Noname manuscript No.
(will be inserted by the editor)

On Convex Quadratic Programs with Linear Complementarity Constraints

Lijie Bai - John E.Mitchell - Jong-Shi Pang

Received: date / Accepted: date

Abstract The paper shows that the global resolution of a general convex quadratic program with complementarity
constraints (QPCC), possibly infeasible or unbounded, can be accomplished in finite time. The method constructs
a minmax mixed integer formulation by introducing finitely many binary variables, one for each complementarity
constraint. Based on the primal-dual relationship of a pair of convex quadratic programs and on a logical Benders
scheme, an extreme ray/point generation procedure is developed, which relies on valid satisfiability constraints
for the integer program. To improve this scheme, we propose a two-stage approach wherein the first stage solves
the mixed integer quadratic program with pre-set upper bounds on the complementarity variables, and the second
stage solves the program outside this bounded region by the Benders scheme. We report computational results with
our method. We also investigate the addition of a penalty term y” Dw to the objective function, where y and w are
the complementary variables and D is a nonnegative diagonal matrix. The matrix D can be chosen effectively by
solving a semidefinite program, ensuring that the objective function remains convex. The addition of the penalty
term can often reduce the overall runtime by at least 50%. We report preliminary computational testing on a QP
relaxation method which can be used to obtain better lower bounds from infeasible points; this method could be
incorporated into a branching scheme. By combining the penalty method and the QP relaxation method, more than
90% of the gap can be closed for some QPCC problems.

Keywords Convex quadratic programming - Logical Benders decomposition - Satisfiability constraints -
Semidefinite programming.

1 Introduction

Mathematical programs with complementarity constraints (MPCCs) are constrained optimization problems
subject to certain distinguished disjunctive constraints expressed by the complementarity relation between pairs of
nonnegative variables. The origin of MPCCs can be traced back to the class of Stackelberg games in economics.
Extensive applications of MPCCs can be found in hierarchical (particularly bi-level) decision making, inverse
optimization, parameter identification, optimal design, and many other contexts; various examples of MPCCs are
documented in [[16L22]]. Linear and convex quadratic programs with complementarity constraints (LPCCs/QPCCs,

The work of Mitchell was supported by the National Science Foundation under grant DMS-0715446 and by the Air Force Office of Sponsored
Research under grant FA9550-08-1-0081 and FA9550-11-1-0260. The work of Pang was supported by the U.S.A. National Science Foundation
grant CMMI 0969600 and by the Air Force Office of Sponsored Research under grants FA9550-08-1-0061 and FA9550-11-1-0151.

Lijie Bai
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
E-mail: bail @rpi.edu

John E.Mitchell
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
E-mail: mitchj@rpi.edu

Jong-Shi Pang
Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
E-mail: jspang @illinois.edu

mailto:bail@rpi.edu
http://homepages.rpi.edu/~mitchj/
http://ise.illinois.edu/research/faculty/pang.html

respectively) are two prominent subclasses of MPCCs that play the same fundamental role in this family of non-
convex problems as standard linear and convex quadratic programs play in the class of convex programs; thus it is
very important to have an in-depth treatment of the L(Q)PCCs, in particular, their global resolution.

With its signature complementarity constraints, the MPCC is well known for its nonconvexity and disjunctive
features, which invalidate all standard constraint qualifications in nonlinear programming (NLP) except under
restrictive assumptions. In spite of such difficulties, many publicly available NLP solvers have built-in techniques
to handle the complementarity constraints and are capable of computing stationary solutions of some kind fairly
routinely. Yet, these solvers are incapable of ascertaining the quality of the computed iterates, let alone verifying
their optimality, local or global. The lack of robust schemes for the global resolution of the MPCC provides a
prime motivation to undertake a systematic investigation of this important topic, particularly for the LPCC and
QPCC, which are closely tied to a linear/(convex) quadratic program.

The present paper is a continuation of our recent foray into the research on the global resolution of MPCCs,
which has to date led to several publications [16417./18.21]] and two doctoral theses [[15.24]. Extending the recent
work [[16] on the LPCC, our work here aims at developing a finite algorithm capable of ascertaining whether the
QPCC is infeasible, feasible but with an unbounded objective, or solvable with a finite optimal solution. In each
case, a certificate is produced with the respective conclusion. Inheriting all the challenges of the LPCC, the QPCC
has the additional difficulty that an optimal solution of the problem, if it exists, in general cannot be found by
optimizing the (convex) quadratic objective on the convex hull of the (nonconvex) feasible region. Thus, unlike
the LPCC, knowing the latter hull is not sufficient to globally resolve the QPCC.

Like the previous work [[16] for the global resolution of the LPCC, our approach is based on logical Benders
decomposition for solving mixed integer programs with conditional constraints, which has its origin from [12l/13]
14] for logic programming. By introducing finitely many binary variables and associated upper bounds for the
complementary variables, the proposed approach is developed based on a minmax mixed integer formulation of
the QPCC. The upper bounds are not explicitly specified and are employed only conceptually within the logical
Benders framework. The approach exploits the primal-dual relationship of a pair of convex quadratic programs in
the generation of valid satisfiability constraints [[11] on the binary variables; the latter special constraints provide
the needed guidance to search the polyhedral pieces of the disjunctive constraints. In addition to the generation
of the satisfiability constraints, we present several new ideas to enhance the performance of the overall method.
One idea is to embed the method in a two-stage procedure: in the first stage, we introduce upper bounds on the
complementary variables and solve the resulting bounded-variable mixed integer quadratic programming by an
existing solver such as CPLEX 12.1. From the optimal solution obtained, we add a constraint on the objective
function and apply the logical Benders scheme to solve the QPCC outside the bounded region imposed in the first
stage. This procedure turns out to be very effective for problems for which no known bounds on the complementary
variables are readily available. The second idea that we introduce involves the addition of a penalty term y’ Dw
to the objective function, where y and w are complementary variables and D is a nonnegative diagonal matrix.
The matrix D can be chosen efficiently by solving a semidefinite program, in order to ensure that the objective
function remains convex. For our test problems, the addition of the penalty term often reduces the overall runtime
by at least 50%. Lastly, we describe an equality-constrained quadratic programming pre-processing procedure to
generate better lower bounds from infeasible points; this procedure could be incorporated into a branching scheme.
By combining all these new ideas, more than 90% of the gap can be closed for some QPCC problems.

Notation: Several different classes of real matrices are represented as follows: . denotes k x k symmetric matri-
ces, 5@‘ denotes k x k symmetric positive semidefinite matrices, .@ﬂ‘r denotes k x k positive semidefinite diagonal
matrices, and %™ denotes m—binary vectors.

2 Problem Definition

Formally, the general QPCC is defined as follows:

O R

1/x\"
. . . T T
minimize(, ,y g(x,y) :==c'x+d' y+ =
(ry) 4(%,Y) y () K 0,

2\

(x)
’ (M
subjectto Ax+By > f

and 0<ylw:=gqg+Nx+My >0,

01 R
where x € R", y € R", 0 :=

R" 0)
perpendicularity, which in this context is short hand for the complementarity condition: y? w = 0, or equivalently,
eithery; =0orw; =0foreveryi=1,---,m.

1 € Yf’m is a positive semidefinite matrix, and L is the notation for

The fact that the objective function is quadratic makes the QPCC problem quite different from a LPCC. Know-
ing the convex hull of the feasible region enables the resolution of a LPCC by solving a linear program; however,
knowing the convex hull of the feasible region is not sufficient to globally resolve a QPCC. To see this, we consider
the following simple example in the scalar variables y and w:

minimize,, ,, y* +w?

subjectto y+w =1 2
and 0<ylw2>0.

It is obvious that (1,0) and (0, 1) are the only feasible solutions to the above QPCC, thus the convex hull of the
feasible set of the QPCC is

conv = {(y,w) > 0|y+w =1}

The minimum of the quadratic objective function over the convex hull is achieved aty =w = %, which is infeasible
in the QPCC.

In view of the above example, attention is needed to consider a proper subset of the convex hull of the feasible
region of the QPCC. Following the approach for the LPCC [16]], we introduce a binary vector z € B™ to describe
the complementarity constraints, and define the value function of a convex quadratic program:

T R
RU {Feo} 5 0(2) 1= minimumyy) ¢"x +d7y + % (ch) [I%; Qz] (;C>

subjectto Ax+ By > f (1)
vi=0, jeJ () 3)
y>0)
wi=(q+Nx+My); =0, iel (4)

and w=qg+Nx+My>0 (u™);

where I := {i|z; = 1} and J := {j|z; = 0}. In , (A,uf ,u=,v},v") are the Lagrangian multipliers associated
with the corresponding constraints. The feasible region of (3) is a polyhedral piece of the QPCC () defined by
the binary vector z. Defining uf =0,j€Jand vl.+ = 0,i € I, the dual problem of 0(z) can be written as:

r R
RU{Leo} 5 9(z) 1= maximum,y,j =) ! <x> [Ql 1 (x> + A +q" Wt —u)

2\y RT 0, | \Y
subject to c+Q1x+Ry—ATA —NTu= +NTut =0 @
d+0yy+R'x—B"A —M"u=+MTut —v—4+vt =0
and (1—2)Tut+7Ivt =0
Aut vt > 0.

By duality, it follows that if either 6(z) or ¢(z) is finite, then both are finite and equal. Consider the following
minmax problem of minimizing the value function ¢(z):

- 1 1O R
MINIMIZE e [0 1 }m MAXIMIZE(y 1 4)) <§) [RT 0 (i) + A + qT(u+ —u)
2

subject to c+Q1x+Ry—ATA —NTu= +NTut =0
d+Q0yy+R'x—B"A —MTu=+MTut —v—+vt =0
(1—2)Tut+vF =0

and A,ut vt >0.

®)

We discuss the relationship of (5) to the QPCC () below. Care is needed because it is possible that (3) and
may both be infeasible. It is useful to recall [8] that a feasible quadratic program is unbounded below if and only if
there exists a feasible ray on which the objective function tends to —eo. This basic fact of quadratic programming
motivates the introduction of several homogenized linear/quadratic programs as described next.

2.1 Homogenization
To detect the infeasibility or unboundedness of the QPCC (T), we introduce two kinds of homogeneous prob-

lems. The first homogeneous problem deals with infeasibility. Specifically, letting both ¢ and d be zero we get a
QPCC with a homogeneous objective function:

minimize l <x>T o1 R (x)
) 2\y) |RT @ | \y

6
subjectto Ax+ By > f ©)
and 0<ylg+Nx+My2>Q0.

Correspondingly, we define the following value function obtained by setting ¢ and d equal to 0 in (@):
. 1/x\"|QiR X _
R oo = ,) —= T+ 4" (ut —
U{+eo} > @o(z) := maximumy; .+ \+) 5 (y) &0, | L +fA+q (u—u)
subject to Qix+Ry—ATA —~NTu=4+NTut =0 e

Qy+RTx—BTA —MTu=+M"ut —v= vt =0
(1—2)Tut+7vF =0

and Au® vE > 0.

Clearly, ¢o(z) > 0; it turns out that ¢y(z) = 0 is equivalent to the following homogeneous linear program having
a finite optimal value, namely zero:

{0,00} 5 Yo(z) := maximum; =+ fTA+q" (ut—u)

subject to ~ATA —NTu=+NTut =0
—B"A —M"um +M"ut +vt >0 @)
(1=2)Tut+zlvT =0

and Aut vt > 0.

More can be said about the above homogenized problems.
Proposition 1 The following 4 statements hold:

(a) both @y(z) and Vy(z) are either 0 or oo;

() @o2) = 0 if and only if o(z) = 0;
(c) if {) is feasible, then ¢(z) is unbounded if and only if y(z) is unbounded;
(d) is infeasible if and only if ¥y(z), or equivalently @y(z), is unbounded.

Proof Neither (a) nor (c) requires a proof. To prove (b), suppose @y(z) is unbounded. There exists a feasible ray

X
y
to and the linear function ¥ tends to e on this ray. Conversely if ¥(z) is unbounded above along the ray
(A,u™,v"), then @(z) is unbounded above along its ray (0,0,2,u*,v"). This establishes (b). To prove (d) note
that (3) is infeasible if and only if the linear program:

01 R
(x,y, A,u™,vF) of (7) such that fTA +¢7 (u™ —u~) > 0 and lRT 0] () = 0. Clearly, (A,u",v*) is feasible
2

minimize, ;) 07x 4 07y

subjectto Ax+ By > f (1)
yi=0,j¢eJ) ©)
y=0 ()
(g4 Nx+My); =0,iel (uf)

and q+Nx+My>0 (u™)

is infeasible, whose dual is precisely (8). Thus (d) holds readily.

Remark 1 1t is interesting to note that is infeasible if and only if the homogeneous dual problem @y(z) is
unbounded, regardless of whether (4)) is feasible or not. O

Having dealt with the infeasibility issue of a piece (3) of the QPCC, we next turn to the unboundedness issue.
For this purpose, we set the constant vectors f and ¢ in the constraints of the QPCC to zero and consider the
following homogeneously constrained QPCC:

1 RUR
minimize,.) Ix+dly+ 3 (x) ; <x>
y R" Oy | \Y

subject to Ax+By > 0
and 0<ylNx+My>0.

10)

Similar to the value function 0(z), we define, for a binary vector z € B™, the following (primal) quadratic program
corresponding to the polyhedral piece of (I0) defined by z:

RU{—e} 3 no(z) := minimum, ;) "x+d"y + ! <x>T ok <x>
' 2\y RT 0, | \V
subjectto Ax+ By >0 (1)
yj=0 jeJ () (1)
y>0 ()
(Nx+My); =0, iel (uf)
and Nx+My >0 (u™),
where I = {i|z; = 1} and J = {j|z; = 0}. It follows easily that 1o(z) = —ee if and only yy(z) = —oo, where
{0, =0} 3 W(z) := minimum;y) cIx+dly
subject to Ax+ By >0
yi=0,j€J
y=0
(Nx+My); =0,i€l (12
Nx+ My >0

and lQl K] (x) =0.
RT 0, | \V

Table 1 Exclusive statements of 6(z)

| Po(z) = +oo | %(z) =0
0(z) is infeasible; 0(z) is feasible.
¢(z) is infeasible or unbounded.
10(z) =0: Both ¢(z) and 6(z) have finite optimum.
() = 9(2)

Y(z) = —e: 6(z) is unbounded.
¢(z) is infeasible.

The following proposition requires no proof.

Proposition 2 Provided 0(z) is feasible, is unbounded if and only if , or equivalently is unbounded.
O

We summarize the above results in Table |1| that presents the mutually exclusive conclusions about a given
piece of the QPCC. The conclusions in the table are made precise in the following proposition.

Proposition 3 The following 3 statements hold:

(a) 6(z) is infeasible if and only if ¥y(z) = oo;
(b) 6(z) is finitely solvable if and only ¥y (z) = 0 and Y (z) = O; in this case, 0(z) = @(z);
(c) 0(z) is unbounded below if and only if ¥y(z) = 0 and Yy(z) = —oo. 0

3 Cuts and Algorithms for Mixed Integer QPs

We established the minmax framework in (3. A ray/point cut generation scheme will be set up; valid inequal-
ities in the form of satisfiability constraints on the binary vectors z are to be obtained. In this way, some of the
QPCC pieces will be cut off so that we do not need to visit all 2 QPCC pieces in order to solve the QPCC.

3.1 Ray Cuts and Point Cuts

To start, we first define the following cone:
(A, utvE) s ATA+NTu= —NTut =0
E = BTA+MTu=—MTut —vt <0 (13)
(A, u™,vF) > 0.
Assume there is a ray (A,u*,v") € Z such that
fIA+q" Wt —u) >0.

If a binary vector z satisfies

(1—2)Tut+7v" =0
for such a ray (A,u*,v"), then ¥(z) = +oo and it follows from Proposition [1] that 6(z) is infeasible. We define
the following ray cut as a satisfiability constraint:

Proposition 4 Given that (A,u™,v") is a ray of the cone E such that fT A +q" (ut —u~) > 0, then any m-binary
vector z such that the QPCC piece 0(z) is feasible must satisfy the inequality

Y 1-z)+) z> 1

i >0 Jv >0
Proof Given an m-binary vector z such that

Z (I*Zz)*l“ Z Zj:()v

i >0 j:v7>0

then (A,u*,v") is a feasible ray of ¥y(z), so 0(z) is infeasible from Proposition|1]

We define some other sets that illustrate the strength of the ray cuts:
A, utvh): ATA+NTu= —NTut =0
BTA+MTy=—MTut —vt <0
fAtq" (W —um) =1
(A, u®vt) > 0. (14)

I :={ze{0,1}": Zi:u;r>0(1 _Zi)+zj;v]+>ozj >1, V(}l,ui7v+> €A}
Q :={z € {0,1}": QPCC piece 0(z) is feasible}.

Here A is the set of all the (normalized) rays from which we can define ray cuts, I is the set of binary vectors z
that satisfy all the possible ray cuts and £ is the set of binary vectors z such that the QPCC piece 0(z) is feasible.
Obviously, £ is a subset of I". We prove that the converse also holds.

Proposition 5 The two sets I and 2 are equal.

Proof Let Z € I'. Then for every feasible solution (1,u*,v*) for (8), we have that /74 +¢" (u" —u~") < 0.1t
follows that ¥%(z) = 0, and so Z € £, by Proposition 3]

Below we define another type of satisfiability constraint — point cuts. Assume Z € B™ is such that the QPCC
piece 0(2) is feasible and finite. Let (£,7,A,4~,7) be the optimal solution of the dual problem ¢(%). We can
define a point cut as:

Y (-w)+ ¥ 5> (15)

P .
i:i; >0 Ji; >0

In the following proposition we conclude that it is enough to visit the remaining QPCC pieces 0(z) with binary
vectors z statisfying point cut (I5).

Proposition 6 Given that 2 € B™ is such that the corresponding QPCC piece 0(Z) is feasible and finite, with

(%, 9,1,&*, 9%) being its optimal dual solution, then any binary vector z must satisfy point cut in order to
improve the objective value of the QPCC.

Proof Assume that z is a binary vector such that ¥ o+ (1 =2) + ¥ .5+~ 2; = 0, then (£, A, 4%, 0%) is a feasible
6 o0
solution to ¢(z), so ¢(z) > @(£). From Proposition[l] 6(z) > 6(2).

Generally, we can write the two types of cuts as:

Z(I—Zi)-FZZjZl, (16)

icl jel

where / = {i|u;” >0} and J = {j| v} > 0}. Here [and J are disjoint.

3.2 The Algorithms

The general framework of our logical Benders decomposition algorithm can be summarized as follows:

1. Initialize the Master Problem with all binary vectors z. Set upper bound to QP,;, = oo.

2. Choose a Z that is feasible in the Master Problem.

3. Determine the value of 6(2).

4.1f 6(2) = —oo, STOP: the QPCC is unbounded.

5.1f 6(2) < QP,p, update QP,, < 0(2).

6. Use the solution of 8(2) to determine valid cuts of the form that can be added to the Master Problem.
7. While the Master Problem is still feasible, return to Step 2.

8. Otherwise QP,, is the optimal value, and any Z achieving this value is optimal.

A satisfiability constraint can be written as (I6)), so the Master Problem is a satisfiability problem. The results
in can be used in the determination of 6(Z) in Step 3. In particular, if the subproblem is infeasible then it is only
necessary to solve linear programs. Much of the work of the algorithm is in the determination of cuts in Step 6.
The solution to the appropriate dual problem gives an initial constraint of the form (I6)), but this constraint should
be tightened in order to speed up the overall solution process. We discuss constraint tightening methods in detail,
before giving the complete algorithm later as Algorithm [I]

The smaller the index sets / and J are, the more binary vectors z will be cut off by this satisfiability constraint.
We thus want to sparsify the satisfiability constraints. Sparsification requires the selection of I} C 1, J; C J. If the
binary vectors z that don’t satisfy

Y(-z)+Y z;>1 17)

i€l Je

either lead to infeasible pieces or do not do better than what we have, we can then replace constraint (16) by a
stronger constraint (7). This is the basic idea of sparsification.
The complement of this constraint is

Y(U-z)+Y z=0 (18)

i€l jen

which implies that z;, = 1, zj, = 0, and further, w;, =0, y;, = 0 in the QPCC piece 6(z). We then want to consider
the following program,

- 1/x\" QiR x
._ T T
RU{Feo} 3 6(11,J1) 1= minimum,) ¢'x +d"y + 3 (y) lRT , <y>

subjectto Ax+ By > f 1)
y=0) (19)
w=q+Nx+My>0 (u™)
Vi< 0.j €N (v;,)
w; <0,ich (u;;)

We call the QP relaxation of the QPCC with additional constraint (18). Three cases may happen with 6(1;,J;):
(1) 0(I,J1) is infeasible:

As in Proposition |1} the infeasibility of 6(I;,J;) is equivalent to the unboundedness of the following
homogeneous linear program:

{0,00} 3 ¥(l1,J1) 1= maximumy = ,+ A +q"(ut —u)

subject to —ATA —NTu= +NTut =0
20
—B"A —M"u=+MTut+vt >0 (20)

Yiernui +Ljer vy =0

Aut vt > 0.
Here I, J; are the complementary sets of I;, Ji. So we can solve for a ray (A,u™,v") of ®(I;,J;) and
define a new ray cut

Y -2+) z>1,
i€lnew JE€new

with Lyey = {i|u;” > 0}, Jyew = {j|vjr > 0}.

(2) 0(1,J1) is finitely feasible:

If 6(11,J1) > OP,», all QPCC pieces 0(z) such that z satisfies will not do better than we already have,
using a similar argument to Proposition[6] Thus a new point cut can be defined:

Y -z)+) z>1,

i€lnew J€JInew

with Lyey = {i|uj > 0,i € I}, Jnew = {J |v;L >0,j€J1}. Here u™ and v are the Lagrangian multipliers.
If 6(1;,J1) < QP,p, some QPCC piece 6(Z) satisfying may do better than QP,,. We thus try to recover
£ such that 2; = 0 when 3; = 0 and 2; = 1 otherwise. If QPCC piece 6(Z) is infeasible, we can then define a
new ray cut. Otherwise, if 6(%) does better than QP,;,, we update QP,;,. If 6(Z2) does not improve QP,;, we
can define a new point cut.

(3) 0(11,J1) is unbounded below:
In this case, the attempted sparsification does not provide anything useful.

What we described above is the general process of sparsification. Additionally, whenever we get a new sat-
isfiability constraint (cut), we immediately sparsify it. When we are able to update QF,;, we sparsify all the
satisfiability constraints from the previous sparsification processes. The general algorithm is given in Algorithm T}
A candidate binary vector z is chosen. This point is used in Algorithm [2]to generate index sets / and J that give
a cut that is violated by z. The index sets are sparsified using the subroutine found in Algorithm [3| When the
sparsification routine terminates, a candidate solution Z may be generated, and this point leads to index sets which
are then sparsified.

Initialization: SAT «— 0, Z;,;, «<— all m-binary vectors, QP,), +— oo ;
/* SAT is the set of satisfiability constraints on binary vectors z. Zief; is the set of vectors
satisfying the constraints in SAT */
1 while Z.;; # 0 do
2 piCk z€ Zlefz;
3 call Find I, J ;
4 call Sparsification to sparsify cut (,J) and try to obtain 2 ;
5 SAT «— SATU Y,e/(1 —zi) + Xjerzj > 1
6 if get ‘new_cand’ then
7 call Find I, J with candidate point z =7 ;
8 call Sparsification to sparsify cut (1,J) ;
9 SAT «— SATU Yc;(1 —z) + Xjeszj 2> 1

10 end
11 if get ‘new uB’ then call Sparsification to sparsify all cuts € SAT; update SAT;
12 end

13 case QP,, = +oo: ‘Infeasible QPCC’;
14 case QP,, < +-oo: ‘Finitely feasible QPCC’;

Algorithm 1: The general algorithm

4 Preprocessing

In this section, we want to investigate the addition of a penalty term y” Dw to the quadratic objective function
of the QPCC, where y and w are the complementary variables and D is a nonnegative diagonal matrix.
We investigated the following example problem in the introduction section:

minimize,) y* + w?
subject to y+w=1 21

0<yLlw>0.

Input :z, QP
Output: / and J, QP,,, flag

1 solve %y (z);
2 if ¥y(z) is unbounded then
3 solve for a ray (A,u®,v*) so that ¥(z) is unbounded on this ray;
4 setI={ilul” > 0}, 7= {i]v; >0}
5 else
6 find 6(z);
7 if 6(z) = —oo then
8 ‘ terminate, ‘Unbounded QPCC’;
9 else
10 set I ={ilul” > 0},7={i|v; >0}
1 if 6(z) < QP,;, then
12 Py — 0(2);
13 flag:‘new uB’;
14 end
15 end
16 end
Algorithm 2: Find 7, J
Input :cut (1,J) «— Yie/(1 —z)) +Xjeszj > 1, QPup ; /* I and J are disjoint index sets */
Output: updated / and J, candidate Z, flag
1 repeat
2 choose I} C1,J, CJ;
3 find 19(1|,J]);
4 if 9(11,J1) = oo then /* ©(I1,J1) is bounded if (I,J) is a point cut */
5 solve for a ray (A,u®,v*) so that ¥ (I;,J;) is unbounded on this ray;
6 update [= {l\u;r >0}, J = {i|vi+ > 0};
7 flag: ‘ray’;
8 else /* solve O(I},J;) as it is feasible */
9 find (11,J1):
10 case 0(1;,J1) > QP
11 update 7 = {i[u > 0}, 7= {i|v; > 0};
12 flag: ‘point’;
13 case —oo < O(I1,J1) < QP
14 2 = 1if i > w;, £; = 0 otherwise, where (¥, ¥, W) optimal for 6(/;,J;);
15 flag: ‘new_cand’;
16 endsw
17 end

18 until don’t get ‘ray’ or ‘point’;

Algorithm 3: Sparsification

QPCC has an optimal value of 1 whereas its QP relaxation has an optimal value of 0.5. By adding a penalty
term 2yw to the objective function and solving the QP relaxation of the new QPCC problem

minimize,) (y + w)?
subject to y+w=1 22)

0<yLlw>0,

we have an optimal value of 1. It is straightforward that (22)) has the same resolution with the (21 due to the
complementarity of y and w. In addition, the objective function remains convex after we add the penalty term 2yw.

For a general QPCC, we would like to add a penalty term w’ Dy to the objective function while maintaining
its convexity. We define a linear function G : 277 — "™ by

0 NTD mn 0 niTel-T m

G(D) = ~Ya — Vi, (23)
O = pn MTD+ DM ; "\ eim; eimi+ml el Z o

10

where d; denotes the ith diagonal entry of D. Here {e¢;,i = 1,2,---,m} is the standard basis for 2", and n;, m; are
the ith rows of matrices N and M respectively. Note that

le X
TD:TD+(>GD<).
wiDy=q Dy+3{ ()y

If the rank of the quadratic term in the objective can be reduced then the optimal solution to the quadratic pro-
gramming relaxation may sit in a lower dimensional face, as formalized in the following lemma.

Lemma 1 Let & C %" be a pointed polyhedron, let c € #", and let Q € """ be symmetric and positive semidef-

inite with rank k. If there exists an optimal solution to the convex quadratic program min{c” x + %xT Ox:xe P}
then there exists an optimal solution in a face of & of dimension no larger than k.

Proof Let x be an optimal solution to the quadratic program that is in the interior of a face of dimension greater
than k. There exists a direction d # 0 that lies in the face and in the nullspace of Q. Since x is optimal, we must
also have (¢ + Q%)7d = 0, so any feasible point of the form ¥+ ad is also optimal, so there exists an optimal
solution of this form in a lower dimensional face.

A nonnegative diagonal matrix D can be picked effectively by solving a semidefinite program:

maximize(dh...,dm) anzl d; pi

subject to —-G(D) =

Q1 R (24)
R" Q)
di > 07

<C

i.

The semidefinite program can be solved effectively by using SDPT3 version 4.0 [23], which is a MATLAB soft-
ware for semidefinite-quadratic-linear programming. Possible choices of p; include —trace(K;), 1, or w;y; with
(%,7,w) being an initial infeasible point in the QPCC.

In matrix rank minimization, it is desired to find a low rank matrix that meets various constraints. It was shown
by Fazel et al. [9.10] that the tightest convex underestimator of this nonconvex problem is to minimize the nuclear
norm of the desired matrix. Candes and Recht [5] showed that minimizing the nuclear norm can find the optimal
solution to the matrix completion problem with high probability, under certain assumptions.

In our problems, when minimizing the rank of the matrix

o) = 6oy + | 9"
' R Q]
the choice of p; = —trace(K;) corresponds to minimizing the nuclear norm trace(Q(D)). However, the structure of

each K; is such that this approach is typically unsuccessful, often resulting in D = 0 in our test problems. We thus
used alternative choices of p; in @]) that emphasize larger values of D, and we found that w;y; works the best,
with (X, y,w) typically being the optimal solution to the QP relaxation.

By the addition of a penalty term w’ Dy to the quadratic objective function, we construct an equivalent QPCC

problem:
T R
w2+ 00073 () ([, o01) ()
2

subjectto Ax+ By > f (25)

0<ylw=qg+Nx+My>=>0.

We then solve the modified QPCC for the global resolution. Some computational results will be reported later in
§5. In the case of problem (21, the solution to leads to the new QPCC (22)).

11

5 Computational Experience

We have implemented the above algorithms for solving QPCCs in MATLAB. We solve the LPs and QPs
using CPLEX 12.1 by calling it in a MATLAB environment. The experiments were run on a Dell laptop with an
Intel®) Core 2 Duo Processor, 1.99 GB of RAM. To implement the algorithms we have generated several classes
of QPCCs: feasible and infeasible, bounded and unbounded QPCCs. In these problems, to generate a positive
semidefinite matrix Q € Yﬁ*m with rank not exceeding r, we first generate a (m+ n) X r matrix, namely P, whose
entries are randomly generated numbers following the standard normal distribution. The matrix Q is then set equal
to the matrix product PPT. To generate a feasible QPCC, we use the same techniques as in [19] except that we
generate Q differently as we described. Optimality conditions are considered in [[19] and a stationary point is first
generated in each QPCC, which in most cases turned out to be the optimal solution. To generate an unbounded
QPCC, a feasible ray (£,7) is first generated. This can be done by first generating matrices A, B,M,N, and then
flipping the signs or zeroing out some of the rows, so that

A+ B§ >0

and
0<yLNx+My>0.

x,\ PR
Q(ﬁ) =0

This can be done through matrix decompositions and multiplications. We pick vectors ¢ and d such that

We then generate Q € .9”"™ such that

di+d'y<o.
In this way, the QPCC is unbounded along the ray (£,¥) as long as it is feasible. Additionally, a feasible solution
can be generated by picking the right vectors f and g. In all problems, our constraints Ax + By > f imply bounds
on the x variables.

In implementation, to make the computation more efficient, we decompose a general QPCC into an inner box
constrained QPCC where the complementary variables all have a bound 7', and an outer QPCC to examine the
feasible region outside the box. We define the inner box constrained QPCC problem and the outer QPCC problem

1 T1OIR
minimize,,) Ix+dly+ < (x)

to be

subjectto Ax+ By > f (26)

0<ylw=g+Nx+My>0
yvi+w; <T, i=1,....m

. 1/x\"|Q1R x
Tx+dTy + =
minimize(, ;) ¢’ x y+ 3 (y> [RT i (y)

subjectto Ax+ By > f

and

27
0<ylw=g+Nx+My>0

Yiyyi+ Xiywi =T,

respectively. Note that if y; and w; are both constrained to be no larger than T then their sum is also no larger than T’
by complementarity. A tight upper bound for the QPCC can often be achieved by solving the box constrained
QPCC in a mixed integer quadratic program formulation. We experimented with different choices for T

As we described above, we can solve the inner box constrained QPCC by CPLEX 12.1, so that the optimal
value of the inner QPCC gives a tight upper bound QP,;, to the outer QPCC. Then we solve the outer QPCC using
the general algorithms described in $3. Let (¥,¥) be the optimal solution of the QP relaxation 6(0,0), if it exists.
The quadratic objective function g(x,y) is convex, so we exploit its gradient to add a linear constraint

q(%,5) +Vq(%.5)" [(x.) — (£.5))] < QPuy
to the outer QPCC. This constraint is useful when solving ¥ (z).

12

Table 2 Computational time of feasible QPCCs with bounded QP relaxations (with 90 complementary variables).

T =100 inner box QPCC time(s) outer QPCC time(s) total time(s) number of LPs number of QPs

Max 72.46 5.47 71.50 16 4
Min 10.041 4.77 14.81 16 4
Deviation ~ 19.82 0.25 19.88 0 0
Average 34.08 4.99 39.07 16 4

Table 3 Computational time of feasible QPCCs with bounded QP relaxations (with 90 complementary variables).

T=10 inner box QPCC time(s) outer QPCC time(s) total time(s) number of LPs number of QPs

Max 73.88 3.16 76.81 11 2
Min 14.21 291 17.15 11 2
Deviation 20.83 0.08 20.93 0 0
Average 42.24 2.98 44.92 11 2

5.1 Some Numerical Results without the Preprocessing

It is straightforward that the larger the T is, the easier the outer QPCC will be. However, when T gets larger,
the inner box QPCC will take a longer time to solve. Tables[2]and [3| contain the computational results for feasible
QPCCs with bounded QP relaxations when using different bounds 7. Here Q is a 95 x 95 positive semidefinite
matrix of rank 90 and the dimension of the complementary variables y is m = 90.

In Table[2] 7 = 100 is used as the upper bound on the complementary variables in the box constrained QPCCs
to solve a collection of 10 randomly generated feasible QPCCs. This collection of QPCCs all have bounded QP
relaxations. On average, the box constrained QPCCs take about 34 seconds to solve, and the outer QPCCs take
about 5 seconds to solve. In addition, more LPs than QPs are solved. In Table [3| 7 = 10 is used as the upper
bound on the complementary variables in the box constrained QPCCs to solve the same group of 10 QPCCs as in
Table 2| As a larger T is used this time, the outer QPCCs take about 3 seconds to solve and the box constrained
QPCC:s take about 42 seconds to solve on average. Although the outer QPCCs are easier to solve in this case, the
total computational times are longer. Figure[l|is the performance profile of the algorithms with 7" = 100 and with
T = 103. The plot confirms that using 7 = 100 in the box constrained QPCCs is more efficient with this collection
of feasible QPCCs, which have bounded QP relaxations and 90 complementary variables.

In our experiments, we found that finitely solvable QPCCs with unbounded QP relaxations are more time
consuming to solve than QPCCs with bounded QP relaxations. This is because when 6(1,J) becomes unbounded,
the satisfiability constraint cannot be sparsified any further.

As proved in [8], a convex quadratic function either attains its optimum on a polyhedral convex set or becomes
unbounded below along a ray. Therefore, if 8(/,J) is unbounded, then the value % (I,J) is also unbounded,

W(I,J) := minimize(,) ¢’ x+d"y

subjectto Ax+ By >0

y=>0
= N. My >0
w x+ My > 28)
O R
() -0
RT 0, | \V
w; <0,i€l

When 0(1,J) becomes unbounded, we solve for a ray on which 1p(7,J) is unbounded. We then branch the outer
QPCC into two QPCCs:

Given that (7, J) is unbounded on a ray { B (;) B> O}, we have

Y >0,y <0,jed

13

performance profile

11 ‘ ‘
(6]
£
2 10- e .
o -
£ T
S ol - - i
2 1
= :
c !
£ 8r 1 i
g ,
? /
>
= 7 s .
3 ’
@ .
QE) ‘I
s 6 [/ .
o ’
o N
5 \I
=l i
3 °f
[S I T=100
=}
T T=1000
4 | | | | |

|
1 1.5 2 2.5 3 3.5 4 45 5 5.5
ratio of best time

Fig. 1 Performance profile with feasible QPCCs of bounded QP relaxations when using different 7’s (of m = 90 complementary variables)

Table 4 Computational time of QPCCs with unbounded QP relaxation(of 30 complementary variables).

T =103 inner box QPCC time(s) outer QPCC time(s) total time(s) number of LPs number of QPs

Max 2.00 87.10 88.07 84 204

Min 0.97 4.40 5.46 13 5

Deviation 0.32 28.81 28.84 23.7 68.0

Average 1.26 46.70 47.96 47.4 105.7
and

w =Nx"+My" >0,w; <0,i€l.

We then pick an index i such that both
yi >0

and
wi > 0.

By fixing y; to be 0 or fixing w; to be 0 in the outer QPCC, we can branch the outer QPCC into two QPCCs. Then
we solve the two QPCCs using the ray/point generation scheme respectively. We do so to avoid rays where 0 (1,J)
become unbounded.

Table] and Table [5 contain the computational results with a collection of 10 finitely solvable QPCCs with
unbounded QP relaxations, with 7 = 103 and 7 = 10° as the bounds on the complementary variables in the box
constrained QPCCs respectively. In contrast to the class of feasible QPCCs with bounded QP relaxations, here
the computational times of the box constrained QPCCs are as short as several seconds, and the outer QPCCs take
longer to solve.

As T increases from 103 to 103, the computational time of the box constrained QPCCs did not increase too
much, while the outer QPCCs’ time decreased a lot. When using 7' = 103 in the box constrained QPCCs, the
collection of QPCCs can be solved as fast as within 15 seconds on average. Figure[2]is the performance profile of
both algorithms using 7 = 10 and T = 10° in the box constrained QPCCs.

For QPCCs with a moderate number of complementary variables, we have more choices for the bounds 7.
Evenif T is quite large, CPLEX MIQP solver can still solve the box constrained QPCCs accurately. As the number
of complementary variables gets large, the possible choices for 7 become limited. If T is too large, the CPLEX

14

Table 5 Computational time of QPCCs of unbounded QP relaxation (of 30 complementary variables).

T =10° inner box QPCC time(s) outer QPCC time(s) total time(s) number of LPs number of QPs

Max 5.92 41.47 47.39 51 92
Min 1.13 4.39 5.73 12 5
Deviation 1.42 12.90 13.90 14.0 29.5
Average 2.06 12.09 14.15 222 21.6

Performance profile
12 T

10t e i

number of problems solved within ratio of the best time
~
T
N

N T=100000

N ‘== T=1000

2 I I I I I
2 4 6 8 10 12 14

ratio of best time

Fig. 2 Performance profile with bounded QPCCs with unbounded QP relaxations when using different 7”’s (of m = 30)

Table 6 Computational time of larger sized QPCCs of bounded QP relaxation

(m,n,k,rank(Q)) T box QPCC time(s) outer QPCC time(s) total time(s) LPs QPs
(100,10,8,90) 100 449.05 3.12 452.17 15 4
(120,4,8,90) 100 849.98 2.53 852.51 13 4
(150,4,8,150) 100 62.11 3.78 65.89 17 4
(150,4,4,150) 80 102.42 2.82 105.24 14 4
(180,2,4,170) 80 1126.83 1123.07 2249.90 3323 3115
(200,5,6,200) 50 261.67 675.46 937,13 817 1224
(200,5,6,200) 80 >2426.99

(220,2,4,200(A)) 50 67.68 2239.41 2307.09 6926 3992
(250,2,3,250(4)) 50 >1441.48

(280,2,3,280) 50 579.76 >657.20 >1236.96

(300,2,3,300) 50 327.46 >5716.48 > 6043.94

MIQP solver has difficulties solving the box constrained QPCCs, let alone solving it accurately. For one thing, the
MIQP solver may encounter “out of memory” errors; for another, the default tolerance for integer variables may
need to be adjusted in order to ensure accuracy of the solution. Thus a stronger MIQP solver is needed.

Table[6]contains the computational results for a collection of large-sized QPCCs. In the table, (m, n, k, rank(Q))
represents the number of complementary variables y, the number of first level variables x, the number of first level
constraints and the rank of the positive semidefinite matrix Q respectively. Also, the letter “A” in the first column
denotes that the first level constraints Ax + By > f in the QPCC do not involve y.

15

Table 7 Computational time of QPCCs with unbounded QP relaxation(of 50 complementary variables).

T =10* inner box QPCC time(s) outer QPCC time(s) total time(s) LPs QPs

Max 175.93 191.82 259.43 176 439
Min 1.59 6.87 10.26 20 7
Deviation ~ 56.08 61.62 99.48 49.0 146.8
Average 39.64 52.12 91.76 56.7 113.7

Table 8 Computational time of unbounded QPCCs (with 50 complementary variables).

T =10* inner box QPCC time(s) outer QPCC time(s) total time(s) LPs QPs

Max 2.72 0.55 3.28 1 1
Min 0.96 0.39 1.41 1 1
Deviation ~ 0.65 0.04 0.68 0 0
Average 1.68 0.46 2.14 1 1

Table 9 Computational time of infeasible QPCCs (with 50 complementary variables).

T =103 inner box QPCC time(s) outer QPCC time(s) total time(s) LPs QPs

Max 0.68 8.15 8.81 28 6
Min 0.53 0.25 0.79 1 1
Deviation 0.06 2.61 2.66 9.0 1.6
Average 0.56 1.39 1.96 49 1.7

Table 10 Computational time of some MacMPEC QPCCs

T box QPCC time(s) outer QPCC time(s) total time(s) LPs QPs
bilevel2.mod 100 2.02 14.44 16.50 34 15
bileve2m.mod 100 0.80 12.69 13.49 29 13
flp2.mod 100 0.76 1.40 2.15 3 2
flp4—1.dat 100 0.70 3.73 443 10 4
flp4 —2.dat 100 0.74 4.57 5.31 12 4
flp4—3.dat 1000 0.81 4.89 5.70 13 4
flp4d —4.dat 1000 1.04 7.82 8.86 15 4

We also considered larger-sized finitely solvable QPCCs with unbounded QP relaxations. Table[7|contains the
computational results of QPCCs with 50 complementary variables and with unbounded QP relaxations. For this
class of QPCCs, we pick T as 10* in the inner box constrained QPCCs.

Table 8| displays the computational results of a collection of 10 unbounded QPCCs using 7' = 10*.

Unbounded QPCCs and infeasible QPCCs are actually easier to solve using our method. They can be solved
as efficiently as within a couple of seconds, as we showed in Table[§]and Table 0] In general, only a few LPs and
QPs are solved when solving the outer QPCCs.

Finally, we also solved some of the MacMPEC QPCCs [25]]. Table [I0]displays the computational results for
these problems. We confirmed by our approach that the solutions given on the MacMPEC web site were the real
global resolutions to the QPCCs.

5.2 Some Numerical Results after Applying the Preprocessing Procedure

As shown in Table [6] when the sizes of the QPCCs are large, we have to pick smaller scalars 7' as the upper
bounds on the complementary variables, otherwise the MIQP solver may collapse due to “out of memory” errors.
Thus we would like to combine the MIQP solver with some other techniques, so that at least to some extent, the
computational difficulty could be reduced. The preprocessing procedure based on the addition of the penalty term
yI'Dw to the objective function turns out to be very helpful. In this subsection, we report some computational
results when applying this preprocessing procedure to QPCCs.

We first tested this procedure on the QPCCs in Table 2] ten finitely solvable QPCCs with bounded QP relax-
ations. The results are given in Table [T1] with columns 2—4 giving more details for the computational results in
Table |2 and the last 4 columns giving the computational results of using the preprocessing procedure. Using the

16

Table 11 Comparison between the computational times before and after the preprocessing (as in Table |

time(s): box QPCC outer QPCC total SDPT3 box QPCC outer QPCC total

1 12.80 4.79 17.59 | 3.34 7.95 4.86 16.15
2 10.04 4.77 14.81 | 3.05 742 4.82 15.28
3 30.47 5.47 3594 | 3.09 8.01 4.81 15.91
4 23.29 4.79 28.08 | 3.29 11.09 4.81 19.19
5 27.76 5.01 3277 | 3.12 23.93 4.67 31.72
6 72.46 5.04 7750 | 3.34 11.63 4.94 19.91
7 38.45 5.40 43.84 | 3.84 21.49 5.45 30.78
8 21.10 4.93 26.03 | 3.69 7.98 3.51 15.19
9 55.09 4.89 59.97 | 3.26 20.97 4.76 28.99
10 49.33 4.82 54.14 | 3.15 8.43 4.82 16.40
mean 34.08 4.99 39.07 | 3.32 12.89 4.74 20.95
min 10.04 4.77 14.81 | 3.05 7.42 351 15.19
max 72.46 5.47 77.50 | 3.84 23.93 5.45 31.72
stdev 19.82 0.25 19.87 | 0.26 6.57 0.48 6.80

Table 12 Comparison between the initial lower bounds with and without the preprocessing (as in Table |

QPCC optimal value QP optimal value QP,;, optimal value gap closed(%)

(preprocessed)
1 -898.0942 -898.4921 -898.1876 76.53
2 -806.4929 -807.0095 -806.6029 78.71
3 -904.9591 -905.3146 -905.0182 83.38
4 -1053.8 -1054.3 -1054.1 60.00
5 -898.6491 -899.0082 -898.781 63.27
6 -842.7464 -843.1964 -842.8756 71.29
7 -986.3559 -986.7223 -986.442 76.50
8 -1329.3 -1329.7 -1329.5 75.00
9 -1282.7 -1283 -1282.8 66.67
10 -744.679 -745.1682 -744.7599 83.46
mean 73.48

Table 13 Computational times of larger sized QPCCs of bounded QP relaxation after the preprocessing (as in Tablelgl)

(m,n,k,rank(Q)) T SDPT3 box QPCC outer QPCC total

time(s) time(s) time(s) LPs QPs
(100,10,8,90) 100 3.77 444.44 3.17 451.37 15 4
(120,4,8,90) 100 5.04 499.06 2.57 506.67 13 4
(150,4,8,150) 100 7.25 24.01 3.05 34.31 17 4
(150,4,4,150) 80 11.44 99.99 2.52 113.95 14 4
(180,2,4,170) 50 19.19 1002.22 792.24 1813.65 2329 2216
(200,5,6,200) 50 16.59 196.38 3146.30 3359.28 6662 4266
(200,5,6,200) 80 16.61 3143 1756.58 1804.62 6637 3329
(220,2,4,200(A)) 50 24.72 75.97 438.45 539.14 1406 602
(250,2,3,250(A)) 50 32.80 58.54 599.37 690.71 1733 627
(280,2,3,280) 50 43.68 65.79 694.19 803.67 1873 724
(300,2,3,300) 50 54.40 376.09 1655.44 2085.93 2429 1396

preprocessing routine reduces the average computational time of the box constrained QPCCs from 34 seconds to
13 seconds. Further, the average of the total computational times is reduced by nearly a half — from 39 seconds to
21 seconds, even after taking the SDPT3 computational times into account.

In Table[I2] we also report the comparison between the initial lower bounds with and without the preprocessing
procedure. The initial lower bounds are obtained by solving the QP relaxations. The “gap closed” column is to
show how strong the new initial lower bounds (after the addition of the penalty term) are in comparison with the
initial lower bounds before the addition of the penalty term.

Finally, we tested the preprocessing procedure on the QPCCs in Table[6] The total runtime is reduced for most
of the instances. For some of the QPCCs, the total run times can be reduced by hundreds of seconds. A plot of

17

Performance profile
12 T

11+ R

10+ - :

number of problems solved within ratio of the best time

preprocessed i
----- unpreprocessed

1 | | | | | | |
1 15 2 25 3 35 4 4.5 5

ratio of best time

Fig. 3 Performance profile with large-sized QPCCs before and after the addition of the penalty term y” Dw

Table 14 KNITRO computational results of QPCCs with bounded QP relaxations as in Table|§|

(m,n,k,rank(Q)) true optima solution by KNITRO feasibility error exit flags
(100, 10,8,90) -1017.3 -1017.30415 7.96E-13 flag 1
(120,4,8,90) -121.248 -121.247512 4.41E-12 flag 1
(150,4,8,150) -1765.1 -1765.07846 8.71E-08 flag?2
(150,4,4,150) -260.463 -260.462886 3.26E-13 flag 1
(180,2,4,170) -2614.2 -2614.21733 3.11E-13 flag 1
(200,5,6,200) -5596.1 -5523.322465 1.12e-09 flag?2
(200,5,6,200) -815.4117 -667.9118236 1.07e-12 flag?2
(220,2,4,200(4)) -2371.2 -2096.131103 0.000112 flag 1
(250,2,3,250(4)) -953.9291 -893.0508607 2.12¢-10 flag 2
(280,2,3,280) -90.9804 69.19056883 0.000507 flag 1
(300,2,3,300) -6659.1 -6397.381507 1.69e-06 flag?2

performance profile is included in Figure [3] It confirms that the computational time is dramatically reduced by
adding the penalty term to the objective function of the QPCC.

5.3 Comparison with KNITRO

In this section, we present the computational results of our test problems solved by KNITRO and then make
a comparison with results obtained by our approach. We tested all four types of QPCCs on KNITRO: feasi-
ble QPCCs with bounded QP relaxations, finitely solvable QPCCs with unbounded QP relaxations, unbounded
QPCCs and infeasible QPCCs. The computational results are presented in Tables[T4HI7] The problems tested may
have one of the following possible exit flags:

1. flag 1: “Primal feasible solution; terminate because the relative change in solution estimate < x;;”.
2. flag 2: “Locally optimal solution”.

3. flag 3: “Iteration limit reached”.

4. flag 4: “Presolve finds no feasible solution possible”.

In Table[T4] KNITRO is mostly incapable of evaluating the quality of its computational iterates for the class of
large-sized feasible QPCCs with bounded QP relaxations. KNITRO either terminated as the relative change in the

18

Table 15 KNITRO computational results of QPCCs with unbounded QP relaxations as in Table@

true optima solution by KNITRO feasibility error exit flags

1 -444.0181 -444.0317911 3.45E-08 flag?2
2 -1703.3 -1703.207792 4.5E-10 flag?2
3 -639.6325 -469.4700176 5.88E-09 flag?2
4 -158.9225 -158.922 4.88E-11 flag?2
5 -822.0306 -178.3615839 5.34E-09 flag?2
6 -2506.9 -1392.066308 1.37E-11 flag?2
7 -120.5437 -120.5452211 1.32E-09 flag?2
8 -743.4272 -743.4658513 7.00E-08 flag?2
9 -232.8212 -64.35878218 8.65E-10 flag?2
10 -171.3706 -171.3696801 flag?2

Table 16 KNITRO computational results of unbounded QPCCs as in Table

solution by KNITRO feasibility error exit flags

1 -19971367.53 2.58B-11 flag2
2 -5382.016321 1.38E-09 flag?
3 3.95E+l11 flag3
4 -508.1576072 5.69E-10 flag 2
5 -48903.2844 1.44E-11 flag?2
6 -7.65E+15 3.16E-08 flag 1
7 -8.07E+14 4.76E-06 flag3
8 -7.23E+l5 flag 3
9 -4.08E+12 flag3
10 -46002.16193 flag 2

Table 17 KNITRO computational results of infeasible QPCCs as in TableEI

solution by KNITRO feasibility error exit flags

1 o flag 4
2 o flag 4
3 flag 4
4 5551995318 flag 3
5 flag 4
6 oo flag 4
7 oo flag 4
8§ o flag 4
9 121919866.5 flag 3

solution became smaller than the default tolerance, in which case a smaller tolerance x;,; may be needed in order
to get possibly better results, or could only find “local optima” but not the global optima.

In Table [I5] KNITRO can successfully terminate on the class of finitely solvable QPCCs with unbounded
QP relaxations, but the obtained solutions are not guaranteed to be globally optimal. The KNITRO solutions of
Problems 3,5,6,9 are not globally optimal. In contrast, due to the incorporation of some mechanisms for verifying
global optimality, our approach can achieve the global resolution of the QPCCs.

Table [16] and Table [I'7] show that KNITRO is not very successful in confirming either the unboundedness or
the infeasibility of the QPCCs. In Table[T6] KNITRO either terminated unsuccessfully or wrongly ascertained the
status of the unbounded QPCCs. In Table[T7] KNITRO could not determine the status of certain infeasible QPCCs
as we showed. In fact, our approach can easily ascertain the correct statuses of both unbounded and infeasible
QPCCs.

6 A Method to Obtain Better Lower Bounds from Infeasibility
In this section, we are going to introduce a method to get better lower bounds of QPCCs from infeasibility; this
method could be incorporated into a branching scheme. A lower bound can be obtained by choosing a subset I

of the complementarities and solving all 20| quadratic programs corresponding to a particular assignment of the
complementarities in /. The minimum value of these quadratic programs gives a valid lower bound. The standard

19

quadratic program relaxation of the QPCC corresponds to taking Ip = 0. Inspired by the work of Bienstock [4]
on certain types of mixed integer quadratic programs, the lower bounding procedure is modified in two ways.
First, solving 21l quadratic programs is too expensive, so we drop the inequality constraints from the quadratic
programs, thus the relaxed quadratic programs have closed form solutions. Secondly, in order to improve the
bound, we include an additional linear constraint based upon the gradient of the objective function. This constraint
tightens up the relaxation because it restricts the feasible region of each of the quadratic programs to lie in the
halfspace of points that are no better than the solution to the standard QP relaxation of the QPCC. The KKT
conditions provide another motivation: the gradient of the objective is a nonpositive combination of the gradients of
the active inequality constraints, so the gradient constraint is a proxy for the set of discarded inequality constraints.
Let Iy C {1,...,m}. Any feasible point of the QPCC should at least have

0 <y, Lw,=>0.

An underestimation 8y(Iy) of the QPCC could be obtained by minimizing over all possible disjoint partitions
(1,J) of Iy and relaxing all the inequality constraints:

minimizey) q(x,y)

< subjectto wy = (g + Nx + My); =0

0o(Ip) : 0(1,J) = (29)

= min
1,JCIy 1UJ=Iy,INJ=0
y; = 0.

No feasible solution to QPCC can have objective function value better than (%,7) (the optimal solution to the
standard QP relaxation), so we can strengthen the lower bound by picking g equal to Vg(¥,) and adding a linear
constraint to (29), giving the quadratic program:

o(1,J) :== minimize) q(x,y)

subjectto wy = (¢ + Nx+ My); =0

yy=0 30)
T(X T(X
7 (5)=4(5):

Every feasible solution to the QPCC is feasible in for at least one partition (7,J) of Iy, so we have the valid
lower bound

Bo(Io) := i 6(1,9). 31
o(ho) IJQIO,ILBIJn:I}O,IﬂJ:(D (7,7) (D
Define programs 8, (1,J) and 6,(I,J),

01(1,) == minimizey) q(x,y)

subjectto wy=(¢+Nx+ My); =0

yy=0 (32)
T(*XY _ (%
7 (3) = ()
6,(1,7) := minimize ,) q(x,y)
subjectto w;=(¢+Nx+My); =0 (33)

Note that 6y (1,J) > 6(1,J) > 6,(I,J). We have the following proposition:

20

=

2
Proposition 7 If there exists a feasible solution (x*,y*) to with q(x*,y*) < 6,(1,J) and g" (;62> > gl <
then §(1,J) = 65(I,J). Otherwise, (I,J) = 6;(1,J).

)

Proof First note that if every feasible solution (x%,y?) to (33) satisfies g(x2,y?) > 6, (I,J) then 6, (I,J) = 6 (I,J),
so the result holds. Thus, assume 6, (1,J) > 6,(1,J). We break the proof into two cases.

~

2
(i) There exists a feasible solution (x?,y?) to 1i with g(x?,y?) < 6;(1,J) and g (;C2> > gl (;f

i) =
Assume there exists another feasible solution (¥2,7?) to (33) with ¢(¥*,5%) < 6;(I,J) and g7 <;2) < gl (;)
Then a convex combination (£2,5?) of (x?,y%) and (2,77 is feasible in (32). By the convexity of g(x,y), this point
satisfies
q(#,5%) < max{q(:*y*),q(,7%)} < 6i1(1,J),

a contradiction. Thus, every feasible solution (¥2,7°) to (33) with ¢(2,7%) < 6;(1,J) is feasible in (30) so (1,J) =
6,(1,7).

2 -
(ii) Every feasible solution (x2,y?) to || with ¢(x?,y?) < 0 (I,J) satisfies g” (;2) < g’ (;

2 —
Let (x?,y%) be a particular feasible solution to satisfying g(x*,y?) < 6;(I,J) and g” (;2> < g’ (;) Let

(%,9) be feasible in (30) and infeasible in . Then there exists a feasible solution (x',y') to (32) that is a convex
combination of (£,)ﬁmd (x2,y?). By the convexity of g(x,y), we have g(%,9) > g(x',y"). It follows that the
30

optimal solution to (30) must be feasible in , s0 0(1,J) = 6,(1,J).

In certain situations, the value of é(l ,J) can be determined by solving two systems of linear equations, as we
illustrate in the next proposition.

01 R .
Proposition 8 [f the projection of the objective quadratic R 0 onto the the constraints of problem 6, (I,J)
2
is full rank and the constraints are linearly independent, then (30) is equivalent to a single variable optimization
problem of the form
1 01 R Q1 R T T O1 R
minimizey —b’ by2+ al b—|—(c) b j/—i—(c) a+—-a’ a
20 |R" R" 0 d) 2 R0 (34)
subjectto y > gT ;

Here a,b are two deterministic vectors.

Proof This can be proved by examining the KKT conditions of the following program

1 /x T O R X
MINIMIZE(yy) € X + a7y + 2y % 0 y

subject to wi=(g+Nx+My); =0

(35
yy=0
T(X) _
7 (3)-r
N(I,:) M(I,: _ .
Define H = 0 (- f(J())] e RUIHVDx(+m) and p = (%(1)> , where [is the m x m identity matrix. The
optimal solution and the KKT multipliers of program must satisfy the following system of linear equations,
X QO H' g X —c —c 0
y | . y| [-d]| _|[| -4 0
Plot=17a0 01 |I=| ,1=| #l*7lo (36)
o g'0 0 o Y 0 1

21

Table 18 gap closed (m = 50,k = 5,n = 10 and condition number of Q = 20)

ub QP Ib (penalty) gap closed(%) 1b from gap closed(%) SDPT3 time time

1 -309.8868 -310.2951 -309.9126 93.68 -309.9074 94.95 1.19 1.22
2 -67.4246 -67.4938 -67.431 90.75 -67.4305 91.47 1.13 0.38
3 -138.8104 -139.6244 -138.8375 96.67 -138.8304 97.54 1.11 0.92
4 -143.4102 -143.4689 -143.4115 97.79 -143.4112 98.30 1.24 0.36
5 -264.4806 -264.5879 -264.4823 98.42 -264.4818 98.88 1.16 0.94
6 -145.4621 -145.5447 -145.4703 90.07 -145.4668 94.31 1.12 0.66
7 -20.8979 -21.7369 -21.1698 67.59 -21.1275 72.63 1.15 0.94
8 -197.8096 -197.8545 -197.8098 99.55 -197.8098 99.55 1.21 0.38
9 -217.5868 -217.6531 -217.5894 96.08 -217.5891 96.53 1.20 0.76
10 -251.3961 -251.4479 -251.4017 89.19 -251.4012 90.15 1.21 0.45

91.98 93.43 1.17 0.70

Table 19 gap closed (m = 100,k = 2,n = 10 and condition number of Q =2)

ub QP Ib (penalty) gap closed(%) 1b from gap closed(%) SDPT3time (31) time

1 -3.1726 -9.236 -7.4163 30.01 -7.4019 30.25 2.83 1.72
2 -30.2126 -30.5237 -30.2514 87.53 -30.2459 89.30 3.28 1.66
3 -46.1831 -46.6227 -46.2822 77.46 -46.2532 84.05 2.87 1.87
4 -6.7123 -8.7065 -7.4089 65.07 -7.3865 66.19 2.70 1.82
5 -22.5016 -23.41 -22.7475 72.93 -22.7397 73.79 2.60 1.68
6 -41.5942 -41.7507 -41.6029 94.44 -41.6007 95.85 2.92 1.78
7 -106.4055 -106.5383 -106.4105 96.23 -106.4103 96.39 2.61 1.71
8 -25.0137 -25.4995 -25.1382 74.37 -25.1231 77.48 2.90 1.67
9 -46.1831 -46.6227 -46.2822 77.46 -46.2532 84.05 2.54 1.61
10 -2.2237 -4.6037 -3.1505 61.06 -3.1095 62.78 247 1.66

73.66 76.01 2.77 1.72

Here matrix Q is positive semidefinite, # and o are the KKT multipliers corresponding to the constraints in
program (35). As the projection of Q onto the constraints is of full rank and the constraints are linearly independent,
program (35) has a unique optimal solution for any y. Thus the unique optimal solution of program (35) can be
written as a + by, with a = (ay,ay),b = (by, by) resulting respectively from

ay —c
ay | | —d
P " = e 37
a 0
and
by 0
by| 10
P i =1 (38)
a 1

Substituting for (x,y) in gives .

We report some computational results in Tables and Our method is tested on QPCCs with full rank
quadratic objectives and with equality side constraints only; however, it also works for QPCCs with inequality
constraints. In the test, we first add the penalty term y? Dw to the objective functions of the QPCCs, then we use
(31) to obtain the lower bounds. We report the lower bounds and the percentage of gap closed to the upper bounds
of the QPCCs. All reported running times are in seconds. We considered QPCCs with 50, 100 and 300 pairs
of complementary variables respectively. In the testing, we use |Ip| = 10 indices of the entries where the initial
infeasible solution (J,w) violates the complementarity constraints.

By adding the penalty term y” Dw to the objective function of the QPCC only, we can close as much as 90%
of the gap on average when the size of the QPCCs is not large. The QP lower bounding technique helps to close
18.08%, 8.92% and 3.55% of the remaining gaps respectively if we combine the two methods. By using just the
QP lower bounding technique, we could close slightly less than 50% of the gap in the best of the above 3 cases.

22

Table 20 gap closed (m = 300,k = 5,n = 10 and condition number of Q = 1)

ub QP Ib (penalty) gap closed(%) 1b from gap closed(%) SDPT3 time time

1 -101.6011 -102.1054 -101.7406 72.34 -101.7294 74.56 93.99 10.96
2 -62.5099 -68.4999 -64.2666 70.67 -64.1999 71.79 69.27 10.91
3 -5.2152 -9.7033 -7.0351 59.45 -6.9769 60.75 77.90 11.27
4 -2.5884 -29.8765 -25.8613 14.71 -25.6694 15.42 77.11 11.57
5 -256.6023 -258.1193 -256.7252 91.90 -256.721 92.18 74.18 11.27
6 -6.0225 -9.7167 -7.3488 64.10 -7.3013 65.38 79.37 10.58
7 -13.2958 -20.2235 -17.0647 45.60 -16.9537 47.20 75.10 11.08
8 -21.8755 -26.3378 -23.3456 67.06 -23.2272 69.71 72.86 11.08
9 -58.8571 -60.7365 -59.2903 76.95 -59.244 79.41 83.19 11.55
10 -2.9081 -8.4514 -5.7658 48.45 -5.7569 48.61 69.80 11.05

61.12 62.50 69.20 11.13

7 Concluding Remarks and Future Work

Our computational results demonstrate that we can successfully find globally optimal solutions to convex
quadratic programs with at least 100 complementarity constraints, or provide certificates that no such solutions
exist. Our method effectively combines two algorithms for disjunctive programs (namely, branch-and-cut and
logical Benders decomposition) and involves two refinements: preconditioning by adding a quadratic penalty term
to the objective, and improved lower bound generation. Our results can be contrasted with those obtained by a local
optimization nonlinear programming package, which is incapable of providing any information on the quality of
the solution obtained when the method terminates successfully, or offering certificates for infeasible or unbounded
problems. Such existing software is particularly unreliable for solving QPCCs with unbounded QP relaxations.

From computational experience, the current MIQP solvers have difficulties solving large-sized QPCCs where
the variables have large finite bounds. The main reason for computational difficulty is running out of memory.
If the box constrained QPCCs could be solved more efficiently, then the global resolution of large-scale QPCCs
could be enhanced.

References

1. Audet, C., Savard, G., Zghal, W.: New branch-and-cut algorithm for bilevel linear programming. Manage. Sci. 134, 353-370 (2007).

2. Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links between linear bilevel and mixed 0-1 programming problems. J. Optim. Theory Appl.
93, 273-300 (1997).

3. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. John Wiley& Sons, Inc., New Jersey (2006).

4. Bienstock, D.: Eigenvalue techniques for proving bounds for convex objective, nonconvex programs. IPCO 29-42 (2010).

5. Candes, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717-772 (2009).

6. Chen, X., Ye, J.: A class of quadratic programs with linear complementarity constraints. Set-Valued and Variational Ana. 17, 113-133
(2010).

7. Codato, G., Fischetti, M.: Combinatorial Benders’ cuts for mixed-integer linear programming. Oper. Res. 54, 738-766 (2006).

8. Eaves, B.C.: On quadratic programing. Manage. Sci. 17, 698-711 (1971).

9. Fazel, M.. Matrix rank minimization with applications. Ph.D. thesis, Electrical Engineering Department, Stanford University (2002).

10. Fazel, M., Hindi, H., Boyd, S.: Rank minimization and applications in system theory. Proceedings of the 2004 American Control Confer-
ence, Boston, Massachusetts June 30-July 2, 2004. 3273-3278 (2004).

11. Han, Z.: A SAT solver implemented in MATLAB. http://www.mathworks.com/matlabcentral/fileexchange/22284-satisfiability-solver.
Accessed September 2011.

12. Hooker, J.N.: Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction. Wiley, (2000).

13. Hooker, J.N.: Integrated Methods for Optimization. Springer, New York (2006).

14. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Math. Program. 96, 33—60 (2003).

15. Hu, J. On linear programs with linear complementarity constraints. Ph.D. thesis, Mathematical Sciences, Rensselaer Polytechnic Institute
(2009).

16. Hu, J., Mitchell, J.E., Pang, J.S., Bennett, K.P., Kunapuli, G.: On the global reolution of linear programs with linear complementarity
constraints. STAM J. on Optimization. 19, 445-471 (2008).

17. Hu, J., Mitchell, J.E., Pang, J.S., Yu, B.: On linear programs with linear complementarity constraints. J. Global Optim. doi:
10.1007/s10898-010-9644-3.

18. Hu,J., Mitchell, J.E., Pang, J.S.: An LPCC approach to nonconvex quadratic programs. Math. Program. doi: 10.1007/s10107-010-0426-y.

19. Jiang, H., Ralph, D.: QPECgen, a MATLAB generator for mathematical programs with quadratic objectives and affine variational in-
equality constraints. Comput. Optim. Appl. 13, 25-59 (1999).

20. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs With Equilibrium Constraints. Cambridge University Press, New York (1996).

21. Mitchell, J.E., Pang, J.S., Yu,B.: Obtaining tighter relaxation of linear programs with complementarity constraints. Proceedings of the
Conference on Modeling and Optimization, Theory and Applications (2010).

23

http://www.mathworks.com/matlabcentral/fileexchange/22284-satisfiability-solver

22. Pang, J.S.: Three modeling paradigms in Mathematical Programming. Math. Program. 125, 297-323 (2010).

23. Toh, K.C., Todd, M.J., Tutuncu, R.H.: SDPT3—a Matlab software package for semidefinite programming. Optim. Methods and Soft. 11,
545-581 (1999).

24. Yu, B.. A branch and cut approach to linear programs with linear complementarity constraints. Ph.D. thesis, Mathematical Sciences,
Rensselaer Polytechnic Institute (2011).

25. “MacMPEC Test Problems.” http://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC. Accessed September 2011.

24

http://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC

	Introduction
	Problem Definition
	Cuts and Algorithms for Mixed Integer QPs
	Preprocessing
	Computational Experience
	A Method to Obtain Better Lower Bounds from Infeasibility
	Concluding Remarks and Future Work

