex hull of S0
j ∪ S1

j . These inequalities are generated
by solving linear programming problems. Because of the expense, the cuts are
usually only generated at the root node. Nonetheless, they can be very effective
computationally.

Other general cutting planes have been developed. Several families and rou-
tines for identifying violated inequalities are described and investigated compu-
tationally by Cordier et al. (1997).

These alternative general cutting planes are not usually strong enough on
their own to solve an integer programming problem, and they are most success-
fully employed in branch and cut algorithms for integer programming.

5 Techniques for a good implementation

Many refinements to the basic algorithm are necessary to get the best possible
performance out of a branch-and-cut code. These include using reduced costs
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to eliminate variables (§5.1), working with a subset of the variables and then
adding in the omitted variables later if necessary (§5.2), using primal heuris-
tics to generate good solutions so that nodes can be pruned by bounds (§5.3),
preprocessing the problem (§5.4), maintaining an appropriate balance between
cutting and branching (§5.5), and strengthening cuts through lifting (§5.6). Fur-
ther details are discussed in §5.7 and the possibility of using an interior point
method to solve the linear programming relaxations is discussed in §5.8.

5.1 Fixing variables

Nonbasic variables can be guaranteed to take their current values in an optimal
solution to the integer programming problem if their reduced costs are suffi-
ciently large. For example, if the binary variable xj equals zero in the optimal
solution to an LP relaxation and the reduced cost of this variable is rj, then any
feasible point in the relaxation with xj = 1 must have value at least z+rj , where
z is the optimal value of the relaxation. The value z̄ of the best known feasible
integral solution provides an upper bound on the optimal value of the integer
program, so we must have xj = 0 if rj > z̄ − z. Similar tests can be derived
for nonbasic variables at their upper bounds. It is also possible to fix variables
when an interior point method is used to solve the relaxations (Mitchell et al.,
1998).

Once some variables have been fixed in this manner, it is often possible to fix
further variables using logical implications. For example, in a traveling salesman
problem, if xe has been set equal to one for two edges incident to a particular
vertex, then all other edges incident to that vertex can have their values fixed
to zero.

In order to fully exploit the fixing of variables within the branching process,
parent node reconstruction (Padberg and Rinaldi, 1991) is performed as follows.
Once a parent node has been selected, it is not immediately divided into two
children, but is solved again using the cutting plane algorithm. When the
cutting plane procedure terminates, the optimal reduced cost vector has been
reconstructed and this is used to perform variable fixing.

5.2 Column generation

For many problems, including the traveling salesman problem, it is impractical
to work explicitly with all the variables. Thus, the typical approach for the
TSP is to find the ten (say) closest neighbours for each vertex and work only
with the corresponding edges. In order to verify optimality, it is necessary to
check at the end that none of the omitted edges are actually necessary. In linear
programming terms, this requires checking whether a column should be added
to the relaxation corresponding to the omitted variable. The reduced cost of
this column can be found from the values of the dual variables: the column
should be added if the extra dual constraint would be violated by the optimal
dual solution to the current relaxation. If a large number of columns need to
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be added, it is usual to just add a subset of them, resolve, and check whether
more need to be added.

5.3 Primal heuristics

In the example problem, the existence of a good incumbent solution made it
possible to prune (Eg3) by bounds. In many cases, it takes many stages until
the solution to a relaxation is integral. Therefore, it is often useful to have good
heuristics for converting the fractional solution of a relaxation into a good in-
tegral solution that can be used to prune other subproblems. Primal heuristics
that use the solution to the linear programming relaxation are discussed further
in the Chapter on branch-and-bound algorithms. Branch-and-cut can also be
combined with other heuristics such as local search, and also with metaheuris-
tics.

5.4 Preprocessing

A very important component of a practical branch-and-cut algorithm is prepro-
cessing to eliminate unnecessary constraints, determine any fixed variables, and
simplify the problem in other ways. Preprocessing techniques are discussed in
the Chapter on branch-and-bound algorithms.

5.5 When to add cutting planes

Usually, there comes a point at which the cutting plane loop in Steps 4 and 5
tails off, that is, the solution to one relaxation is not much better than the
solutions to recent relaxations. The algorithm should then proceed to Step 6. It
is believed that tailing off is a function of lack of knowledge about the polyhedral
structure of the relaxation, rather than a fundamental weakness of the cutting
plane approach (Padberg and Rinaldi, 1991).

The computational overhead of searching for cutting planes can be pro-
hibitive. Therefore, it is common to not search at some nodes of the tree.
Alternatives include searching at every eighth node, say, or at every node at a
depth of a multiple of eight in the tree. In some implementations, a fixed num-
ber of rounds of cutting plane searching is performed at a node, with perhaps
several rounds performed at the root node, and fewer rounds performed lower
in the tree.

The cut-and-branch variant adds cutting planes only at the root node of
the tree. Usually, an implementation of such a method will expend a great
deal of effort on generating cutting planes, requiring time far greater than just
solving the relaxation at the root. With cut-and-branch, all generated cuts are
valid throughout the tree. Cut-and-branch is an excellent technique for many
general integer programs, but it lacks the power of branch-and-cut for some
hard problems. See Cordier et al. (1997) for more discussion of the relative
computational performance of cut-and-branch and branch-and-cut.
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5.6 Lifting cuts

A cut added at one node of the branch-and-cut tree may well not be valid for
another subproblem. Of course, it is not necessary to add the cut at any other
node, in which case the cut is called a local cut. This cut will then only affect
the current subproblem and its descendants. The drawback to such an approach
is in the potential memory requirement of needing to store a different version of
the problem for each node of the tree. In order to make a cut valid throughout
the tree (or global), it is necessary to lift it. Lifting can be regarded as a method
of rotating a constraint.

For binary problems, the inequality generated at a node in the tree will
generally only use the variables that are not fixed at that node. If the inequality

∑
j∈J

ajxj ≤ h for some subset J ⊆ {1, . . . , n}

is valid at a node where xi has been fixed to zero, the lifted inequality takes the
form ∑

j∈J

ajxj + αixi ≤ h

for some scalar αi. This scalar should be maximized in order to make the in-
equality as strong as possible. Now, maximizing αi requires solving another
integer program where xi is fixed at one, so it may be necessary to make an
approximation and underestimate αi. This process has to be applied succes-
sively to each variable that has been fixed at the node. The order in which the
variables are examined may well affect the final inequality, and other valid in-
equalities can be obtained by lifting more than one variable at a time. See Ceria
et al. (1998) for discussion of lifting in the case of general mixed integer linear
programming problems.

5.7 Implementation details

Many details of tree management can be found in the Chapter on branch-and-
bound algorithms. These include node selection, branching variable selection,
and storage requirements, among other issues. Typically, a branch-and-bound
algorithm stores the solution to a node as a list of the indices of the basic
variables. If cuts are added locally then it is necessary to store a representation
of the constraint set for each active node.

Many branch-and-cut implementations use a pool of cuts (Padberg and Ri-
naldi, 1991), which is a set of constraints that have been generated earlier and
either not included in the relaxation or subsequently dropped because they no
longer appeared to be active. These cuts can be checked quickly for violation
before more involved separation routines are invoked. The pool of cuts also
makes it possible to reconstruct the parent node more efficiently.
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5.8 Solving large problems

The difficulty of a particular integer programming problem is not purely a func-
tion of the size of the problem. For example, there are problems in the standard
MIPLIB test set (Bixby et al., 1998) with just a few hundred variables that
prove resistant to standard solution approaches, because of an explosion in the
size of the tree.

For some problems, difficulties are caused by the size of the LP relaxation,
and interior point methods may be useful in such cases. Interior point methods
are superior to simplex methods for many linear programming problems with
thousands of variables. For large integer programs, the first relaxation at the top
node of the tree can be solved using an interior point method, and subsequent
relaxations can be solved using the (dual) simplex method. For some problems,
the relaxations are just too large to be handled with a simplex method, so inte-
rior point methods are used throughout the algorithm. Interior point methods
handle degeneracy better than the simplex method. Therefore, for example, the
branch-and-cut solver described by Applegate et al. (1994) occasionally uses an
interior point method to handle some subproblems. Restarting is harder with an
interior point method than with a simplex method when the relaxation is only
slightly changed, so various techniques are needed for a successful interior point
cutting plane algorithm. The use of interior point methods in branch-and-cut al-
gorithms is surveyed by Mitchell et al. (1998). Interior point branch-and-bound
methods are discussed in the Chapter on branch-and-bound.

One way to enable the solution of far larger problems is to use a parallel com-
puter. The nature of branch-and-cut and branch-and-bound algorithms makes
it possible for them to exploit coarse grain parallel computers efficiently: typi-
cally, a linear programming relaxation is solved on a node of the computer. It is
possible to use one node to manage the distribution of linear programs to nodes.
Alternatively, methods have been developed where a common data structure is
maintained and all nodes access this data structure to obtain a relaxation that
requires solution. It is also possible to generate cutting planes in parallel.

6 Conclusions

Branch-and-cut methods have proven to be a very successful approach for solv-
ing a wide variety of integer programming problems. In contrast with meta-
heuristics, they can guarantee optimality. For a structured integer programming
problem, the branch-and-cut method should be tailored to the problem with an
appropriate selection of cutting planes. These methods are also useful for gen-
eral integer programming problems, where families of general cutting planes are
used. Other important aspects of successful implementations have also been
discussed in this chapter. The area of branch-and-cut algorithms is constantly
evolving, and it promises to become even more important with the exploitation
of faster computers and parallel computing.
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E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomory cuts revisited. Oper-
ations Research Letters, 19:1–9, 1996.

R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. An updated
mixed integer programming library: MIPLIB 3.0. Optima, 58:12–15, 1998.
Problems available at http://www.caam.rice.edu/bixby/miplib/miplib.html.

A. Caprara and M. Fischetti. Branch and cut algorithms. In M. Dell’Amico,
F. Maffioli, and S. Martello, editors, Annotated Bibliographies in Combinato-
rial Optimization, chapter 4. John Wiley, 1997.

S. Ceria, C. Cordier, H. Marchand, and L. A. Wolsey. Cutting plane algorithms
for integer programs with general integer variables. Mathematical Program-
ming, 81:201–214, 1998.
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