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Abstract

Semidefinite relaxations of certain combinatorial optimization problems lead to approxi-
mation algorithms with performance guarantees. For large-scale problems, it may not be
computationally feasible to solve the semidefinite relaxations to optimality. In this paper,
we investigate the effect on the performance guarantees of an approximate solution to the
semidefinite relaxation for MaxCut, Max2Sat, and Max3Sat. We show that it is possible
to make simple modifications to the approximate solutions and obtain performance guaran-
tees that depend linearly on the most negative eigenvalue of the approximate solution, the
size of the problem, and the duality gap. In every case, we recover the original performance
guarantees in the limit as the solution approaches the optimal solution to the semidefinite
relaxation.

Key words: semidefinite programming, approximation algorithms, MaxCut, Max2Sat,
Max3Sat

1. Introduction

A celebrated randomized algorithm for the combinatorial optimization problems of Max-
Cut and Max2Sat was developed by Goemans and Williamson [1]. This algorithm ex-
ploited a semidefinite programming (SDP) relaxation of each combinatorial optimization
problem in order to derive a performance guarantee. In particular, they proved that their
algorithm is an α-approximation algorithm with α = 0.878 for MaxCut, so their algorithm
returns a solution with value at least 0.878 of the optimal value. Stronger results were
subsequently derived for Max2Satand Max3Sat.

Semidefinite programs can be solved using primal-dual interior point methods in polyno-
mial time [2]. Recently, there has been theoretical and some practical interest in even stronger
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relaxations, such as completely positive relaxations [3, 4]. In this paper, we look at weaken-
ing the semidefinite relaxation, which is sometimes necessary for larger scale problems. In
practice, the interior point approach can be slow and may not converge in an acceptable time
for large-scale problems. Therefore, there has been interest in using alternative methods to
solve semidefinite programs approximately, for example in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
These methods may relax the linear constraints or the semidefinite constraints.

In this paper, we investigate how the Goemans-Williamson bound and its extensions are
affected by the use of an approximate solution. If the semidefiniteness constraint is relaxed
in either the primal or dual problem, we obtain characterizations of the bound based on the
most negative eigenvalue of the corresponding matrix. When the algorithm is terminated
before optimality is reached, we obtain characterizations of the bound based on the duality
gap. These two characterizations can be combined for algorithms that relax both positive
semidefiniteness and a tolerance on duality.

We will take the following as our standard primal SDP problem with an n × n matrix
variable X and with m linear constraints:

maxX C •X
subject to AX = b

X ∈ Sn.
(1)

Here, C and X are n × n symmetric matrices, C • X denotes the Frobenius product of C
and X, Sn denotes the set of symmetric positive semidefinite n × n matrices, the notation
AX represents an m-vector with ith component equal to Ai •X with Ai an n×n symmetric
matrix, and b is anm-vector. Throughout this paper, the SDP relaxation of the combinatorial
optimization problem under consideration will have the form (1), and we will find a feasible
solution to the combinatorial optimization problem by first finding a feasible solution to (1)
and then applying a rounding procedure to this feasible solution. A bound on the quality of
the solution to the combinatorial optimization problem can be obtained through the use of
a feasible solution to the SDP dual of (1), namely:

miny,S bTy
subject to ATy − S = C

S ∈ Sn
(2)

where y ∈ Rm and ATy =
∑m

i=1 yiA
i. The approximation bounds that we obtain require

taking primal and dual variables (X, y, S) returned by an algorithm, using them to construct
feasible solutions to (1) and (2), and then deriving a bound on the ratio of the objective
function values of these feasible solutions.

The semidefinite program (1) can be relaxed as in [10], for example. This relaxation has
the form

max C •X
subject to AX = b

X ∈ Tn ⊇ Sn
(3)

where Tn is a convex cone. This formulation includes as special cases linear programming
relaxations of (1) as in [9, 16], second order cone and low dimensional cone relaxations as
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in [17, 13, 14], and versions of the spectral bundle method [18, 19, 7]. Algorithmically, the
cone Tn is modified as the algorithm proceeds, leading to tighter relaxations. If we let T ∗n be
the dual cone then the dual problem of (3) is

miny,S bTy
subject to ATy − S = C

S ∈ T ∗n ⊆ Sn,
(4)

a constrained version of (2). Relaxations of this form for MaxCut and Max2Sat are
considered in §2.1 and §3.1, respectively. By relaxing the primal problems of the original
MaxCut, Max2Sat and Max3Sat, we acquire indefinite matrices X. At the same time,
we are constraining the corresponding dual problems, so any feasible dual solutions can
produce upper bounds on both the original combinatorial problem and on the SDP relaxation
of MaxCut, Max2Sat and Max3Sat. By exploiting the duality gap and the values we
get from those indefinite matrices and α-approximation, we can develop an approximation
algorithm to find a ratio between the values of our relaxed version of the original SDP for
MaxCut, Max2Sat and Max3Sat and the actual optimal values of MaxCut, Max2Sat
and Max3Sat. Our techniques exploit the fact that the identity matrix is feasible in the
primal SDP relaxation of MaxCut, which allows construction of feasible solutions that are
convex combinations of the identity matrix and an indefinite matrix. The identity matrix is
not feasible in the relaxations of Max2Sat and Max3Sat that we consider, so we exploit
a related feasible solution for these problems.

An analogous relaxation of the dual problem (2) can also be constructed by relaxing
the requirement that S ∈ Sn, and this is considered in §2.2 and §3.2 for MAXCAT and
Max2Sat, respectively. The primal and dual relaxation results are extended to Max3Sat
in §4. Finally, in §5 we consider relaxing the equality constraints as well as the positive
semidefiniteness constraints.

2. The MaxCut Problem

The MaxCut problem on a graph G = (V,E) with n := |V | and with edge weights we
∀e ∈ E is to partition the vertices V into two sets V 1 and V 2 so as to maximize

Z(V 1, V 2) :=
∑

(i,j)∈E : i∈V 1,j∈V 2

wij.

We let Z∗mc denote the optimal value of the MaxCut problem. The SDP relaxation of the
MaxCut problem is

max C •X
subject to Xii = 1 i = 1, . . . , n

X ∈ Sn
(5)

where the matrix C = 1
4
L with L equal to the Laplacian matrix Diag (We) −W with each

entry wij of W is the weight of the edge (i, j) and e denotes the vector of ones. The optimal
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value of the semidefinite program is denoted Zmc∗
SDP and provides an upper bound on the

optimal value of the MaxCut problem. If each we ≥ 0 then the optimal solution to this
SDP can then be converted into a feasible solution to the MaxCut problem in such a way
that the ratio of the two values is no smaller than 0.878 [1], so

Zmc∗
SDP ≥ Z∗mc ≥ 0.878Zmc∗

SDP . (6)

More precisely, the performance ratio is closer to 0.87856, and it should be noted that an
SDP may have an irrational solution, and (6) can be modified to reflect this tolerance. For
simplicity, we will express the ratio as 0.878 in the remainder of this paper. The primal and
dual SDP relaxations of MaxCut both have strictly feasible solutions, so strong duality
holds. Any feasible solution X̂ can be converted into a feasible solution to the MaxCut
problem, as indicated in the following lemma.

Lemma 1. [1] Assume all the edge weights are nonnegative. Let X̂ be a feasible solution
to (5) with value Ẑ := C • X̂. There exists a partition of V satisfying Z(V 1, V 2) ≥ 0.878Ẑ.

�

The proof is constructive, using a rounding procedure to get a feasible solution to the original
MaxCut problem with value at least 0.878(C • X̂). In this paper, we construct weakenings
of (6) when problem (5) is only solved approximately.

2.1. MaxCut primal approach

Conceptually, we consider an algorithm of the following form:

Conceptual algorithm for MaxCut

Construct an approximation of the form (3) to (5).
Let X̂ be a feasible solution to the approximation, so X̂ii = 1 for i =
1, . . . , n.
Let (ŷ, Ŝ) be feasible in the dual problem (4). Define ∆ := bT ŷ − C • X̂.
Modify X̂ to give a feasible solution X̄ to (5).
Use X̄ to construct a cut (V 1, V 2) with value Zmc ≥ 0.878C • X̄.

The aim is then to obtain a lower bound on the ratio of Zmc to Z∗mc, providing a performance
guarantee for the algorithm. Let λmin(X̂) < 0 be the minimum eigenvalue of X̂. Then we
can choose

X̄ := (1− θ)I + θX̂, (7)

which is feasible in (5) if θ ≤ θ̂ := 1

1−λmin(X̂)
< 1. If λmin(X̂) ≥ 0 then we can take θ = 1. The

rounding procedure of Lemma 1 can be applied to X̄ to get a feasible solution to MaxCut,
with a guaranteed approximation ratio.
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Proposition 1. Assume all the edge weights are nonnegative. The performance ratio of the
conceptual algorithm for MaxCut is bounded below as follows:

Zmc
Z∗mc

≥ 0.878
θC • X̂ + (1− θ)C • I

C • X̂ + ∆
.

Proof. From Lemma 1, we have Zmc ≥ 0.878C •X̄. Further, Z∗mc is bounded above by bT ŷ.
Thus, we have

Zmc
Z∗mc

=
Zmc
C • X̄

C • X̄
Z∗mc

≥ 0.878
θC • X̂ + (1− θ)C • I

C • X̂ + ∆

as required. �

Now suppose X̂ is the optimal solution to the relaxed SDP of MaxCut, so the duality
gap ∆ = 0. The result in the Proposition can be strengthened as in the following theorem.

Theorem 2. Assume all the edge weights are nonnegative. Assume X̂ is the optimal solution
to (3) and X̂ 6∈ Sn. Choose θ = θ̂. Then

Zmc
Z∗mc

≥ 0.878(0.5θ̂ + 0.5).

Proof. The duality gap ∆ = 0 and C • X̂ ≥ Z∗mc. Then from Proposition 1, we conclude

Zmc
Z∗mc

=
Zmc
C • X̄

C • X̄
Z∗mc

≥ 0.878
θ̂C • X̂
Z∗mc

+ 0.878

(
1− θ̂

)
C • I

Z∗mc
≥ 0.878θ̂+ 0.878

(
1− θ̂

)
C • I

Z∗mc
.

Now

C • I =
1

4
(Diag (We)−W ) • I =

1

4

∑
i,j

wij =
1

2

∑
i<j

wij ≥
1

2
Z∗mc

so
Zmc
Z∗mc

≥ 0.878θ̂ + 0.878
1

2

(
1− θ̂

)
and the result follows. �

Note that we recover the original result of Goemans and Williamson [1] in the limit as
λmin(X̂)↗ 0.

Now we will examine MaxCut with general edge weights (so wij can be negative).
For several practical MaxCut problems, edge weights can take a negative value. In this
situation, Nesterov [20] showed that a rounding procedure can give a solution with value

Zmc∗
SDP ≥ Z∗mc ≥

2

π
Zmc∗
SDP .
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However, our approach cannot exploit this result because L • I is not necessarily larger than
Z∗mc, or even nonnegative. Thus we will examine a slightly different representation of the
MaxCut problem. Let W−,W+ represent the sums of all the negative and positive edges
respectively, and we assume W− < 0 < W+. Let X̄ be feasible in (5). It is shown in [1] that
X̄ can be rounded to a partition satisfying

Zmc −W− = Z(V 1, V 2)−W− ≥ 0.878 (C • X̄ −W−).

Using (7) and the fact that

Zmc −W−

Zub −W− =
Zmc −W−

Zfeas −W− ·
Zfeas −W−

Zub −W−

we conclude
Zmc −W−

Zub −W− ≥ 0.878

(
θZub + 1

2
(1− θ)

∑
i<j wij −W−

Zub −W−

)
(8)

Proposition 2. Assume X̂ is the optimal solution to (3) and X̂ 6∈ Sn. Choose θ = θ̂. Then

Zmc −W−

Z∗mc −W− ≥ 0.878(0.5θ̂ + 0.5).

Proof. We have

Zmc −W−

Z∗mc −W− =
Zmc −W−

C • X̄ −W−
C • X̄ −W−

Z∗mc −W−

≥ 0.878
θ̂C • X̂ +

(
1− θ̂

)
C • I −W−

C • X̂ −W−

≥ 0.878θ̂ + 0.878

(
1− θ̂

)
(C • I −W−)

Z∗mc −W− .

Now

C • I =
1

4
(Diag (We)−W ) • I =

1

4

∑
i,j

wij =
1

2

∑
i<j

wij ≥
1

2
(Z∗mc +W−)

so
Zmc −W−

Z∗mc −W− ≥ 0.878θ̂ + 0.878
1

2

(
1− θ̂

)
and the result follows. �
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2.2. MaxCut dual approach

In this section, we consider relaxing the positive semidefiniteness on the dual slack matrix.
The dual to the SDP relaxation of a MaxCut problem (5) is

min eTy
subject to diag (y)− S = C

S ∈ Sn
(9)

where e denotes the vector of ones. A conic relaxation of this takes the form

min eTy
subject to diag (y)− S = C

S ∈ Tn ⊇ Sn
(10)

for a convex cone Tn, with the primal relaxation being correspondingly constrained:

max C •X
subject to Xii = 1 i = 1, . . . , n

X ∈ T ∗n ⊆ Sn.
(11)

Such an approach to MaxCut is considered in [21], for example. Below we give an analogue
to Proposition 1 when (10) is solved approximately; Theorem 2 can be extended similarly
when (10) is solved to optimality.

Proposition 3. Assume all the edge weights are nonnegative. Let (ŷ, Ŝ) be feasible in (10)
and X̂ be feasible in (11), with duality gap ∆ = eT ŷ − C • X̂. Assume λmin(Ŝ) < 0. Then a
partition can be constructed from X̂ with value Zmc satisfying

Zmc
Z∗mc

≥ 0.878
eT ŷ −∆

eT ŷ + n
∣∣∣λmin(Ŝ)

∣∣∣
Proof. We can construct a feasible solution to (9) by setting

ȳ = ŷ + e
∣∣∣λmin(Ŝ)

∣∣∣
and so the corresponding dual slack matrix is

S̄ = Ŝ +
(∣∣∣λmin (Ŝ)∣∣∣) I � 0.

Then Z∗mc ≤ eT ȳ so we obtain

Zmc
Z∗mc

=
Zmc

C • X̂
C • X̂
Z∗mc

≥ 0.878
eT ŷ −∆

eT ŷ + n
∣∣∣λmin(Ŝ)

∣∣∣
as required. �

The original result of [1] is recovered in the limit when (10) is solved to optimality and
Ŝ ∈ Sn.
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3. The Max2Sat Problem

We can use a similar approaches to the Max2Sat problem. The Max2Sat problem
consists of boolean variables x1, x2, ..., xn and a set C of clauses cij . Each clause cij is made
up at most two distinct literals from xi, xj, and their complements x̄i and x̄j. The problem
asks us to find the truth assignment to each xi to maximize the number of satisfied clauses
or to maximize the sum of the weights of the satisfied clauses, where the weights are all
positive. Let Z∗m2s denote the optimal value of the Max2Sat problem. An SDP relaxation
of Max2Sat was originally presented in [1], based on expressing Max2Sat as a quadratic
integer program and lifting as for the MaxCut program. This was improved by Feige and
Goemans [22] by expanding the size of the matrix, adding additional linear constraints to the
SDP, and modifying the rounding procedure. It was further improved by Lewin et al. [23]
through an additional modification of the rounding procedure.

In the formulation of [22], each literal is included explicitly, so we have ±1 variables ti
corresponding to the original boolean variables and also ±1 variables fi corresponding to
the complements of the original boolean variables. We write y ∈ R2n to represent these two
vectors, so y := (tT , fT )T . Triangle inequalities are also added, corresponding to the valid
constraints

yiyj + yiyk + yjyk ≥ −1, 1 ≤ i, j, k ≤ 2n (12)

for each distinct choice of i, j, and k, and

yiyj + yi + yj ≥ −1, 1 ≤ i, j ≤ 2n (13)

for each distinct choice of i and j. Let wij correspond to the clause with literals corresponding
to yi and yj, where we allow i = j. The formulation in [22] is then

maxy,Y
1
4

∑
wij (3 + yi + yj − Yij) := g(y, Y )

subject to Yii = 1 i = 1, . . . , 2n
yi + yn+i = 0 i = 1, . . . , n
Y(n+i)j = −Yij i = 1, . . . , n, j = 1. . . . , n
Yi(n+j) = −Yij i = 1, . . . , n, j = 1. . . . , n

Y(n+i)(n+j) = Yij i = 1, . . . , n, j = 1. . . . , n
Al • Y ≥ −1 for l ∈ L(

1 yT

y Y

)
∈ S2n+1

(14)

where L denotes the set of additional constraints. It was proved in [22] that this formulation
results in a 0.931 approximation algorithm for Max2Sat. It is shown in [23] that this
formulation allows a 0.940-approximation algorithm for Max2Sat, through the use of a
modified rounding procedure. Further, any feasible solution (y, Y ) to (14) with value g(y, Y )
can be rounded to a feasible solution to the Max2Sat problem with value

Zm2s ≥ 0.940 g(y, Y ).
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We introduce some more notation in order to ease the subsequent presentation. In particular,
we introduce a symmetric (2n + 1) × (2n + 1) matrix Γ and a symmetric n × n matrix M
satisfying

Γ :=

(
1 yT

y Y

)
=

 1 tT −tT
t M −M
−t −M M

 . (15)

3.1. Max2Sat Primal approach

Our relaxation of (14) is

maxy,Y
1
4

∑
wij (3 + yi + yj − Yij)

subject to Yii = 1 i = 1, . . . , 2n
yi + yn+i = 0 i = 1, . . . , n
Y(n+i)j = −Yij i = 1, . . . , n, j = 1. . . . , n
Yi(n+j) = −Yij i = 1, . . . , n, j = 1. . . . , n

Y(n+i)(n+j) = Yij i = 1, . . . , n, j = 1. . . . , n
Al • Y ≥ −1 for l ∈ L(

1 yT

y Y

)
∈ T2n+1 ⊇ S2n+1

(16)

for a convex cone T2n+1. Let (ŷ, Ŷ ) be a feasible solution to (16), define Γ̂, M̂ , and t̂ using
(15), and assume the minimum eigenvalue λmin(Γ̂) < 0. Let

Ĩ :=

(
I −I
−I I

)
∈ S2n and Î :=

 1 0 0
0 I −I
0 −I I

 ∈ S2n+1 (17)

and define
Γ̄ := θ Γ̂ + (1− θ) Î . (18)

Note that Γ̄ satisfies the linear constraints of (16) provided 0 ≤ θ ≤ 1.

Lemma 3. The matrix Γ̄ is positive semidefinite provided

0 ≤ θ ≤ θ̂ :=
1

1− λmin(Γ̂)
< 1.
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Proof. Let u, v ∈ Rn and u0 ∈ R. Let r = 0.5(u− v) and s = 0.5(u+ v). We have u0

u
v

T

Γ̄

 u0

u
v

 =

 u0

r
−r

 +

 u0

s
s

T

Γ̄

 u0

r
−r

 +

 u0

s
s



=

 u0

r
−r

T

Γ̄

 u0

r
−r



=

 u0

r
−r

T θ Γ̂ + (1− θ)

 1 0 0
0 I −I
0 −I I

  u0

r
−r


≥ θ λmin(Γ̂) (u2

0 + 2rT r) + (1− θ) (u2
0 + 4rT r)

≥ (1 − θ (1− λmin(Γ̂))) (u2
0 + 2rT r)

≥ 0 ∀u0, u, v

as required. �

It follows that the matrix Γ̄ and the corresponding (ȳ, Ȳ ) are feasible in (14).

Theorem 4. Assume all the clause weights wij are nonnegative. Let (ŷ, Ŷ ) be an optimal

solution to (16) with corresponding matrix Γ̂. Define Γ̄ using (18) with θ = θ̂, define (ȳ, Ȳ )
from (15), and round Γ̄ using the method in [23] to give a feasible solution to the Max2Sat
problem with value Zm2s. Then

Zm2s

Z∗m2s

≥ 0.940 (
1

2
θ̂ +

1

2
).

If every clause contains two distinct literals and if no clause is a tautology then the ratio can
be improved to

Zm2s

Z∗m2s

≥ 0.940 (
1

4
θ̂ +

3

4
).

Proof. We have

Zm2s

Z∗m2s

=
Zm2s

g(ȳ, Ȳ )

g(ȳ, Ȳ )

Z∗m2s

≥ 0.940
θ̂g(ŷ, Ŷ ) + (1− θ̂)g(0, Ĩ)

Z∗m2s

≥ 0.940 θ̂ + 0.940
(1− θ̂)0.5

∑
wij

Z∗m2s

since Z∗m2s ≤ g(ŷ, Ŷ ), and 3 + yi + yj − Yij ≥ 2 ∀i, j if y = 0, Y = Ĩ

≥ 0.940θ̂ + 0.940
1

2
(1− θ̂) since

∑
wij ≥ Z∗m2s
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as required. If every clause contains two distinct literals and if no clause is a tautology then

g(0, Ĩ) =
3

4

∑
wij

and the result follows. �

In the limit as λmin(Γ̂)↗ 0 we recover the result of [23].

3.2. Max2Sat Dual approach

The dual problem to (14) has an objective function of

minh(γ, π) :=
3

4

∑
wij + eTγ − eTπ (19)

where the free dual variables γ ∈ R1+2n correspond to the constraints Yii = 1 for i = 1, . . . , 2n
and the constraint that the top left entry in Γ is equal to 1, and the nonpositive variables π
have entries πl for each l ∈ L. The dual slack matrix is denoted Φ and satisfies

Φ = diag(γ) + Υ, (20)

where Υ is a linear function of the remaining dual variables, namely π and the variables
corresponding to the homogeneous linear primal constraints. We relax the positive semidef-
initeness constraint on Φ to

Φ ∈ T2n+1 ⊇ S2n+1 (21)

so the positive semidefiniteness constraint on Γ is tightened to Γ ∈ T ∗2n+1 ⊆ S2n+1. We have
the following proposition.

Proposition 4. Assume γ̂ and π̂ satisfy the linear constraints in the dual problem for some
choice of the remaining dual variables corresponding to the homogeneous linear primal con-
straints, with the corresponding slack matrix Φ̂ ∈ T2n+1 \ S2n+1. Assume there is a solution
(ŷ, Ŷ ) satisfying the linear constraints of (14) with the corresponding Γ̂ ∈ T ∗2n+1 and let ∆

denote the duality gap. Let Zm2s be the value of the solution obtained by rounding Γ̂. Then

Zm2s

Z∗m2s

≥ 0.940

(
1 − ∆ − (2n+ 1)λmin(Φ̂)

3
4

∑
wij + eT γ̂ − eT π̂ − (2n+ 1)λmin(Φ̂)

)

where 3
4

∑
wij + eT γ̂ − eT π̂ − (2n+ 1)λmin(Φ̂) provides an upper bound on Z∗m2s.

Proof. By taking

γ̄ = γ̂ − λmin(Φ̂) e and Φ̄ = Φ̂ − λmin(Φ̂) I � 0,
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we obtain to a dual feasible solution to (14), so 3
4

∑
wij + eT γ̂ − eT π̂ − (2n + 1)λmin(Φ̂)

provides an upper bound on Z∗m2s. We have

Zm2s

Z∗m2s

=
Zm2s

g(ŷ, Ŷ )

g(ŷ, Ŷ )

Z∗m2s

≥ 0.940
3
4

∑
wij + eT γ̂ − eT π̂ −∆

3
4

∑
wij + eT γ̂ − eT π̂ − (2n+ 1)λmin(Φ̂)

as required. �

We recover the result of [22] in the limit as ∆→ 0 and λmin(Φ̂)↗ 0.

4. The Max3Sat Problem

In the Max3Sat problem, each clause contains at most 3 literals and has nonnegative
weight wijk. We consider two approaches in this section. In §4.1, we examine reductions
of Max3Sat to Max2Sat and exploit our results in §3. In §4.2, we look at a more direct
approach to Max3Sat. We let Z∗m3s denote the optimal value of the instance of Max3Sat.

4.1. Using gadgets

Gadgets are techniques used to reduce one problem to another. They are formally defined
in [24] and they are explored by Trevisan et al. [25]. For an instance of Max3Sat, a clause
of length 3 can be replaced by a set of clauses of length 2 each with some weight, and
it is desired that the original clause is satisfiable if and only if the sum of the weights of
the satisfied new clauses is equal to some threshold. More formally, we have the following
definition:

Definition 1. A strict α-gadget is a construction that maps a clause l1 ∨ l2 ∨ l3 in three
literals into a collection of clauses of length no more than two involving the original literals,
their complements, and auxiliary boolean variables, with the properties that

1. if the original clause is satisfied then there is an assignment of the auxiliary variables
such that the sum of the weights of the satisfied new clauses is equal to α, and there is
no assignment of the auxiliary variables that has the sum of the weights of the satisfied
new clauses strictly greater than α, and

2. if the original clause is unsatisfied then there is an assignment of the auxiliary variables
such that the sum of the weights of the satisfied new clauses is equal to α−1, and there is
no assignment of the auxiliary variables that has the sum of the weights of the satisfied
new clauses strictly greater than α− 1.

Garey et al. [26] proposed a strict 7-gadget for Max3Sat, with each original 3-clause
replaced by 10 clauses of length 2. More recently, Trevisan et al. [25], proposed a strict
3.5-gadget reducing method, with a clause of length 3

(xi ∨ xj ∨ xh)
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replaced by 7 different clauses length 2, namely

xi ∨ xh, x̄i ∨ x̄h, xi ∨ ȳijh, x̄i ∨ ȳijh, xh ∨ ȳijh, x̄h ∨ yijh, xj ∨ yijh

with the first six clauses having one-half of the original weight and the last one having the
original weight. The auxilary variable yijh is specific to the clause. Any truth assignment
which makes the original length-3 clause true and any truth assignment to yijh, the sum of
the weights of the new 7 clauses will not exceed 3.5. In addition, for any truth assignment
which makes the original length-3 clause true, there exists an assignment of yijh so that the
sum of the weights of the new 7 clauses is exactly equal to 3.5. Also for any truth assignment
which makes the original length-3 clause false and any truth assignment to yijh, the sum of
the weight of the new 7 clauses will not exceed 2.5. Finally for any truth assignment which
makes the original length-3 clause false, there exists a truth assignment to yijh so that the
sum of the weights of the new 7 clauses is exactly 2.5. It was shown in [25] that one can derive
an 0.801-approximation for Max3Sat by exploiting the strict 3.5 gadget. More explicitly,
they have the following theorem:

Theorem 5. [25, Lemma 6.3] Asume there exists a strict 3.5 gadget for Max3Sat and a
β-approximation algorithm for Max2Sat. Then there exists a ρ-approximation algorithm
for Max3Sat with

ρ =
1

2
+

(β − 1/2)(3/8)

2.5(1− β) + (3/8)
.

The result in [25] is actually more general, allowing clauses of length 1 and 2 to be
handled differently, resulting in a stronger result. For our purposes, we will not exploit this
generalization. The following theorem is a direct consequence of Theorem 4.

Theorem 6. Let (ŷ, Ŷ ) along with Γ̂ be the optimal solution to the relaxation of the form
(16) of the SDP relaxation of the Max2Sat reformulation of an instance of Max3Sat
constructed by applying the strict 3.5 gadget. Let λmin(Γ̂) < 0 be the minimum eigenvalue
of Γ̂, let θ̂ = 1/(1 − λmin(Γ̂)), and let β = 0.940(1/2)(1 + θ̂). A feasible solution to the
instance of Max3Sat can be constructed with value Zm3s satisfying

Zm3s

Z∗m3s

≥ 1

2
+

(β − 1/2)(3/8)

2.5(1− β) + (3/8)
.

Further, if there are no unit clauses and if there are no tautologies then this ratio can be
improved by taking β = 0.940(1/4)(3 + θ̂).

4.2. A direct approach to Max3Sat primal

Karloff and Zwick [27] constructed a 7/8-approximation algorithm for Max3Sat by
modifying the objective function of (14). In their analysis, the triangle constraints (12) and

13



(13) were not necessary, so they constructed the formulation

maxy,Y,z
∑
wijkzijk

subject to zijk ≤ 4+yj+yk−Yij−Yik

4
∀1 ≤ i, j, k ≤ 2n

zijk ≤ 4+yi+yk−Yij−Yjk

4
∀1 ≤ i, j, k ≤ 2n

zijk ≤ 4+yi+yj−Yik−Yjk

4
∀1 ≤ i, j, k ≤ 2n

zijk ≤ 1 ∀1 ≤ i, j, k ≤ 2n
Yii = 1 i = 1, . . . , 2n

yi + yn+i = 0 i = 1, . . . , n
Y(n+i)j = −Yij i = 1, . . . , n, j = 1. . . . , n
Yi(n+j) = −Yij i = 1, . . . , n, j = 1. . . . , n

Y(n+i)(n+j) = Yij i = 1, . . . , n, j = 1. . . . , n(
1 yT

y Y

)
∈ T2n+1 ⊇ S2n+1

(22)

We define Γ as in (15).
If every clause with positive weight has three distinct literals and is not a tautology then

Γ = Î is optimal for any T2n+1 ⊇ S2n+1, with value
∑
wijk, since it is feasible to take each

zijk = 1. Thus, in this case, we can immediately recover the performance guarantee of [27]
by just taking this trivial solution, regardless of the value of Γ.

Now consider the more general case, consisting of clauses of length 1 and/or 2 as well as
clauses of length 3. In (22), the shorter clauses correspond to triples (i, j, k) where not all
the indices are distinct. With y = 0 and Y = Î, we can take

zijk =


1 for clauses of length 3
0.75 for clauses of length 2
0.5 for clauses of length 1

(23)

and for this choice we obtain an objective function value that is at least equal to one half
of the sum of the clause weights, so it is at least equal to one half of Z∗m3s. Given a feasible
solution (ŷ, Ŷ ) with corresponding Γ̂ ∈ T2n+1 \ S2n+1, we produce a feasible solution to the
SDP relaxation of Max3Sat using the construction of (18). The following theorem can then
be proved in an analogous manner to Theorem 4.

Theorem 7. Assume all the clause weights wijk are nonnegative. Let (ŷ, Ŷ ) be an optimal

solution to (22) with corresponding matrix Γ̂. Define Γ̄ using (18) with θ = θ̂ = 1/(1 −
λmin(Γ̂)), define (ȳ, Ȳ ) from (15), and round Γ̄ using the method in [27] to give a feasible
solution to the Max2Sat problem with value Zm3s. We have

Zm3s

Z∗m3s

≥ (7/8) (
1

2
θ̂ +

1

2
).

14



Proof. Let z(y, Y ) denote the optimal choice of z for a given choice of y and Y in (22).
We have

Zm3s

Z∗m3s

=
Zm3s∑

wijkzijk(ȳ, Ȳ )

∑
wijkzijk(ȳ, Ȳ )

Z∗m3s

≥ (7/8)
θ̂
∑
wijkzijk(ŷ, Ŷ )) + (1− θ̂)

∑
wijkzijk(0, Î)

Z∗m3s

≥ (7/8) θ̂ + (7/8)
(1− θ̂)0.5

∑
wijk

Z∗m3s

since Z∗m3s ≤
∑

wijkzijk(ŷ, Ŷ )), and from (23)

≥ (7/8) θ̂ + (7/8)
1

2
(1− θ̂) since

∑
wijk ≥ Z∗m3s

as required. �

The original result of [27] is recovered in the limit as λmin(Γ̂)↗ 0.

5. Approximation Algorithms with Approximate Solution to the Equalities

In the earlier sections, we have examined relaxing the positive semidefiniteness require-
ments in either the primal problem (1) or the dual problem (2). In this section, we look at
more general relaxations of the MaxCut problem with nonnegative edge weights. In par-
ticular, in §5.1 we examine a Lagrangian dual approach where the primal linear constraints
are relaxed, and in §5.2 we show how any primal and dual set of variables (X, y, S) can be
used to construct a feasible solution to MaxCut, with a bound on its solution quality.

5.1. A Lagrangian approach to MaxCut

Iyengar et al. [8] investigated approaches to semidefinite relaxations of combinatorial
optimization problems where the linear constraints were further relaxed. This contrasts with
the approaches earlier in this paper where we relaxed the positive semidefiniteness constraint
on either the matrix of primal variables or the dual slack matrix, but we always satisfied the
linear constraints in the primal and dual problems. The approach in [8] was motivated by
considering the following equivalent reformulation of the MaxCut problem (5):

max C •X
subject to Xii ≤ 1 i = 1, . . . , n

X � 0, T r(X) ≤ n
(24)

The equivalence follows because each diagonal entry of C is positive provided the graph
contains no isolated vertices, so the inequalities Xii ≤ 1 hold at equality at optimality. A
Lagrangian relaxation of (24) can be constructed as follows:

ζ(y) = max
X�0,T r(X)≤n

(C •X +
∑
i

yi(1−Xii)) (25)
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The Lagrangian dual problem is then

min
y≥0

max
X�0,T r(X)≤n

(C •X +
∑
i

yi(1−Xii)) (26)

The solution method proposed in [8] computes an approximate saddle point of the La-
grangian function and then recovers an ε-optimal solution to (24). We denote this ε-optimal
solution by X̂, which is feasible in (24) and within ε of optimality of the problem. Then we
can find a diagonal matrix with Dii ≥ 0,∀i such that

X̄ = X̂ +D

and diag(X̄) = I which is feasible to the original semidefinite MaxCut programming prob-
lem. We take Zmc to be the value of the feasible solution to the MaxCut problem obtained
by rounding X̄.

Theorem 8. Let Z∗mc be the optimal MaxCut value. Then

Zmc
Z∗mc

≥ 0.878(1− 2
ε∑

i<j wij
)

Before we show the proof of the above theorem, we will state a well known lemma (see, for
example [28]).

Lemma 9. Let Zmc be the optimal value of the MaxCut problem with edge weight wij.
Then

Zmc ≥ 1

2

∑
i<j

wij

Now we will show the proof of Theorem 8.

Proof of Theorem 8. We have

Zmc ≥ 0.878C • X̄

and
Z∗mc ≤ C • X̂ + ε.

It follows that

Zmc
Z∗mc

≥ 0.878
C • X̄

C • X̂ + ε

= 0.878
C • X̂ + C •D
C • X̂ + ε

≥ 0.878
C • X̂

C • X̂ + ε
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But since C • X̂ ≥ Zmc − ε and the function g(x) = x
x+ε

is increasing in x, we conclude

C • X̂
C • X̂ + ε

≥ Zmc − ε
Zmc − ε+ ε

= 1− ε

Zmc
.

Using Lemma 9, we also conclude

1− ε

Zmc
≥ 1− 2ε∑

i<j wij

This implies
Zmc

C • X̂
≥ 0.878(1− 2ε∑

i<j wij
)

as required. �

5.2. An approximation ratio for MaxCut from any (X, y, S)

In this section, we restrict attention to MaxCut with nonnegative edge weights. We
assume we have a primal matrix X̂, a dual vector ŷ, and a dual slack matrix Ŝ := diag(ŷ)−C.
If any diagonal entry of X̂ is negative, its objective function value can be improved by setting
such an entry equal to zero; this adjustment does not decrease the bound derived below, so
we assume that each X̂ii ≥ 0 for i = 1, . . . , n. We also assume X̂ and Ŝ are symmetric,
but make no further assumptions about (X̂, ŷ, Ŝ). Such a solution might be returned by
a proximal point method or an alternating direction method, as in [12] for example. We
want to use X̂ to construct a primal feasible solution to the SDP relaxation (5) and hence
a feasible solution to the MaxCut problem, and (ŷ, Ŝ) to construct a dual feasible solution
to (5) and hence an upper bound on the optimal value of the MaxCut problem.

A dual feasible solution ȳ can be constructed as in the proof of Proposition 3, namely

ȳ = ŷ + e
∣∣∣λmin(Ŝ)

∣∣∣ ,
giving an upper bound of bT ŷ + n

∣∣∣λmin(Ŝ)
∣∣∣.

For the primal solution, we could solve a two variable problem to construct a solution of
the form

X̄ = βI + γX̂ + diag(δ) (27)

where diag(δ) is a positive semidefinite diagonal matrix and β and γ are nonnegative variables
chosen to ensure X̄ is feasible in the SDP relaxation of MaxCut. In particular, we could
solve the 2-variable linear program

maxβ,γ βC • I + γC • X̂
subject to β + X̂iiγ ≤ 1 i = 1, . . . , n

β + λmin(X̂)γ ≥ 0
β, γ ≥ 0

(28)
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The first n linear constraints ensure each diagonal entry of γX̂ is no larger than one. The
(n+ 1)th constraint ensures that βI + γX̂ is positive semidefinite. When each X̂ii = 1, the
optimal choice for β and γ returns the same X̄ as in (7).

Theorem 10. Let X̂ be an n×n symmetric matrix, let ŷ ∈ Rn, and let (β̂, γ̂) be an optimal
solution to (28). Let δ̂i = 1− β̂ − γ̂X̂ii for i = 1, . . . , n. Define X̄ as in (27). The matrix X̄
is feasible in (5). Rounding X̄ gives a feasible solution to MaxCut with value Zmc satisfying

Zmc
Z∗mc

≥ 0.878
β̂C • I + γ̂C • X̂ +

∑n
i=1Ciiδ̂i

bT ŷ + n
∣∣∣λmin(Ŝ)

∣∣∣ .

Proof. The numerator in the fraction is the value of C • X̄ and the denominator is the
value of the dual feasible solution ȳ. The feasibility of X̄ follows from construction, and then
the 0.878 term follows from [1]. �

Given a symmetric matrix X̂, we want to construct a nearby matrix that is feasible in (5).
One choice would be to project X̂ onto the feasible region of (5). This is the same as finding
the nearest correlation matrix in Frobenius norm [29] and is as hard as solving the SDP
relaxation [30], so we looked at simpler alternatives above. It might seem attractive to use
a sequential projection approach, so first project X̂ onto the positive semidefinite cone and
then project onto the linear equality constraints. However, there is no guarantee that the
resulting matrix will be positive semidefinite, as we illustrate in the following example.

Example 1. Let

X̂ =

 1 (1
2

+ ν) −(1
2

+ ν)
(1

2
+ ν) 1 (1

2
+ ν)

−(1
2

+ ν) (1
2

+ ν) 1


= 1

2

 1
1
0

 (3
2

+ ν)
[

1 1 0
]

+ 1
6

 1
−1
−2

 (3
2

+ ν)
[

1 −1 −2
]

+ 1
3

 1
−1

1

 (−2ν)
[

1 −1 1
]

with ν > 0. The projection of a symmetric matrix onto Sn is obtained by deleting the
eigenvectors corresponding to negative eigenvalues [31], giving in this case:

X̃ =
1

2

 1
1
0

 (
3

2
+ ν)

[
1 1 0

]
+

1

6

 1
−1
−2

 (
3

2
+ ν)

[
1 −1 −2

]
.

Projection onto the linear inequalities then sets all the diagonal entries equal to one, so the
final result is

X̂ =

 1 (1
2

+ 1
3
ν) −(1

2
+ 1

3
ν)

(1
2

+ 1
3
ν) 1 (1

2
+ 1

3
ν)

−(1
2

+ 1
3
ν) (1

2
+ 1

3
ν) 1

 ,
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which is not in S3: the eigenvector (1,−1, 1)T has an eigenvalue of −2
3
ν. Repeating the

sequential projection procedure gives a positive semidefinite matrix in the limit, but the matrix
is indefinite at every iteration.

6. Conclusions

SDP relaxations have the best known performance guarantees for several classes of com-
binatorial optimization problems. Interior point methods can be used to get within ε of
optimality of a well-conditioned semidefinite program in time polynomial in ln(1

ε
) and the

size of the problem. However, in practice interior point methods may be too slow to solve
the SDP relaxations of many problems, so there has been interest in developing alternative
approaches to solving SDPs. In this paper, we have shown that approximate solutions to an
SDP relaxation can still be used to obtain a feasible solution to the combinatorial optimiza-
tion problem with a performance guarantee, through the use of simple modifications of the
primal and/or dual solutions. It may be of interest to use more complicated modifications
in order to improve the bounds, but as we show in Example 1 iterative approaches such as
alternating projection may not lead to feasible solutions to the SDP relaxation.
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