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ABSTRACT 

This paper deals with a multiple vehicle routing problem in which profit is maximized 

subject to competition. This problem will be referred to as the multiple vehicle routing 

problem with profits and competition (MVRPPC). The MVRPPC differs from traditional 

multivehicle routing problems in three ways: (1) competition is incorporated into the process, 

(2) the objective is to maximize profits rather than minimize costs, and (3) it is assumed that 

trucks leave and return to their home bases empty, thus any freight picked up in a tour must 

be delivered in that same tour (which represents the case of for-hire carriers). The solution 

method takes a “cluster first, route second” approach in which the clustering phase combines 

a geometric clustering with a generalized assignment problem (GAP). The routing is 

performed using a tabu search. To get an idea of how well the tabu search performs, an 

alternative method for routing was developed which consisted of a mixed integer program 

(MIP) based on the flow formulation of the traveling salesman problem. The solution 

approach was applied to a series of problems of varying size and complexity with the routing 

performed by both the tabu search and the MIP formulations. A comparison of the tabu 

search and MIP solutions indicated that the tabu search solutions were practically the same 

than the corresponding MIP solutions, with tabu search objective function values which were 

no more than 0.70% of the MIP values. As an illustration of the potential uses of the 

methodologies developed, the paper analyzes the role of the degree of market transparency on 

the geographic segmentation of the market.  
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INTRODUCTION  

The multiple vehicle routing problem with profits and competition (MVRPPC) 

represents an extension of the multivehicle routing problem in that it:  (1) incorporates 

competition into the routing process, (2) maximizes profits rather than minimizes costs, and 

(3) assumes that trucks leave and return to their home bases empty, thus any freight picked up 

in a tour must be delivered in that same tour.  

The MVRPPC has potential real-world applications as it enables the study of strategic 

competition among private trucking companies in such areas as the transportation of 

aggregates (e.g., sand, gravel) to construction sites. This case involves a set of production 

sites where the aggregates are processed and a set of demand nodes which are the 

construction sites. 

While no previous research was found in which competition was incorporated into the 

routing process, research has been done on two types of problems which involve routing 

based on profit maximization. The first type of problem is the merchant subtour problem 

which involves a merchant who buys commodities where they are cheap and transports them 

to cities where he can sell them at a profit (Verweij et al, 2003). The problem is to decide 

which demand cities to visit and in what order in order to maximize his profits. This problem 

differs from the MVRPPC in that it involves only one company, rather than several 

competing companies, and it deals with intercity, rather than urban, freight movements. The 

second type of routing problem involving profit maximization is the traveling salesman 

problem with profits (Feillet et al, 2005). This is a generalization of the traveling salesman 

problem in which a profit is made when a vertex is visited and there is no requirement that all 

vertices be visited. A multiple vehicle version of this problem, developed and applied to 

freight transportation in Feillet, (2001), dealt with freight movements between plants in the 
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car industry thus it did not include the requirement that each tour begin and end at a home 

base. 

Similarly, no literature was found in which all the freight picked up in a tour had to be 

delivered in that tour. Vehicle routing problems generally fall into one of three categories: (1) 

pick up or delivery only, (2) pick up or delivery only followed by an optional backhaul, and 

(3) combined pick up and delivery (Assad, 1988) In the combined pick up and delivery case, 

the pick ups and deliveries are either paired (Nanry, et al., 2000) or deliveries are made 

before pick ups (line haul-back haul) (Jacobs-Blecha, et al.,1993). The case considered in this 

paper, in which all cargo is delivered in the tour, is very important for urban goods modeling 

because approximately half the cargoes transported in the United States are transported by 

common carriers (USDOT, 2002), which are the ones that tend to follow the pick-up/delivery 

patterns discussed here. 

Another important consideration is that the MVRPPC is a crucial component of 

Spatial Price Equilibrium formulations of urban goods with explicit consideration of actual 

logistic practices. In this context, the MVRPPC enables the attainment of an approximation 

of the Spatial Price Equilibrium solution taking into account commercial vehicle trip chaining 

behavior (see for instance, Holguín-Veras, 2000). Among other things, these novel 

methodologies enable the modeling of urban goods markets with complete consistency with 

the underlying economic dynamics, while explicitly considering trip chaining behavior. The 

latter point is important because the Spatial Price Equilibrium formulations to date (e.g., 

Samuelson (1952), Takayama and Judge (1964, 1971), Friesz et al.,1986)—though of 

undeniable value—are based on network flow formulations that are unable to consider trip 

chains. In providing the analytical core of a urban goods formulation based on Spatial Price 

Equilibrium, the MVRPPC extends this important field to the realm of discrete mathematics. 
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This paper has three sections in addition to this introduction. Methodology describes 

the solution method and Results and Discussion presents results for a series of sample 

problems. Finally, Conclusions summarizes the conclusions regarding the algorithmic results. 

METHODOLOGY 

Before discussing the details of the formulations developed in the paper, it is 

important to conceptually describe the problem at hand. Among other things, this would 

enable the reader to get a clear idea about what the paper is trying to accomplish and its 

significance to freight demand modeling. 

A very simple example of the problem which this paper addresses is shown in Figure 

1. As shown in this figure, each company operates from a home base from which trucks leave 

empty at the start of a tour and to which they return empty at a tour’s end. Within a tour, 

trucks pick up freight from production nodes and deliver freight to attraction nodes. Since 

some production and attraction nodes are available to more than one company, they will 

initially be included in the tours of more than one company. These contested nodes are 

awarded to the company which can service them at lowest cost through an iterative process 

so that, in the final solution, all nodes are serviced by exactly one company. Without any loss 

of generality, the production costs at the production nodes are assumed to be constant. An 

implicit assumption is that the cargo being transported corresponds to a generic commodity. 

These assumptions were made to focus on the role of transportation costs. 
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Figure 1: An example of the problem to be solved 
 
Note: The trucking companies’ home bases are denoted by rectangles. The tours are denoted with arrows 
and numbered stops. Dashed arrows indicate empty trips and solid arrows indicate loaded trips. 
Production nodes are denoted by a “P” and attraction nodes by a “D”. 
 

The solution method outlined in this paper combines a number of well-established 

mathematical programming and meta-heuristic techniques to solve the network routing 

problem within a cluster first, route second framework. The cluster phase combines a 

geometric clustering with a generalized assignment problem and the routing phase is 

performed by a tabu search. The solution approach begins with a geometric clustering based 

on an estimated tour time. This geometric clustering provided an estimate of the cost of 

including node i in cluster j. Then, these cost coefficients are used in a generalized 

assignment problem which incorporated constraints insuring tour feasibility to produce 

minimum cost clusters which can be turned into feasible tours. This approach is very similar 

to that developed in Nygard, et al., (1988). 

Once feasible node clusters were obtained, the routing was performed by tabu search. 

After an initial tabu search solution was obtained, the tours for each player were examined 

node by node to see if there were any exchanges of two nodes in different tours of the same 

player which would increase the profit for at least one tour and not decrease the profit for any 
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tour. After all possible node exchanges were examined, all nodes which received bids from 

more than one company were identified. The delivery costs for each bidding company were 

then calculated and these nodes were removed from the node sets of players whose bids were 

not the lowest and the clustering/routing procedure was repeated with the modified node sets. 

This process was continued until each node was included in exactly one tour resulting in an 

approximation of spatial price equilibrium. This cluster first, route process is outlined in 

Figure 2. Before describing the details of the clustering and routing procedures in the 

subsequent sections, the incorporation of competition into the routing process is presented in 

the next section. 

 
 
 
 
 
 
 
 

 
 
 
 

1. Cluster all nodes available to each player: 
 a. perform a radial sweep of the service area to cluster nodes 
 b. estimate the cost of including node i in cluster j 

c. use these costs to solve the GAP to achieve a minimum cost, feasible clustering 
2. Use tabu search to route the nodes in each player’s clusters 
3. Examine all possible intra-player node exchanges to identify and implement any 
exchanges which increase the profit of at least one tour and decrease the profit of no tour 
4. Process contested nodes 
 a. identify nodes included in more than one player’s routes 
 b. calculate the delivery cost for each player 

c. remove the contested node from the node sets of players who do not have the 
lowest delivery cost with ties remaining in the node sets of the relevant players 

5. Return to step 1 with the updated node sets until each node is in exactly one tour 

 

 
 
Figure 2:  The cluster first, route second procedure 
 
Incorporation of competition into the routing process 
 

An important component of this research is the explicit consideration of competition 

and the level of market transparency, which are two key elements that are intertwined. 

Market transparency refers to the level of awareness which competing carriers have of the 

cargoes to be transported. In a perfectly transparent market, unattainable in real life, all 

carriers know about all the cargoes to be transported, which translates into an environment of 

perfect competition and marginal cost pricing. In this context, one would expect a certain 

degree of geographic segmentation of the market. At the other end of the spectrum, only one 
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carrier knows about the cargoes that require transport, leading to a situation in which carriers 

could impose price differentiation on their customers (see Holguín-Veras and Jara-Díaz, 

1999). This environment is bound to lead to longer and more inefficient tours. In all cases, 

competition is introduced by specifying a subset of randomly selected nodes that are 

available to more than one company. In this context, nodes available to only one company 

represent production or attraction nodes whose existence is only known to that company. 

Since there is no information about the level of market transparency in real life, it was 

simulated in the modeling process by assuming different levels of the degree of market 

transparency (denoted by ρ), which represents the fraction of production and demand nodes 

available to more than one carrier with respect to the total number of nodes. The company 

which is able to service these nodes at lowest cost wins the bid to service them. 

Transportation costs are calculated as follows: 

)()( _ itimewaititraveliorigi subtourfreightcsubtourtcsubtourcc ⋅+⋅+⋅=     (1) 

Where i is a contested node, subtouri is the set of stops from which freight is picked up to be 

delivered to i or to which freight picked up at i is delivered, |subtouri| is the number of nodes 

in subtouri, corig is a flat fee charged for each stop, ctravel is the  travel cost, and cwait_time  is the 

cost due to loading and unloading of freight, and freight(subtour) is the freight picked up and 

delivered in subtouri. 

For each contested node i, the company with the lowest ci wins the bid to service that 

node and the losing companies lose the opportunity to service that node. In the event of a tie, 

the node remains in the node sets of the companies with tying bids and these companies get 

another chance to service the node. A very simple example of two companies competing to 

service a node is shown in Figure 3. 
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Where: 
 t = travel time 
 )()( _ itimewaititraveliorigi subtourfreightcsubtourtcsubtourcc ⋅+⋅+⋅=    (1) 
 
 Assuming for illustration purposes that corig = $10,  ctravel =  $4 per hour and cwait_time  = $2 
 per unit freight: 
 c3 for player 1:  c3  = $10 x 2 + $4 x (t12 + t23) + $2 x 5  
     = $20 + $4 x 3 + $2 x 5 = $42.00 
 c3 for player 2:  c3  = $10 x 1 + $4 (t43) + $2 x 5 
     = $10 + $4 x 3 + $2 x 5 = $32.00 
Figure 3:  Calculation of transportation costs for servicing a contested node 
 
 
Radial sweep/GAP clustering 
 

Of the various clustering methods examined, it was found that a radial sweep method 

was preferable in that it was easy to control both the number of clusters and the number of 

nodes in each cluster by adjusting the tour time limit. In the radial sweep method of Gillett 

and Miller (1974), the polar coordinates of each stop are calculated with the radius defined as 

the distance between the home base and the stop and the angle defined by two rays – one 

from the home base to some arbitrary point and the other from the home base through the 

stop. The stops are sorted according to the size of their polar-coordinate angle, where ties are 

broken by the distance to the home base. Then a sweep is performed which partitions the 

stops into routes beginning with the stop that has the smallest angle and adding stops until the 

estimated total travel time exceeds the tour time duration limit. The violating stop then 

  



Thorson, Holguín-Veras and Mitchell 10

becomes the first stop in the next route. This process is continued until all stops are assigned 

to a cluster.  

The end result of the radial sweep is a partition of nodes into clusters in which the 

nodes are relatively close to each other. However, these sets of nodes cannot be turned into 

feasible routes because the total productions and attractions of the nodes in each cluster do 

not necessarily balance. Thus, the final clustering is performed using the GAP presented in 

Nygard et al., (1988) with several additional constraints which is as follows: 

∑∑
∈ ∈Jj Kk

kjkj xcmin       (2) 

subject to: 
       for all j∈J   (3) ∑

∈

=
Kk

kjx 1

    ∑ ∑
∈ ∈

=−
Jj Jj

kjjkjj xaxp 0  for all k∈K   (4) 

∑ ∑
∈ ∈

≥
Jj Jj

jkjj pxp α   for all k∈K   (5) 

∑ ∑
∈ ∈

≤
Jj Jj

jkjj pxp β   for all k∈K   (6) 

}1,0{∈kjx    for all k∈K, j∈J  (7) 
 

Where K is the set of vehicles, J is the set of stops, ckj is the cost of assigning stop j to vehicle 

k, xkj is a binary variable equal to one if stop j is assigned to vehicle k, pj and aj are the 

production and attraction of node j respectively, and α and β are parameters equal to 

|| K

p
j

j∑
<α and

|| K

p
j

j∑
>β . Constraint (3) insures that each node is assigned to exactly one 

cluster. Constraint (4) insures that the total productions and attractions of each cluster are 

equal. Constraints (5) and (6) set minimum and maximum cluster capacities so that the 

amount of freight in each cluster is relatively uniform. 

In order for the GAP to produce clusters which can be turned into high quality tours, 

the cost coefficients in the objective function must accurately reflect the cost of including 

stop j in route k. Since the actual tours are not known yet, this cost is not known and must be 
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estimated. In Nygard et al., (1988), the cost of adding stop j to vehicle k’s tour was estimated 

as the difference between: (1) the cost of visiting node j, then visiting cluster k (as 

represented by its centroid), and returning to the home base, and (2) the cost of a round trip 

from the home base to node j and back to the home base. The cost incurred is then: 

hbkkjjhbkj dddc ,,, −+=         (8) 

Where dhb,j is the distance from the home base to node j,  dj,k is the distance from the node j to 

the centroid of the kth cluster, and dk,hb is the distance from the home base to centroid k. 

This method tended to produce reasonable cost coefficient estimates for nodes which 

were farther from the home base than the cluster centroid, but not very good values for nodes 

which were closer in.  An alternative method is as follows: 

)(_,),(_ knodenearestjjknodenearestkj ddc +=        (9) 

Where dnearest_node(k),j is the distance between node j and the node in cluster k nearest to j. 

 This alternative method appeared to produce more reasonable cost coefficient 

estimates regardless of where the node was located and, since the nearest node in cluster k is 

node j itself if it is already in cluster k, there is zero cost for keeping nodes in their current 

cluster. Once clusters of nodes which can be turned into feasible tours were obtained, the 

routing was performed with a tabu search which will be described next. 

Tabu search formulation for routing 

Tabu search is a local search method for combinatorial optimization problems 

(Glover, 1986). As described in Glover and Laguna (1993), it explores the solution space by 

moving from a solution xi at iteration i to the best solution xi+1 in a subset of the 

neighborhood N(xi) of xi.  xi+1 does not necessarily improve on xi and a tabu list is maintained 

to prevent the search from cycling over a sequence of solutions. The tabu list keeps track of 

some attributes of previous discovered solutions and any new solution with these attributes is 

considered tabu for t iterations. The neighborhood N(xi) of xi is a  set of solutions that can be 
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reached from xi by specified moves. A very common move used in routing problems is called 

a λ-interchange in which up to λ customers are exchanged between two routes. The attributes 

of such a move are often the edges which are removed from and added to the routes 

(Hjorring, 1995). The tabu status of a move can be revoked if it meets an aspiration criterion, 

for example, the move results in a solution which exceeds any previously discovered 

solution.   

As mentioned above, one of the ways in which the routing problem discussed in this 

paper differs from the traditional routing problem is that the objective is to maximize profits, 

rather than to minimize costs. The profit function to be maximized in the tabu search is the 

following:  

∑ ∑
= ∈

−+=
N

i Tourji
jiTiiW tCapCprofit

1 ),(
,)(                  (10) 

Where N is the number of nodes in the tour, CW is the benefit of picking up and delivering 

freight, CT is the travel time cost, pi and ai are the productions and attractions at node i, and ti,j 

is the travel time from node i to node j.  

In this function, profit is the difference between: (1) the benefit from picking up and 

delivering freight and (2) the costs incurred in traveling from node to node to pick up and 

deliver freight. 

The following subsections describe important characteristics of the tabu search 

formulation developed for solving the routing problem of concern to this paper, including the 

tabu search moves, the tabu list, and a general outline of the tabu search algorithm.  

Tabu search moves 

The tabu search formulation uses four types of moves – adding 2 nodes (one 

production and one attraction)  to the current tour (add2), swapping two nodes (one of each) 

that are in the tour with two that are not (swap2), adding one node (add_node), and swapping 
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one node (swap_node). The decision of which move to make and, for the moves involving 

one node, which type of node to process, is based on the current tour’s production and 

attraction potential. This quantity is the total difference between the demands of the nodes in 

the tour and the amount of freight actually picked up/delivered at those nodes: 

∑ −=∆
i

iiPROD up )(  ∑
<

−=∆
0:

)(
ibi

iiATT da      (11) 

Where ui and di are the amounts of freight currently being picked up from or delivered to 

node i. 

If  = , then an add_2 move is made.  If the best possible add_2 move 

results in a violation of the tour time constraint, then a swap_2 move is made.  If  ≠ 

, then an add_node move is made.  If the best possible add_node move results in a 

violation of the tour time constraint, then a swap_node move is made.   

PROD∆ ATT∆

PROD∆

ATT∆

In the add_2 and swap_2 moves, both a production and an attraction node are 

added/swapped.  In the add_node and swap_node moves, on the other hand, a decision must 

be made as to whether a production node or an attraction node should be added or swapped. 

If  > , then the tour has more “unused” production, so an attraction node should 

be added or swapped.  Otherwise, the tour has more “unused” attraction and a production 

node is added or swapped.  

PROD∆ ATT∆

Tabu list 

A tabu list keeps track of the arcs that are added to and removed from the tour as a 

result of these moves. The tabu list is a three dimensional array, TABU(i, j, k) where i and j 

represent the arc (i,j) and k can have a value of 1 which indicates that the arc is added to the 

tour or a value of 2 which indicates that the arc is removed from the tour. These arcs remain 

on the tabu list for p iterations.  
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For each move, the set of possible moves is identified and the move which results in 

the highest objective function value is selected. If this move does not involve arcs that are on 

the tabu list, it is accepted and the tour and tabu list are updated. If the move does involve 

tabu arcs but the resulting objective function value is greater than any previously attained (the 

aspiration level, AL), it is accepted, the tour and tabu list are updated, and the resulting 

objective function value becomes the new aspiration level. This process is repeated until a 

specified number of iterations are performed without any improvement in the best found 

solution. Thus, the stopping criterion is that y iterations have been performed without finding 

a better solution. As a practical matter, y = 10 appeared to be a sufficiently large number of 

iterations. A flow chart of the tabu search solution process is shown in Figure 4. 
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Construct initial feasible solution, s 

Call swap_node(s*)

 
 
 
 
 
 
Figure 4:  A flow chart of the tabu search 
 

After the tabu search procedures outlined in this subsection were applied in the 

routing phase of the solution process, the resulting tours were examined to see if there were 

node exchanges that could be made which would increase the profit of at least one tour 

without decreasing the profit of the other. This node exchange process is described in the 

following section. 

Intra-player node exchanges 

For each node in the tours constructed in the tabu search, the nodes in the other tours 

for the same player were scanned to identify nodes which had the same production or 

attraction. Once a pair of nodes in two different tours with the same freight demand was 

identified, the nodes were exchanged and each was inserted in the new tour in the most 

profitable location. The new profit for each tour was calculated and, if this new profit was at 

least equal to the current profit for both tours, then the exchange was accepted. The rationale 
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for this step is that the clustering/GAP/routing solution procedure breaks down the problem 

so that each tour is constructed independently and this exchange process allows the solution 

procedure to examine the tours of each player together to see if the set of tours can be made 

more profitable. 

Each step in the clustering/GAP/routing procedure has been described. In order to get 

some idea about the quality of the resulting solutions, the same procedure was undertaken 

with the routing solved by a mixed integer program which is based on the flow formulation of 

the traveling salesman problem. This formulation is described in the next section. 

Mixed integer programming formulation 

 The starting point for this approach was the flow formulation of the traveling 

salesman problem (Ahuja et al., 1993). The parameters of the problem are as follows: 

  N – number of nodes 

  A – the arc set 

  CT – cost of travel time  

  CW – cost of loading and unloading freight 

  CP – cost for not visiting a node  

  T – maximum allowable tour time 

tij – travel time between node i and node j based on city block distance and 

constant travel speed 

tW – time it takes to load or unload one unit of freight  

bi – freight demand at node i (bi > 0 means node i has freight to be picked up 

and delivered elsewhere, bi < 0 means node i needs freight to be delivered to 

it)  

  Q – capacity of a truck 

 The variables are: 
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  xij – a binary variable indicating whether arc ij is on the tour 

zij – the flow on arc ij which represents the amount of freight on the truck from 

node i to node j 

ui – the amount of freight picked up at node i 

di – the amount of freight delivered to node i (constrained to be nonpositive 

since, for flow conservation purposes, attractions are negative) 

fi – a penalty for not including node i in the tour 

 The problem can be stated as follows: 

           (12) 



 ==== i
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}1,0{∈ijx   for i = 1, . . . , N, for j = 1, . . . , N (26) 
}1,0{∈if   for i = 1, . . . , N   (27) 

Where C is a cycle which is not a maximal subtour starting and ending at the home base.  
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The objective function in (12) maximizes total pickups and deliveries while 

minimizing travel time. The first term is the travel time cost for the tour and the last two 

terms represent the benefits for picking up and delivering freight. The tour time constraint in 

(13) insures that the duration of the tour does not exceed the time limit T. The first term 

represents the travel time and the last two terms represent the loading and unloading time. 

The next group of constraints in (14) – (17) insures that the tour begins and ends at the 

truck’s home base which is designated as node 1 and that each node that is visited is visited 

exactly once. The fi term in (14) and (15) allows the tour to skip a node if there is not enough 

time to visit it. 

Since this formulation does not require that each node’s freight demands are met 

exactly, the flow conservation equality constraints in (18) and (19) involve the amount of 

freight that is actually picked or delivered rather than the amount that is available at each 

node. The next group of constraints in (20) insures that only the arcs on the tour have flow, 

that is, if xij is zero then so is zij. The constraints in (20) also insure that the truck’s capacity is 

not exceeded. 

The constraints in (21) – (24) deal with the amount of freight picked up and delivered.  

The constraints in (21) and (22) insure that the amount of freight picked up at a production 

node does not exceed the amount of freight available at that node and the amount of freight 

delivered at an attraction node does not exceed the amount of freight that node needs. The 

constraints in (23) insure that di, the amount of freight delivered at node i, is nonpositive. The 

constraint in (24) is required to insure that the total amount of freight that is picked up in a 

tour is delivered. The constraints in (25) are subtour elimination constraints which are added 

to the MIP as needed. These constraints eliminate submaximal subtours.  

For both the tabu search and MIP, the cluster/routing procedure is applied to each 

company’s node set, then the delivery costs for any contested nodes are calculated, and the 
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company with the lowest cost is awarded the node and the node is removed from the node 

sets of the losing companies. The process is then repeated with the adjusted node sets until all 

nodes are serviced at the lowest cost. The solution procedures presented in the previous 

sections are applied to a series of sample problems next. 

RESULTS AND DISCUSSION 

A series of 9 sample problems was generated in which the number of competing 

trucking companies was varied from 2 to 8, the number of nodes from 80 to 150, and the 

degree of market transparency from 0% to 50%. An example of a problem with 4 companies, 

120 nodes, and a degree of market transparency of 30% is shown in Figure 5. These problems 

were solved using the cluster first, route second approach outlined in Figure 2 with the 

routing done by tabu search and the MIP formulation described above. Depending on 

problem size, the GAP and MIP routing solutions were obtained using either XPress-MP, 

Dash Optimization (2002) or the NEOS server (see Czyzyk, et al., (1998) and Gropp, et al., 

(1997)).   

To compare the performance of these two methods, appropriate parameters must be 

identified. The most obvious measure of performance is the profit function, equation (9). It 

seems clear that the key indicator of performance is profit. However, total profit does not take 

into account any measure of operational efficiency. Two possible measures of efficiency are 

the number of tours and the number of hours required to service all available nodes. Of these 

two measures, the number of tours appears to be more problematic. On the one hand, using 

fewer trucks lowers labor and fuel costs and vehicle wear and tear. On the other hand, more 

tours for a given number of nodes means shorter tours which tend to result in shorter 

commodity trips and, in turn, lower travel costs. In addition, using more tours of shorter 

length puts the company in a better position to meet whatever demand arises in the future in 

that new stops can be added at lower cost. Moreover, in the event of a vehicle breakdown, a 
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company which was using shorter tours would be in a better position to handle the 

emergency. Profit per hour would appear to be preferable because it is a more precise 

measure of efficiency, the total number of hours that it takes to satisfy the freight needs of the 

nodes available to the company rather than the total number of required tours which could 

vary considerably in length. To compare the performance of the two methods, the following 

parameters were calculated: 

(1) total profit for game:     (28) ∑∑
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(4) game total distance traveled:    (31) ∑∑
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(5) game total tour time duration: t    (32) ∑∑
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Where np is the number of companies, ntouri is the number of tours for company i, profij is 

the profit for the jth tour of company i, ttourij is the tour time for the jth tour of company i, and 

distij is the distance traveled in the jth tour of company i. 
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Figure 5:  A sample problem 
 

Table 1 compares the parameter values for the tabu and MIP solutions and Table 2 

shows the relative differences in these parameters with respect to the MIP values. Comparing 

the profit values for the tabu search and MIP solutions, in all nine problems, the total profit 

and profit per tour values were less than 0.70% lower for the tabu search solutions and the 

profit per hour value was no more than 2% lower than the corresponding MIP value. In all 9 

problems, the total tour times were less than 1.5% longer in the tabu search solutions than in 

the MIP solutions. Similarly, in all 9 problems, the total distance traveled values were less 

than 4.5% longer in the tabu search solutions than in the MIP solutions. The tabu search 

solution for the problem in Figure 5 is shown in Figure 6.  

While the MIP routing approach obtained better results, it is not as practical as the 

tabu search approach for a number of reasons. The number of variables and constraints are 

both O(N2), so the computational effort becomes very large for larger problems. For small 

  



Thorson, Holguín-Veras and Mitchell 22

problems ranging from 8 to 14 nodes, the average running time was almost 1.5 seconds with 

an average of 235 iterations. For the same set of problems, the tabu search required an 

average of 25 iterations to obtain solutions. Another advantage of the tabu search approach is 

that it is not restricted to looking at the linear objective of maximizing profit as is the MIP 

approach. The tabu search could be modified to consider other objectives such as profit per 

hour which are not linear.  
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Table 1:  Performance measures for the tabu search and MIP solutions 
Problem Solution Total Profit Profit/tour Profit/hour Tourtime Total Dist
A (2 carriers, 80 nodes, MIP 3599.81 1199.94 158.35 45.48 314

0% node overlap) TABU 3596.08 1198.69 157.82 45.58 316
B (2 carriers, 80 nodes, MIP 3796.80 1265.60 169.82 44.72 280

10% node overlap) TABU 3789.32 1263.11 168.73 44.92 284
C (2 carriers, 80 nodes, MIP 3631.16 1210.39 156.31 46.33 324

20% node overlap) TABU 3616.21 1205.40 154.34 46.73 332
D (2 carriers, 80 nodes, MIP 4665.32 1349.63 172.77 54.12 324

25% node overlap) TABU 4654.11 1346.51 171.35 54.42 330
F (2 carriers, 80 nodes, MIP 6163.39 1540.85 177.57 69.38 406

30% node overlap) TABU 6152.17 1538.04 176.49 69.68 412
F' (4 carriers, 120 nodes, MIP 6073.11 2771.01 329.38 74.13 490

30% node overlap) TABU 6031.99 2753.57 322.79 75.23 512
G (4 carriers, 150 nodes, MIP 7591.87 2763.86 339.72 88.83 552

50% node overlap) TABU 7565.71 2753.89 335.71 89.53 566
H (8 carriers, 150 nodes, MIP 7564.93 4094.22 560.25 107.90 852

30% node overlap) TABU 7546.24 4084.88 556.54 108.40 862
I (8 carriers, 150 nodes, MIP 7472.33 3736.16 552.07 107.08 848

50% node overlap) TABU 7449.90 3724.95 547.38 107.68 860  
 
Table 2:  Differences in tabu search performance measures relative to MIP values (%) 

Problem Solution Total Profit Profit/tour Profit/hour Tourtime Total Dist
A (2 carriers, 80 nodes, MIP 0.00 0.00 0.00 0.00 0.00

0% node overlap) TABU -0.10 -0.10 -0.33 0.22 0.64
B (2 carriers, 80 nodes, MIP 0.00 0.00 0.00 0.00 0.00

10% node overlap) TABU -0.20 -0.20 -0.64 0.45 1.43
C (2 carriers, 80 nodes, MIP 0.00 0.00 0.00 0.00 0.00

20% node overlap) TABU -0.41 -0.41 -1.26 0.86 2.47
D (2 carriers, 80 nodes, MIP 0.00 0.00 0.00 0.00 0.00

25% node overlap) TABU -0.24 -0.23 -0.82 0.55 1.85
F (2 carriers, 80 nodes, MIP 0.00 0.00 0.00 0.00 0.00

30% node overlap) TABU -0.18 -0.18 -0.61 0.43 1.48
F' (4 carriers, 120 nodes, MIP 0.00 0.00 0.00 0.00 0.00

30% node overlap) TABU -0.68 -0.63 -2.00 1.48 4.49
G (4 carriers, 150 nodes, MIP 0.00 0.00 0.00 0.00 0.00

50% node overlap) TABU -0.34 -0.36 -1.18 0.79 2.54
H (8 carriers, 150 nodes, MIP 0.00 0.00 0.00 0.00 0.00

30% node overlap) TABU -0.25 -0.23 -0.66 0.46 1.17
I (8 carriers, 150 nodes, MIP 0.00 0.00 0.00 0.00 0.00

50% node overlap) TABU -0.30 -0.30 -0.85 0.56 1.42  
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a) 

 
 

b) 

 
Note: The stops in each tour are numbered sequentially, HB indicates the company’s home base, and the 
numbers below each stop indicate the node’s production (> 0) or the attraction (< 0). 
Figure 6:   The tours for problem F`(4 companies, 120 nodes, and market transparency  

index of 30%) for: (a) company 1 and (b) company 2  
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(c) 

 

(d) 

 
  Figure 6 continued:  The tours for problem F` for: (c) company 3 and (d) company 4  
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As discussed before, to analyze the role of market transparency, a specified 

percentage of nodes are available to more than one company. The percentage is designated as 

ρ and, as it increases, the transparency and competitiveness of the market increases. It can be 

hypothesized that, as the market transparency increases with increasing ρ, the market will 

become more segmented geographically, that is, the nodes will tend to be won by the player 

whose home base they are closest to. To test this hypothesis, the node overlap in game G 

(four players, 50% node overlap) was reduced to 25% and increased to 75% and 100%. Tabu 

search solutions were obtained for each value of ρ and the distance between each node and 

the home base of the company which won the node was calculated. If the hypothesis that 

increasing market transparency by increasing ρ results in an increase in market segmentation 

is true, then the node-home distance should decrease as ρ increases. In each case except for ρ 

= 100%, there are a number of nodes which are available to only one player and, regardless 

of where they are located, that player must service them. Thus, to fairly test the hypothesis, 

the analysis should focus only on the contested nodes, that is, the nodes which are available 

to more than one company. This is because the nodes that only have one carrier serving them 

are in no position to switch to another company. 

Figure 7 shows the contested node-home base distance cumulative frequency 

distribution in each case. This figure lends support to the hypothesis. The 100% case has the 

highest frequency in the four lowest distance intervals. It has the highest frequency in five out 

of the eight lowest distance intervals, while the 25% case generally has the lowest frequency 

for these intervals. The frequency distributions were modeled using the following gamma 

function: 

21
0

adista disteafreq =         (33) 
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Figure 8 shows the frequency distributions and the estimated gamma functions when 

the noncontested nodes are excluded. The mode for these modeled distributions tended to 

shift to the right as ρ decreases with the mode for 100% at 0.30 miles, the mode for 75% at 

0.40,  and the mode for 50% at 0.35 miles, and the mode for 25% at 0.75 miles. Table 3 

shows the totals and means for the node- home base distance. The mean for this distance 

generally decreased as ρ increases.  

Table 3: Distance between contested nodes and home base of company which won them  
Contested Home base-node distance

rho Nodes Total Mean
25% 37 21.50 0.5810
50% 73 37.90 0.5192
75% 104 56.75 0.5457
100% 145 75.00 0.5172  

 

Cumulative Frequency Distribution - Contested Node Homebase Distance
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Figure 7: Cumulative frequency distributions of contested node-home base distances 
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Frequency Distributions - Contested Node Homebase Distance
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Figure 8: Modeled frequency distributions of contested node-home base distances 
 
 
 
CONCLUSION 
 

This paper presents a solution method for the multiple vehicle routing problem with 

profits and competition (MVRPPC). The method uses a “cluster first, route second” approach 

in which the first stage consists of a geometric clustering combined with a generalized 

assignment problem (GAP) to create clusters from which feasible tours can be constructed 

and the routing stage is performed using a tabu search. For comparison purposes, the routing 

was also done using a mixed integer programming (MIP) formulation. 

Competition among the trucking companies was introduced into the process by the 

fact that a specified proportion of the nodes were available to more than one company. For 

these overlapping nodes, the transportation costs for each company servicing the node were 

then calculated and these nodes were removed from the node sets of players who did not have 

the lowest cost and the clustering/routing procedure was repeated with the new node sets. 
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This process was continued until each node was included in exactly one tour at lowest cost 

resulting in an approximation of a modified spatial price equilibrium. 

This solution method was applied to a series of sample problems of varying size and 

complexity. A comparison of the tabu search and MIP solutions indicated that the tabu search 

solutions were only slightly less profitable than the corresponding MIP solutions. In all nine 

problems, total profit and profit per tour values were less than 0.70% lower for the tabu 

search solutions and the profit per hour value was no more than 2% lower than the 

corresponding MIP value. These results indicate that the clustering/GAP/tabu search solution 

approach presented here appears to be a flexible, efficient method for solving the MVRPPC 

which is quite accurate as indicated by the comparison to the MIP solutions. The tabu search 

approach has several advantages over the MIP approach including requiring considerably 

fewer iterations  to obtain solutions and the capability of considering non-linear objectives. 

The paper analyzed the effect of varying the degree of market transparency to test the 

hypothesis that increasing the transparency of the market will increase the geographic 

segmentation of the market. Evidence in support of this hypothesis was presented and it was 

concluded that, there appeared to be a trend of increasing market segmentation with 

increasing market transparency. 
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