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Abstract

We examine the resiliency of retail locations of a supply chain network to aid in

the recovery of the local community after an extreme event. A two-stage stochastic

programming model is used to determine the placement of permanent generators at the

retail locations of Stewart’s Shops, which distributes both convenience items and fuel

in Upstate New York and Vermont, to enhance the resiliency of the supply chain. Our

measure of resiliency specifically considers the recovery process of each retail location

after the extreme event and its interdependency on other external infrastructure sys-

tems. Our computational experiments consider the multiple distinct types of hazards

that can affect the retail locations of Stewart’s Shops. We empirically explore different

stochastic sampling procedures to solve the resiliency model. The results of computa-

tional tests indicate that we can converge to an approximate optimal solution quickly.

We compare the resiliency efforts when planning for different types of hazards versus all

hazards simultaneously as well as the impact of external infrastructure systems on the

resiliency efforts. The empirical study identifies that the stores in rural, less densely

populated areas, serving a large population should be selected to receive generators.
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1 Introduction

Recent extreme events, such as Hurricanes Irene in 2011 and Sandy in 2012 that affected

New York and New Jersey, have demonstrated the need for enhancing the resiliency of

supply chain systems. This is especially important for local supply chain networks that

move critical goods, such as food, batteries, and fuel, into the areas affected by the extreme

event. These critical goods allow the local population to begin to recover from the event

and, often, companies operate hybrid retail operations that are part convenience stores (to

provide food and batteries) and part gas station (to provide fuel). As a motivating example,

Stewart’s Shops is a company that operates 330 convenience stores and gas stations locations

in Upstate New York and Vermont. Figure 1 presents a map of the retail locations of this

company relative to the northeastern United States. Figures in the remained of this work

will zoom in to the black box for clarity. Stewart’s has 58 locations that operate just as

convenience stores and 272 locations that operate as both convenience stores and gas stations

(see Stewart’s Shops [23]). In the past few years, multiple types of hazards have impacted

Stewart’s retail locations including hurricanes (in particular, Hurricanes Irene and Sandy),

flooding, blizzards, and ice storms. This means that any efforts to increase the resiliency

of Stewart’s Shops for delivering critical goods to local populations should incorporate the

potential impact of these various hazards.

The resiliency of a local supply chain distribution network, like that of Stewart’s Shops,

is typically focused on its ability to bounce back from disruptions. For local distribution

networks, an important aspect of its bounce back is the capability to have its retail operations

open for business. There are both internal and external factors that determine when a retail

operation can begin its vital role as a distribution point after the disruptive event. The

internal factors typically involve the steps necessary to reopen the store after any damage

that was caused by the event. Example internal factors include: (i) clearing debris, snow,

or ice from the parking and refueling areas, (ii) cleaning up the interior of the store and

restocking shelves, (iii) rebooting information systems, and (iv) having workers arrive at the

store, which often times depends on external transportation systems. The external factors

involve whether the services (such as power and telecommunications) necessary to support
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Figure 1: Locations of Stewart’s Shops.

the retail operations are available after the event. For example, after Hurricane Sandy, lack of

electrical power was a major source of the delay in the re-opening of gas stations in the New

York/New Jersey areas (see, for example Ma [10], Zernike [24], Lipton and Krauss [8], Hu and

Yee [4], and Goldberg [2]). In fact, generators were brought in to the area by certain gasoline

companies for the sole purpose of reopening their points of distribution (Goldberg [2]). In

addition, many gas stations had their telecommunications services disrupted by Hurricane

Sandy implying that they were only able to accept cash from customers (for example, Hu and

Yee [4]). Therefore, our proposed resiliency models will specifically incorporate the reliance

of reopening convenience and fuel distribution on the services provided by other (potentially

disrupted) infrastructure systems.

The focus of this work is on locating permanent generators at the retail operations of

a local supply chain distribution network in order to increase the resiliency of the system

against multiple types of hazards. The resiliency of a particular retail operation is measured

as the sum of the weighted (by demand) opening time for various commodities (e.g., cash-
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paying customers for fuel). The calculation of the opening time of a commodity at a retail

operation will incorporate both the internal and external factors (e.g., dependencies on power

and telecommunications) that affect it. This means that we use a two-stage stochastic pre-

planning model where the first stage decisions locate the generators and the second stage,

for each scenario, captures the resiliency of the distribution network for a realization of the

damage of a hazard.

We do note that the ‘opening times’ will not need to incorporate the arrival of inventory

into the retail operation - the types of items that tend to be sold immediately after a

disruptive weather event will be well-stocked prior to that event and are often able to be

replenished shortly after the event. Therefore, the focus of the resiliency measure should be

on the ability to distribute on-site inventory rather than receiving shipments from elsewhere.

It should be noted that Stewart’s Shops will send out more ‘necessity’ items to stores in areas

potentially affected by an incoming event. In addition, the lack of power at gas stations

was a major concern with respect to the gasoline shortages and rationing after Hurricane

Sandy. Therefore, the particular focus on opening times of retail operations is well-justified.

This implies that we do not necessarily need to model the underlying warehouse-retailer

distribution network in each scenario, thus allowing us to develop fast algorithms to solve

our resulting resiliency models.

Our work is related to research on planning for supply chain disruptions; Snyder et al. [22]

and Snyder [21] provide an overview of design and fortification models in this mean. These

two-stage stochastic models they describe consider the location of supply chain components

as the first stage decisions and customer assignment as the second stage decisions. The

model in this paper is distinct from this work because our first stage changes the properties

of existing components and our second stage focuses on the time to recovery of distribution

points.

There has been previous research on two-stage pre-planning models for locating emer-

gency supplies before a disaster. These models incorporate the dependencies of the supply

chain on the transportation network by having travel times be scenario-dependent based on

the damage of the event - see, for example, Shen et al. [19], Van Hentenryck et al. [3], Mete

and Zabinsky [11], Rawls and Turnquist [15], and Salmeron and Apte [16]. However, these
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models do not consider the reliance of the supply chain on other critical civil infrastructure

systems, such as power and telecommunications. Shen [18] examines building in new arcs in

a network to increase the resiliency of interdependent infrastructure systems; however, these

models assume that the infrastructures will ‘work together’ in the second stage in terms of

planning their recovery efforts from the event. This is often not the case for infrastructure

restoration and, more importantly, local supply chain distribution networks will tend not

to have a voice in restoration efforts from large-scale events. Further, these previous works

on pre-planning models tend to focus on scenarios that are generated from a single type of

event (such as an earthquake Dodo et al. [1] and Liu et al. [9]) rather than multiple hazards.

Other two-stage pre-planning models examine the resilience of infrastructure systems

subject to extreme events. Liu et al. [9] examine the retrofitting of transportation networks;

Miller-Hooks et al. [12] examine a freight transportation network and determine the optimal

allocation of preparedness and recovery actions; and Peeta et al. [14] consider a highway

network and seek to maximize the connectivity after the event. All of these studies do

not incorporate the impact of external factors, such as the impact of power outages, on

the recovery or resilience of the transportation network. The time it takes to bounce back

to normal after an extreme event is one dimension of resiliency which is often ignored in

these previous works that is specifically included in our model. A notable exception is Sheu

[20] who has examined the time until relief is distributed after a disaster. However, Sheu

[20] focuses on a multi-objective model where the supply chain is not explicitly impacted

but instead the demand is dynamic based on the degree of impact to different geographical

locations.

Main Contributions The main contributions of this work include (i) the consideration

of multiple types of hazards in supply chain resiliency planning, (ii) development of a two-

stage stochastic program to enhance the resiliency of local supply chain networks specifically

considering the recovery process of each retail operations and its interdependency on external

infrastructures, and (iii) an empirical exploration of stochastic sampling procedures to solve

resiliency models.

The work proceeds as follows: Section 2 introduces the mathematical model and as-
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sociated algorithm used to solve the two-stage stochastic supply chain resiliency problem;

Section 3 presents the results of the computational analysis including the inclusion of dif-

ferent distribution of hazards and the impact of internal and external factors; we conclude

in Section 4. Please see the Appendix for corresponding parameter and data generation for

each hazard scenario.

2 Mathematical Model and Algorithms

The proposed mathematical model to increase the resiliency of local supply chain distribution

networks involves locating generators at retail operations to minimize the weighted ‘opening

time’ of the retail operations across a set of scenarios. The opening time of the retail operation

for commodity ` at store j requires that all internal and external factors that could prevent

the opening are complete. In particular, the internal factors include: (i) completing all work

(such as repairing damage) for tasks that do not necessarily require power (we will refer to

these as ‘non-power tasks’) and (ii) completing all work on tasks that do require power (we

will refer to these as ‘power-based tasks’). Note that there may be non-power tasks (such

as cleaning the store) that can be completed faster if power is available at the store - this

will be incorporated in our model. The external factors include: (i) any (potential) flooding

around the store subsiding, (ii) power being restored to the store (if there is no generator)

and (iii) telecommunications being restored to the store (for credit-only customers).

To provide a formal description of the model, it is necessary to provide an overview of

the notation used to describe various parameters associated with the problem. The relevant

parameters include:

• S is the set of all scenarios.

• N is the set of all stores.

• L is the set of all commodities.

• ws is the weight of scenario s ∈ S. This would typically be viewed as the probability

of the event occurring; however, for our purposes, this weight reflects the fact that
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we care about multiple types of hazards. A scenario for a type of hazard would have

a probability and the importance of that hazard multiplied by this probability would

give us the weight for the scenario.

• dj` is the cash demand for store j and commodity `.

• d̄j` is the credit-only demand for store j and commodity `.

• K is the number of generators available.

• rpsj is the release time (or restoration time) for power (from the grid) at store j in

scenario s.

• rcsj is the release time for communications at store j in scenario s.

• rfsj is the release time for any floodwaters at store j in scenario s. We assume that

rfsj ≤ rpsj for all s and j since power will not be restored to areas damaged by flooding

until the flooding subsides and proper electrical inspections are done (see, for example,

Issler and Brodsky [5] for discussion of this issue after Hurricane Sandy).

• psj` is the time needed to complete power-based tasks at store j for commodity ` and

scenario s.

• wsj` is the work needed to be completed at store j for commodity ` and scenario s for

non-power tasks.

• σpj is the speed the work associated with non-power tasks is completed when power is

available.

• σnpj is the speed the work associated with non-power tasks is completed when power is

not available.

The mathematical model is a two-stage stochastic program where the first stage decisions

locate generators at the retail operations of the local distribution supply chain network and

the second stage decisions calculate the opening times of each store and commodity in each

scenario. To this end, we define binary decision variables zj for j ∈ N that represent the
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decision of locating a generator at store j. The decision variables Csj` and C̄sj` provide the

opening time of commodity ` at store j in scenario s for cash customers and credit-only

customers, respectively. The mathematical model of our resiliency model for local supply

chain distribution networks (R-LSC) is then:

min
z,C,C̄

∑
s∈S

ws
∑
j∈N

∑
`∈L

dj`Csj` + d̄j`C̄sj` (1)

subject to: (R-LSC)

∑
j∈N

zj ≤ K (2)

Csj` ≥ rpsj(1− zj) + psj` ∀s ∈ S,∀j ∈ N, ∀` ∈ L (3)

Csj` ≥

(
rpsj +

wsj` − (rpsj − r
f
sj)σ

np
j

σpj

)
(1− zj) + psj` ∀s ∈ S,∀j ∈ N, ∀` ∈ L (4)

Csj` ≥
(
rfsj +

wsj`
σpj

)
zj + psj` ∀s ∈ S,∀j ∈ N, ∀` ∈ L (5)

C̄sj` ≥ Csj` ∀s ∈ S,∀j ∈ N, ∀` ∈ L (6)

C̄sj` ≥ rcsj ∀s ∈ S,∀j ∈ N, ∀` ∈ L (7)

zj ∈ {0, 1} ∀j ∈ N. (8)

Constraint (2) limits the number of generators placed at the stores while constraints (3) -

(7) help to ensure the opening times consider all internal and external factors. In particular,

for cash customers, constraints (3) - (5) ensure that the following steps need to be complete

prior to opening store j for commodity `: (i) flooding at the store subsides, (ii) all non-power

tasks are completed, (iii) power returns (either through a generator or being restored) to

the store, and (iv) all power-based tasks are completed. If zj = 0, then constraints (3)

imply that we do not begin the power-based tasks until at least power is restored to the

store and constraints (4) imply that we do not begin the power-based tasks until at least the

non-power tasks are complete. The first term inside the parenthesis in constraints (4) is the

time when we begin processing non-power tasks at their ‘power’ speed while the second term

provides the amount of time required to finish the remaining work on these tasks. Note that
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if the tasks can be completed before the power speed kicks on, then the second term will

be negative, thus constraints (3) will be active. Constraints (6) and (7) ensure the opening

time for commodity ` of credit-only customers is based on the fact that the store is open for

cash customers for commodity ` and communications is restored to the store.

It can be expected that the number of scenarios in R-LSC will be extremely large and,

therefore, it may not be computationally feasible to solve the form of R-LSC that incorporates

all scenarios. Therefore, we will apply sample average approximation (see Shapiro et al. [17])

to determine an (approximate) optimal solution to R-LSC. For our case study of applying

R-LSC to locating generators at Stewart’s Shops, the set of scenarios span four distinct

types of hazards: hurricanes, flooding, blizzards, and ice storms. The weight of a particular

scenario, ws, will be based on (i) the priority of the type of hazard associated with scenario

s and (ii) the probability that this type of hazard produces scenario s. For example, if we

care about all four hazards equally, and a particular hurricane scenario has a .5 probability

of occurring and a particular flooding scenario has a .2 probability of occurring, then the

weights will be selected as .5 and .2 for these scenarios, respectively.

Our computational analysis will first apply sample average approximation (SAA) tech-

niques to R-LSC to locate generators to increase the resiliency against a single type of hazard.

The purpose of this is twofold: first, it will help determine the limits of planning for a par-

ticular type of hazard versus planning for all hazards and secondly, it will be the basis for an

empirical sampling mechanism when protecting against multiple types of hazards. We will

then explore different ways to sample when considering the multiple types of hazards and

see their impact on the convergence of the SAA.

It turns out that R-LSC can be solved in O(|N ||S||L|) time. The method to solve R-LSC

comes from the observation that the second-stage decisions are decomposable by store and

that the generator location decisions can be viewed as improving the worst case opening

times for each scenario. In particular, we define Rsj to be the ‘base’ resiliency measure, i.e.,

the resiliency of store j in scenario s when a generator is not located at j:

Rsj =
∑
`∈L

dj`

(
max

{
rpsj, r

p
sj +

wsj` − (rpsj − r
f
sj)σ

np
j

σpj

}
+ psj`

)
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+d̄j`

(
max

{
max

{
rpsj, r

p
sj +

wsj` − (rpsj − r
f
sj)σ

np
j

σpj

}
+ psj`, r

c
sj

})
This calculation simply forces constraints (3)-(4) and (6)-(7) to be ‘active’ for scenario s

and store j. We then define R′sj to be the objective for scenario s at store j when a generator

is located there:

R′sj =
∑
`∈L

dj`

(
rfsj +

wsj`
σpj

+ psj`

)
+ d̄j`

(
max

{
rfsj +

wsj`
σpj

+ psj`, r
c
sj

})
.

Note that Rsj ≥ R′sj for all s and j because rfsj ≤ rpsj. We can then reformulate R-LSC as

min
∑
s∈S

ws
∑
j∈N

Rsj(1− zj) +R′sjzj =
∑
j∈N

∑
s∈S

wsRsj +
∑
j∈N

∑
s∈S

ws(R
′
sj −Rsj)zj (9)

subject to: (KP)∑
j∈N

zj ≤ K (10)

zj ∈ {0, 1} ∀j ∈ N. (11)

This reformulation is a knapsack problem where all items (stores) have unit coefficients in the

knapsack constraint. Therefore, the K stores with the lowest values of
∑

s∈S ws(R
′
sj − Rsj)

will be chosen to have generators located at them. It requires O(|S||L|) time to calculate

Rsj and R′sj for each store and, therefore, R-LSC can be solved in O(|N ||S||L|).

3 Computational Analysis

The purpose of this section is to explore both empirical convergence properties of R-LSC

and to provide policy-based analysis for Stewart’s Shops. The area which Stewart’s Shops

operate their retail stores is prone to four types of hazards: hurricanes, flooding, blizzards,

and ice storms. Each of these hazards has their own unique properties in terms of how they

come into the area and what damage they tend to cause to the retail stores, power grid,

and telecommunications infrastructure. The Appendix discusses our techniques to generate

a scenario for each of these distinct types of hazards.

For our case study, we consider two types of commodities: the ‘convenience’ (e.g. food,

water, and batteries) commodity and the ‘fuel’ commodity. The demand level for these
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commodities at store j ∈ N are a function of the location of the store, its surrounding areas,

and its capabilities. We first determine the overall demand level for commodity ` = {c, f}

(where c = convenience and f = fuel) through the following procedure: (1) for each county

and commodity `, determine the set of Stewart’s Shops in that county capable of delivering

that commodity and (2) split the demand (which we measure as the population, see U.S.

Census [13] ) of the county evenly among all stores capable of delivering that commodity.

We then assume that 50% of this overall demand for store j and commodity ` is ‘credit-only’

to determine dj` and d̄j`. As an example, if there is a county with 10,000 residents and 10

Stewart’s Shops that have gas stations, then we assume that the overall demand for fuel

at each of these locations is 1, 000. Figure 2 displays a heat map of the Stewart’s stores

based on their total level of demand over all types of customers (cash and credit only) and

commodities (convenience and fuel).

Figure 2: Heat map displaying the 330 Stewart’s Stores and their respective total demand

level, where darker shading indicates a higher level of demand.
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There are a few limitations to creating our demand levels in this manner. First, it assumes

that the entire population will visit a Stewarts shop after an event. However, this assumption

is not too limiting since if Stewart’s market share is uniform across all counties, the optimal

solution will not change since all solutions will have their objective function multiplied by

their percentage market share. The second assumption is that it does not factor in the

‘closest’ Stewart’s Shop to a given population - there may be a store across the street that is

in a different county and, therefore, the demand is assigned elsewhere. However, the number

of these situations across all 330 stores is probably quite small. Further, the assignment of

this demand assumes that the population will only visit one Stewart’s Shop and will not visit

another Stewart’s Shop if their shop is closed due to the event, since we assume static and

not scenario-based demand. This assumption should be relaxed in future work, however, we

justify the assumption by concluding a ‘non Stewart’s Shop’ will often be closer to a closed

Stewart’s Shop than another Stewart’s location and, therefore, the customers for the closed

store will visit the ‘non Stewart’s Shop’.

3.1 Sample Average Approximation for Single Hazard Resiliency

Our first set of tests seeks to determine the location of generators among the 330 Stewart’s

Shops when considering each type of hazard individually. Specifically, we determine 12 solu-

tions, one for each of the four hazards and three generator levels, K = 17, 33, and 50 which

represent locating generators at 5%, 10%, and 15% of the number of stores, respectively.

As with any empirical stochastic programming problem with a large number of scenarios,

we must determine the appropriate number of scenarios to consider that provides a close

approximation of the true optimal objective function value and solution. Our approach and

stopping criteria uses a combination of the implementations presented by Linderoth et al.

[7] and Kleywegt et al. [6].

For a fixed number of scenarios |S|, we solve M instances of the problem over |S| ran-

domly generated scenarios and determine their associated solutions z1, . . . , zM and objective

function values v1, . . . , vM . We then solve one instance of the problem by including the

union of all |S| scenarios over the M iterations for a total of M |S| scenarios. Denote the

solution and objective function value of this instance as zM+1 and vM+1. We then calculate
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the optimality gaps of v1, . . . , vM relative to vM+1. If all of the optimality gaps are within

±1%, we stop, otherwise we increment the number of scenarios considered. The specifics of

the algorithm are outlined in Algorithm 1.

Algorithm 1 Convergence Stopping Criteria

1: Set boolean variable stopping criteria equal to 0

2: Set number of scenarios, |S| = 500

3: Input: Number of generators, K

4: Input: Number of iterations, M

5: while stopping criteria = 0 do

6: for i = 1 : M do

7: Generate |S| independent scenarios

8: Solve for objective function value vi and solution zi using the |S| scenarios

9: end for

10: Consider all M |S| scenarios generated

11: Solve for objective function value vM+1 and solution zM+1 using the M |S| scenarios

12: Calculate optimality gaps, vM+1−vi
vM+1

, for each i = 1 : M

13: if All optimality gaps are within ±1% then

14: Set stopping criteria equal to 1

15: else

16: Set number of scenarios, |S| = |S|+ 500

17: end if

18: end while

19: Return vM+1 and zM+1

Because we are considering each type of hazard individually, each scenario has the same

weight, specifically 1
|S| . Table 1 displays the results of these tests by showing the types of

hazards, the 3 numbers of generators considered, the resulting number of scenarios needed to

converge, and objective function value. For reference, we include the objective function value

when no generators are placed. From the table, we see that the flooding hazard requires the

greatest number of scenarios to converge. This is due to the fact that only 75 stores can ever
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Number of Number of Scenarios Objective

Hazard Generators (K) for Convergence Function Value

Hurricane 0 - 12,042,400

17 10,500 11,241,600

33 11,500 10,876,600

50 10,000 10,550,900

Flood 0 - 8,129,770

17 37,500 7,284,080

33 34,000 6,936,210

50 29,000 6,886,730

Blizzard 0 - 9,543,590

17 3,500 8,629,480

33 3,500 8,237,490

50 5,500 7,873,700

Ice Storm 0 - 12,696,300

17 7,000 11,270,400

33 5,500 10,473,200

50 8,000 9,784,940

Table 1: Single Hazard Computational Results

be impacted by a flood, and further over two thirds of the stores are only impacted by at

most one particular flooding event. This means that the intersection of stores impacted by

two distinct flooding events is small, making it hard to decide on where to locate generators

unless many scenarios are considered. Also from the table, we note that the hurricanes and

ice storms have the biggest impact for re-opening locations as is realized through the higher

objective function values.

Figures 3, 4, 5, and 6 display the solutions for the three generator levels and their

associated hazard where darker markers indicate the Stewart’s Shops selected to receive

a generator. For all four types of hazards, the solutions are incremental as we increase
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the number of available generators. In other words, the solution to the problem with 17

generators is a subset of the solution with 33 generators, and the solution to the problem

with 33 generators is a subset of the solution with 50 generators. This is expected for a fixed

set of scenarios as a direct result of the knapsack formulation. If for each store the Rsj and

R′sj values sufficiently converge, we can rank the objective function coefficient values and

select the best K locations to receive generators for any number of generators K.

(a) 17 Generators (b) 33 Generators (c) 50 Generators

Figure 3: Hurricane Hazard Solutions

(a) 17 Generators (b) 33 Generators (c) 50 Generators

Figure 4: Flood Hazard Solutions
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(a) 17 Generators (b) 33 Generators (c) 50 Generators

Figure 5: Blizzard Hazard Solutions

(a) 17 Generators (b) 33 Generators (c) 50 Generators

Figure 6: Ice Storm Hazard Solutions

Therefore, the fact that our solutions exhibit this quality, validates the use of our conver-

gence stopping criteria. In practice, this solution property is desirable because if Stewart’s

Shops wanted to add more generators to their set of stores, they would not have to relocate

existing generators to attain the optimal solution for the increased number. Instead they

could determine which of the existing locations without generators will be selected for the
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installation of a generator. Also, as a direct result of the formulation, we notice the phe-

nomenon of diminishing returns where the benefit of an extra generator decreases as the

number of available generators is considered. From the figures, we see that the solutions to

the hurricane, blizzard, and ice storm hazards are similar to each other. We will expand

upon this observation in Section 3.3.

When examining where generators are located, we notice that many of the Stewart’s

Shops in rural locations were selected. As is outlined in the Appendix, the population

density in the area surrounding a store impacts the time when power and communications

are restored to the store, where power to urban locations is restored more quickly than to

rural locations. Therefore, we see that rural locations serving a large population that have

to wait longer for external services are often selected to receive generators.

3.2 Sample Average Approximation for all Hazard Types

We now seek to determine a solution that considers all four types of hazards. With these tests,

we consider two different scenario sampling and weighting schematics. The first scheme looks

at each type of hazard equally by incorporating an equal number of scenarios of each hazard

type and distributing the weight equally across all scenarios. Specifically if |S| scenarios are

considered, we generate |S|
4

hurricane scenarios, |S|
4

flood scenarios, |S|
4

blizzard scenarios,

and |S|
4

ice storm scenarios all with a weight equal to 1
|S| . The second scheme considers each

hazard equally, however, incorporates the results from Section 3.1 by generating different

number of scenarios for each hazard type. Let ski denote the number of scenarios needed to

converge to a solution for hazard type i and generator level k (e.g. set hurricane as hazard

type 1, then s17
1 = 10, 500 as seen in Table 1). Under second sampling scheme, the number of

scenarios generated for each type is
ski |S|

sk1+sk2+sk3+sk4
. The weight is then assigned by hazard type,

where the sum of the weights for all scenarios of a set hazard type equals 0.25. The weight

for each scenario of hazard type i (assuming 4 hazard types) equals
0.25(sk1+sk2+sk3+sk4)

ski |S|
, which

is equivalent to 0.25 divided by the number of scenarios of hazard type i. We will denote

the first scheme as ‘Equal Sampling’ and the second as ‘Hazard-Based Sampling’. For both

of these schemes, we continue to test for 17, 33, and 50 generators. We then use Algorithm

1 to determine when we have converged to a solution and objective function value.
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Table 2 displays the computational results when all hazards are considered. We notice,

that both sampling schemes need a comparable number of scenarios to converge. Further,

the solutions are similar as can be seen in Figures 7 and 8 which shows the placement of the

generators for the Equal Sampling and Hazard-Based Sampling tests represented by darker

markers. We again see the incremental nature of the solutions as we increase the number of

generators considered. For both Equal Sampling and Hazard-Based Sampling the solution

with 17 generators is a subset of the solutions with 33 and 50 generators and the solution with

33 generators is a subset of the solution with 50 generators. We reinforce, that this is a nice

solution property as if budgets increase to allow for the installation of more generators, the

optimal solution will not require that existing generators be relocated. We explore solution

similarity by examine the solutions when hazards are considered individually and collectively.

Number of Number of Scenarios Objective

Hazard Generators (K) for Convergence Function Value

Equal 17 12,000 9,806,580

Sampling 33 12,500 9,382,530

50 8,000 8,994,290

Hazard-Based 17 12,000 9,820,900

Sampling 33 14,000 9,426,040

50 9,000 8,905,650

Table 2: All Hazards Computational Results

3.3 Comparison of Solutions

We now examine the solutions, i.e. where we selected to locate the generators, across the

different types of hazards individually and collectively. We compare these solutions using

two different metrics.

The first metric evaluates the converged solution to one test instance under ski randomly

selected scenarios of another test instance for hazard type i. For example, we take the
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(a) 17 Generators (b) 33 Generators (c) 50 Generators

Figure 7: Solutions for All Hazards with Equal Sampling

(a) 17 Generators (b) 33 Generators (c) 50 Generators

Figure 8: Solutions for All Hazards with Hazard-Based Sampling

approximate optimal solution when only hurricane scenarios are considered with 17 gener-

ators and evaluate it under a test instance with 37,500 flood scenarios (from Table 1) and

17 generators. We perform this pairwise comparison for each of the hazards individually

(hurricane, flood, blizzard, and ice storm) and under the two different sampling techniques

(Equal Sampling and Hazard-Based Sampling). An optimality gap is then calculated as
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the percentage difference between the evaluated solution’s objective function value and the

optimal objective function value for that set of scenarios. The second metric that we use

to compare solutions is a solution matching percentage which is calculated as the ratio of

matching selected locations to the number of generators. For example, we take the solutions

to two different problems, say only hurricane scenarios with 17 generators and only blizzard

scenarios with 33 generators. We then count the number of stores that are selected to receive

a generator under both solutions. This count is bounded above by the minimum number of

generators considered, which in this example is 17. A solution matching percentage is then

calculated by taking the ratio of the count to the minimum number of generators.

Table 3 displays the results of the comparisons using the first metric where we evaluate

solutions. For each entry in the table, we create ski scenarios (from Tables 1 and 2) consistent

with the descriptions in the two left most columns. With this set of scenarios we perform two

calculations (i) solve it to optimality (which should approximately be equal to the objective

function value displayed in Table 1 or 2) and (ii) evaluate the converged solution for the type

of hazard indicated by the top most row. For both calculations we capture the objective

function value and calculate an optimality gap by taking the percentage difference between

the evaluated solutions objective function value and the optimal objective function, which

is displayed. From these results, it appears the flood hazard is least consistent with the

other types of hazards as is represented by large optimality gaps. Further, it appears the

Equal Sampling solution (column) performs better than the Hazard-Based Sampling solution

(column) when evaluated against the different test instances as it almost always has a smaller

optimality gap.

The results of the comparison using the second metric calculating a solution matching

percentage are presented in Tables 4 and 5. The values are presented in Table 4 and a

corresponding heat map where darker values signify closer to 1 (100%) are presented in

Table 5. The calculations create a symmetric matrix, however for conciseness we leave the

values below the diagonal empty. First, we note that our previous observation about the

incremental nature of the solutions is verified as all values within the same hazard-hazard

comparison equal 1.00 (e.g. hurricane 17 and hurricane 33). It appears that flood hazards

are least similar to ice storm, blizzard, and hurricane hazards. An important point is that
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Hazard K Hurricane Flood Blizzard Ice Storm Equal Sampling Hazard-Based

Hurricane 17 - 4.98% 2.11% 2.69% 2.68% 4.86%

33 - 7.15% 3.16% 3.87% 2.99% 4.13%

50 - 9.63% 3.53% 4.41% 3.19% 4.88%

Flood 17 9.92% - 11.31% 11.14% 4.85% 6.88%

33 12.09% - 13.64% 15.18% 5.91% 8.47%

50 9.66% - 13.37% 13.64% 6.43% 11.63%

Blizzard 17 3.85% 8.63% - 1.92% 2.39% 5.66%

33 5.5% 11.84% - 1.60% 2.58% 8.35%

50 5.56% 16.01% - 2.07% 2.51% 7.46%

Ice Storm 17 5.88% 9.09% 2.22% - 2.75% 5.07%

33 9.50% 13.48% 2.22% - 3.26% 6.29%

50 9.78% 19.20% 2.53% - 3.62% 6.88%

Equal 17 3.09% 3.96% 1.75% 1.60% - 1.84%

Sampling 33 4.01% 5.78% 2.28% 1.96% - 2.19%

50 3.39% 9.03% 1.91% 2.14% - 2.26%

Hazard-Based 17 5.57% 8.77% 2.64% 0.88% 2.13% -

Sampling 33 9.74% 14.32% 2.44% 1.49% 1.88% -

50 9.65% 21.75% 3.17% 1.77% 2.17% -

Table 3: Optimality gaps when the converged solution to the top row hazard is evaluated

under the scenarios and optimal solution to the hazard described in the first column.

the placement of generators change significantly when we move from a single hazard to all

hazards. Therefore, it is important for local supply chain distribution networks to understand

their goals for their resiliency efforts and incorporate the appropriate types of hazards into

their analysis. Lastly, we point out that the solutions for Equal Sampling and Hazard-Based

Sampling have a very high matching percentage indicating that the biased sampling is not

critical when calculating our resiliency efforts.
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Hurricane Flood Blizzard Ice Storm Equal Sampling Hazard-Based

Hazard K 17 33 50 17 33 50 17 33 50 17 33 50 17 33 50 17 33 50

Hurricane 17 1.00 1.00 1.00 0.12 0.12 0.12 0.41 0.41 0.41 0.29 0.29 0.29 0.29 0.41 0.53 0.29 0.41 0.53

33 1.00 1.00 0.24 0.18 0.18 0.59 0.33 0.36 0.29 0.24 0.24 0.35 0.39 0.48 0.41 0.39 0.48

50 1.00 0.59 0.42 0.28 0.76 0.58 0.50 0.53 0.52 0.40 0.65 0.73 0.62 0.71 0.73 0.62

Flood 17 1.00 1.00 1.00 0.06 0.12 0.41 0.00 0.12 0.35 0.59 0.76 0.76 0.53 0.76 0.82

33 1.00 1.00 0.06 0.09 0.27 0.00 0.09 0.24 0.59 0.42 0.55 0.53 0.42 0.58

50 1.00 0.06 0.09 0.18 0.00 0.09 0.18 0.59 0.42 0.36 0.53 0.42 0.38

Blizzard 17 1.00 1.00 1.00 0.41 0.76 0.88 0.47 0.76 0.94 0.53 0.76 0.94

33 1.00 1.00 0.88 0.79 0.85 0.53 0.58 0.94 0.59 0.58 0.94

50 1.00 1.00 0.88 0.76 0.82 0.79 0.80 0.82 0.79 0.80

Ice Storm 17 1.00 1.00 1.00 0.41 0.82 1.00 0.41 0.82 1.00

33 1.00 1.00 0.53 0.61 0.88 0.59 0.61 0.91

50 1.00 0.76 0.73 0.70 0.76 0.73 0.70

Equal 17 1.00 1.00 1.00 0.88 1.00 1.00

Sampling 33 1.00 1.00 1.00 0.97 1.00

50 1.00 1.00 1.00 0.96

Hazard-Based 17 1.00 1.00 1.00

Sampling 33 1.00 1.00

50 1.00

Table 4: Percentage of matching solutions using the count metric.
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Hurricane Flood Blizzard Ice Storm Equal Sampling Hazard-Based

Hazard K 17 33 50 17 33 50 17 33 50 17 33 50 17 33 50 17 33 50

Hurricane 17

33

50

Flood 17

33

50

Blizzard 17

33

50

Ice Storm 17

33

50

Equal 17

Sampling 33

50

Hazard- 17

Based 33

Sampling 50

Table 5: Heat map corresponding to the values shown in Table 4 where darker represents

closer to 1.
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3.4 Impact of Internal and External Factors

In the last set of tests, we examine how internal and external factors impact where we

locate generators. The opening time of a store depends on work being completed at the

store (including tasks that require and do not require power) and the restoration of external

services, such as power, communications, and transportation (e.g. flooding subsiding). We

first examine the degree of impact the external factors have on the opening time of each store.

To quantify this degree of impact, we perform the following procedures for each hazard and

generator level. Define the opening time for a store under a ‘no work’ situation as the time

when power and transportation is restored (for cash customers) and power, transportation,

and communications is restored (for credit-only customers). (1) We first solve for the optimal

‘no work’ solution by (a) generating ski random scenarios (from Tables 1 and 2) of hazard

type i where all work is removed and (b) solving this sets of scenarios to optimality. (2) We

seek to evaluate the optimal ‘no work’ solution under scenarios with work by (a) generating

another set of ski scenarios of hazard type i where all work is maintained as created, (b)

solving this set of scenarios to optimality, and (c) evaluating the optimal ‘no work’ solution

from (1) under this set of scenarios. (3) We then define the degree of impact of external

factors as the optimality gap (calculated as the percentage difference) between the optimal

objective function value (from (2b)) and the objective function value for the evaluated ‘no

work’ solution (from (2c)). The placement of generators is impacted by both external factors

and internal factors. External factors are present in calculations (1) and (2), while internal

factors (work) is present only in calculation (2). Therefore, if external factors have a greater

degree of impact the two solutions (‘no work’ solution and optimal solution from 2b) will be

similar as is represented by a smaller optimality gap (closer to 0%). If the external factors

have less impact and instead the internal factors influence the solution more greatly, the

optimality gap from calculation (3) will be greater.

Secondly, we examine the impact of the opening time objective on the solution as com-

pared to an unmet demand objective. With the opening time objective, we capture how

long a customer has to wait to acquire goods from a Stewart’s location. An unmet demand

objective strictly looks at how many customers cannot attain goods from their Stewart’s
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Shop immediately following a hazardous event. These are both realistic objectives that in-

ternal management would have to consider when deciding where to locate generators among

their shops. We follow a similar procedure to the one described removing work to capture

the impact of switching to an unmet demand objective. We first solve a test instance to

optimality with ski scenarios considering an unmet demand objective. A test instance with

the same hazard makeup with ski scenarios is then both solved to optimality and evaluated

using the optimal unmet demand solution. An optimality gap, calculated as a percentage

difference, is then calculated between the optimal solution objective value and evaluated

solution objective value. An optimality gap closer to 0% emphasizes that the two objectives

are interchangeable.

The results of the two sets of tests are presented in Table 6. The column labeled ‘External

Factors’ captures the degree of impact each instance has on external factors, where closer to

0% is a greater dependence on external factors. We see that the flood hazard has the greatest

dependence on external factors. The result makes sense, as the flooding hazard is the only

hazard that depends on the release times for flooding, power, and communications. The

column labeled ‘Unmet Demand’ captures the interchangeability of the opening time and

unmet demand objectives, where closer to 0% represents a higher degree of interchangeability.

On first inspection, the optimality gaps appear not close to zero, thereby signifying that the

two objectives differ. However, Figure 9 displays the 330 Stewart’s locations and the count of

times each location was selected to have a generator across all possible test scenarios (opening

time, opening time with no work, and unmet demand), where a darker color represents a

higher count. When you compare Figure 9 to Figure 2 you will see that the higher demand

stores correspond to those stores with a higher selection count to receive a generator. This

indicates that demand is a strong driver in the selection of generator placement under any

objective. However, note that many high demand stores (particularly those near the Albany,

NY area in the center right of the map) are not often selected to receive a generator. These

high demand stores are in areas with highly dense populations which often have power

restored quickly. It is the high demand stores in rural, less densely populated areas, that

are selected to receive generators more frequently, as these stores have to traditionally wait

longer for restoration of power and communications.
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Hazard K External Factors Unmet Demand

Hurricane 17 2.10% 3.09%

33 2.06% 4.72%

50 2.19% 6.95%

Flood 17 0.64% 5.86%

33 0.49% 6.24%

50 0.23% 2.68%

Blizzard 17 1.66% 2.54%

33 1.60% 2.69%

50 1.73% 4.34%

Ice Storm 17 1.13% 1.80%

33 1.37% 1.79%

50 1.30% 5.46%

Equal Sampling 17 1.52% 2.51%

33 1.68% 2.84%

50 1.45% 5.18%

Hazard-Based Sampling 17 1.66% 2.50%

33 1.33% 3.11%

50 1.50% 4.80%

Table 6: Optimality gaps capturing the interdependence on external services and inter-

changeability of different objectives.

4 Conclusions

We examined the resiliency of retail locations of a supply chain network to aid in the re-

covery of the local community after an extreme event. A two-stage stochastic program was

used to determine the location of permanent generators among Stewart’s Shops 330 stores.

Consistent with recent events, we considered four types of hazardous situations that could

impact Stewart’s Shops: hurricanes, flooding, blizzards, and ice storms. Using an optimal
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Figure 9: Heat Map displaying the 330 Stewart’s Stores and their respective count of in-

stances where they are select to receive a generator. A darker color indicates a higher count.

greedy algorithm, we tested the model for a variety of different instances by considering each

hazard individually, and collectively using two different sampling procedures. We examined

the impact of external factors, such as power, communications, and flooding, and different

objectives on the solution obtained. The results demonstrate that we are able to empirically

converge to an optimal solution, using a hybrid stopping criteria, by considering a relatively

small number of scenarios. We observed that the solutions were incremental as the number

of available generators increased, which is a direct result of the knapsack formulation. This

is a desirable property as a prioritized list of stores that should receive generators can be

made and followed as more generators become available.

Future work should involve sensitivity analysis on the parameters used to generate the
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hours of work that each store is required to perform both with and without power. These

parameters impact the opening times of stores and ultimately if demand can be met. Further,

scenario-dependent demand should be incorporated into the model. Currently, we only

consider static demand but for many areas, there are many Stewart’s Shops close to one

another which can service customers if their preferred shop is closed.

Disclaimer

The views expressed in this article are those of the authors and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.
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Appendix

In this section, we describe the procedures to generate a scenario for each type of hazard. For

each of the four hazards (hurricane, flood, blizzard, and ice storm), we describe the different

parameters that factor into the scenario generation. There are various continuous parameters

that impact the scenario, meaning that it is not possible to generate the probability of a

particular scenario based on these parameters. For each type of hazard, the parameters to

consider for a scenario are:

• Hazard Characteristics: Track and intensity level (hurricane, blizzard, ice storm) or

body of water (flood). Figure 10 provides the starting and ending points for hurricanes,

blizzards, and ice storms. Hurricanes travel south to north and blizzards and ice storms

travel west to east.

Figure 10: Potential starting and ending points for hurricane, blizzard, and ice storm tracks

• Probability of an impact for each store j ∈ N along with whether the store is impacted

for that scenario.
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• Release times for power, communications, and flooding (i.e., rpsj, r
c
sj, and rfsj) for each

impacted store j ∈ N .

• Amount of work associated with non-power tasks (i.e., wsj`) for each impacted store

j ∈ N and commodity ` ∈ L.

• Speed which non-power tasks are processed both with (σpj ) and without (σnpj ) power

available.

• Amount of time needed to process power-based tasks (psj`).

We now present the values and logic behind each of these parameters for the different types

of hazards.

Hurricane

• Hazard Characteristics: We randomly sample a starting (on the south black line in

Figure 10) and ending point (on the north black line in Figure 10) for the track and

assume the track of the storm is a straight line between these points. We then calculate

the distance from this track to each store, which we represent as δsj. Each storm has

an associated intensity, α ∈ {0, 1, 2} where 0 represents a tropical storm, 1 represents

a category 1 hurricane, and 2 represents a category 2 hurricane.

• Probability of impact for each store: The probability of a store being impacted by the

storm track used in scenario s is calculated as follows:
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psj =



0.95(0.2 + α
4
) if 0 ≤ δsj < 5 miles

0.90(0.2 + α
4
) if 5 ≤ δsj < 10 miles

0.85(0.2 + α
4
) if 10 ≤ δsj < 15 miles

0.80(0.2 + α
4
) if 15 ≤ δsj < 20 miles

0.75(0.2 + α
4
) if 20 ≤ δsj < 25 miles

0.70(0.2 + α
4
) if 25 ≤ δsj < 30 miles

0.65(0.2 + α
4
) if 30 ≤ δsj < 35 miles

0.60(0.2 + α
4
) if 35 ≤ δsj < 40 miles

0.55(0.2 + α
4
) if 40 ≤ δsj < 45 miles

0.50(0.2 + α
4
) if 45 ≤ δsj < 50 miles

0.01(0.2 + α
4
) if 50 ≤ δsj

(12)

A random number, vsj ∈ [0, 1], is generated for each store j and scenario s. If vsj ≤ psj,

then we classify store j as impacted by a power outage, otherwise not. If vsj ≤ psj
3

, we

classify store j as impacted by a communications outage, otherwise not. This means

that we assume that every store impacted by a communications outage is also impacted

by a power outage. This is consistent with the observations after Hurricane Sandy:

communications outages are typically either caused by a power outage to a local central

office (implying power needs to be restored to the area) or because downed poles in

the area carried both power lines and communications lines.

• Release times for power, communications, and flooding: For hurricanes, we will only

consider release times for power and communications because our focus for this hazard

is on wind damage (flooding from a hurricane is considered indirectly in the ‘flooding

hazard’). Let ξj denote the population density of the county of store j. The release

time for power is then calculated using the following equation:

rpsj = 2 + tanh

(
δsj

4 · ξj

)
· 70 (13)
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which puts all power release dates in the range of [2, 72] hours if the store is impacted

and 0 otherwise.

The release time of communications is then calculated as a function of the release

time of power and whether there is a precedence constraint between repairing power

and communications. This can happen in situations when the power company owns

the poles that carry telecommunications lines. If there is a power precedence, then

the release time of communications is greater than the release time of power. We

specifically calculate the release of communications as:

rcsj =

0.75rpsj if no power precedence over communications

1.25rpsj if power precedence over communications.

where 50% of the stores are selected at random to have a power precedence.

• Work associated with non-power tasks: For each impacted store j, we set the work for

the convenience commodity to 6 hours and the work for the fuel commodity to 3 hours.

• Processing speed of non-power tasks: Work can be completed at a rate of 1 unit if there

is no power and 1.5 units if there is power available (restored early or a generator).

• Time needed for power-based tasks: At each store j, we set the processing time for the

fuel commodity to 2 hours. For the convenience commodity, we set the processing time

to 3 hours. If a store is prone to flooding from a specific storm we add on a random

integer in [0, 15] to the processing time for convenience. We denote a storm prone to

flooding if the store is within 10 miles of the track and within 0.1 miles of a body of

water for tropical storms, 0.2 miles of a body of water for category 1 hurricanes, and

0.3 miles of a body of water for category 2 hurricanes.

Flooding

• Hazard Characteristics: There are 6 large bodies of water that could flood and impact

various locations of Stewart’s Shops. They are (i) Hudson, (ii) Mohawk, (iii) Lake
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Champlain, (iv) Black River, (v) Vermont Rivers, and (vi) St. Lawrence river. Smaller

local rivers and creeks flowing off of these bodies of water are also included in our

analysis. A flood is selected uniformly at random from these 6. An intensity level,

α, from {0.1, 0.2, 0.3, 0.4, 0.5} is selected uniformly at random for each flood which

represents how far away from the river flooding occurs.

• Probability of impact for each store: There is no probability associated with the im-

pact to a store. The impact is solely determined by the flooding event and the distance

from the store to the body of water. For each store j we know its distance to each

of the 6 bodies of water, denote this δsj for the flooding event in scenario s. If store

j is closer to the body of water than the flood intensity level (δsj ≤ αs) , then it is

considered impacted by the event.

• Release times for power, communications, and flooding: The release time (in hours)

for flooding is calculated using the table below, where the left most column represents

the intensity of the flood (αs), and the top most row represents the distance a store is

from the body of water associated with s (δsj).

rfsj 0.1 0.2 0.3 0.4 0.5

0.1 20

0.2 36 16

0.3 50 30 14

0.4 62 42 26 12

0.5 72 52 36 22 10

The release time of power at store j under scenario s is calculated using the following

equation:

rpsj = max

{
5 + rfsj, 5 + tanh

(
200 · α
ξj

)
· 150 · (α + 0.1)

}
(14)

which puts the release dates in the range [15, 95] if a store is impacted and 0 otherwise.

The release time of communications is calculated using the same equation as was done

for the hurricane hazard, specifically:
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rcsj =

0.75rpsj if no power precedence over communications

1.25rpsj if power precedence over communications.

• Work associated with non-power tasks: For each impacted store j, we set the work

for the convenience commodity to 12 hours and the work for the fuel commodity to 5

hours.

• Processing speed of non-power tasks: Work can be completed at a rate of 1 unit if there

is no power and 1.5 units if there is power available (restored early or a generator).

• Time needed for power-based tasks: The processing time for power-based tasks for the

fuel commodity is set to 2 hours. The processing time for power-based tasks for the

convenience commodity is calculated using the table below, where the left most column

represents the intensity of the flood (αs), and the top most row represents the distance

a store is from the body of water associated with s (δsj).

0.1 0.2 0.3 0.4 0.5

0.1 10

0.2 20 10

0.3 30 20 10

0.4 40 30 20 10

0.5 50 40 30 20 10

Blizzard

• Hazard Characteristics: We randomly sample a starting (on the west orange yellow

line in Figure 10) and ending point (on the east orange yellow line in Figure 10) and

assume the track of the storm is a straight line between these points. We then calculate

the distance from this track to each store (denoted as δsj). Each storm also has an

associated intensity, α ∈ {1, 2, 3, 4, 5} based on Northeast Snowfall Impact Scale.

• Probability of impact for each store: Let `j denote the elevation of store j. The po-

tential impact of the blizzard on the store is a function of its distance from the track,
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the intensity of the storm, and its elevation. The probability of a store being impacted

by the storm track used in scenario s is calculated as follows:

psj =



0.95(0.2 + α
10

+ min{0.3, `j}) if 0 ≤ δsj < 5 miles

0.90(0.2 + α
10

+ min{0.3, `j}) if 5 ≤ δsj < 10 miles

0.85(0.2 + α
10

+ min{0.3, `j}) if 10 ≤ δsj < 15 miles

0.80(0.2 + α
10

+ min{0.3, `j}) if 15 ≤ δsj < 20 miles

0.75(0.2 + α
10

+ min{0.3, `j}) if 20 ≤ δsj < 25 miles

0.70(0.2 + α
10

+ min{0.3, `j}) if 25 ≤ δsj < 30 miles

0.65(0.2 + α
10

+ min{0.3, `j}) if 30 ≤ δsj < 35 miles

0.60(0.2 + α
10

+ min{0.3, `j}) if 35 ≤ δsj < 40 miles

0.55(0.2 + α
10

+ min{0.3, `j}) if 40 ≤ δsj < 45 miles

0.50(0.2 + α
10

+ min{0.3, `j}) if 45 ≤ δsj < 50 miles

0.01(0.2 + α
10

+ min{0.3, `j}) if 50 ≤ δsj

(15)

A random number, vsj ∈ [0, 1], is generated for each store j and scenario s. If vsj ≤ psj,

then we classify store j as impacted by a power outage, otherwise not. If vsj ≤ psj
3

, we

classify store j as impacted by a communications outage, otherwise not.

• Release times for power, communications, and flooding: We only consider release times

for power and communications for this type of hazard. Let ξj represent the population

density in the area surrounding store j. The release time for power is calculated using

the following equation:

rpsj = α + tanh

(
δsj

4 · ξj

)
· 50 (16)

which puts all power release dates in the range of [1, 55] hours if the store is impacted

and 0 otherwise.

The release of communications is calculated using the same equation as was done for

the hurricane scenario, specifically:
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rcsj =

0.75rpsj if no power precedence over communications

1.25rpsj if power precedence over communications.

• Work associated with non-power tasks: For each impacted store j we set the work for

the convenience commodity to 4 hours and the work for the fuel commodity to 2 hours.

• Processing speed of non-power tasks: Work can be completed at a rate of 1 unit if there

is no power and 1.5 units if there is power available (restored early or a generator).

• Time needed for power-based tasks: For each impacted store j, we set the process-

ing time for work requiring power for both the convenience commodity and the fuel

commodity to 2 hours.

Ice Storm

• Hazard Characteristics: We randomly sample a starting (on the west orange yellow line

in Figure 10) and ending point (on the east orange yellow line in Figure 10) and assume

the track of the storm is a straight line between these points. We then calculate the

distance from this track to each store (denoted as δsj. Each storm also has an associated

intensity, α ∈ {0, 1, 2, 3, 4, 5} based on the Sperry-Piltz Ice Accumulation Index.

• Probability of impact for each store: Let `j denote the elevation of store j. The po-

tential impact of the blizzard on the store is a function of its distance from the track,

the intensity of the storm, and its elevation. The probability of a store being impacted

by the storm track used in scenario s is calculated as follows:
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psj =



0.95(0.2 + α
10

+ (0.3−min{0.3, `j}) if 0 ≤ δsj < 5 miles

0.90(0.2 + α
10

+ (0.3−min{0.3, `j}) if 5 ≤ δsj < 10 miles

0.85(0.2 + α
10

+ (0.3−min{0.3, `j}) if 10 ≤ δsj < 15 miles

0.80(0.2 + α
10

+ (0.3−min{0.3, `j}) if 15 ≤ δsj < 20 miles

0.75(0.2 + α
10

+ (0.3−min{0.3, `j}) if 20 ≤ δsj < 25 miles

0.70(0.2 + α
10

+ (0.3−min{0.3, `j}) if 25 ≤ δsj < 30 miles

0.65(0.2 + α
10

+ (0.3−min{0.3, `j}) if 30 ≤ δsj < 35 miles

0.60(0.2 + α
10

+ (0.3−min{0.3, `j}) if 35 ≤ δsj < 40 miles

0.55(0.2 + α
10

+ (0.3−min{0.3, `j}) if 40 ≤ δsj < 45 miles

0.50(0.2 + α
10

+ (0.3−min{0.3, `j}) if 45 ≤ δsj < 50 miles

0.01(0.2 + α
10

+ (0.3−min{0.3, `j}) if 50 ≤ δsj

(17)

A random number, vsj ∈ [0, 1], is generated for each store j and scenario s. If vsj ≤ psj,

then we classify store j as impacted by a power outage, otherwise not. If vsj ≤ psj
3

, we

classify store j as impacted by a communications outage, otherwise not.

• Release times for power, communications, and flooding: We only consider release times

for power and communications. The release time for power is calculated using the fol-

lowing equation:

rpsj = α + 1 + tanh

(
δsj

4 · ξj

)
· 80 (18)

which puts all power release dates in the range of [1, 86] hours if the store is impacted

and 0 otherwise.

The release of communications is calculated using the same equation as was done for

the hurricane scenario, specifically:

rcsj =

0.75rpsj if no power precedence over communications

1.25rpsj if power precedence over communications.
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• Work associated with non-power tasks: For each impacted store j we set the work for

the convenience commodity to 2 hours and the work for the fuel commodity to 1 hour.

• Processing speed of non-power tasks: Work can be completed at a rate of 1 unit if there

is no power and 1.5 units if there is power available (restored early or a generator).

• Time needed for power-based tasks: For each impacted store j, we set the process-

ing time for work requiring power for both the convenience commodity and the fuel

commodity to 2 hours.
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