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Abstract Quadratic Convex Reformulation (QCR) is a technique that has
been proposed for binary and mixed integer quadratic programs. In this pa-
per, we extend the QCR method to convex quadratic programs with linear
complementarity constraints (QPCCs). Due to the complementarity relation-
ship between the nonnegative variables y and w, a term yTDw can be added
to the QPCC objective function, where D is a nonnegative diagonal matrix
chosen to maintain the convexity of the objective function and the global
resolution of the QPCC. Following the QCR method, the products of linear
equality constraints can also be used to perturb the QPCC objective function,
with the goal that the new QP relaxation provides a tighter lower bound. By
solving a semidefinite program, an equivalent QPCC can be obtained whose
QP relaxation is as tight as possible. In addition, we extend the QCR to a
general quadratically constrained quadratic program (QCQP), of which the
QPCC is a special example. Computational tests on QPCCs are presented.
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1 Introduction

Mathematical programs with complementarity constraints (MPCCs) are con-
strained optimization problems subject to complementarity relations between
pairs of nonnegative variables. Extensive applications of MPCCs can be found
in hierarchical (particularly bi-level) decision making, inverse optimization,
parameter identification, optimal design, and many other contexts; various ex-
amples of MPCCs are documented in [6,16]. Convex quadratic programs with
complementarity constraints (QPCCs) are one of the prominent subclasses of
MPCCs that play the fundamental role in this family of non-convex problems.
A convex QPCC can be formulated as

min
(x,y)

q(x, y) := cTx+ dT y +
1
2

(
x
y

)T [Q1 R

RT Q2

](
x
y

)
s.t. Ax+By = f

and 0 ≤ y ⊥ w := q +Nx+My ≥ 0,

(1)

where x ∈ IRn, y ∈ IRm, A ∈ IRk×n, B ∈ IRk×m, Q :=

[
Q1 R

RT Q2

]
∈

IR(n+m)×(n+m) is positive semidefinite, and ⊥ is the notation for perpendicu-
larity, which in this context is short hand for the complementarity condition:
yTw = 0. When Q is a zero matrix, (1) is a linear program with (linear) com-
plementarity constraints (LPCC). Being a recent entry to the optimization
field, the QPCC and its special case of a LPCC have recently been studied
in [3,6] wherein a logical Benders scheme [4] was proposed for their global
resolution. The complementarity constraints y ⊥ w render the QPCC to be
nonconvex and disjunctive, and the problem is NP-hard. Global resolution
schemes for QPCCs work with convex relaxations of (1).

The Quadratic Convex Reformulation (QCR) technique of Billionnet et
al. [1,2] was originally proposed for binary quadratic programs, by which the
objective function is reformulated using the optimal solution of a semidefinite
program (SDP) in such a manner that, the reformulated objective function
is convex and the continuous QP relaxation bound is as tight as possible.
In this paper, we extend the QCR method to the QPCC problem, with the
goal of reformulating the quadratic objective function so that, (1) the global
resolution as well as the convexity of the objective function is maintained; (2)
the new QP relaxation bound is as tight as possible. The bound is equal to the
value of the SDP relaxation of the QPCC, provided a constraint qualification
holds. This is also the continuation of the scheme of adding yTDw, where D
is a nonnegative diagonal matrix, to the QPCC objective function to render
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an equivalent QPCC with a perturbed objective function, as in [3]. As the
complementarity constraints are a special form of quadratic constraints, we
actually extend the QCR to a general quadratically constrained quadratic
program. The advantage of the QP relaxation of the perturbed QCQP versus
the SDP lifting of the QCQP is that the QP relaxation is in the space of the
original variables.

The present paper is organized as follows: the scheme of adding a non-
negative term yTDw to the objective function of a convex QPCC is intro-
duced in §2; extending the QCR method to a general quadratically constrained
quadratic program is proposed in §3; the reformulated QPCC is related to
its semidefinite relaxation in §4; and computational results tested on convex
QPCCs are presented in §5. The example QPCCs are generated following the
QPECgen method [9].

2 A simple penalty scheme

In [3], we proposed the addition of a term of the form yTDw to the QPCC
objective function while maintaining the convexity of the quadratic objective
function and the global resolution of the QPCC, where y and w are the com-
plementary variables and D is a nonnegative diagonal matrix. An appropriate
matrix D can be found by solving an SDP. The power of this method is illus-
trated by the following example.

Example 1
min
(y,w)

y2 + w2

s.t. y + w = 1
0 ≤ y ⊥ w ≥ 0.

The above QPCC has an optimal value of 1 whereas its QP relaxation has an
optimal value of only 0.5. A new QPCC can be constructed by adding 2yw to
the quadratic objective function y2 + w2:

min
(y,w)

(y + w)2

s.t. y + w = 1
0 ≤ y ⊥ w ≥ 0.

Both QPCCs are equivalent since y and w are perpendicular to each other;
however, the QP relaxation of the new QPCC has an optimal value of 1.

Generalizing the same idea, we could add yTDw to the QPCC objective
function while maintaining the convexity of the quadratic objective function.
The QP relaxation of the new QPCC provides a tighter lower bound. This
reshaping of the quadratic objective function exploits the complementarity
relationship between the nonnegative variables y and w, while maintaining
the convexity of the objective function and global resolution of the QPCC.
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It complements the technique of tightening up the relaxation by generating
additional valid convex constraints [14]. Therefore we define a linear function
F : Dm+ → Sn+m by

F (D) =

[
0 NTD

DN MTD +DM

]
=
∑m
i=1 di

[
0 NT

i e
T
i

eiNi eiMi +MT
i e

T
i

]
=:
∑m
i diKi,

(2)
where di is the ith diagonal entry of the nonnegative diagonal matrix D,
{ei, i = 1, 2, · · ·,m} is the standard Euclidean basis for IRm, and Ni, Mi are
the ith rows of matrices N and M respectively. Note as well that

yTDw = qTDy +
1
2

(
x
y

)T
F (D)

(
x
y

)
.

The new QPCC problem would be of form

min
(x,y)

cTx + (d+Dq)T y +
1
2

(
x
y

)T ([Q1 R

RT Q2

]
+ F (D)

)(
x
y

)
s.t. Ax + By = f

0 ≤ y ⊥ w = q + Nx + My ≥ 0.

(3)

QPCC (3) is totally equivalent to QPCC (1) due to the complementarity
relationships between nonnegative variables y and w. A suitable nonnegative
diagonal matrix D can be picked by solving an SDP

max
(d1,···,dm)

∑m
i=1 di pi

s.t. −F (D) �

[
Q1 R

RT Q2

]
di ≥ 0, ∀i.

(4)

One possible choice of pi could be w̄iȳi with (x̄, ȳ, w̄) being an initial infeasible
point of the QPCC. This choice is investigated in the computational results
in §5.

3 Extending quadratic convex reformulation to convex QPCCs

The quadratic convex reformulation (QCR) technique of Billionnet et al. [1,2]
(see also Galli and Letchford [10]) exploits Lagrangian duality to modify an
integer program into an equivalent problem with a tighter convex relaxation.
A reformulation of the objective function can be constructed using the dual
optimal solution of an SDP lifting of the original binary quadratic program.
The reformulated quadratic program then has a convex quadratic objective
function and the tightest convex continuous relaxation. The technique was
designed to work with either binary quadratic programs, or general integer
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quadratic programs. In the latter case, the problem is first reformulated as an
equivalent binary quadratic program.

The restriction that a variable z be binary can be represented equivalently
using the quadratic equality constraint z(1 − z) = 0, so a quadratic integer
program can be represented as a quadratically constrained quadratic program
(QCQP). A QPCC is also an example of a QCQP, so we work in the more
general framework of QCQPs. Consider the QCQP

min
x

q0(x) := xTQ0x+ cT0 x+ d0

s.t. Ax = b

x ≥ 0, j ∈ J ⊆ {1, . . . , n}
qi(x) := xTQix+ cTi x+ di = 0 i = 1, . . . ,m

(5)

where A ∈ IRk×n and all other matrices and vectors are dimensioned appropri-
ately. If a QCQP has quadratic inequality constraints, slack variables can be
included explicitly to give a problem in the form (5). The quadratic constraints
may include some or all of the constraints implied by the linear constraints,
thus:

xi(Ax−b)j = 0 ∀i, j, xjxk ≥ 0 ∀j, k ∈ J, (Ax−b)j(Ax−b)k = 0 ∀j, k.

The reformulated quadratic objective function will have the form

qµ(x) := xTQ0x+ cT0 x+ d0 +
m∑
i=1

µi(xTQix+ cTi x+ di) (6)

so qµ(x) = q0(x) for any x feasible in (5). We denote

Φ := {(x, y) |Ax = b, xj ≥ 0 ∀j ∈ J}, (7)

the feasible set of the QP relaxation of (5), and we use xJ to denote the
components of x in the set J . We also define

Qµ := Q0 +
m∑
i=1

µiQi (8)

cµ := c0 +
m∑
i=1

µici (9)

dµ := d0 +
m∑
i=1

µidi (10)

respectively the matrix of the quadratic term, the linear term, and the con-
stant term in the reformulated objective function. This matrix Qµ needs to
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be positive semidefinite for the relaxation to be a convex QP. The quadratic
reformulation of (5) is

min
x

xTQµx+ cTµx+ dµ

s.t. Ax = b

x ≥ 0, j ∈ J ⊆ {1, . . . , n}
qi(x) := xTQix+ cTi x+ di = 0 i = 1, . . . ,m

(11)

and the corresponding quadratic convex reformulation is

min
x

xTQµx+ cTµx+ dµ

s.t. x ∈ Φ.
(12)

By construction, every feasible solution to (5) is feasible in (12), and has the
same value in both problems. In order to have the QP relaxation bound as
tight as possible, the following max-min problem needs to be solved:

max
Qµ�0

min
x∈Φ

qµ(x)

≡ max
Qµ�0

min
x
{qµ(x) |Ax = b, xJ ≥ 0}

≡ max„
Qµ � 0

(β, λJ ) ∈ (IRk × IR|J|+ )

« min
x

qµ(x) + βT (Ax− b)− λTJ xJ

≡ max„
Qµ � 0

(β, λJ ) ∈ (IRk × IR|J|+ )

« min
x

q0(x) +
m∑
i=1

µiqi(x) + βT (Ax− b)− λTJ xJ .

(13)
Note that we maintain the convexity of the quadratic function qµ(x) by re-
quiring Qµ � 0; the second equation holds because of the fact that there is
no duality gap in a linearly constrained convex quadratic program. Max-min
problem (13) is the Lagrangian dual of the quadratically constrained quadratic
program (5), since the matrix Qµ must be positive semidefinite for the inner
minimization problem to have finite optimal value. Therefore, we reduce the
problem of finding the tightest QP relaxation to solving a max-min problem,
which is the Lagrangian dual of a QCQP. We summarize this in the following
lemma.

Lemma 1 The value of the tightest quadratic convex reformulation of the
form (12) of the QCQP (5) is equal to the optimal value of its Lagrangian
dual.

The Lagrangian dual problem is equivalent to a semidefinite program, as
we now show (see Fujie and Kojima [5], Lemaréchal and Oustry [11,12], Poljak,
Rendl, and Wolkowicz [15], and Galli and Letchford [10] for variants of these
results). The Lagrangian dual function is

Θ(µ, β, λ) := min
x

q0(x) +
m∑
i=1

µiqi(x) + βT (Ax− b)− λTJ xJ (14)
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with µ ∈ <m, β ∈ <k, λ ∈ <n, and λj = 0 for j 6∈ J . Let ν := (µ, β, λ) and
define

Q(ν) := Q0 +
m∑
i=1

µiQi = Qµ (15)

c(ν) := c0 +ATβ − λ+
m∑
i=1

µici = cµ +ATβ − λ (16)

d(ν) := d0 − bTβ +
m∑
i=1

µidi = dµ − bTβ, (17)

so
Θ(ν) := min

x

(
xTQ(ν)x+ c(ν)Tx+ d(ν)

)
. (18)

Let Γ denote the set of vectors ν with λ ≥ 0. The Lagrangian dual problem
can be stated as

max
ν∈Γ

Θ(ν) (19)

or equivalently

max
ν∈Γ,r

r

s.t. xTQ(ν)x+ c(ν)Tx+ d(ν) ≥ r ∀x
(20)

or equivalently

max
ν∈Γ,r

r

s.t.
(

1
x

)T (
d(ν)− r 1

2c(ν)T
1
2c(ν) Q(ν)

)(
1
x

)
≥ 0 ∀x

(21)

or equivalently
max
ν∈Γ,r

r

s.t.
(
d(ν)− r 1

2c(ν)T
1
2c(ν) Q(ν)

)
� 0.

(22)

It is clear that any feasible ν and r for (22) is feasible in (21). We show the
converse in the following lemma, using a slightly more general notation with
a contrapositive argument.

Lemma 2 Assume the square symmetric matrix

M̄ :=
(
ζ βT

β M

)
is not positive semidefinite, where ζ is a scalar and β a vector. Then there
exists a vector x with (

1
x

)T
M̄

(
1
x

)
< 0.
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Proof Let (v0, vT )T satisfy (v0, vT )M̄(v0, vT )T < 0. If v0 6= 0 then rescaling the
vector gives an appropriate vector x = v/v0. If v0 = 0 then (1, δvT )M̄(1, δvT )T <
0 for sufficiently large δ.

This equivalence between QCR and Lagrangian duality is summarized in
the following theorem that extends Lemma 1.

Theorem 1 The value of the tightest quadratic convex reformulation of the
form (12) of the QCQP (5) is equal to the optimal value of its Lagrangian
dual, and is equal to the value of the semidefinite program (22).

4 Relating the value of the QCR to the value of an SDP lifting

Consider the QCQP (5). An SDP lifting of this problem is:

min
x,X

q0(x,X) :=< Q0, X > +cT0 x+ d0

s.t. Ax = b

xj ≥ 0, j ∈ J ⊆ {1, . . . , n}
qi(x,X) :=< Qi, X > +cTi x+ di = 0, i = 1, . . . ,m(

1 xT

x X

)
� 0.

(23)

This is a convex relaxation of the original QCQP, so its optimal value provides
a lower bound on the optimal value of the QCQP. Further, its dual is the
problem (22). Therefore, we have the following theorem.

Theorem 2 The optimal value of the Lagrangian dual of the QCQP is equal
to the optimal value of the dual of the standard SDP lifting of the QCQP. If
strong duality holds for the SDP then the optimal value of the Lagrangian dual
of the QCQP is equal to the optimal value of its SDP relaxation.

The Slater constraint qualification for the SDP pair holds if the objec-
tive function matrix Q in (1) is positive definite. Thus we have the following
corollary.

Corollary 1 When the Q matrix in QPCC (1) is positive definite, constraint
qualification holds for the SDP pair (22) and (23), so the optimal value of the
convex quadratic reformulation is equal to the value of the SDP relaxation of
the QPCC.

Let us assume (22) has an optimal solution, denoted by ν∗ = (µ∗, β∗, λ∗).
Note that Qµ∗ is positive semidefinite, so problem (12) with µ = µ∗ is a convex
relaxation of our QCQP. The advantage of this formulation over (22) is that
it is in the space of the original variables. It is a convex formulation, and its
value is equal to the optimal value of its Lagrangian dual, and also to the SDP
relaxation if strong duality holds. It can be employed in a branch-and-cut
framework to solve the original problem. Convex relaxations of the quadratic
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Table 1 [(m, n, k) = (50, 10, 5)] gap closed

opt QPrlx lb(yT Dw) % gap lb (QCR) % gap (penalty) (SDPrlx)
closed closed time(s) time(s)

1 -309.8868 -310.2951 -309.9126 93.68 -309.8871 99.93 1.19 3.78
2 -67.4262 -67.4938 -67.431 92.90 -67.4278 97.63 1.13 2.94
3 -138.8104 -139.6244 -138.8375 96.67 -138.8175 99.13 1.11 4.18
4 -143.4102 -143.4689 -143.4115 97.79 -143.4102 100.00 1.24 3.40
5 -264.4806 -264.5879 -264.4823 98.42 -264.4806 100.00 1.16 2.56
6 -145.4621 -145.5447 -145.4703 90.07 -145.4621 100.00 1.12 2.75
7 -20.9007 -21.7369 -21.1698 67.82 -21.1114 74.80 1.15 2.84
8 -197.8096 -197.8545 -197.8098 99.55 -197.8096 100.00 1.21 2.92
9 -217.5868 -217.6531 -217.5894 96.08 -217.5872 99.40 1.20 2.31
10 -251.3961 -251.4479 -251.4017 89.19 -251.3966 99.03 1.21 2.85

92.22 96.99 1.17 3.15

constraints in (5) can be incorporated into (12) to tighten it and subsequent
relaxations in a branch-and-cut framework.

Formulation (12) is a valid convex relaxation of the QCQP for any ν∗ that
is feasible in (22); it is not necessary that ν∗ be optimal. For example, it is not
necessary to include all the original constraints in the Lagrangian, allowing a
trade-off between speed of solving the semidefinite program and the quality of
the bound obtained from the relaxation.

5 Some Computational Experiments

In this section, we present some computational results in Tables 1, 2, 3 and
4. The experiments were run on QPCC problems with strictly convex objec-
tive functions, which are a special family of QCQPs. We require the strict
convexity of the quadratic objective function so that the strong duality holds
for the SDP lifting. The computational results show that the reformulated
QPCC has a tighter QP relaxation bound. The computational experiments
were run on QPCCs with equality side constraints Ax + By = f (Tables
1, 2 and 3), or with inequality side constraints Ax + By ≥ f (Table 4). In
addition to the complementarity restrictions, the nonconvex quadratic con-
straints xi(Ax + By − f)j = 0, i = 1, . . . , n, j = 1, . . . , k were included in
the Lagrangian relaxation, for the problems with equality side constraints.
The example QPCCs were generated following the QPECgen method [9]. As
a stationary point is generated in advance, we have an upper bound on the
example QPCC. For Tables 1, 2 and 4, we could solve the example QPCCs
using the method proposed in [3], therefore we use the optimal values as the
upper bounds.

In each of the tables, the column of “lb(yTDw)” contains the QP relax-
ation bounds we obtained using the scheme (4) of adding yTDw to the QPCC
objective functions, while the column of “lb(QCR)” contains the QP relax-
ation bounds we obtained using the QCR method. Also, the percentage of gap
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Table 2 [(m, n, k) = (100, 10, 2)] gap closed

opt QPrlx lb(yT Dw) % gap lb (QCR) % gap (penalty) (SDPrlx)
closed closed time(s) time(s)

1 -6.0442 -9.236 -7.4163 57.01 -7.2976 60.73 2.83 9.57
2 -30.2126 -30.5237 -30.2514 87.53 -30.2216 97.11 3.28 10.29
3 -46.1831 -46.6227 -46.2822 77.46 -46.2076 94.43 2.87 9.60
4 -6.9413 -8.7065 -7.4089 73.51 -7.2808 80.77 2.70 8.91
5 -22.5016 -23.41 -22.7475 72.93 -22.6393 84.84 2.60 9.00
6 -41.5942 -41.7507 -41.6029 94.44 -41.5947 99.68 2.92 11.94
7 -106.4055 -106.5383 -106.4105 96.23 -106.406 99.77 2.61 11.27
8 -25.0137 -25.4995 -25.1382 74.37 -25.0999 82.26 2.90 10.48
9 -2.2911 -4.6037 -3.1505 62.84 -2.9326 72.26 2.47 6.98

77.51 85.92 2.77 9.79

Table 3 [(m, n, k) = (300, 10, 5)] gap closed

ub QPrlx lb(yT Dw) % gap lb (QCR) % gap (penalty) (SDPrlx)
closed closed time(s) time(s)

1 -101.6011 -102.1054 -101.7406 72.34 -101.7021 79.97 93.99 192.38
2 -62.5099 -68.4999 -64.2666 70.67 -63.7324 79.59 69.27 166.23
3 -5.2152 -9.7033 -7.0351 59.45 -6.6766 67.44 67.44 188.13
4 -2.5884 -29.8765 -25.8613 14.71 -25.7312 15.19 77.11 178.86
5 -256.6023 -258.1193 -256.7252 91.90 -256.7252 91.90 74.18 74.18
6 -6.0225 -9.7167 -7.3488 64.10 -6.982 74.03 79.37 174.45
7 -13.2958 -20.2235 -17.0647 45.60 -16.8887 48.14 75.10 147.78
8 -21.8755 -26.3378 -23.3456 67.06 -22.9582 75.74 72.86 179.06
9 -58.8571 -60.7365 -59.2903 76.95 -59.1005 87.05 83.19 178.55
10 -2.9081 -8.4514 -5.7658 48.45 -5.5232 52.82 69.80 156.72

61.12 67.19 69.20 163.63

Table 4 [(m, n, k) = (90, 5, 10)] gap closed

opt QPrlx lb(yT Dw) % gap lb (QCR) % gap (penalty) (SDPrlx)
closed closed time(s) time(s)

1 2.3344 -34.2936 1.1401 96.74 2.2081 99.66 2.32 8.40
2 -1.2054 -22.5043 -4.1704 86.08 -2.605 93.43 2.27 7.92
3 -1.2328 -4.2513 -2.6524 52.97 -2.4093 61.02 2.59 8.19
4 -0.4906 -2.1556 -0.49067 100.00 -0.4906 100.00 3.14 6.73
5 87.8006 -10.926 87.8006 100.00 87.8006 100.00 2.71 7.05
6 -22.2627 -130.2954 -22.2708 99.99 -22.2638 100.00 2.04 8.51
7 -37.6909 -63.722 -37.6909 100.00 -37.6909 100.00 2.70 7.22
8 -34.9749 -45.2988 -35.1912 97.90 -34.9794 99.96 2.03 10.49
9 -1.9693 -27.9661 -6.4096 82.92 -3.8904 92.61 2.53 7.74
10 0.5298 -13.6261 -1.9429 82.53 -0.0577 95.85 2.63 8.33
11 -0.3549 -3.7196 -0.3667 99.65 -0.3601 99.85 2.42 7.80
12 0.9751 -51.1095 -17.0688 65.36 -11.2974 76.44 2.81 8.29

88.68 93.23 2.50 8.13
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closed is defined as
lb−QPrlx
ub−QPrlx

× 100%,

where lb is the new QP relaxation bound after reformulation (lb(yTDw) or
lb(QCR)), QPrlx is the original QP relaxation bound and ub is the upper
bound on the QPCC.

The QPCCs in Tables 1, 2 and 3 are subject to equality side constraints
Ax+By = f and linear complementarity constraints. On average, the QP re-
laxation bounds by the method of adding yTDw to the QPCC objective func-
tions can close 92.22%, 77.51% and 61.12% of the gaps respectively; whereas
the QP relaxation bounds by the QCR method can close 96.99%, 85.92% and
67.19% of the gaps respectively. The QPCCs in Table 4 are subject to inequal-
ity side constraints Ax+By ≥ f and linear complementarity constraints. By
the method (4) of adding yTDw to the QPCC objective functions, the QP re-
laxation bounds can close 88.68% of the gaps on average; whereas by the QCR
method, the QP relaxation bounds can close 93.23% of the gaps on average.

6 Concluding Remarks

The Quadratic Convex Reformulation (QCR) method, proposed by [1,2], is
a technique for nonconvex binary quadratic programs. The present paper ex-
tends the QCR method to general QCQPs, in particular to QPCC problems
with convex objective functions. We perturb the quadratic objective function
of the QPCC using the dual optimal solution of an SDP relaxation problem in
such a manner that (1) the convexity of the objective function as well as the
global resolution of the QPCC are maintained; (2) the QP relaxation of the
reformulated QPCC provides a lower bound that is as tight as possible. Aside
from getting a tight lower bound, this QPCC reformulation technique could
also be used as a preprocessing step when solving the QPCC, as the scheme
of adding yTDw to the QPCC objective function is used in [3].

We also extend the QCR method to general quadratically constrained
quadratic programs. In general, we use the dual optimal solution of the QCQP’s
SDP lifting to perturb the objective function so that the QP relaxation bound
is as tight as possible. When strong duality holds for the SDP lifting, the QP
relaxation of the perturbed QCQP is as tight as the SDP lifting. However, the
advantage of the QP relaxation is that it is in the space of the original vari-
ables; and the perturbation could be constructed using a feasible dual solution
instead of the optimal dual solution when the SDP is hard to solve.
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