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Abstract

We consider the problem of restoring services provided by infrastructure systems after

an extreme event disrupts them. This research proposes a novel integrated network design

and scheduling problem that models these restoration efforts. In this problem, work groups

must be allocated to build nodes and arcs into a network in order to maximize the cumulative

weighted flow in the network over a horizon. We develop a novel dispatching rule that selects

the next set of tasks to be processed by the work groups. We further propose families of valid

inequalities for an integer programming formulation of the problem, one of which specifically

links the network design and scheduling decisions. Our methods are tested on realistic data

sets representing the infrastructure systems of New Hanover County, North Carolina in the

United States and lower Manhattan. These results indicate that our methods can be used in

both real-time restoration activities and long-term scenario planning activities.

1 Introduction

The restoration of services provided by infrastructure systems is critical for society to recover

from extreme events. Therefore, the managers of these systems are faced with demanding choices

in formulating their restoration efforts after the event. This research proposes a novel class of

integrated network design and scheduling problems that can be used to model the formulation

of these restoration efforts. The operations of an infrastructure system can be modeled using

a network-based representation where flows in the network model the services provided by the

system and disruptions within it can be modeled as the removal of nodes and arcs from the network
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(see, e.g., Lee et al. [10]). The restoration efforts associated with the system will focus on installing

or repairing physical components within the system and can be modeled as installing nodes and

arcs into the network. Therefore, we can view this selection of nodes and arcs as network design

decisions. Traditional network design problems are often only concerned with the performance

of the end design of the network; however, the driving performance metric, especially in the eyes

of the public, in evaluating the restoration efforts is how well the services provided by the system

come back online. This means that the network design decisions will be evaluated as they are

being implemented, so that the scheduling decisions associated with them will have a significant

impact on the objective. In particular, the performance of the network at time t, which is composed

of the original network plus the nodes and arcs completed by t, will be evaluated by determining

the (weighted) amount of flow that can be sent from supply nodes to demand nodes. This directly

models the focus of the restoration efforts: it is on restoring services rather than on the monetary

cost of the efforts.

The analysis of civil infrastructure systems is complex since they are interdependent (see

O’Rourke [15]); disruptions in one can spread to others causing cascading failures (see Wallace et

al. [22], Mendonca and Wallace [12], and Chang et al. [6]). Rinaldi et al. [17] note that managers of

the infrastructure systems have become inclined to consider these interdependencies; however, the

managers of a particular infrastructure will have little knowledge of the structure and operations of

the other systems. We can expect that the managers of an individual infrastructure will understand

the direct connections of it with other infrastructures and, therefore, can weigh the services pro-

vided to certain connections more heavily (e.g., a hospital has a higher weight than a residential

household). Our class of problems can be used to model this situation and, further, explore the

effects on the restoration plan of an infrastructure when we consider these interdependencies.

There has been some research done on problems related to our class of integrated network

design and scheduling problems. Guha et al. [9] develop approximation algorithms for problems

concerned with installing nodes into a power network to recover from disruptions; however, this

work assumes that demand nodes simply need to be connected to supply nodes and thus does not

model the capacity limitations of the system. Ang [3] develops an integer programming formula-

tion of the problem of scheduling the installation of a set of nodes and arcs into a power network

and applies it to problems of limited scale. This model requires that all nodes and arcs are installed

meaning that it does not model the network design decisions often associated with the restora-

tion efforts of an infrastructure after an extreme event. Xu et al. [24] apply a genetic algorithm

to a problem associated with restoring power after an earthquake. The objective of this problem

minimizes the average time that each customer is without power; therefore, this problem does not
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prioritize demand to critical points within the infrastructure. Matisziw et al. [11] propose an integer

programming model in order to restore networks where connectivity between pairs of nodes is the

driving performance metric associated with the network. Cavdaroglu et al. [5] examined a model

to determine the restoration efforts of a set of interdependent infrastructure systems. However,

this work assumes that an individual infrastructure system fully understands the operations of the

other systems and, therefore, may not be appropriate to apply to the restoration efforts of a single

infrastructure.

This paper proposes an integrated network design and scheduling problem that can be applied

to a variety of infrastructure systems. We propose an integer programming formulation of this

problem and discuss valid inequalities for it that improve the effectiveness of solving it with a

commercial software package. One of these inequalities specifically links the network design

and scheduling decisions. This integer programming formulation can be useful in the long-term

scenario planning activities for the managers of the infrastructure systems. These activities increase

the preparedness of the managers and, therefore, will result in more effective decision-making after

an actual extreme event. However, the time required to solve the integer programming formulation

may prohibit it from being useful in the real-time restoration activities after an extreme event.

Therefore, we propose a dispatching rule for this problem that integrates fundamental concepts

from network flows (the residual network optimality conditions) and scheduling (the weighted

shortest processing time dispatching rule). The rule focuses on selecting the next set of tasks to be

processed by the resources rather than traditional dispatching rules that simply focus on selecting

the next individual task to be processed. This dispatching rule is shown to be quite effective in

practice and can be utilized in real-time restoration activities. Both the dispatching rule and integer

programming formulation (with its valid inequalities) are tested extensively on realistic data sets

representing infrastructure systems in New Hanover County, North Carolina in the United States

and lower Manhattan in New York City. These results demonstrate the power of our proposed

methods along with providing insight into the costs to the individual infrastructures in formulating

their restoration efforts according to the priorities of the emergency managers of the regions.

The remainder of this paper is organized as follows. Section 2 provides the mathematical

model of our integrated network design and scheduling problem and presents its initial integer

programming formulation. Section 3 focuses on optimization methods to solve the problem in-

cluding a dispatching rule (Section 3.1) and valid inequalities (Section 3.2). Section 4 applies our

optimization methods for the integrated network design and scheduling problem on realistic case

studies associated with infrastructure systems of New Hanover County, North Carolina. These case

studies were created through collaborations with managers of these infrastructure systems and the
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emergency manager of the county. Section 5 focuses on case studies associated with the power

infrastructure of lower Manhattan. We provide concluding remarks in Section 6.

2 The Integrated Network Design and Scheduling Problem

The mathematical model of our integrated network design and scheduling (INDS) problem in-

volves a network G = (N,A) where N is the set of nodes and A is the set of arcs. The node set N

and arc set A can be viewed as the ‘operational network’ immediately after the extreme event, i.e.,

these sets represent the components of the infrastructure that are unaffected by the event. There is

a set of supply nodes, S ⊆ N , and a set of demand nodes, D ⊆ N . Each arc (i, j) ∈ A has an

associated capacity uij while each supply node i ∈ S has a supply capacity si and each demand

node i ∈ D has a demand di. We are interested in sending flow (respecting the flow capacities

of the arcs and the supply/demand capacities of the nodes) from the supply nodes to the demand

nodes where each unit of flow that arrives at demand node i ∈ D is given a weight of wi. The

performance of the network is evaluated by determining the maximum amount of weighted flow

that can be sent from the supply nodes to the demand nodes. There is a set of arcs, A′, that we can

install into the network. Without loss of generality, this can model problems where we can install

both nodes and arcs into the network since a node can be ‘split’ into two nodes and an arc (or two

arcs). We are interested in scheduling a subset of the arcs in A′ onto a series of parallel identical

work groups, k = 1, . . . , K, in order to install them into the network. The identical work group

assumption is practical in the context of single infrastructure restoration since the differences be-

tween the work crews are often negligible with respect to the units used to measure the processing

times. Each arc (i, j) ∈ A′ has an associated processing time, pij , and capacity, uij . We assume,

without loss of generality, that the processing times are integral. We further assume that we are

in a non-preemptive environment so that a task must be processed without interruption. We will

evaluate the network at time t by determining the maximum weighted flow, which we denote by

ft, that can be sent through operational network, G(t) = (N,A ∪ A′(t)) where A′(t) is the set of

arcs completed by time t. The objective function of our integrated network design and scheduling

problem will then measure how well the network comes online, i.e., we will maximize

T∑
t=1

µtft,

where µt provides the weight we associate with the performance of the network at time t. The

INDS problem was proven to be NP-hard even for problems with a single work group, single

supply node, and single demand node in Nurre and Sharkey [14].
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2.1 An Integer Programming Formulation

We now propose an integer programming formulation for the INDS problem. One of the difficul-

ties with utilizing integer programming in order to solve the INDS problem is that modeling the

sequencing decisions associated with the scheduling components of this problem requires a large

number of variables. Typically, the sequencing decisions are either modeled with binary decisions

variables representing the decision that task ` comes directly before task `′ on work group k or

modeled with binary decision variables representing the decision that task ` is being completed by

work group k at time period t. In our collaborations with the managers of the infrastructure sys-

tems in the areas represented by our data sets, we learned that typically the number of time periods

in the problem is smaller than the number of potential arcs in A′ (our set of tasks). Therefore, we

have chosen to model the sequencing decisions with ‘time-indexed’ decision variables.

We further note that time-indexed formulations of scheduling problems lead to linear pro-

gramming relaxations that are typically stronger than other formulations (e.g., Sousa and Wolsey

[21] and Savelsbergh et al. [18]). Integer programming formulations and solution approaches of

scheduling problems are discussed in Sousa and Wolsey [21], Schulz [19], Akker et al. [2], Wa-

terer et al. [23], Mohring et al. [13], and Correa and Schulz [7]. The objective functions considered

in these works are either makespan or weighted completion time, so it is only necessary to use

variables that represent the completion times of the tasks. We will leverage these traditional time-

indexed formulations by introducing variables to track if a task has already been completed and is,

therefore, available in the network.

The variables in the integer programming formulation of the INDS problem can be broken

down into three types of variables: (i) network flow variables, (ii) network design variables,

and (iii) scheduling variables. The network flow variables include continuous variables xijt for

(i, j) ∈ A ∪ A′ and t = 1, . . . , T that represent the flow on arc (i, j) in time period t and con-

tinuous variables vit for i ∈ D that represent the amount of demand met at node i in time period

t. The network design variables include binary variables βijt for (i, j) ∈ A′ and t = 1, . . . , T

that represent that arc (i, j) is available in time period t. The scheduling variables include binary

variables αkijt for k = 1, . . . , K, (i, j) ∈ A′, and t = 1, . . . , T that represent the decision that work

group k completes arc (i, j) in time period t. The formulation of the INDS problem is:

max
T∑
t=1

∑
i∈D

µtwivit

subject to (IP)∑
(i,j)∈A∪A′

xijt −
∑

(j,i)∈A∪A′

xjit ≤ si for i ∈ S, t = 1, . . . , T (1)
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∑
(i,j)∈A∪A′

xijt −
∑

(j,i)∈A∪A′

xjit = 0 for i ∈ N\{S ∪D}, t = 1, . . . , T (2)

∑
(i,j)∈A∪A′

xijt −
∑

(j,i)∈A∪A′

xjit = −vit for i ∈ D, t = 1, . . . , T (3)

0 ≤ vit ≤ di for i ∈ D, t = 1, . . . , T (4)

0 ≤ xijt ≤ uij for (i, j) ∈ A, t = 1, . . . , T (5)

0 ≤ xijt ≤ uijβijt for (i, j) ∈ A′, t = 1, . . . , T (6)∑
(i,j)∈A′

min{T,t+pij−1}∑
s=t

αkijs ≤ 1 for k = 1, . . . , K, t = 1, . . . , T (7)

βijt − βij(t−1) =
K∑
k=1

αkijt for (i, j) ∈ A′, t = 1, . . . , T (8)

βij(t+1) ≥ βijt for (i, j) ∈ A′, t = 1, . . . , T − 1 (9)
pij−1∑
t=1

βijt = 0 for (i, j) ∈ A′ (10)

K∑
k=1

pij−1∑
t=1

αkijt = 0 for (i, j) ∈ A′ (11)

αkijt, βijt ∈ {0, 1} for (i, j) ∈ A′, k = 1, . . . , K, t = 1, . . . , T.(12)

The objective is to maximize the cumulative weighted flow arriving at the demand nodes over

the horizon of the problem. Constraints (1)-(6) are typical network flow constraints over the arcs

available in the network in period t. They ensure that the flow generated at a supply node does

not exceed its supply capacity (1), the amount of flow delivered to a demand node is equal to

the satisfied demand at the node (3) while not exceeding the requested demand at the node (4),

and the flow on an available arc does not exceed its capacity (5)-(6). Constraints (7)-(12) link

the network design decisions with the scheduling decisions. We note that we have assumed that

the performance of the network is evaluated at the end of the time period, so if αkijt = 1, then

arc (i, j) is available in the network in time period t. Constraints (7) ensure that, at most, one

task is being processed on work group k in time period t. This is because, if αkijs = 1, then the

task corresponding to arc (i, j) will be processed during time periods s − pij + 1 through s on

work group k. Constraints (8) ensure that if the arc (i, j) first becomes available in time period t

(i.e., βijt − βij(t−1) = 1), then it must have been completed by some work group in that period.

Constraints (9)-(11) are logical constraints that ensure an arc stays available once it is completed

and that we do not complete an arc in a time period earlier than its required processing time.

The INDS problem is most applicable to single-commodity infrastructure systems which in-

clude, for example, power, water, waste water, and supply chain systems. The power system is

6



typically the backbone of civil infrastructure systems and is vulnerable to disruptions from many

extreme events. However, the INDS problem assumes that we can directly control the flow in

the network which is not the case for power systems (see Bienstock and Mattia [4]). The ‘DC

model’ is a commonly used linear approximation of the power infrastructure (see the Appendix

for its details) to model its operations. We will examine the INDS problem with the DC model in

our computational testing. The INDS problem can be directly applied to water, waste water, and

supply chain systems since the flow in these systems can be directly controlled. We note that the

types of components in these systems that are vulnerable to damage will vary based upon the type

of extreme event (e.g., the pipes of the waste water system are vulnerable to earthquakes while its

pump stations are more vulnerable to flooding).

3 Solution Methods: Dispatching Rules and Valid Inequalities

This section is focused on the development and analysis of solution methods for the integrated

network design and scheduling problem. We first develop a novel dispatching rule for the problem

that selects the next set of arcs to be processed by the work groups. This dispatching rule will

integrate fundamental concepts from the fields of network flows and scheduling. We then discuss

families of valid inequalities for the integer programming formulation of the INDS problem.

3.1 Dispatching Rules

There has been a significant amount of research in parallel machine scheduling on so-called dis-

patching rules (Pinedo [16]). These rules often characterize the desirability of scheduling a certain

task by estimating its contribution to the objective function and then greedily schedule the un-

scheduled task with the ‘best’ desirability. The key in developing a dispatching rule for our INDS

problem is to understand how completing a task or, equivalently, an arc impacts the objective func-

tion of the problem. The installation of an arc (i, j) can improve the performance of the network by

increasing the amount of weighted flow in it. This will then impact the objective function for the

remainder of the horizon of the problem. We could attempt to develop a more traditional dispatch-

ing rule for our INDS problem by examining, for each uninstalled arc (i, j) ∈ A′, the improvement

in the performance of the network by installing arc (i, j) into it. A modification of the classic

weighted shortest processing time (WSPT) first rule (see Smith [20]) would then select and sched-

ule the arc that maximizes the ratio of the improvement by installing the arc and the processing

time of the arc. However, this is short-sighted in the sense that certain arcs will not increase the

weighted flow if they are not performed in sequence with other arcs. For example, there may exist
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a path of arcs from a supply node to a demand node that needs to be installed in order to increase

the weighted flow. The installation of each of these arcs may not increase the weighted flow but the

installation of this path may significantly increase the weighted flow. Therefore, our dispatching

rule should be concerned with the contributions to the weighted flow of installing a set of arcs.

It is easiest to motivate the dispatching rule for the INDS problem by focusing on a special class

of the problem where each demand node is given the same weight. In other words, the performance

of the network is simply concerned with maximizing the total flow from the supply nodes to the

demand nodes. We can assume that the performance of the network is evaluated by determining the

maximum flow from a single supply node s to a single demand node τ . This assumption is without

loss of generality by applying a standard network expansion technique to multiple supply/demand

node networks. It is well-known that the residual network associated with a maximum flow in the

network does not contain an augmenting path from the supply node s to the demand node τ (see

Ahuja et al. [1]). Therefore, in order to increase the amount of flow sent from s to τ in the current

operational network, we must install a set of arcs that form some residual path between the source

and the sink node. Our dispatching rule for this INDS problem will then select a set of uninstalled

arcs that belong to some residual path and that maximizes the ratio of the residual capacity of the

path and the cumulative processing times of the uninstalled arcs in it. Mathematically, suppose

that x∗ is the current optimal flow in the network composed of the original arcs and the installed

arcs from A′. The arcs in the residual network associated with x∗ will have a residual capacity

of rij and a processing time of pij = 0 since they are already installed. The uninstalled arcs in

A′ will have a residual capacity of uij (their original capacity) and a processing time of pij (their

original processing time). We then define the residual capacity of path P as r(P ) = min(i,j)∈P rij

and the processing time of a path as p(P ) =
∑

(i,j)∈P pij . We are then interested in scheduling the

uninstalled arcs in the path that is an optimal solution to the problem

max
P∈Φ:p(P )>0

r(P )

p(P )
(13)

where Φ is the set of all paths from s to τ in the network composed of the residual network and

all uninstalled arcs. We further note that that if p(P ) = 0, this implies that all arcs are already

installed in the network and that r(P ) = 0 since x∗ is the maximum flow in the network. The

numerator of (13) provides a measure of the amount of additional flow in the network by installing

arcs in P while the denominator provides a measure of the resources required to process P . For

a single work group, p(P ) is precisely the ‘makespan’ required to complete all uninstalled arcs in

the path. For multiple work groups, we could alter the denominator to approximate the makespan

of the path by including the leading term 1
K

. This provides a lower bound on the actual makespan

for the path. In terms of the optimization problem, this leading term is a constant for all paths, so
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optimizing (13) is equivalent. Although this is only a lower bound on the makespan of a path for

multiple work groups, the dispatching rule is shown to provide solutions of high-quality.

It is more difficult to determine an optimal path to (13) than it is to determine the next job

according to the WSPT rule since we cannot decompose (13) by arcs. We will now discuss a

combinatorial algorithm to determine an optimal solution to (13). The idea for the algorithm

is motivated by the following observation: if we know that r(P ∗) is the numerator in an optimal

solution to (13), then P ∗ is the path with the shortest processing time in the network where we only

include arcs whose residual capacities are greater than or equal to r(P ∗). This immediately leads

to an algorithm to solve (13): for each potential value of the numerator (i.e., the residual capacity

of a path), we determine the shortest processing time path in the network containing only arcs

whose residual capacities are above the numerator. An optimal solution is then the path obtained

in this procedure that has the maximum ratio of residual capacity to processing time. We note that

this procedure is easily adapted to situations where a constraint is placed on the denominator (for

example, if we are in a single work group setting and at time t, we do not want to select a path

with a processing time greater than T − t) by terminating the procedure when the shortest path in

the network exceeds the threshold of the constraint. Note that the residual capacity of a path is the

minimum residual capacity of the arcs in the path, so there are at most 2(|A|+ |A′|) distinct values

to be considered. This means that we can determine the next set of arcs to be processed by solving

O(|A|+ |A′|) shortest path problems.

The dispatching rule for this INDS problem will determine the first set of tasks to be processed

by solving the problem (13). We will assign these tasks (according to the longest processing time

first rule) to the available work groups until all tasks from this set are processed. In other words,

we can view the tasks that need to be processed as a queue and we will process the next task

in the queue whenever a work group becomes available. If no tasks are in the queue, we will

then determine the next set of arcs to be processed by considering the residual network associated

with an optimal solution to the maximum flow problem where all arcs that are currently being

processed are assumed to be available in the network. This process will continue until either all

tasks are processed or we reach the end of the horizon.

We now discuss the dispatching rule for the INDS problem where the demand nodes can have

different weights. In particular, we will select a residual path from some source node j ∈ S to some

demand node i ∈ D that maximizes the ratio of wi times the residual capacity of the path and the

cumulative processing times of the uninstalled arcs in it. We can determine this set of uninstalled

arcs by solving O(|D|) problems of the form (13) - one for each distinct node i ∈ D, viewing that

node as the ‘super-demand’ node τ . However, in the method for solving (13), note that for a fixed
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residual capacity, we are solving a shortest path problem on the same set of arcs regardless of the

node i ∈ D. Therefore, because of the structure of Dijkstra’s algorithm, we can determine the

relevant information (i.e., shortest path from the super-source node to each i ∈ D) for each of the

O(|D|) problems of the form (13) by solving O(|A| + |A′|) shortest path problems. We will now

formally present the algorithm to determine the next set of arcs to be processed according to the

dispatching rule for the core INDS problem. This algorithm assumes that we are working with the

network where we have created a ‘super-supply’ node s and have calculated the residual network,

G(x∗), associated with the current optimal weighted flow, x∗, in this network. We denote rij as

the residual capacity of arc (i, j) where if arc (i, j) is uninstalled in the network rij = uij . The

notation G(N,A(r)) is used to denote the network composed of only arcs with a residual capacity

such that rij ≥ r where (i, j) ∈ A ∪ A′ or (j, i) ∈ A ∪ A′. Algorithm 1 provides the pseudo-code

for determining the path selected by the dispatching rule.

Algorithm 1 Algorithm for Path Selection in the Dispatching Rule
1: Set MaxRatio = 0 and P ∗ = null.

2: Sort the residual capacities of all arcs (i, j) ∈ A∪A′ or (j, i) : (i, j) ∈ A∪A′ in non-decreasing

order and put them into array R.

3: for ` = 1, . . . , 2(|A|+ |A′|) do
4: Determine the shortest path distance labels, d(i, R[`]) for i ∈ D, from the source node s in

the network G(N,A(R[`])).

5: for all i ∈ D do
6: if wiR[`]

d(i,R[`])
> MaxRatio then

7: Set MaxRatio = wiR[`]
d(i,R[`])

.

8: Set P ∗ to be the shortest path from s to i.

9: end if
10: end for
11: end for
12: Return P ∗.

3.2 Valid Inequalities for IP Formulation

The purpose of this section is to present valid inequalities in order to strengthen the bounds pro-

vided by the linear programming relaxation of the IP formulation. We focus on four families of

valid inequalities: (i) capacity inequalities, (ii) shortest processing time path inequalities, (iii) flow

cover inequalities, and (iv) β-conservation inequalities. These families help to more closely link

10



the availability decisions with the flows in the network, which causes the βijt variables to increase

to achieve the same level of flow on arc (i, j) in time period t. This, in turn, requires more re-

sources to be dedicated to arc (i, j) prior to time period t. Therefore, these inequalities help to

‘link’ the flow variables with the scheduling decisions.

The capacity inequalities seek to tighten the capacity of an arc, uij , where (i, j) ∈ A′. It is

clear that we could determine the maximum flow placed on arc (i, j) in any potentially feasible

flow in the network (N,A ∪ A′) and reduce uij to this value. However, if arc (i, j) belongs to a

directed cycle, this value could be arbitrarily high since flow may move through this cycle without

ever arriving at a demand node. We can thus restrict ourselves to feasible flows where every

unit of flow reaches some demand node (i.e., the flow can be decomposed into a series of paths).

Therefore, we can reduce uij to be equal to the minimum cut value that separates j from the set of

demand nodes D, since every unit of flow on arc (i, j) must cross this cut to reach a demand node.

We can further reduce the capacity of arc (i, j) ∈ A′ when all demand node weights are equal.

We will assume that we are working with a network with a single supply and demand node. This

further reduction focuses on the additional flow sent through the network by installing some subset

of arcs in A′. It relies on the following result.

Theorem 3.1 There exists a maximum flow in the network Ḡ = (N,A ∪ Ā), where Ā ⊆ A′ such

that the flow on arc (i, j) ∈ Ā is less than or equal to v̄ − v for all (i, j) ∈ Ā, where v̄ is the

maximum flow in the network Ḡ and v is the maximum flow in the network G.

Proof: We will construct a solution that satisfies this property be applying the augmenting path

algorithm (see Ahuja et al. [1]) starting from the maximum flow in G in order to determine the

maximum flow in Ḡ. The proof will be by induction on iteration ` of the augmenting path algo-

rithm. We let x`ij denote the flow on arc (i, j) and v̄` represent the flow into the demand node after

iteration ` of the algorithm. It is clear that for ` = 0, that xij ≤ v̄` − v for all (i, j) ∈ Ā. We

assume the claim holds up to iteration ` and show it holds for `+ 1. Let P be the augmenting path

found in iteration ` + 1. By definition, the algorithm pushes v̄`+1 − v̄` flow along this path. The

only way for the flow on arc (i, j) ∈ A′ to increase is for it to be part of this path. For this type of

arc, we know that x`+1
ij = x`ij + (v̄`+1 − v̄`) ≤ v̄` − v + v̄`+1 − v̄` = v̄`+1 − v̄. Our desired result

holds by induction. 2

Theorem 3.1 holds for any set Ā ⊆ A′. We can, therefore, reduce the capacity of arc (i, j) ∈ A′

to v′ − v where v′ is the maximum flow in (N,A ∪ A′).

The shortest processing time path constraints are a generalization of constraints (10) where we

also consider the time required to build a path of arcs to node i. In particular, we know that the
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flow on arc (i, j) ∈ A′ cannot be positive until we install some path to node i and arc (i, j). We

are, therefore, concerned with the shortest processing time path from a supply node to node i plus

the process time of arc (i, j). We then know that arc (i, j) ∈ A′ cannot have flow on it until this

value divided by the number of work groups (i.e., the lower bound on the makespan to complete

this path and arc (i, j)). This helps rule out ‘partial’ installations of a path to arc (i, j) before this

time in the linear programming relaxation.

The flow cover inequalities of Gu et al. [8] can be applied to the network during each time

period t for each arc (i, j) ∈ A′ and each cutset C(i) separating all supply nodes from i, provided

that the cutset contains only arcs in A′, i.e., C(i) ⊆ A′. This would be especially applicable,

for example, in disruptions to infrastructures that wipe out entire portions of the network. These

inequalities link the flow on arc (i, j) in time period t with the availability of arcs in the cutset,

since any flow on arc (i, j) must be on some arc in C(i). We can define these inequalities as

xijt ≤ uij
∑

(κ,ι)∈C(i)

βκιt for t = 1, . . . , T. (14)

Let O(i) be the set of nodes such that there exists an arc (κ, i) ∈ A′. If the set of arcs {(κ, i) : κ ∈
O(i)} is a valid choice for C(i) then the corresponding inequality focuses on those arcs that are

‘one step back’ from node i in the network, i.e., they come directly into node i. We can apply the

same type of inequalities to arcs that are ‘two steps back’ from node i in the network, i.e., those

arcs that come into some node κ ∈ O(i), as long as all arcs two steps back are in A′. This family

of inequalities can be extended to an arbitrary number of steps back from node i as long as all arcs

that far back are in A′.

The β-conservation inequalities are motivated by the fact that if arc (i, j) is operational (e.g.,

has flow on it), then some arc into node i must also be operational. They are similar to the flow-

cover inequalities since they can only be applied to an arc (i, j) ∈ A′ where the only arcs coming

into node i belong to the set A′. These inequalities are

βijt ≤
∑
κ∈O(i)

βκit for t = 1, . . . , T. (15)

These constraints help link the scheduling decisions of a path of arcs by forcing those that are

earlier in the path to be installed prior to the arcs later in the path. However, these constraints

together with constraints (8) may lead to unnecessary restrictions for multiple work groups if the

processing time of arcs later in the path are longer than those earlier in the path. Therefore, we will

modify the ‘definition’ of βijt to be that arc (i, j) ∈ A′ can be operational (i.e., it is completed but
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may or may not have flow on it), so constraints (8) become

βijt ≤
K∑
k=1

t∑
s=1

αkijs for (i, j) ∈ A′, t = 1, . . . , T. (16)

This small change allows us to add in the β-conservation inequalities into the IP formulation. Note

that we could also apply the flow cover inequalities to this modified IP formulation. We now prove

a relationship between these inequalities.

Theorem 3.2 The flow cover inequalities for one-step and two-step back cutsets are implied by

the β-conservation inequalities, if the network has no parallel arcs.

Proof: Note that

xijt ≤ uijβijt ≤ uij
∑
κ∈O(i)

βκit,

which shows that the β-conservation inequalities imply the one step back flow cover inequalities.

For the two step back flow cover inequalities, we apply the β-conservation inequalities to each

node κ ∈ O(i) to yield

uij
∑
κ∈O(i)

βκit ≤ uij
∑
κ∈O(i)

∑
q∈O(κ)

βqκt,

where no β term is repeated because there are no parallel arcs. Note that if there was some arc into

κ ∈ O(i) that is in A, the two step back inequalities would not be valid for arc (i, j) as well as the

β-conservation constraint for κ. 2

4 Computational Testing on the New Hanover County Data Set

We will now discuss the results of case studies of applying the INDS problem to realistic data

sets representing infrastructure systems in New Hanover County, North Carolina in the United

States. New Hanover County is a coastal county in southern North Carolina that includes the

city of Wilmington and the Cape Fear beaches. These data sets were created through extensive

collaborations with the managers of the infrastructure systems in New Hanover County as well as

collaborations with the emergency manager of the county. This section focuses on applying the

INDS problem to three separate infrastructure systems: (i) the power infrastructure of the county,

(ii) the waste water infrastructure of the county, and (iii) an emergency supply chain infrastructure

in the city of Wilmington. The disruptions to the power and waste water infrastructures model the

effects of a strong hurricane whose eye passes to the south of the county so that both extensive
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flooding and wind damage are possible, which is similar to the scenario caused by Hurricane

Ophelia in Septemeber 2005. The emergency supply chain infrastructure models situations in

which the emergency manager of the county must deliver critical goods to the affected population

in Wilmington that were unable to leave the city prior to the hurricane.

In the analysis of these case studies, we are interested in examining the performance of the

dispatching rule and the integer programming formulation of the INDS problem. It is especially

important to determine the potential for these methods to be used in real-time restoration activities.

Therefore, our testing was performed on a laptop with a 2.16 GHz Intel Core 2 Duo Processor

with 3 GB of RAM, which would be similar to the computing resources available during real-time

restoration activities. We have used CPLEX 12.0 in order to solve the integer programming for-

mulation of the INDS problem. We have chosen to only examine the initial integer programming

formulation of the INDS problem since it is solved rather quickly and the disruptions do not wipe

out large portions of the network (so the flow cover and β-conservation inequalities are not appli-

cable). It is also important to explore the effects on the restoration plan of a certain infrastructure

when we consider its interdependencies with other infrastructures. This is especially important

for New Hanover County since the emergency manager of the county has certain priorities in the

overall recovery efforts of the county. Therefore, we will explore the effects on the restoration plan

of a particular infrastructure when it is formed according to the priorities of the county instead of

the priorities of the infrastructure. The priorities of the emergency manager of the county, in de-

creasing order of their importance, are: (1) emergency communications centers, (2) hospitals and

emergency shelters, (3) police and fire departments, (4) all components in the water and wastewater

infrastructures, and (5) all other components (including residential households).

4.1 Power Infrastructure Case Study

The focus of this section is on examining a case study representing the power infrastructure of

New Hanover County. The network model of this infrastructure has 377 nodes and 386 arcs under

normal operations. It may seem that there is not much redundancy in the system but we note that

there is a good level of redundancy in the transmission network in the county. The managers of

the power infrastructure suggested that the model should focus on the transmission network of the

county - so that the distribution networks to the demand points are simplistic. There are 37 nodes

and 46 arcs in the transmission network. We have added 340 demand nodes and 340 arcs connect-

ing these nodes to appropriate distribution substations in our model of this infrastructure. These

demand nodes and arcs then model the distribution network in the county. The INDS problem has

|N | = 377 nodes, |A| = 346 arcs, and |A′| = 40 arcs as network design decisions. The horizon
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of the problem is equal to T = 30 where, roughly, each time period represents a six hour block

of time so that the horizon is roughly a week. We consider two different types of weights on the

performance of the network (i.e., µt for t = 1, . . . , T ) where the first class (‘Constant’) weighs

the performance evenly over the horizon and the second class (‘Scaled’) weighs the performance

more heavily later in the horizon by setting µt = t/T . We further consider two different types of

weight for the demand nodes: one where each unit of met demand is weighed evenly across the

demand nodes (‘Constant’) and one where the demand nodes with higher priorities according to

the emergency manager of the county have larger weights (‘Priority’). The number of work groups

in this study is equal to K = 1 or K = 2 which represents the fact that the county itself has very

limited resources.

Table 1 provides the computational performance of the dispatching rule and the integer pro-

gramming formulation of the INDS problem. Note that the gap of the various solution methods

was ‘normalized’ by setting the performance of the network in each time period equal to its max-

imum weighted flow minus the maximum weighted flow in the network without any arcs from

A′. Therefore, the initial performance of the network does not bias the gap of the solution meth-

ods. These results indicated that the dispatching rule obtains high-quality (and optimal in some

instances) solutions to the INDS problem extremely quickly. CPLEX 12.0 is able to identify an

optimal solution to the problem quickly as well, although commercial software packages may not

be available to managers of the infrastructure systems during real-time restoration activities.

Dispatching Rule IP

K µt wi Time (s) Opt. Gap Time (s) Opt. Gap

1 Constant Constant 0.86 0.00% 3.13 0.00%

1 Constant Priority 0.93 0.00% 3.15 0.00%

1 Scaled Constant 0.86 0.00% 3.24 0.00%

1 Scaled Priority 0.93 0.00% 3.26 0.00%

2 Constant Constant 0.91 0.12% 3.09 0.00%

2 Constant Priority 0.97 0.12% 3.16 0.00%

2 Scaled Constant 0.90 0.14% 3.15 0.00%

2 Scaled Priority 0.98 0.12% 3.21 0.00%

Table 1: The performance of the dispatching rule and IP formulation on the power infrastructure

case study.

The restoration efforts formulated by the dispatching rule and the INDS problem can assist

in the decision-making of the managers of the power infrastructure. However, these managers
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Figure 1: Scheduling/resource allocation decisions (purple arcs) and the performance of the net-

work (green arcs have flow on them) for optimal restoration efforts in the power infrastructure of

New Hanover County.

may have limited mathematical expertise implying that it would be beneficial to reproduce the

restoration efforts using visualization tools. Figure 1 provides an example of such a visualization

tool for the optimal restoration efforts for the problem with K = 2, Constant µt, and Priority

demand node weights. This visualization tool was produced using a geographic information system

(GIS) to display data on the infrastructure.

The ‘Constant’ weights for the demand nodes can be viewed as modeling the objective of the

managers of the power infrastructure. This is because a unit of met demand generates similar

revenues regardless of the demand node where it is delivered. Therefore, the operations of the

infrastructure under the performance metric of the managers would be to deliver the maximum

amount of power possible throughout the system. It is clear that the ‘Priority’ weights for the

demand nodes reflect the performance metric that aligns the restoration efforts of the power infras-

tructure with the overall goals of the recovery efforts of the emergency manager of the county. We

have observed that, for all combinations of work groups (K) and performance weights (µt), the

optimal restoration plan aligned with the priorities of the emergency manager is also one of the

optimal solutions to the problem whose objective function represents the focus of the managers of

the power infrastructure. Therefore, the power infrastructure can align its restoration efforts with

the overall goals of the recovery effort without any effect on its own objective.

There is a potential issue in applying the restoration efforts obtained either through the dis-
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patching rule or integer programming formulations of the INDS problem: it was obtained with a

primarily ‘flow-based’ model of the operations of the infrastructure. As discussed in the Appendix,

this is not the case for the power infrastructure since power flows according to certain physical

laws. Therefore, we will explore the quality of restoration efforts (i.e., which arcs to process and

when to process them) obtained through these methods when the operations of the power infras-

tructure are modeled according to the DC model discussed in the Appendix. The performance of

the network in each time period for the ‘scheduling’ solution returned by the dispatching rule is

calculated through the DC model over the available arcs in the network. We, therefore, associate

a value v(DR) with the dispatching rule, which represents the cumulative performance of the DC

model applied to the available network over the horizon of the problem. The gap of the dispatching

rule is then calculated as

100% ∗ v
∗(DC)− v(DR)

v(DR)
,

where v∗(DC) is the optimal objective function value to the INDS problem with the DC model.

The gap associated with the optimal scheduling solution to the core INDS problem was calculated

in a similar fashion. Table 2 presents the performance of the restoration efforts returned by the

dispatching rule and the optimal restoration efforts in the core INDS problem when compared with

the optimal restoration efforts in the INDS problem with the DC network model. The performance

of the restoration efforts obtained using the core INDS problem and the dispatching rule perform

extremely well under the DC model of the problem. We further note that, for all combinations

of work groups and performance weights the optimal solution to the INDS problem with the DC

model and weighted demand nodes is also an optimal solution to the same problem with constant

demand node weights.

4.2 Waste Water Infrastructure Case Study

The focus of this section is on a case study of the waste water infrastructure in New Hanover

County. The initial network model of this infrastructure has 543 nodes and 538 arcs. There is no

redundancy in this infrastructure - it is composed of 5 separate components, which would corre-

spond to trees in the network representation. Each of these components has a ‘root’ node that is a

treatment plant and all arcs in a particular component are directed away from the plant. This may

seem counter-intuitive since the waste water actually flows toward the treatment plant. However,

modeling the infrastructure in this fashion allows us to view the requested service at a particular

node as demand in the network representation. The disruption scenario in this case study repre-

sents damage to 25 pump stations that could occur simultaneously with the disruption scenario for
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Dispatching Rule INDS Problem INDS Problem with DC Model

K µt wi Time (s) Opt. Gap Time (s) Opt. Gap Time (s) Opt. Gap

1 Constant Constant 0.86 2.98% 3.13 2.98% 3.83 0.00%

1 Constant Priority 0.93 3.14% 3.15 3.14% 3.90 0.00%

1 Scaled Constant 0.86 1.07% 3.24 1.07% 3.91 0.00%

1 Scaled Priority 0.93 1.21% 3.26 1.21% 4.00 0.00%

2 Constant Constant 0.91 1.42% 3.09 0.14% 8.60 0.00%

2 Constant Priority 0.97 1.53% 3.16 0.28% 8.72 0.00%

2 Scaled Constant 0.90 0.36% 3.15 0.05% 8.01 0.00%

2 Scaled Priority 0.98 0.39% 3.21 0.09% 7.11 0.00%

Table 2: The performance of the restoration efforts obtained through the dispatching rule and the

core INDS problem under the DC model.

the power infrastructure from Section 4.1. The pump stations are nodes in the network representa-

tion of the infrastructure, however, since the infrastructure is composed of 5 trees and all arcs are

directed away from the root node of the tree, each node has one incoming arc into it. Therefore, we

can model the disruption to the pump station as damage to the incoming arc into it. Therefore, we

have that |N | = 543, |A| = 513, and |A′| = 25 in this case study. We note that, since the damage

occurs at a pump station of the infrastructure, it is necessary to fix that pump station rather than

implement some alternative route. Therefore, the design decisions in A′ correspond exactly to the

arcs representing the damaged pump stations. The horizon of the problem is set equal to T = 30,

where each time period represents a roughly six hour block of time.

Table 3 provides the computational performance of the dispatching rule and the integer pro-

gramming formulation for the INDS problem. We again consider two types of performance

weights (µt) and demand node weights (wi). These computational results are very similar to the

results for the power infrastructure case study: the dispatching rule provides high-quality solutions

in seconds and can thus be used in real-time activities. Further, the application of CPLEX 12.0

to the integer programming formulation of the INDS problem provides an optimal solution to the

problem in real-time. We again investigate the effects on the restoration plan of the waste water

infrastructure by formulating it considering the priorities of the emergency managers. This inves-

tigation demonstrated that the optimal restoration plan to the problem with priority-based weights

for the demand nodes is also an optimal restoration plan to the problem with constant weights for

the demand nodes. Therefore, this indicates that, for this case study, the managers of the waste

water infrastructure can align their restoration efforts with the goals of the overall recovery ef-
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fort without any effect to their objective function. Figure 2 provides a visualization tool for the

restoration efforts of the problem with K = 2 work groups, Constant µt, and Priority demand

node weights for the waste water infrastructure.

Dispatching Rule IP

K µt wi Time (s) Optimality Gap Time (s) Optimality Gap

1 Constant Constant 1.24 1.80% 2.65 0.00%

1 Constant Priority 1.33 2.05% 2.61 0.00%

1 Scaled Constant 1.24 1.33% 2.60 0.00%

1 Scaled Priority 1.33 1.46% 2.64 0.00%

2 Constant Constant 1.44 0.94% 2.47 0.00%

2 Constant Priority 1.53 1.10% 2.44 0.00%

2 Scaled Constant 1.45 0.42% 2.46 0.00%

2 Scaled Priority 1.53 0.47% 2.46 0.00%

Table 3: The performance of the dispatching rule and IP formulation on the waste water infrastruc-

ture case study.

4.3 Emergency Supply Chain Infrastructure Case Study

The focus of this section is on a case study corresponding to setting up an emergency supply chain

infrastructure in New Hanover County. This emergency supply chain will deliver a critical good

(e.g. food or water) to those affected by the hurricane that did not have the resources to evacuate

the area prior to its landfall. The supply chain will set up a number of distribution sites in lower

income areas. Therefore, this case study focuses primarily on setting up distribution sites in the city

of Wilmington since all other areas have a median income of over $25,000 dollars. The potential

locations for these distribution sites correspond to well-known, central entities in the city (such as

malls, schools, and parks) and were determined through input from the emergency manager of the

county. In this case study, these critical goods will flow into the county through the Red Cross,

be routed to the operational distribution sites, and then ‘delivered’ to the affected population that

come to the sites. The network model for the INDS problem representing this case study will

have two nodes (say i and i′) and an arc ((i, i′) in A′) representing each potential distribution site.

There will be an arc from the Red Cross to each potential distribution site and then arcs from each

potential distribution site to the different populations to which that site can deliver goods. The

demand for these different populations was created using census tract information and the arcs

19



Figure 2: Scheduling/resource allocation decisions (purple nodes) and the performance of the net-

work (green arcs have flow on them) for optimal restoration efforts in the waste water infrastructure

of New Hanover County.

from the potential sites to the populations were included based on whether the site was close to the

population. This case study has |N | = 59 nodes, |A| = 85 arcs, and |A′| = 23 design decisions.

The problem has a horizon of T = 12, where each time period corresponds to 6 hours. Table

4 presents the computational performance of the various solution methods on this case study for

problems where all demand is weighted equally. The dispatching rule does provide good quality

solutions extremely quickly. CPLEX 12.0 was able to solve the integer programming formulation

of this problem in real-time as well. Figure 3 provides a visualization tool for the restoration efforts

of the problem with K = 2 work groups, Constant µt, and Constant demand node weights for the

emergency supply chain infrastructure. This map focuses specifically on the city of Wilmington.

5 Computational Testing on the Lower Manhattan Data Set

We will now discuss the results of a case study of applying the INDS problem to a realistic data

set representing the power infrastructure of lower Manhattan in New York City. We will consider

a case study which represents the effects of the disruption scenario of the failure of components

in and around the Brooklyn-Battery tunnel. Therefore, this disruption scenario has a large portion

of the network wiped out, meaning the valid inequalities presented in Section 3.2 are applicable.

This data set was created through close collaborations with officials in this system and was first
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Dispatching Rule IP

K µt wi Time (s) Optimality Gap Time (s) Optimality Gap

1 Constant Constant 0.007 2.92% 2.88 0.00%

1 Scaled Constant 0.007 2.63% 1.07 0.00%

2 Constant Constant 0.021 4.71% 9.82 0.00%

2 Scaled Constant 0.020 7.85% 4.64 0.00%

Table 4: The performance of the dispatching rule and IP formulation on the emergency supply

chain infrastructure case study.

Figure 3: Scheduling/resource allocation decisions (purple nodes) and the performance of the

network (green arcs have flow on them) for optimal restoration efforts in the emergency supply

chain infrastructure in Wilmington.
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presented in the work of Lee et al. [10]. The network in the INDS problem has |N | = 1810 nodes

and |A| = 2621 arcs and is significantly larger than the networks from the case studies considered

in Section 4. Further, the number of design alternatives is |A′| = 695 arcs. We have considered

problems with K = 1, 2, 3 work groups, where the latter size is representative of the resources

considered in Lee et al. [10]. The horizon of the INDS problem is T = 60 time periods.

Table 5 presents the computational results for the dispatching rule and initial integer program-

ming formulation for the lower Manhattan data set. The results indicate that CPLEX 12.0 is not

capable of determining (or verifying) the optimal solution to the problem within a six hour time

limit for the initial integer programming formulation of the problem. We note that we have chosen

to provide CPLEX 12.0 with the restoration plan determined by the dispatching rule as a warm-

start solution. The gap of the dispatching rule is an upper bound on its actual gap, since it was

calculated by comparing the objective function of the solution with the best known upper bound

identified for the instance across all computational testing in this section. It is important to note

that CPLEX 12.0 did not identify a better solution than the one provided by the dispatching rule for

any instance of the problem in the six hour time limit. This means that the dispatching rule is more

appealing to apply to the INDS problem than CPLEX 12.0 for these large-scale problems. Note

that, due to the high running times of the core INDS problem, we have not examined the INDS

problem with the DC Model for this case study since it is imperative in that analysis to obtain the

optimal solution to the INDS problem with the DC model.

Dispatching Rule IP

K µt wi Time (s) Opt. Gap Upper Bound Time (s) Opt. Gap

1 Constant Constant 5.54 16.52% 21600 24.48%

1 Scaled Constant 5.55 10.73% 21600 13.64%

2 Constant Constant 4.80 6.87% 21600 8.47%

2 Scaled Constant 4.80 2.42% 21600 2.90%

3 Constant Constant 4.18 4.51% 21600 5.53%

3 Scaled Constant 4.18 1.22% 21600 1.40%

Table 5: The performance of the dispatching rule and IP formulation on the power infrastructure

case study of lower Manhattan.

We now explore the effectiveness of the valid inequalities presented in Section 3.2 on this case

study. The capacity inequalities do not effect the number of constraints or variables in the formula-

tion, so we view them as ‘standard’ for the other inequalities. For this case study, we implemented

the capacity inequalities based on lowest value obtained through each of the three techniques pre-
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sented in Section 3.2. Table 6 presents the solution time and percentage improvement in the linear

programming relaxation for each of the remaining inequalities plus the capacity inequalities. The

shortest processing time path inequalities do not add much in terms of computation time, so we

have also explored them in combination with the flow cover inequalities and β-conservation in-

equalities in Table 7. These results demonstrate the tradeoff between the quality of inequalities

and the solution time required to solve the relaxation. Therefore, we tested both these classes of

valid inequalities on the integer programming formulation for the full six hour time limit. These

results are presented in Table 8.

IP Relaxation Capacity Shortest Path Two Step Flow Cover β-conservation

+ Capacity + Capacity + Capacity

K µt wi Time (s) Time (s) Improvement Time (s) Improvement Time (s) Improvement Time (s) Improvement

1 Constant Constant 58.23 410.48 1.53% 281.03 6.93% 1604.07 9.49% 16984.54 10.72%

1 Scaled Constant 46.61 235.94 0.29% 209.36 1.56% 1799.67 2.92% 17154.55 3.40%

2 Constant Constant 30.84 75.91 0.00% 82.19 0.08% 1142.12 2.02% 8184.34 2.45%

2 Scaled Constant 30.88 90.30 0.00% 78.95 0.02% 959.58 0.43% 13157.84 0.53%

3 Constant Constant 34.02 69.20 0.00% 85.72 0.00% 972.20 0.18% 5370.55 0.32%

3 Scaled Constant 34.15 60.19 0.00% 86.70 0.00% 1146.35 0.03% 5827.52 0.06%

Table 6: Strength of the valid inequalities on the linear programming relaxation.

IP Relaxation Two Step Flow Cover β-conservation

+ Capacity + Shortest Path + Capacity + Shortest Path

K µt wi Time (s) Time (s) Improvement Time (s) Improvement

1 Constant Constant 58.23 1326.27 11.06% 9420.33 12.17%

1 Scaled Constant 46.61 1309.95 3.22% 6051.16 3.70%

2 Constant Constant 30.84 248.83 2.03% 11527.58 2.52%

2 Scaled Constant 30.88 254.28 0.43% 8761.33 0.54%

3 Constant Constant 34.02 1015.03 0.18% 4743.86 0.32%

3 Scaled Constant 34.15 1019.92 0.03% 5407.26 0.06%

Table 7: Strength of the two step flow cover and β-conservation inequalities in combination with

the capacity and shortest processing time path inequalities on the linear programming relaxation

We note that we have applied CPLEX 12.0 to the IP formulation with the capacity, shortest

path, and β-conservation inequalities for the problem with K = 3 and constant µt on an eight-

core computer. After a week of computational time, CPLEX 12.0 still had an optimality gap of

4.12% and had not identified a better solution than the one obtained by the dispatching rule. It is

unreasonable to expect the managers of the infrastructure systems to have access to this type of
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IP Two Step Flow Cover β-conservation

+ Capacity + Shortest Path + Capacity + Shortest Path

K µt wi Time (s) Opt. Gap Time (s) Opt. Gap Time (s) Opt. Gap

1 Constant Constant 21600 24.48% 21600 16.52% 21600 18.19%

1 Scaled Constant 21600 13.64% 21600 10.73% 21600 11.42%

2 Constant Constant 21600 8.47% 21600 6.87% 21600 7.42%

2 Scaled Constant 21600 2.90% 21600 2.42% 21600 2.79%

3 Constant Constant 21600 5.53% 21600 4.51% 21600 4.61%

3 Scaled Constant 21600 1.40% 21600 1.23% 21600 1.22%

Table 8: Computational results for the two step flow cover and β-conservation in combination with

the capacity and shortest processing time path inequalities on the INDS problem.

computing resource and be willing to wait for over a week to determine their restoration plan, even

in their scenario planning activities. Therefore, the dispatching rule is an important tool for the

restoration of larger infrastructure systems.

6 Conclusions

This research has developed a novel integrated network design and scheduling problem that can

be used to model the problem of restoring services provided by infrastructure systems after an

extreme event disrupts them. The model is general enough to be applicable to a variety of infras-

tructures, including the power, water, waste water, and emergency supply chain infrastructures.

We have developed a novel dispatching rule for the INDS problem that focuses on selecting a set

of arcs to process by examining the residual path optimality conditions from the area of network

optimization. This dispatching rule has been shown to provide near-optimal solutions to realistic

case studies in seconds, for many different infrastructure systems, and can thus be used in real-

time restoration activities. We have further developed an integer programming formulation of the

INDS problem that was able to provide the optimal solutions to the smaller case studies quickly.

However, the application of CPLEX 12.0 to this integer programming formulation for the larger

case studies is not able to identify an optimal solution to the problem even when using significant

computational resources.

This research has applied the optimization models and algorithms developed for the INDS

problem to several realistic case studies representing infrastructure systems in New Hanover County

in North Carolina and lower Manhattan in New York City. The network models of the infrastruc-
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ture systems in these case studies were created through careful collaborations with the managers

of these systems. The disruptions/damage scenarios in the New Hanover County case studies were

created to represent the effects of a hurricane whose eye passed just to the south of the county,

implying that the strongest winds and flooding associated with the hurricane will affect the county.

For the power infrastructures and waste water infrastructure, we examined the effects of the restora-

tion efforts of the infrastructures when they are aligned with the priorities of the emergency man-

ager of the county. The case studies indicate that the restoration efforts of these infrastructures can

be aligned with these priorities with no detrimental effects to the objective of the infrastructures.

These case studies demonstrate that the dispatching rule can serve as a powerful decision support

tool in real-time restoration activities. It will be important, in the future, to integrate the dispatch-

ing rule and integer programming methods for the INDS problem into decision support systems

for managers of infrastructure systems.
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Appendix

Incorporating the DC Model for Power Infrastructures
The DC model is a linear approximation of the behavior of a power system that is typically

used in modeling the behavior of the power infrastructure system, especially the transmission

network. For example, Bienstock and Mattia [4] used the DC model in modeling problems related

to mitigating grid blackout problems. We note that Bienstock and Mattia [4] also provide a detailed

discussion on the relationship between the linear DC model and the nonlinear AC model for a

power system. The DC model includes decision variables at each node of the network that represent

the phase angle of the node. The flow on arc (i, j) is then a function of the phase angles of nodes

i and j along with the reactance of the arc (i, j). The reactance, bij , of the arc is dependent on the

length of it and the voltage levels. By defining θi for i ∈ N as the phase angle of node i, the flow

on arc (i, j) is determined through the equation:

bijxij = (θi − θj). (17)

We note that both the phase angle variables and the arc flow variables are unrestricted in the DC

model. A negative flow on arc (i, j) corresponds to power flowing from node j to node i. There-

fore, it is necessary to include constraints that model equation (17) into the core INDS problem.
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The difficulty, however, is that this constraint should only be enforced at time t for the arcs in the

network that have been completed prior to time t. In order to incorporate the DC model into (IP),

we will define variables θit for i ∈ N and t = 1, . . . , T that represent the phase angle of node i in

time period t. For all arcs (i, j) ∈ A, we replace constraints (5) with the constraints

bijxijt = (θit − θjt) for (i, j) ∈ A, t = 1, . . . T, (18)

−uij ≤ xijt ≤ uij for (i, j) ∈ A, t = 1, . . . , T. (19)

These constraints enforce the DC flow model for arcs (i, j) ∈ A and ensure that the flow on the arc

does not exceed its capacity (thus preventing failure of these components). For arcs (i, j) ∈ A′, we

can model the fact that we only wish to enforce DC flow calculations (17) when arc (i, j) appears

in the network at time t by using ‘Big-M’ constraints. In particular, for arcs (i, j) ∈ A′, we replace

constraints (6) with

bijxijt ≤ (θit − θjt) +M(1− βijt) for (i, j) ∈ A′, t = 1, . . . T, (20)

bijxijt ≥ (θit − θjt)−M(1− βijt) for (i, j) ∈ A′, t = 1, . . . , T (21)

−uijβijt ≤ xijt ≤ uijβijt for (i, j) ∈ A′, t = 1, . . . , T. (22)

If βijt = 0, then these constraints force xijt = 0 while not imposing any restrictions on the

relationship between the phase angles of nodes i and j due to the big M . If βijt = 1, then

constraints (20)-(21) guarantee that the DC flow equation (17) is satisfied for arc (i, j) in time

period t while constraint (22) guarantees that the capacity of the arc is not violated. We will refer

to the core INDS problem where we have replaced constraints (5)-(6) with constraints (18)-(22) as

the INDS problem with the DC Model.
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