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Abstract Filling a gap in nonconvex quadratic programming, this paper shows that the global resolution of
a feasible quadratic program (QP), which is not known a priori to be bounded or unbounded below, can be
accomplished in finite time by solving two linear programs with linear complementarity constraints, i.e., LPCCs.
Specifically, this task can be divided into two LPCCs: the first confirms whether the QP is bounded below on
the feasible set and, if not, computes a feasible ray on which the QP is unbounded; the second LPCC computes a
globally optimal solution if it exists, by identifying a stationary point that yields the best quadratic objective value.
In turn, the global resolution of these LPCCs can be accomplished by a parameter-free, mixed integer-programming
based, finitely terminating algorithm developed recently by the authors, which can be enhanced in this context by
a new kind of valid cut derived from the second-order conditions of the QP and by exploiting the special structure
of the LPCCs. Throughout, our treatment makes no boundedness assumption of the QP; this is a significant
departure from much of the existing literature which consistently employs the boundedness of the feasible set as a
blanket assumption. The general theory is illustrated by 3 classes of indefinite problems: QPs with simple upper
and lower bounds (existence of optimal solutions is guaranteed); same QPs with an additional inequality constraint
(extending the case of simple bound constraints); and nonnegatively constrained copositive QPs (no guarantee of
the existence of an optimal solution). We also present numerical results to support the special cuts obtained due
to the QP connection.

Keywords Quadratic programming · logical Benders decomposition · linear programs with complementarity
constraints · LPECs

Mathematics Subject Classification (2000) 90C20 · 90C33 · 90C26 · 90C10

1 Introduction

Quadratic programming is among the most important subjects in mathematical programming, having a central
role to play in all aspects of the field. Yet, the global resolution of nonconvex quadratic programs (QPs) remains
a daunting task to date, especially when it is not known in advance whether or not the problems are bounded
below. The survey [10] presents an excellent overview of these nonconvex programs, summarizing in particular
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the fundamental properties of this challenging class of optimization problems and describing some of the most
successful algorithms for special subclasses, including problems with simple bounds and with concave objectives
(for minimization).

The present work is inspired by two recent developments in the global resolution of certain nonconvex optimiza-
tion problems. On one hand, the papers [5,6,33,34] studied in detail an LPCC (for Linear Program with Linear
Complementarity Constraints) approach for finding a global minimum of a nonconvex quadratic program (QP)
with a finite optimum solution, in particular, a box-constrained QP. On the other hand, extending a paper [29]
that pertains to a special LPCC arising from the minimization of the value-at-risk, the paper [21] develops a finite,
parameter-free mixed integer-programming based algorithm for the global resolution of a general LPCC, without
any assumption on the problem. In turn, the key idea behind this algorithm is closely related to the logic-based
Benders decomposition for solving linear disjunctive programs [7,13,19,17,18]. These developments raise a ques-
tion: is the LPCC approach applicable to a general quadratic program which is not known in advance to have
a finite optimal solution? Besides its theoretical interest, a positive answer to this question has several practical
implications. Namely, it provides a constructive method that will effectively determine in finite time if a quadratic
program is: infeasible, feasible with an unbounded objective, or optimally solvable, with each such outcome being
supported by a provably valid certificate. More importantly, this answer fills a long-standing gap in the literature of
nonconvex quadratic programming wherein the boundedness of the feasible set has so far been an essential assump-
tion. An exception is the paper [1] that deals with a bilinear program with product constraints on the variables,
which is a special nonconvex quadratic program. In this reference, the authors were able to reduce the unbounded
case to the bounded case via some auxiliary problems with bounded regions. Another noteworthy point is that
the asymptotic convergence of all iterative descent methods for computing a stationary point of a nonconvex QP
requires that the QP objective be bounded below on the feasible set, thereby ensuring the existence of a global
minimum. Such an iterative method cannot be used to determine the existence or non-existence of a stationary
point in finite time.

To place the contribution of this work in a proper context, we recall the well-known Frank-Wolfe theorem [11]
which states that a feasible QP has a finite minimum solution if and only if the objective of the QP is bounded
below on its feasible set. This fundamental result was subsequently sharpened by Eaves [9] who proved, using
Lemke’s complementary pivot algorithm applied to the first-order Karush-Kuhn-Tucker (KKT) conditions of the
QP formulated as a linear complementarity problem (LCP), that the same necessary and sufficient condition holds
with “feasible set” replaced by “feasible rays”. These two results beg a question that does not seem to have been
fully addressed in the vast literature of quadratic programming; namely, is there a finite procedure to determine if
a feasible QP attains a finite minimum solution? A partial answer to this question was provided by Giannessi and
Tomasin [12] who showed that if the QP is known to have a finite optimal solution, then a global solution to the QP
can be obtained by solving an LPCC obtained from the minimization of an appropriate linear objective function
over the set of stationary solutions of the QP. The related paper [2] describes a “constraint activating approach”
that effectively solves an LPCC. The finite termination of the algorithm is established under the assumption of
the existence of a finite optimum solution to the QP. Most recently, when the third author of this paper posed
the above question to Paul Tseng of the University of Washington in a private communication, Tseng provided a
finite procedure to answer the question positively that is based on a complete enumeration of the extreme points
and rays of the feasible set of the QP and which requires solving a finite number of nonconvex QPs defined by
these extreme points and rays. Yet another positive answer to the same question is provided by Adrian Lewis in
a private communication who reminded us that using the Tarski-Seidenberg algorithm in mathematical logic, one
could answer the question in finite time, by recognizing that the set of quadratic objective values on the feasible
region is “semi-algebraic”. Nevertheless, this algorithm is at best conceptual in nature and cannot be used for
computational purposes in practice.

Our work provides a new LPCC formulation for a general nonconvex QP that fully answers the question in the
affirmative. More importantly, employing the parameter-free IP procedure developed in [21], our LPCC approach
bypasses the enumeration of extreme points and rays, which is computationally an impossible task. The fact that
the resulting LPCC is derived from a QP could be exploited to derive some special valid inequalities in the logical
Benders approach for the global resolution of the LPCC.

It is worthwhile to make a bibliographic note. Beginning with the seminal work of Egon Balas [3], there is a
vast literature on disjunctive programming, with the recent work of Grossman and his co-authors [8,14,24] treating
the nonlinear case. Nevertheless much of this literature, including the cited references, assumes boundedness of the
problems; in contrast, a main contribution of our work is on problems where such boundedness is not assumed.

The organization of the remainder of this paper is as follows. The next section presents a preliminary discussion
of a general quadratic program, reviewing some known facts to motivate the LPCC formulation that will be
introduced and proved in Section 3. In Section 4, we summarize an algorithm, which is based on the one introduced
in [21], for globally resolving the LPCC (5). Sections 5 and 6 discuss, respectively, the specialization of the key steps
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in this algorithm to two LPCCs, the former for the class of QPs with finite optima and the latter for a copositive yet
un-resolved QP. Section 7 focuses on 3 classes of indefinite QPs that we use to illustrate the developed methodology;
numerical results are presented in Section 8. The paper ends with some concluding remarks in Section 9.

2 Preliminary Discussion

Consider the quadratic program:
minimize
x∈Rn

q(x) ≡ 1
2 x

TQx+ cTx

subject to Ax ≤ b,
(1)

where Q is a symmetric, but not necessarily positive semidefinite, matrix of order n, A is an m × n matrix and
c and b are n- and m-vectors, respectively. Without loss of generality, we assume throughout the paper that (1)
is feasible (this can easily be decided by solving a linear program). Let X denote the feasible set of (1) and
D ≡ {d ∈ Rn : Ad ≤ 0} be the recession cone of the X. A set of the form {x+ τd : τ ≥ 0}, where (x, d) ∈ X ×D,
constitutes a feasible ray of X. The Karush-Kuhn-Tucker (KKT) conditions of (1) are given by:

0 = c+Qx+AT ξ

0 ≤ ξ ⊥ b−Ax ≥ 0.
(2)

A feasible vector x of (1) is a KKT point, or equivalently, a stationary point if there exists a multiplier ξ such that
the pair (x, ξ) satisfies the above KKT conditions. It is easy to verify that for any KKT pair (x, ξ), we have

1
2 x

TQx+ cTx = 1
2c
Tx+ 1

2x
T (c+Qx) = 1

2c
Tx− 1

2x
TAT ξ = 1

2 (cTx− bT ξ). (3)

Thus, in terms of the KKT multiplier ξ, the quadratic objective function in (1) can be stated equivalently as a linear
objective. The tangent cone of X at x ∈ X, denoted by T (X;x) is equal to {d ∈ Rn : Ai•d ≤ 0 ∀ i ∈ A(x)}, where
Ai• denotes the i-th row of A and A(x) is the index set of binding constraints at x; i.e., A(x) ≡ {i : Ai•x = bi}.
The critical cone of X at x ∈ X is by definition the cone Cqp(x) ≡ T (X;x) ∩ (c + Qx)⊥, where v⊥ denotes the
linear subspace of vectors orthogonal to v. If x is a KKT point, then Cqp(x) can be represented in terms of any
multiplier ξ satisfying the KKT conditions (2); namely:

Cqp(x) =

{
v ∈ Rn : Aj•v = 0, ∀ j ∈ α(x, ξ)

Aj•v ≤ 0, ∀ j ∈ β(x, ξ)

}
where

α(x, ξ) ≡ { j : bj −Aj•x = 0 < ξj }
β(x, ξ) ≡ { j : bj −Aj•x = 0 = ξj }
γ(x, ξ) ≡ { j : bj −Aj•x > 0 = ξj }

are the 3 fundamental index sets associated with the KKT pair (x, ξ). Note that α(x, ξ) ∪ β(x, ξ) = A(x) and
Cqp(x) ∪ D ⊆ T (X;x). The 3 cones, Cqp(x), D, and T (X;x) all play significant roles in the QP (1). Notice that
while the three index sets α(x, ξ), β(x, ξ), and γ(x, ξ) depend on both x and ξ, the critical cone Cqp(x) depends on
x only. From the above representation of Cqp(x), it follows that the lineality space of Cqp(x) is equal to

Cqp(x) ∩ (−Cqp(x) ) =
⋂

i∈A(x)

{ v ∈ <n : Ai•v = 0 } .

We recall that a matrix M is copositive on a cone C if xTMx ≥ 0 for all x ∈ C; M is strictly copositive on C if
xTMx > 0 for all nonzero x ∈ C.

Proposition 1 below summarizes various known facts about the QP (1). Part (a) provides necessary and sufficient
conditions for a feasible vector to be a (strict) local minimum; part (b) provides necessary and sufficient conditions
for the QP to have a finite optimal solution; part (c) asserts that a quadratic program has only finitely many
(possibly zero) stationary values — i.e., values of the objective function at the stationary points, one of which must
be the minimum objective value of the QP, provided that the latter is finite. The significance of part (c) is that
while the set of stationary points of a QP is in general a continuum, the set of its stationary values is finite. Proofs
of these results can be found in the cited references.

Proposition 1 Suppose that the QP (1) is feasible.
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(a) [26] A feasible vector x ∈ X is a (strict) local minimum of (1) if and only if x is a KKT point and Q is (strictly)
copositive on Cqp(x).

(b) [9] The QP (1) attains a global minimum solution if and only if its objective function is bounded below on X,
or equivalently, on the feasible rays of X; furthermore, this holds if and only if (i) Q is copositive on D, and (ii)
(c+Qx)T d ≥ 0 for all (x, d) ∈ X ×D satisfying dTQd = 0.

(c) [25] The quadratic objective function attains finitely many values on the set of stationary points of (1).
(d) [12] If the QP (1) has a finite optimal solution, then the minimum objective value is equal to the minimum

stationary value. ut

Thus, if (1) has an optimal solution, then such a solution can be computed by solving the following LPCC
(recall the equality (3)):

minimize
(x,ξ)∈Rn+m

cTx− bT ξ

subject to 0 = c+Qx+AT ξ

0 ≤ ξ ⊥ b−Ax ≥ 0.

(4)

Nevertheless, the above LPCC alone does not provide the needed information to determine if the QP attains a
finite minimum; see the example (6) below. The goal of this paper is to propose a finite procedure for filling this
gap, via the introduction of an augmented LPCC whose status will provide a certificate for the finite solvability of
the QP. Furthermore, we will discuss how the practical implementation of the procedure can be enhanced by the
generation of certain new kinds of cutting planes that must be satisfied by an optimal solution of the QP, if the
latter exists.

For ease of later reference, we state the LPCC in its general form. Given vectors and matrices: c ∈ Rn, d ∈ Rm,
e ∈ Rm, f ∈ Rk, A ∈ Rk×n, B ∈ Rk×m, and C ∈ Rk×m, the LPCC is to find a triple (x, y, w) ∈ Rn × Rm × Rm in
order to globally

minimize
(x,y,w)

cTx+ dT y + eTw

subject to Ax+By + Cw ≥ f

and 0 ≤ y ⊥ w ≥ 0.

(5)

The global resolution of this problem means the generation of a certificate showing that the problem is in one of its
3 possible states: (a) it is infeasible, (b) it is feasible but unbounded below, or (c) it attains a finite optimal solution.
Needless to say, linear equations (in addition to linear inequalities as stated above) connecting the variables (x, y, w)
are allowed in the constraints of the LPCC; for convenience of presentation, such equality constraints are omitted.

2.1 Some insights

If the QP (1) is unbounded below, a feasible ray on which the objective function is unbounded need not emanate
from any of the stationary points or their convex hull. A simple example is the following QP, which also shows that
the finiteness assumption cannot be dropped in part (d) of Proposition 1:

minimize
(x1,x2)∈R2

(x1 − 1 ) (x2 − 1 )

subject to x1, x2 ≥ 0.
(6)

This QP has a unique stationary point, namely, (1, 1). The recession cone of the feasible region is R2
+. It is clear

that the objective function is bounded below on any feasible ray starting at the stationary point. Yet the same
function is unbounded below on the ray {(0, τ) : τ ≥ 0} emanating from the origin.

The above example illustrates a noteworthy property of a QP. To explain this property, note that if d ∈ D is
such that dTQd > (<)0, then for any vector x, q(x+ τd)→∞(−∞) as τ →∞. Thus, as far as the boundedness
of the quadratic objective function on feasible rays is concerned, the directions of most interest are those recession
directions d for which dTQd = 0. Let D0 be the set of these directions, which we call the essential recession
directions. Also, let S be the convex hull of stationary points of the QP (1). The result below states that the
objective of (1) is always bounded below on all feasible rays emanating from any convex combination of stationary
points along any essential recession direction.

Proposition 2 For any (x, d) ∈ S × D0, lim inf
τ→∞

q(x+ τd) > −∞.
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Proof. Since (c+Qx̄)T d ≥ 0 for all stationary points x̄ and all recession directions d, it follows that (c+Qx)T d ≥ 0
for all (x, d) ∈ S × D0. Thus, we have q(x+ τd) = q(x) + τ(c+Qx)T d+ 1

2τ
2dTQd ≥ q(x) for all τ ≥ 0. ut

Thus we cannot simply focus on the stationary points or their convex combinations to check the (un)boundedness
of the QP (1). Instead, we need to broaden the search to points outside the convex hull of stationary points in
order to identify unbounded rays. Note that (1) is equivalent to

minimize
x±∈R2n

1
2 (x+ − x− )TQ(x+ − x− ) + cT (x+ − x− )

subject to A(x+ − x− ) ≤ b

and x± ≥ 0,

(7)

in the sense that (1) is unbounded or has a finite optimal solution if and only if (7) is unbounded or has a finite
optimal solution, respectively. Thus, by working with (7) if necessary, we may assume that the recession cone D
of the feasible set X of (1) is contained in the nonnegative orthant Rn+. Simplifying the notation, this assumption
will facilitate the truncation of the recession cone into compact subsets with the addition of the single constraint
1Tnd ≤ ρ, for a positive scalar ρ, where 1n is the n-vector of all ones. The assumption implies that A has full column
rank. Indeed if d is a vector in the kernel of A, then ±d ∈ D and so ±d ≥ 0, which yields d = 0.

Under the assumption D ⊆ Rn+, we note that the truncated QP:

minimize
x∈Rn

q(x) ≡ 1
2 x

TQx+ cTx

subject to Ax ≤ b

and 1Tnx ≤ ρ

(8)

must have a nonempty, bounded feasible set for all ρ > 0 sufficiently large. Hence, an optimal solution, say xρ,
exists, which must satisfy, along with multipliers (ξρ, tρ), the following KKT conditions:

0 = c+Qxρ +AT ξρ + tρ 1n
0 ≤ ξρ ⊥ b−Axρ ≥ 0

0 ≤ tρ ⊥ ρ− 1Tnx
ρ ≥ 0;

moreover, the triple (xρ, ξρ, tρ) can be obtained by solving the LPCC:

minimize
(x,ξ,t)∈Rn+m+1

cTx− bT ξ − t ρ

subject to 0 = c+Qx+AT ξ + t1n
0 ≤ ξ ⊥ b−Ax ≥ 0

0 ≤ t ⊥ ρ− 1Tnx ≥ 0.

(9)

This follows from part (d) of Proposition 1 because on the set of stationary points of (8), q(x) = 1
2 (cTx− bT ξ− t ρ)

for all triples (x, ξ, t) satisfying (9).
If the QP (1) is not known to be bounded below, we need another LPCC to resolve this issue. In turn, this is

motivated by an LPCC characterization of the vectors in the cone D0. Specifically, by considering the copositivity
of Q on D, we are led to the following truncated QP:

minimize
d∈Rn

1
2 d

TQd

subject to Ad ≤ 0

and 1Tnd = 1,

(10)

which is equivalent to the following LPCC:

minimize
(d,λ,s)∈Rn+m+1

−s

subject to 0 = Qd+ATλ+ s1n
0 ≤ λ ⊥ −Ad ≥ 0

s free, 1− 1Tnd = 0.

(11)

Specifically, Q is copositive on D if and only if the LPCC (11) has a nonnegative optimal objective value. By part
(b) of Proposition 1, the copositivity of Q on D is a necessary condition for the existence of an optimal solution to
the QP.
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3 The Equivalent LPCC

By constructing a single LPCC with an appropriate objective function from the constraints of the two LPCCs
(9) and (11) and adding an extra complementarity restriction, we can completely resolve the boundedness of the
original QP (1). The key thing in such a combination is to treat the large parameter ρ in (9) implicitly. This leads
to the objective function of the following LPCC:

minimize
(x,d,ξ,λ,t,s)∈R2n+2m+2

−t

subject to 0 = c+Qx+AT ξ + t1n Lagrangian equation (9) of truncated QP (8)

0 = Qd+ATλ+ s1n from the ray KKT system (11)

0 ≤ ξ ⊥ b−Ax ≥ 0 standard complementarity

0 ≤ λ ⊥ −Ad ≥ 0 standard ray complementarity

0 ≤ ξ ⊥ −Ad ≥ 0 connecting KKT multiplier with ray

0 ≤ s, 1Tnd ≥ 1 ensuring nonzero ray.

(12)

The additional complementarity condition: 0 ≤ ξ ⊥ −Ad ≥ 0 is needed to account for the possible unboundedness
on the feasible ray x+ τd.

Theorem 1 Suppose the QP (1) is feasible and that D ⊆ Rn+. This QP is unbounded below if and only if the
LPCC (12) has a feasible solution with a negative objective value.

Proof. First assume (12) has a feasible solution (x̄, d̄, ξ̄, λ̄, t̄, s̄) with a negative objective value. This solution satisfies
d̄TQd̄ = −s ≤ 0 and (c + Qx̄)T d̄ = −t̄ < 0. It follows from Proposition 1(b) that the quadratic program (1) is
unbounded below.

Now suppose that QP (1) is unbounded below. Let {ρk} be a sequence of increasing scalars tending to ∞ such
that with xk being an optimal solution of the truncated QP (8) with ρ = ρk, we have

lim
k→∞

q(xk) = −∞.

Let (ξk, tk) be a pair of KKT multipliers corresponding to xk such that

(xk, ξk, tk ) ∈ argmin
(x,ξ,t)∈Rn+m+1

cTx− bT ξ − t ρk

subject to 0 = c+Qx+AT ξ + t1n
0 ≤ ξ ⊥ b−Ax ≥ 0

and 0 ≤ t ⊥ ρk − 1Tnx ≥ 0.

(This is the KKT system (9) of the truncated QP (8) with ρ = ρk.) If tk = 0, then xk is a stationary point of the
original QP (1). Since the quadratic function q(x) attains only finitely many values on the set of such stationary
points, it follows that except for finitely many k’s, we must have tk > 0. Consequently, without loss of generality,
we may assume that tk > 0 for all k, implying that ρk = 1Tnx

k for all k; thus the sequence {xk} is unbounded. Let
α be an index set (possible empty) with complement ᾱ such that (Axk − b)α = 0 and (Axk − b)ᾱ < 0 for infinitely
many k. By working with the corresponding subsequence of {xk}, we may assume without loss of generality that

xk ∈ X̂ ≡ {x ∈ X : (Ax− b )α = 0 } and (Axk − b )ᾱ < 0, ∀ k.

Thus, by complementarity, ξkᾱ = 0 for all k. Let X̂e be the convex hull of the extreme points of X̂ and D̂ be the
recession cone of X̂; note that

D̂ = { d ∈ D : (Ad )α = 0 } ⊂ Rn+.
It follows that for each k, we can write

xk ≡ x̂k + τk d
k,

for some x̂k ∈ X̂e, with τk a nonnegative scalar and dk ∈ D̂ satisfying 1Tnd
k = 1. Since {xk} is unbounded, we

may assume, by working once more with a subsequence if necessary, that τk > 0 for all k; since each dk has unit
1-norm, it follows that lim

k→∞
τk =∞. Without loss of generality, we may assume that the sequence {dk} converges

to a vector d∞, which must necessarily belong to D̂ and satisfy 1Tnd
∞ = 1. Since 0 ≤ ξk ⊥ −Ad∞ ≥ 0, it remains
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to show that a pair (λ, s) exists such that 0 = Qd∞ + ATλ+ s1n, 0 ≤ λ ⊥ −Ad∞ ≥ 0 and s ≥ 0. Letting Aα• be
the rows of A indexed by α, we have

0 =
1
τk

(
c+Qx̂k

)
+Qdk + (Aα• )T

(
1
τk
ξkα

)
+
tk
τk

1n.

Since
1
τk

(
c+Qx̂k

)
+Qdk → Qd∞, it follows from the closedness of a polyhedron that a nonnegative pair (λ∞α , s∞)

exists such that 0 = Qd∞+(Aα•)Tλ∞α +s∞1n. [This pair (λ∞α , s∞) is not necessarily the limit of
1
τk

(ξkα, tk).] Letting

λ∞ᾱ = 0 completes the proof of the theorem. �

Summarizing the derivations, we conclude that the complete resolution of the QP (1) with D ⊆ Rn+ can
be accomplished by solving two LPCCs: the first one (12), which can be written in the compact form: find
(x, d, ξ, λ, y, w, ζ, ϕ, t, s) in R2n+6m+2 to (where Im denotes the identity matrix of order m)

minimize −t
subject to (x, d ) free , ( ξ, λ, s ) ≥ 0, 1Tmd ≥ 1

c

0

b

0

0

0


+



Q 0 AT 0 1n 0

0 Q 0 AT 0 1n
−A 0 0 0 0 0

0 −A 0 0 0 0

0 0 Im 0 0 0

0 0 Im Im 0 0





x

d

ξ

λ

t

s


+



0 0

0 0

−Im 0

0 −Im
0 0

0 0


(
y

w

)
+



0 0

0 0

0 0

0 0

−Im 0

0 −Im


(
ζ

ϕ

)
= 0

and 0 ≤

(
y

w

)
⊥

(
ζ

ϕ

)
≥ 0

to determine if the QP (1) has a finite optimal solution; and, once the existence of an optimal solution is affirmatively
determined, the second one (4) to compute such a solution.

4 Solving the General LPCC

To pave the way for the solution of the LPCCs derived from the QPs, we summarize the key computational steps
of the logical Benders method for solving the LPCC in general form (5); details of the method and a proof of finite
termination with the asserted conclusions are presented in [21]. To begin, we consider a mixed integer program
(MIP) formulation of (5) with a conceptually very large parameter θ > 0:

minimize
(x,y,w,z)

cTx+ dT y + eTw

subject to Ax+By + Cw ≥ f (u )

−w ≥ −θ z ( v+ )

−y ≥ −θ ( 1− z ) ( v− )

w, y ≥ 0; and z ∈ { 0, 1 }m

where the variables u and v± written in the parentheses are the dual variables of the respective constraints. A main
difficulty in dealing with the above MIP is that the scalar θ is not explicitly available; indeed, it may not even exist!
The master problem in the logical Benders method involves only the z variables; the remaining variables appear
in a subproblem, which is used to generate constraints for the master problem.
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Associated with the above MIP, we define the value function:

{±∞} ∪ Rn 3 ϕ(z) ≡ maximum
u,v±

fTu

subject to ATu = c

BTu− v− ≤ d

CTu− v+ ≤ e

u, v± ≥ 0

and zT v+ + ( 1− z )T v− ≤ 0.

Letting α ≡ {i : zi = 1} denote the support of z and ᾱ be the complement of α in {1, . . . ,m}, and noticing that
any feasible solution (u, v±) to the above LP must satisfy v+

α = 0 and v−ᾱ = 0, we arrive at the following simplified
expression for the above value function: with α , supp(z),

ϕ(z) = maximum
u≥0

fTu

subject to ATu = c

(B•ᾱ )Tu ≤ dᾱ

and (C•α )Tu ≤ eα,

(13)

where B•ᾱ and C•α denote the columns of B and C indexed by ᾱ and α, respectively, and dᾱ and eα denote the
subvectors of d and e indexed by these index sets, respectively. [The omitted constraints (B•α)Tu− v+

α ≤ dα and
(C•ᾱ)Tu − v−ᾱ ≤ eᾱ can always be satisfied by choosing v+

α and v−ᾱ sufficiently large.] It is easily seen that the
maximization problem (13) is the dual of the linear program (LP) piece of the LPCC (5) corresponding to the
binary variable z, or equivalently, the index set α:

minimize
(x,y,wα,yᾱ)

cTx+
∑
i 6∈α

diyi +
∑
i∈α

eiwi

subject to Ax+B•ᾱyᾱ + C•αwα ≥ f

wα ≥ 0, and yᾱ ≥ 0,

(14)

where we have dropped the variables yα = 0 and wᾱ = 0. Associated with a given binary vector z, we also define
the homogeneous value function: with α , supp(z),

{ 0,∞} 3 ϕ0(z) = maximum
u≥0

fTu

subject to ATu = 0

(B•ᾱ )Tu ≤ 0

and (C•α )Tu ≤ 0

(15)

and the set:
Z ≡ {{ 0, 1 }m : ϕ0(z) = 0 },

whose elements are the feasibility descriptors of the LP pieces of the LPCC (5). Specifically, z ∈ Z if and only
if the LP (14) is feasible. The following result gives the fundamental connection between the LPCC (5) and the
minimization problem

minimize ϕ(z) : z ∈ Z. (16)

In this result, we let LPCCmin ∈ {±∞} ∪ R denote the extended optimal objective value of (5). A proof of the
theorem can be found in [21].

Theorem 2 The following three statements hold:

(a) the LPCC (5) is infeasible if and only if min
z∈Z

ϕ(z) =∞ (i.e., Z = ∅);
(b) the LPCC (5) is feasible and has an unbounded objective value if and only if min

z∈Z
ϕ(z) = −∞ (i.e., z ∈ Z exists

such that ϕ(z) = −∞);
(c) the LPCC (5) attains a finite optimal objective value if and only if −∞ < min

z∈Z
ϕ(z) <∞.
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In all cases, LPCCmin = min
z∈Z

ϕ(z); moreover, for any z ∈ {0, 1}m for which ϕ(z) > −∞, LPCCmin ≤ ϕ(z). ut

At the beginning of an iteration, a pool Ẑ of satisfiability constraints in the binary variable z, each of the form:∑
i∈I

zi +
∑
j∈J

( 1− zj ) ≥ 1, (17)

for two disjoint index subsets I and J of {1, . . . ,m}, and an upper bound, denoted LPCCub, to LPCCmin are
given. [Initially, LPCCub = ∞ and Ẑ is empty.] Select a binary vector ẑ ∈ {0, 1}m satisfying the constraints in Ẑ
by a specialized algorithm for solving satisfiability problems, such as the max-sat method described in [23,4]. If no
such ẑ exists, then either (5) is infeasible or a globally optimal solution to the LPCC (5) is on hand; in turn this will
depend on whether Ẑ contains point cuts (see below for definition). Otherwise, with ẑ computed, we consider the
LP ϕ(ẑ), which is either: (a) infeasible; (b) feasible and unbounded; or (c) feasible with a finite optimum solution.
In case (a), we consider the homogeneous problem ϕ0(ẑ). If ϕ0(z) =∞, then a nonzero ray ur of (15) is obtained,
which defines the ray cut: ∑

i∈α:(BTur )i>0

( 1− zi ) +
∑

i∈ᾱ:(CTur )i>0

zi ≥ 1. (18)

A sparsification of this cut (see below) will be added to the pool Ẑ of generated cuts. If (15) has zero as its optimal
objective value, then the LPCC is feasible and unbounded. In case (b), an extreme ray ur of (13) is obtained and
a similar cut is formed. In case (c), an optimal extreme point solution up of (13) is obtained; this point defines a
point cut of the form: ∑

i∈α:(BTup−d )i>0

( 1− zi ) +
∑

i∈ᾱ:(CTup−e )i>0

zi ≥ 1. (19)

A sparsification of this cut will be added to the pool Ẑ of generated cuts. The iteration ends with a new pool Ẑ
if the algorithm is not yet terminated with a bounded homogeneous problem (15). As observed and explained in
detail in [21], sparsification of the satisfiability inequalities is a very important step in the practical success of the
overall algorithm.

To end this section, we summarize the key steps in a finite algorithm for globally resolving the LPCC.

Sketch of an algorithm for the general LPCC

Step 0. Initialize with every binary vector z feasible in the master problem. Generate some initial cuts by a
pre-processing procedure.

Step 1. Solve a satisfiability feasibility system to determine a feasible binary vector z in the master problem
and let α ≡ supp(z). If no such feasible vector is obtained, then terminate with the conclusion that either the
LPCC is infeasible (no point cut in the system) or a globally optimal solution of the LPCC is at hand (at least
one point cut in the system). Otherwise, with a binary vector z computed, continue.

Step 2. Solve the homogeneous LP (15). If ϕ0(z) = ∞, then a ray cut is obtained. Otherwise, solve either the
primal LP (14) or its dual (13) to obtain either a point cut or an unboundedness certificate for the LPCC.

Step 3. Apply a problem-specific procedure to sparsify the obtained cut(s), by solving tight LP relaxations of
the LPCC restricted by the sparsified cut under testing. Add the sparsified cuts to update the master problem
satisfiability system. Return to Step 1.

5 Specialization to Solvable QPs

The details of the algorithm sketched above lie in the generation of the cuts and the sparsification step. This section
presents these details for the LPCC (4), whose conceptual MIP formulation is:

minimize
(x,ξ,z)∈Rn+2m

cTx− bT ξ

subject to 0 = c+Qx+AT ξ

0 ≤ b−Ax ≤ θ z

0 ≤ ξ ≤ θ ( 1m − z )

and z ∈ { 0, 1 }m.

(20)
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The assumption that D ⊆ Rn+ is not used in this section, except in Corollary 1, where we assume explicitly that
the matrix A contains the negative identity matrix of order n. By focusing on the LPCC (20), we are restricting
the discussion in this section to the solvable QP (1), which we assume attains a finite optimal solution. In the next
section, we discuss the LPCC (12) for a copositive QP that is not necessarily bounded.

By sparsification of the satisfiability inequality (17), we mean testing if the sparser inequality is valid:

∑
i∈I1

zi +
∑
j∈J1

( 1− zj ) ≥ 1, (21)

where I1 and J1 are (proper) subsets of I and J , respectively. Whereas the goal of the sparsification step is to
obtain a valid satisfiability inequality with as few terms as possible, one must in general balance the work required
in this step (see below) with the strength of the resulting sparsified inequality. In particular, a judicious choice of
the subsets I1 and J1 is important for the overall efficiency of the algorithm; such a choice remains an open task
that deserves further investigation.

To test the validity of the constraint (21), we set zi = 0 for all i ∈ I1 and zj = 1 for all j ∈ J1 in (20) and
restore the complementarity formulation of the resulting restricted IP:

minimize
(x,ξ)∈Rn+2m

cTx− bT ξ

subject to 0 = c+Qx+AT ξ

0 ≤ b−Ax , w ⊥ ξ ≥ 0

ξJ1 = 0 and ( b−Ax )I1 = 0,

(22)

which remains an LPCC. We relax the complementarity constraints by lifting certain products of variables as
follows. Specifically, defining

ζik ≡ xiξk for all i, k such that aki 6= 0 and k 6∈ J1, (23)

we have, for all k 6∈ J1 ∪ I1,

0 = ξkwk = bkξk −
∑

i : aki 6=0

aki ζik.

A (very loose) LP relaxation of (22) is

minimize
(x,ξ,y,ζ)

cTx− bT ξ

subject to 0 = c+Qx+
∑
j 6∈J1

(Aj• )T ξj

0 = ( b−Ax )i, i ∈ I1

0 ≤ ( b−Ax )i, i 6∈ I1

0 = bkξk −
∑

i : aki 6=0

aki ζik, k 6∈ J1

and ξj ≥ 0, j 6∈ J1,

(24)

wherein the nonlinear definitions of the variables ζik are dropped. If the optimal value of the relaxation is larger
than a known upper bound on the optimal value of (4) then the sparser inequality (21) is valid. Needless to say,
such a preliminary relaxation cannot be expected to be tight without further restricting these auxiliary variables.
Presently, we are actively researching this general issue. The reader is referred to [32] for some bounding and
enveloping techniques for handling products of variables, to [31] for a disjunctive approach to handling the quadratic
equality (23), and to the Ph.D. dissertation [20] for the detailed specialization of the scheme to problems with
bounded variables. Linear programming relaxations of (4) and (22) can be tightened by adding constraints based
on second-order optimality conditions for the quadratic program (1), as we discuss in the remainder of this section.
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5.1 Valid cuts from second-order necessary conditions

The second-order necessary optimality condition for the QP (1) stipulates that if x is a local minimum, then the
matrix Q must be copositive on Cqp(x). Consequently, we have the following corollary.

Proposition 3 If x is a local minimum of the QP (1), then Q is positive semidefinite on the lineality space of
Cqp(x). ut

Proposition 3 motivates some valid inequalities for the MIP (20). To introduce these inequalities, we define the
family of index sets:

J ≡ {J ⊆ { 1, . . . ,m } : Q is not positive definite on the kernel of the matrix AJ• }

and the set:

Z2 ≡

 z ∈ Z :
∑
j 6∈J

( 1− zj ) ≥ 1, ∀ J ∈ J

 .

We call each inequality in Z2 corresponding to a J ∈ J a 2nd-order cut of the mixed IP (20). If A has full column
rank, then every index set J ∈ J must be a proper subset of {1, . . . ,m}; thus, the complement of such a J must
be nonempty. Roughly speaking, the proposition below asserts that if the QP (1) has an optimal solution, then it
must have one such that a corresponding binary descriptor of that solution belongs to the set Z2, or equivalently,
that for every index set J ∈ J , at least one constraint corresponding to an index j 6∈ J must be satisfied as an
equality by that optimal solution.

Proposition 4 Assume that A has full column rank. If the QP (1) has a finite optimal solution, then QPmin =
min
z∈Z2

ϕ(z).

Proof. It suffices to show QPmin ≥ min
z∈Z2

ϕ(z); in turn, it suffices to identify a binary vector z ∈ Z2 such that

QPmin = ϕ(z). For this purpose, take any optimal solution x∗ of (1); let ξ∗ be a KKT multiplier associated with
x∗. Let z0 ∈ Z be such that supp(z0) ≡ {i : (b−Ax∗)i > 0} ≡ α0. Let ᾱ0 be the complement of α0 in {1, . . . ,m}.
The pair (x∗, ξ∗) must be an optimal solution to the LP piece corresponding to α0; i.e., QPmin = ϕ(z0), where

ϕ(z0) = minimize
(x,ξ)∈Rn+m

cTx− bT ξ

subject to 0 = c+Qx+AT ξ

0 = ( b−Ax )ᾱ0

0 ≤ ( b−Ax )α0

0 = ξα0 , and 0 ≤ ξᾱ0 .

Suppose that
∑
j 6∈J0

(1− z0
j ) = 0 for some J0 ∈ J . We then have z0

j = 1 for all j 6∈ J0. Thus ξ∗j = 0 for all j 6∈ J0. If

(b−Ax∗)bj = 0 for some index ĵ 6∈ J0, then defining the binary vector z∗ such that z∗k = z0
k for all k 6= ĵ and z∗bj = 0,

we see that ϕ(z∗) = QPmin and z∗ ∈ Z2. Thus, without loss of generality, we may assume that (b−Ax∗)j > 0 for
all j 6∈ J0. Since J0 ∈ J , there exists a nonzero vector d satisfying Aj•d = 0 for all j ∈ J0 and dTQd ≤ 0. Since d is
nonzero, the full column rank of A implies that Ai•d 6= 0 for at least one index i 6∈ J0. Without loss of generality,
we may assume that Ai•d > 0 for at least one such index i. It then follows that x∗+ τd remains feasible to the QP
(1) for all τ > 0 sufficiently small; moreover, with τ > 0 properly chosen, bj = Aj•(x∗+ τd) for at least one j 6∈ J0.
Furthermore, we have

0 = ( c+Qx∗)T d+
m∑
j=1

ξ∗j (Aj•d ) = ( c+Qx∗)T d.

Consequently, it follows that

cT (x∗ + τd ) + 1
2 (x∗ + τd )TQ(x∗ + τd ) = cTx∗ + 1

2 (x∗ )TQx∗ + τ ( c+Qx∗ )T d+
τ2

2
dTQd

≤ cTx∗ + 1
2 (x∗ )TQx∗ = QPmin.
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Hence for an appropriate τ > 0 sufficiently small, x∗ + τd remains an optimal solution to the QP (1) and satisfies
at least one more constraint as an equality than x∗. Proceeding in this manner, we arrive at either an optimal
solution of the QP with a corresponding binary descriptor belonging to Z2, or an optimal solution that satisfies all
the constraints as binding. In either case, the proposition follows. ut

In principle, we could enlarge the family of 2nd-order cuts by employing the original 2nd-order condition that
involves the copositivity of Q on critical cones. The reason for restricting to the above family J is that checking
positive definiteness is much simpler than checking copositivity.

5.2 More on the 2nd-order cuts

Applicable only to QPs known to be solvable, the 2nd-order cuts are quite different in nature from the usual cutting
planes in integer programming. Indeed, the latter cuts have the property that they maintain all the feasible integer
points; therefore, in standard integer programming, it is essential that the derived cuts be as tight as possible, facets
would be best. These facets allow the LP relaxations to produce tight bounds on the optimal objective value of the
integer program. In contrast, a 2nd-order cut has the property that it cuts off multiple LP pieces of the LPCC (4)
that do not contain a globally optimal solution of the QP (1), thereby removing some stationary points that are not
optimal solutions. In what follows, we identify a class of non-convex QPs for which these valid inequalities remove
sufficiently many LP pieces so that only polynomially bounded many stationary pieces are left, thereby allowing
the original non-convex QP to be solvable in polynomial time by enumerating the remaining effective stationary
LP pieces.

Proposition 5 Let A be an (n + k) × n matrix with full column rank and b be an (n + k)-vector such that the
feasible set of (1) is nonempty and bounded, where k > 0 is a fixed integer. Let Q be an arbitrary symmetric matrix
of order n with no more than p− 1 positive eigenvalues for a fixed integer p ≥ 1. Then a globally optimal solution
to the QP (1) can be computed in time that is a polynomial in n and the size of the input tuple (Q,A, b, c).

Proof. The assumption of the feasible region X implies that the QP (1) is solvable for any symmetric matrix Q
of order n and vector c of dimension n. For a fixed integer p ≥ 1, let Q be an arbitrary symmetric matrix with no
more than p − 1 positive eigenvalues (In particular, p = 1 means that Q is negative semidefinite.) We claim that
Q is not positive definite on the kernel of AJ• for any index set J such that the rank of AJ• is equal to n − p.
Indeed, for any such J , the kernel of AJ• has dimension p. Let Z be an n× p matrix whose columns form a basis
of the kernel of AJ•. The positive definiteness of Q on this kernel is equivalent to the positive definiteness of the
p× p matrix ZTQZ. Let Q = PΓPT be an orthogonal decomposition of Q, with P being an orthogonal matrix of
eigenvectors of Q and Γ being a diagonal matrix of eigenvalues of Q. Note that Γ has no more than p− 1 positive
diagonal entries. We then have ZTQZ = Ẑ T Γ Ẑ, where Ẑ , PTZ is of order n× p. Thus,

ZTQZ =
n∑
i=1

Γii ( Ẑi• )T Ẑi• =
∑

i :Γii>0

Γii ( Ẑi• )T Ẑi• +
∑

i :Γii<0

Γii ( Ẑi• )T Ẑi•

with Ẑi• = (P•i)TZ being a p-dimensional row vector. Since there are no more than p− 1 positive Γii, there exists
a nonzero p-vector v such that Ẑi•v = 0 for all i such that Γii > 0. Hence,

vTZTQZv =
∑

i :Γii<0

Γii ( Ẑi•v )2 ≤ 0

establishing the claim. Thus, for any index J such that rank of AJ• is n− p, we have∑
j 6∈J

( 1− zj ) ≥ 1.

Since any index set J ⊂ {1, . . . , n + k} of cardinality n − p is contained in an index set Ĵ of cardinality ≥ n − p
such that A bJ• has rank n− p, it follows that∑

j 6∈J

( 1− zj ) ≥
∑
j 6∈ bJ

( 1− zj ) ≥ 1,

or equivalently, ∑
j 6∈J

zj ≤ (n+ k − | J | − 1 ) = k + p− 1.
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Thus only those binary vector z ∈ {0, 1}n+k with at most k+p−1 nonzero components are candidates for optimality.

The total number of such binary z’s is bounded by
k+p−1∑
i=0

(
n+ k
i

)
which is a polynomial in n for (k, p) fixed.

Consequently, the number of effective LP pieces of stationary points that may contain an optimal solution of the
QP is a polynomial in n. Since LPs are polynomially solvable, it follows that so is this class of non-convex QPs. �

Proposition 5 relies on the fact that if Q has at most p − 1 positive eigenvalues (thus at least n − (p − 1)
non-positive eigenvalues), then only those LP pieces of the LPCC (4) with at least n − (p − 1) constraints set
as equations can contain an optimal solution of the QP (1). The proof of this fact is very similar to that of a
nonlinear programming result proved in [15], which when specialized to the QP asserts [10] that if Q has s negative
eigenvalues (thus n− s nonnegative eigenvalues) and if the only constraints are x ≥ 0, then at least s constraints
must be binding at any optimal solution of the QP. Here we have improved this previous result by including the
zero eigenvalues of Q in the count. This is possible because the Hessian of the Lagrangian of the QP is a constant,
whereas it is not for a general nonlinear program as in the treatment of [15]. Neither [15] nor [10] went on to deduce
the polynomial solvability of the QP as Proposition 5 did. This conclusion is based on the LPCC formulation (4).
The general quadratic programming problem with just one negative eigenvalue was shown to be NP-Complete by
Pardalos and Vavasis [30]; the number of constraints in their construction grows more quickly than our limit of
n+ k.

Since testing the copositivity of a matrix on a polyhedral cone is equivalent to solving a quadratic program on
a truncated (thus compact) section of the cone, we deduce the following corollary of Proposition 5.

Corollary 1 Let A ,
[
A ′

−In

]
where A ′ ∈ Rk×n with k > 0 being a fixed integer. Testing the copositivity of a

matrix Q ∈ Rn×n with a bounded number of positive eigenvalues on the cone D , {d | Ad ≤ 0} can be accomplished
in time that is a polynomial in n and the size of the input pair (Q,A ′). �

In summary, apart from its practical significance in providing valid cuts to the MIP formulation of the LPCC
(20), the 2nd-order cuts have allowed us to identify a class of non-trivial, non-convex QPs that are solvable in
polynomial time. In this application, the satisfiability inequalities in the set Z2 facilitate the counting of the
effective LP pieces and allow us to easily eliminate the non-optimal pieces.

6 Copositive QPs

We next discuss the LPCC (12) under the assumption that Q is copositive on the recession cone D. The main goal
in this discussion is to show how the solution of this LPCC can be decoupled in the (x, ξ, t) and (d, λ) variables
separately, thereby avoiding the explicit joint treatment of the repeated complementarities: 0 ≤ λ ⊥ Ad ≤ 0 and
0 ≤ ξ ⊥ Ad ≤ 0. In the process, we also obtain some special cuts (cf. the inequalities in the set Zcp) that are specific
to this LPCC, which are derived by exploiting the copositivity of Q on the recession cone D. For the discussion in
this section, we assume that D ⊆ Rn+.

Any feasible solution to (12) must satisfy

0 = dT (Qd+ATλ+ s1n) = dTQd+ s1Tnd.

If Q is copositive then d satisfies dTQd ≥ 0. It follows that the solution must satisfy dTQd = 0 and s = 0. Thus, if
Q is copositive then the variable s in (12) can be restricted to be equal to zero.
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The first thing to notice is that even though there are 3 complementarity conditions in (12), we only need two
sets of binary variables z and ẑ:

minimize
(x,d,ξ,λ,z,bz,t) −t
subject to 0 = c+Qx+AT ξ + t1n

0 = Qd+ATλ

0 ≤ b−Ax ≤ θ z

0 ≤ −Ad ≤ θ ẑ

0 ≤ ξ ≤ θ ( 1m − z )

0 ≤ λ ≤ θ ( 1m − ẑ )

−Ad ≤ θ z

1 ≤ 1Tnd

and z, ẑ ∈ { 0, 1 }m.

(25)

The next thing to notice is that the above MIP is equivalent to

minimize
(x,d,ξ,λ,z,ez,t) −t
subject to 0 = c+Qx+AT ξ + t1n

0 = Qd+ATλ

0 ≤ b−Ax ≤ θ z

0 ≤ −Ad ≤ θ z̃

0 ≤ ξ ≤ θ ( 1m − z )

0 ≤ λ ≤ θ ( 1m − z̃ )

1 ≤ 1Tnd

z̃ ≤ z

and z, z̃ ∈ { 0, 1 }m,

(26)

where we have replaced the inequality −Ad ≤ θz by the inequality z̃ ≤ z, which serves as a cut on the binary
variables. This equivalence can be seen as follows. Clearly, any tuple (x, d, ξ, λ, z, z̃, t) that is feasible to (26) must
be feasible to (25) with ẑ set equal to z̃, since −Ad ≤ θz̃ ≤ θz. Conversely, if (x, d, ξ, λ, z, ẑ, t) is feasible to (25),
then by letting z̃ , min(ẑ, z), it is easy to verify (x, d, ξ, λ, z, z̃, t) is feasible to (26). Consequently, (25) and (26)
are equivalent with the same feasible solutions in the variables (x, d, ξ, λ, z, t), although the variables ẑ and z̃ in the
two problems are not equivalent. The advantage of (26) is that its constraints decouple into two separable groups:


0 = c+Qx+AT ξ + t1n
0 ≤ b−Ax ≤ θ z

0 ≤ ξ ≤ θ ( 1m − z )

z ∈ { 0, 1 }m

 and



0 = Qd+ATλ

0 ≤ −Ad ≤ θ z̃

0 ≤ λ ≤ θ ( 1m − z̃ )

1 ≤ 1Tnd

z̃ ∈ { 0, 1 }m


that are linked by the inequality z̃ ≤ z involving only the binary variables. For a given binary vector z̃, the
right-hand system is closely related to the quadratic program:

minimize
d

1
2 d

TQd

subject to Ai•d = 0, i 6∈ supp(z̃ )

Ai•d ≤ 0, i ∈ supp(z̃ )

1Tnd ≥ 1.

(27)

In particular, if the right-hand system is feasible then this quadratic program has optimal value 0. Conversely, if
the quadratic program with z̃ = z̃0 has optimal solution d̃ with value 0 then d̃ solves (10), so the right-hand system
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is feasible for z̃ = z̃1 for some z̃1 ≤ z̃0. Generalizing (27), we define, for an arbitrary index subset J of {1, . . . ,m},
the following homogenous QP:

[ 0,∞ ) ∪ {∞} 3 ϕ0(J) , minimum
d

1
2 d

TQd

subject to d ∈ D(J),

where

D(J) ,


d : Ai•d = 0, i 6∈ J

Ai•d ≤ 0, i ∈ J

1Tnd ≥ 1

 ⊆ D.
If D(J) is empty, we take ϕ0(J) , ∞ (this is a standard convention in optimization); otherwise, since D(J) is a
subset of the recession cone D, by the copositivity of Q, it follows that ϕ0(J) is a finite, nonnegative scalar. The
computation of ϕ0(J) belongs to the class of solvable QPs to which Section 5 is applicable. Let

J , { J : ∞ ≥ ϕ0(J) > 0 }

and define

Zcp ,

 z ∈ { 0, 1 }m :
∑
j 6∈J

zj ≥ 1, ∀ J ∈ J

 . (28)

Index sets J in the family J are those for which either D(J) is empty or the matrix Q is strictly copositive on the
cone D(J). Thus, for any such J , the objective of the QP (1) cannot be unbounded below on the corresponding
subset {

x : Ai•x = bi, i 6∈ J

Ai•x ≤ bi, i ∈ J

}
⊆ X.

We call the inequalities in Zcp copositive cuts.
For a given binary vector z, we consider the following LP, which is obtained from (12) by dropping the ray

variables (d, λ) and the constraints involving them, and setting the original constraints Ax ≤ b corresponding to
the indices not in supp(z) as equalities:

ϕ(z) , minimum
(x,ξ,t)

−t

subject to 0 = c+Qx+AT ξ + t1n
ξi ≥ 0 = ( b−Ax )i, i 6∈ supp(z)

ξi = 0 ≤ ( b−Ax )i, i ∈ supp(z).

(29)

Proposition 6 Suppose that (1) is feasible and Q is copositive on D. This QP is unbounded below if and only if
a vector z ∈ Zcp exists such that (a) D(supp(z)) 6= ∅, (b) supp(z) 6∈ J , (c) (29) is feasible, and (d) ϕ(z) < 0.

Proof. Suppose that the QP is unbounded below. By Theorem 1, (12) has a feasible solution (x̄, d̄, ξ̄, λ̄, t̄) with
t̄ > 0. We have d̄ 6= 0 and d̄TQd̄ = 0. Let z be a binary vector so that supp(z) = {i : ξ̄i = 0}. We then have
(b− Ax̄i) = 0 = (Ad̄ )i for i 6∈ supp(z) and (b− Ax̄i) ≤ 0 ≥ (Ad̄ )i for i ∈ supp(z). Thus (x̄, ξ̄, t̄) is feasible to (29)
with t̄ > 0. Moreover, d̄ ∈ D(supp(z)) and supp(z) 6∈ J . It remains to show z ∈ Zcp. Assume for contradiction that
for some J ∈ J , zj = 0 for all j 6∈ J . Thus J contains supp(z). Hence d̄ ∈ D(J). Since Q is strictly copositive on
D(J), we arrive at a contradiction. This establishes the “only if” part of the proposition.

Conversely, suppose that z ∈ Z exists satisfying (a)–(d). Let (x̄, ξ̄, t̄) with t̄ > 0 be feasible to (29). By (a) and
(b), it follows that a nonzero d̄ ∈ D(supp(z)) exists such that d̄TQd̄ = 0. By the copositivity of Q on D, it follows
that d̄ is a minimizer of 1

2d
TQd on D. Hence there exists λ̄ such that

0 = Qd̄+ATλ

0 ≤ λ ⊥ Ad̄ ≤ 0

The pair ( d̄, λ̄ ), together with the tuple (x̄, ξ̄, t̄), is feasible to (12) with t̄ > 0. �

Proposition 6 provides a way to resolve the LPCC (12) by working with the value function ϕ(z) for various
binary vectors z ∈ Z. Below is a sketch of an algorithm of this kind to determine if the QP (1) is bounded below
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in the case where Q is copositive on D. At the beginning of an iteration, a pool Ẑ of satisfiability constraints in
the binary variable z is available. (These constraints may include some copositive cuts in Zcp.) Select an element
z ∈ Ẑ. If none exists, then terminate with the conclusion that the QP is bounded below. Otherwise, determine if
the LP (29) has a feasible solution with t > 0. If this LP is infeasible, then a ray cut in the z variables can be
generated by examining the dual of the LP. Sparsify such a cut and add the resulting sparsified cuts to the pool
Ẑ. Start a new iteration with an updated pool Ẑ with at least one more valid inequality. If the LP (29) is feasible
and ϕ(z) ≥ 0, then a point cut can be generated. If the LP (29) has a feasible solution with t > 0, then test the
strict copositivity of Q on D(supp(z)) by computing ϕ0(supp(z)). At the end of this test, either a copositive cut
can be generated or the algorithm terminates with the conclusion that the QP is unbounded below. In the former
case, the current iteration ends after sparsification of the copositive cut.

In essence, the algorithm first attempts to identify a binary vector z that satisfies conditions (c) and (d) in
Proposition 6. If unsuccessful, then either a point or ray cut is generated and another attempt is made. If successful,
then conditions (a) and (b) are tested. The latter test requires the solution of a bounded, copositive QP on a face
of the recession cone D. It is in this step that the other binary variable z̃ is used. Moreover, in considering the
(conceptual) MIP formulation of the quadratic program corresponding to ϕ0(supp(z)):

minimize
(d,λ,s)

s

subject to 0 = Qd+
∑

i∈supp(z)

(Ai• )Tλi +
∑

i6∈supp(z)

(Ai• )Tλi − s1n

0 ≤ λi ≤ θ ( 1− z̃i ), i ∈ supp(z)

0 ≤ −Ai•d ≤ θ z̃i, i ∈ supp(z)

0 = Ai•d i 6∈ supp(z),

1 = 1Tnd,

z̃i ∈ { 0, 1 }, i ∈ supp(z),

(30)

we can append a valid cut: ∑
i∈supp(z)\supp(z0)

z̃i ≥ 1 (31)

corresponding to any previously identified z0 such that ϕ0(supp(z0)) > 0. This is because for any z̃ that fails to
satisfy (31), the corresponding LP piece of (30) has been previously considered in the computation of ϕ0(supp(z0)) >
0. Thus, the cut (31) ensures that in solving (30), we will not revisit such a piece.

7 Simply Constrained QPs

In this section, we further specialize the discussion to three subclasses of indefinite QPs, and in the next section,
report computational results for their resolution. These 3 special classes of QPs are: (a) bounded-variable prob-
lems, (b) bounded-variable problems with one additional inequality constraint, and (c) nonnegatively constrained,
possibly unbounded problems. We restrict our discussion to these problems for the following reasons:

– Bounded-variable indefinite QPs have been studied extensively; our goal is to demonstrate, via computational
results and comparisons with the recent work [34], that the global resolution methods for solving LPCCs
enhanced by their special structures lead to promising new algorithms for solving these QPs.

– The second class of QPs provides credible evidence establishing the viability of the LPCC approach for solving
QPs with finite optima. Admittedly, one-constraint problems are very special; yet our discussion sheds light on
generalizations which we contend would require deeper investigation that goes beyond the scope of this paper.

– The third class of QPs provides supporting evidence showing that the LPCC approach is capable of positively
detecting unbounded problems, a task that no practical algorithm is known to be able to accomplish to date.

– Most importantly, whereas the primary goal of this paper is to provide compelling evidence to support the
LPCC approach to indefinite QPs, both theoretically and computationally, our contention is that to cover this
approach in full detail cannot be accomplished in a single work. Thus, with the theoretical results in Sections 3
through 6 and the preliminary computational results reported subsequently, we hope to convince the readers
that the LPCC is of fundamental importance in the treatment of general indefinite QPs and that a further
investigation of this approach is warranted in future research.
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We discuss the specialization of the second order cuts in this section. We refer the reader to the Ph.D. disser-
tation [20] for the detailed specialization of the scheme, including discussion of the point and ray cuts and their
sparsification.

7.1 Bounded-variable QPs

Consider the following QP with simple upper and lower bounds:

minimize
x

1
2 x

TQx+ cTx

subject to 0 ≤ x ≤ 1n,
(32)

where Q is symmetric. By our approach, the MIP formulation for this QP is: for θ > 0 sufficiently large,

minimize
(x,y,z,λ)

cTx− 1Tny

subject to 0 ≤ c+Qx+ y ≤ θ z

0 ≤ 1n − x ≤ θ λ

0 ≤ x ≤ θ ( 1n − z )

0 ≤ y ≤ θ ( 1n − λ )

and z, λ ∈ { 0, 1 }n.

(33)

A remark is in order. While a suitable scalar θ can easily be computed for this problem, the computational results
in [34] suggest that a specialized branch-and-cut method proposed by the authors of the reference outperforms
default minto [28] settings. Subsequently, we will compare our results with the branch-and-cut results; for this
purpose, we continue to use the above MIP without fixing θ.

Since x cannot equal 0 and 1 simultaneously, it follows that the inequality

( 1n − z ) + λ ≥ 1n, or equivalently, λ ≥ z, (34)

must be valid for all binary pairs (z, λ) satisfying (33).

Valid cuts from second order necessary conditions

We discuss the specialization of the second-order cuts determined by the low-order principal submatrices of Q. Being
consequences of Proposition 4, these cuts are sparse, easy to generate, and will be placed in the pre-processing step

of the algorithm. In applying this proposition, we note that in the notation of (20), the matrix A =

[
In
−In

]
; the

following cuts are obtained by taking the matrix AJ• with the index set J in the family J to consist of all rows of
A except for a few pairs of rows of the identity matrix and its negative.

– Second-order cuts of order 1. Suppose that a diagonal entry of Q, say qjj , is non-positive. Proposition 4 yields
the cut zj+( 1−λj ) ≥ 1; thus for such an index j, we must have zj = λj , by combining the latter inequality with
(34). Incidentally, these order 1-cuts have been recognized as early as in the work [16] and also used recently
in [33,34]. Nevertheless, the second-order cuts of higher order described below are introduced here for the first
time.

– Second-order cuts of order 2. Suppose qii and qjj are two positive diagonal entries of Q such that

det

[
qii qij

qji qjj

]
≤ 0.

Again, it follows from the same proposition that the following inequality must be valid:

zi + zj + ( 1− λi ) + ( 1− λj ) ≥ 1.
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– Second-order cuts of order 3. Suppose (i, j, k) are 3 distinct indices such that the following three 2×2 matrices:[
qii qij

qji qjj

]
,

[
qii qik

qki qkk

]
, and

[
qjj qjk

qkj qkk

]

are all positive definite but

det

 qii qij qikqji qjj qjk

qki qkj qkk

 ≤ 0.

Similarly to the cuts of order 2, it follows that the cut: zi + zj + zk + (1− λi) + (1− λj) + (1− λk) ≥ 1 must
be valid.

– Second-order cuts of order ≥ 4. These are not generated for several reasons: they contain more terms, thus
increasing the complexity of finding a binary vector obeying the satisfiability system and diminishing their
strength; the generation of these cuts requires the evaluation of determinants of higher-order matrices and there
are too many of them.

Summarizing, we obtain the following valid cuts that we can add permanently to the MIP (33):

Valid cuts for (33)

(A) λj + (1− zj) ≥ 1 for all j;

(B) zj = λj for all j such that qjj ≤ 0;

(C) zi + zj + (1− λi) + (1− λj) ≥ 1 for all i 6= j such that min(qii, qjj) > 0 and q2
ij ≥ qiiqjj ;

(D) zi + zj + zk + (1 − λi) + (1 − λj) + (1 − λk) ≥ 1 for all triples of distinct indices (i, j, k) such that
min(qii, qjj , qkk) > 0, q2

ij < qiiqjj , q2
ik < qiiqkk, q2

jk < qjjqkk, and qiiqjjqkk+2qijqjkqki−q2
ikqjj−q2

ijqkk−q2
jkqii ≤ 0.

7.2 Bounded-variable QPs with 1 constraint

Consider the following QP with simple upper and lower bounds and one additional inequality constraint:

minimize
x

1
2 x

TQx+ cTx

subject to 0 ≤ x ≤ 1n

and 1Tnx ≤ f

(35)

where Q is symmetric and f is a positive scalar. The MIP formulation for this QP is: for θ > 0 sufficiently large,

minimize
(x,y,z,λ)

cTx− 1Tny

subject to 0 ≤ c+Qx+ y + 1n η ≤ θ z

0 ≤ 1n − x ≤ θ λ

0 ≤ f − 1Tnx ≤ θ λn+1

0 ≤ x ≤ θ ( 1n − z )

0 ≤ y ≤ θ ( 1n − λ )

0 ≤ η ≤ θ ( 1− λn+1 )

and z, λ ∈ { 0, 1 }n, λn+1 ∈ { 0, 1 }.

(36)

Similar to the bounded-variable problem with no other constraint, we can establish valid cuts for (36) by noticing

that in the notation of (20), the matrix A =

 In
−In

−1Tn

. The only difference between these cuts and those in the

previous case is that the extra term 1− λn+1 is needed in each of the cases (B–D). In principle, cuts without this
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extra term can be added under more restrictive conditions; for instance, if min(qii, qjj) > 0 and qii + qjj ≤ 2qij ,
with the latter condition being equivalent, under the former condition, to the condition that the 2× 2 matrix[

qii qij

qji qjj

]
is not positive definite on the null space xi + xj = 0, then the constraint zi + zj + (1− λi) + (1− λj) ≥ 1 is valid.
Similarly, suppose (i, j, k) are 3 distinct indices such that the following three 2× 2 matrices:[

qii qij

qji qjj

]
,

[
qii qik

qki qkk

]
, and

[
qjj qjk

qkj qkk

]
are all positive definite but  qij qij qikqji qjj qjk

qki qkj qkk


is not positive definite on the subspace: xi + xj + xk = 0, or equivalently, if the matrix[

1 −1 0

0 1 −1

]  qii qij qikqji qjj qjk

qki qkj qkk


 1 0

−1 1

0 −1

 =

[
qii − 2qij + qjj qij − qik − qjj + qjk

qji − qki − qjj + qkj qjj − 2qjk + qkk

]

is not positive definite, then the constraint zi + zj + zk + (1− λi) + (1− λj) + (1− λk) ≥ 1 is valid.

Valid cuts for (36)

(A) λj + (1− zj) ≥ 1 for all j;

(B) zj + (1− λj) + (1− λn+1) ≥ 1 for all j such that qjj ≤ 0;

(C) zi + zj + (1− λi) + (1− λj) + (1− λn+1) ≥ 1 for all i 6= j such that min(qii, qjj) > 0 and q2
ij ≥ qiiqjj ;

(D) zi+zj +zk+(1−λi)+(1−λj)+(1−λk)+(1−λn+1) ≥ 1 for all triples of distinct indices (i, j, k) such that
min(qii, qjj , qkk) > 0, q2

ij < qiiqjj , q2
ik < qiiqkk, q2

jk < qjjqkk, and qiiqjjqkk+2qijqjkqki−q2
ikqjj−q2

ijqkk−q2
jkqii ≤ 0.

(E) Additional cuts corresponding to other choices of the index set J in the family J may be added, including
those similar to (C) and (D) but without the (1− λn+1) term.

7.3 Nonnegatively constrained, copositive QPs

Consider the following nonnegatively constrained QP:

minimize
x

1
2 x

TQx+ cTx

subject to x ≥ 0,
(37)

where Q is symmetric and copositive. This problem either attains a finite optimal solution or is unbounded below.
By Theorem 1, the resolution of this dichotomy can be determined by solving an LPCC whose MIP formulation is:

minimize
(x,d,z,λ,t)∈R4n+1

−t

subject to 1Tnd ≥ 1

0 ≤ c+Qx+ t1n ≤ θ z

0 ≤ x ≤ θ ( 1n − z )

0 ≤ Qd ≤ θ λ

0 ≤ d ≤ θ ( 1n − λ )

d ≤ θ ( 1n − z )

λ ≤ z

and ( z, λ ) ∈ { 0, 1 }2n.

(38)
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which is a specialization of (26). We have not investigated this problem as thoroughly as the bounded-variable
problem. In the numerical results, we solved the LPCC (38) using the general algorithm sketched in Section 4.

8 Computational Results

We have implemented three algorithms coded in a C-environment for solving the special classes of QPs. Details
of these algorithms can be found in the doctoral thesis of the first author [20]. We used cplex 10.0 to solve the
LPs and zChaff 3.12 to solve the satisfiability problems. Implementing the Chaff algorithm [27], zChaff is designed
for solving the boolean satisfiability problem and free for non-commercial use downloadable from the website:
http://www.princeton.edu/~chaff/zchaff.html. The experiments were run on a Dell desktop computer with
a Core Duo CPU, 2.33 GHz processor, and 1.95 GB of RAM. The data for the bounded-variable QPs are the same
as those in [34]; in particular, the entries of Q and c are randomly generated integers between -50 and 50. The
experiments in this reference were run on a SUN Ultra-80 with 2x450-MHz UltraSPARC-II processors and 1-GB
Memory. The same data was used for the bound-variable QPs with one additional inequality constraint with the
right-hand constant f in this constraint equal to n/2; cf. (35). We solved two sets of the nonnegatively constrained,
copositive QPs; the data for the first set of these problems are generated as follows. The 2 × 2 leading principal

submatrix of the matrix Q in each problem is
[

25 −25
−25 25

]
. The remaining entries are nonnegative integers between

0 and 50. So the matrix Q is copositive on the nonnegative orthant, and not necessarily positive semidefinite. The
first two entries of the vector c are -2 and 1; the rest of the entries of c are randomly generated integers between -20
and 20. Therefore, this group of QPs is unbounded on the ray (1, 1, 0, . . . , 0), and may or may not have stationary
solutions. In order to test a related class of nonnegatively constrained, copositive QPs that are guaranteed to have
a stationary solution but remain unbounded, we modified the data of the first set of such QPs as follows. The
matrix Q has

Q3 ≡

 25 −25 50

−25 25 −25

50 −25 25


as its leading 3 × 3 principal submatrix and the remaining entries of Q are generated in the same way as before;
the vector c = −Qx0, where x0 is the vector with the first 3 components equal to 1 and the rest equal zero. Thus
x0 is a stationary solution of the QP (37). Since the first 3 components of c are -50, 25, and 50, this QP remains
unbounded on the ray (1, 1, 0 , . . . , 0). The matrix Q3 is copositive because

(
d1 d2 d3

)
Q3

d1

d2

d3

 = 25 ( d1 − d2 + d3 )2 + 50 d1d3 ≥ 0

for all (d1, d3) ≥ 0.
Tables 1 and 2 report the computational results for the bounded-variable QPs with 50 and 60 variables, re-

spectively. The computational results for problems of various sizes and density are reported in the same order as
in [34]. Each table contains results corresponding to various densities of the matrix Q. Since our approach is quite
different from the branch-and-cut algorithm employed in the reference, it is difficult to compare the performance
of the two approaches directly. To at least give some idea of the performance of our approach relative to that of
the reference, we highlight two columns in the tables: one giving the total number of LPs solved in each instance
and the other giving the computational time for that instance. The results from the reference are labeled by “VN”.
In our case, the LPs solved are of 3 types: those used to generate the ray cuts (ϕ0(z)) or point cuts (ϕ(z)), and
those (24) used in the sparsification step. The numbers of these LPs solved are reported in the columns labeled
by cnt-dual, cnt-M, and cnt-rlx, respectively. The first column in Tables 1 and 2 lists the number of satisfiability
problems solved in each run. The last column “Gtime” reports the time in seconds when a global optimal solution
is obtained, but its global optimality is not yet verified. This optimal solution is usually obtained in the local search
procedure at the beginning of the runs, but its global optimality is verified only when the algorithm terminates.
Comparing the second and last column, we note that the bulk of computations lies in the latter verification step.

Since the LPs in our approach and the VN approach are quite different, considering the numbers of these LPs
being solved is not a completely fair comparison. Nevertheless, setting aside this difference, we can draw some
informative observations about the two approaches. In particular, the numbers of LPs solved in our approach are
quite reasonable and indeed less than the VN numbers in all but one case. To be fair, we should note that for
several problems with 30 or 40 variables our approach requires significantly more LPs, and our numbers can be
much higher (see [20]); this suggests that there is room for improvement in our approach.

http://www.princeton.edu/~chaff/zchaff.html
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iter time LPcnt cnt-rx cnt-dual cnt-M Gtime
ours VN ours VN

1 4.11 13.28 263 434 260 0 3 0.23
221 27.63 127.07 2065 4285 1286 731 48 1.92
146 18.73 87.91 1375 2827 936 405 34 0.05

1436 703.14 464.57 19833 11356 10250 9523 60 0.02
669 276.28 455.61 8803 10561 4734 4027 42 0.38
288 163.03 263.06 5464 6464 2977 2480 7 0.02

Table 1 Box constrained QPs with Q ∈ R50×50

iter time LPcnt cnt-rx cnt-dual cnt-M Gtime
ours VN ours VN

311 16.53 101.89 1599 2781 1014 446 139 0.11
1 2.13 18.04 109 490 106 0 3 0.08

652 53.50 141.46 3526 3876 1988 1286 252 0.59

Table 2 Box constrained QPs with Q ∈ R60×60

Tables 3–5 report the computational results for box-constrained QPs (35) with one additional inequality. These
tables have the same columns as the previous tables, except for the absence of comparisons. In these tables, the
starred problems have the last constraint not binding. The rest of the problems have the inequality constraint
binding. Our LPCC approach is able to solve all of the problems presented in the tables to global optimality,
which includes two tasks: obtain the optimal solution and verify its global optimality. By comparing the results
for the same problems with and without the last constraint, we see that the computational effort increases for the
problems with one additional constraint. We suspect two possible reasons for this increased effort: one is that unlike
the previous set of problems where we have included many implied fixings of variables in tightening the relaxed
LPs (24) in the sparsification step, we have not attempted similar fixings in this set of problems. The other reason
is that the derived cuts are probably not as strong as they should be. Of course, the binding or not binding of the
additional constraint doubles the number of disjunctions, thereby increasing the complexity of the problem.

Tables 6 and 7 contain the results for the first set of nonnegatively constrained, copositive, unbounded QPs.
We solved two groups of problems with 40 and 50 variables, respectively, and 10 randomly generated problems in
each group. The algorithm implemented for these QPs does not have the sparsification procedure. So the number
of relaxed LPs is not reported in these two tables. The number of the LPs reported in the third column is the sum
of the fourth and the fifth columns. Since the algorithm is stopped whenever a negative objective value is obtained,
we omitted the column “Gtime” in these tables too. From the results, we can tell that for 19 out of 20 problems,
our approach is able to identify the unboundedness of the QP. Only one problem, marked with an asterisk sign,
does not terminate with a certificate of unboundedness after 20,000 iterations. Tables 8 and 9 contain the results
for the second set of nonnegatively constrained, copositive, unbounded QPs that are guaranteed to have stationary
solutions. Interestingly, this second group of QPs seems to be easier to solve than the first group of QPs where
stationary solutions are not guaranteed to exist.

In order to test the strength of the copositive cuts (28), we generated some nonnegatively constrained, copositive,

unbounded QPs. The 2 × 2 leading principal submatrix of the matrix Q in each problem is
[

25 −25
−25 25

]
. The

remaining entries are nonnegative integers between 0 and 50. Only approximately 25% of the off-diagonal entries
are positive. The first two entries of the vector c are -2 and 1; the rest of the entries of c are randomly generated
integers between -20 and 20. Results are reported in Table 10 for ten instances of two sets: in the first set all
the diagonal entries are positive, and in the second set 5 of the diagonal entries (from the third one on) are zero.
The instances were solved with and without the copositive cuts. When all the diagonal entries are positive, the
copositive cuts imply z1 = z2 = λ1 = λ2 = 0, in the notation of (38). When some of the diagonal entries are
zero the copositive cuts include additional terms corresponding to the zero diagonal terms. As can be seen, the
copositive cuts reduce the number of satisfiability problems solved by almost 60% for the first class and by about
15% for the second class.

As a final comment, we note that in most of the problems solved in the experiments, the numbers (cnt-dual) of
ray cuts are significantly more than the numbers (cnt-M) of point cuts. This suggests that there are many infeasible
LP pieces in these QPs.
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iter time LPcnt cnt-rx cnt-dual cnt-M Gtime
1072 241.95 11898 6073 5799 26 1.95
347 47.61 3715 1944 1765 6 0.01
967 370.36 13419 6703 6709 7 0.01

2071? 576.13 21420 10788 10561 71 3.84
859 244.27 11355 5607 5741 7 0.02
941 306.75 12847 6415 6424 8 0.08

2063 790.72 24464 12091 12350 23 0.17
331 77.31 3551 1944 1592 15 4.05

1169 333.17 12925 6447 6453 25 2.25
819 342.28 10541 5367 5165 9 0.01

2561 1307.06 33406 16251 17128 27 0.25
894 418.70 12068 6107 5952 9 0.01

1958 1177.31 25854 12671 13165 18 0.05
3383 2181.01 38592 18961 19583 48 4.91
924 456.47 11535 5806 5717 12 448.20

Table 3 Box constrained QPs with one additional inequality constraint; Q ∈ R30×30. The starred problem has the last
constraint NOT binding.

iter time LPcnt cnt-rx cnt-dual cnt-M Gtime
1? 2.42 136 132 0 4 0.05

1700 535.91 19931 10002 9902 27 18.33
30 9.36 712 509 202 1 0.00

2309? 1034.20 28918 14603 14256 59 0.20
5619 4563.66 70422 34623 35741 58 1.05
5486 6878.78 78040 38870 39144 26 6233.50
3100 1933.02 41100 20673 20383 44 1831.11
2757 2719.78 40506 20146 20342 18 2.23
4319 7410.64 60421 30228 30167 26 0.11

Table 4 Box constrained QPs with one additional inequality constraint; Q ∈ R40×40 with density 30%, 40% and 50%. The
starred problems have the last constraint NOT binding.

iter time LPcnt cnt-rx cnt-dual cnt-M Gtime
1 11.55 405 405 0 0 0.05

5514 8064.56 81402 41081 40286 35 0.02
2975 4295.75 48139 24276 23855 8 0.31

Table 5 Box constrained QPs with one additional inequality constraint; Q ∈ R50×50 with density 30%.

iter time LPcnt cnt-dual cnt-M
10455 4989.36 106623 106568 55
11883 7693.13 147875 147849 26
8588 4531.78 115280 115271 9
1361 83.95 15038 15026 12
8569 4343.67 104614 104605 9

11209 6554.17 127020 126927 93
1235 77.69 15910 15910 0
472 15.73 5603 5602 1
302 7.89 3856 3856 0

15605 15064.80 185690 185674 16

Table 6 Copositive QPs: Q ∈ R40×40, density 0.25, stationary solution not guaranteed.

iter time LPcnt cnt-dual cnt-M
17091 17047.94 207155 207101 54
12067 6951.44 137896 137836 60
13483 6991.08 146942 146775 167
7679 3657.99 112001 112001 0
5211 1319.44 67054 67039 15
9664 4845.31 118386 118347 39

14364 12076.95 181824 181809 15
20001∗ 32815.06 267400 267398 2

1170 81.70 18649 18649 0
468 14.03 6885 6885 0

Table 7 Copositive QPs: Q ∈ R50×50, density 0.15, stationary solution not guaranteed. The problem with the asterisk sign
cannot be solved within 20000 iterations.
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iter time LPcnt cnt-dual cnt-M
829 7.22 2339 2317 22

3854 206.17 16007 15973 34
2931 91.52 9936 9865 71
2115 60.73 10463 10414 49
1207 13.61 3965 3836 129

15059 1844.61 48711 48662 49
656 6.38 2463 2428 35

2768 111.47 12027 11996 31
663 6.78 2533 2517 16

9333 1008.80 39765 39722 43

Table 8 Copositive QPs: Q ∈ R40×40, density 0.25, stationary solution guaranteed

iter time LPcnt cnt-dual cnt-M
2736 118.99 16242 16162 80
9805 2566.11 68836 68781 55
814 14.06 5019 4862 157

10168 1892.77 59116 59063 53
16618 3877.95 70189 70115 74
10832 2413.30 68483 68373 110
4285 402.17 30691 30628 63
7024 917.91 43321 43262 59
2285 126.81 14319 14298 21
5925 619.39 31346 31270 76

Table 9 Copositive QPs: Q ∈ R50×50, density 0.25, stationarity guaranteed

.

positive diagonal 5 zeroes on diagonal
without with without with

88 70 153 128
189 2 119 116
121 76 296 286
163 107 123 78
53 54 136 94

288 79 203 165
302 163 286 202
348 152 123 125
98 69 141 120

168 2 299 283
mean 181.8 77.4 187.9 159.7

Table 10 Testing the copositive cuts on Q ∈ R20×20, off-diagonal density 0.25. The number of satisfiability problems solved
is given for each problem instance.

9 Concluding Remarks

In this paper, we have investigated an LPCC approach to the global resolution of indefinite, possibly unbounded
quadratic programs. Our main contributions are as follows:

– we have introduced an LPCC whose global resolution will certify whether or not the QP is bounded below
(Theorem 1);

– we have identified some valid inequalities for the MIP formulation of the LPCC derived from a solvable QP that
are motivated by its second-order optimality conditions (Proposition 4); these inequalities allow us to identify
a class of non-convex QPs solvable in polynomial time;

– we have examined a copositive QP and identified some valid inequalities that will eliminate certain LP pieces
of the stationarity LPCC of the QP;

– computational results provide evidence supporting the promise of the LPCC approach to indefinite QPs (Sec-
tion 8).

While contending that these are all positive contributions to the study of indefinite QPs, we admit that this is
only the first step in developing a general algorithm for the global resolution of the non-convex QP; in particular,
further study is needed to understand more about the LPCC (12) and its MIP formulation, in order to derive deeper
cuts and sharper LP relaxations in the sparsification of these cuts. Alternative algorithms can also be developed
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for the global resolution of LPCCs, including algorithms using disjunctive cuts; this is currently a topic of active
research, see [22] for example.

Acknowledgements: We are grateful to three referees and an associate editor for their helpful comments.
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