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Abstract

Given a complete graph Kn = (V, E) with edge weight ce on each edge, we con-
sider the problem of partitioning the vertices of graph Kn into subcliques that have
at least S vertices, so as to minimize the total weight of the edges that have both end-
points in the same subclique. In this paper, we consider using the branch-and-price
method to solve the problem. We demonstrate the necessity of cutting planes for
this problem and suggest effective ways of adding cutting planes in the branch-and-
price framework. The NP hard pricing problem is solved as an integer programming
problem. We present computational results on large randomly generated problems.
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1 Introduction

In this paper, we solve the Clique Partitioning Problem with Minimum clique
size constraints (CPPMIN): given an undirected complete graph G = (V, E)
with node weight av = 1, v ∈ V , edge cost ce, e ∈ E, and an integer S, the
CPPMIN problem is to find a partition Π = {P1, P2, . . . , Pk} of V that solves
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min
k∑

i=1

∑

e∈E(Pi)

ce

s.t.
∑

v∈Pi

av ≥ S i = 1, . . . , k (1)

Each partition Pi is called a cluster. A cluster with edges connecting every
pair of vertices in the cluster is a clique. Since all the clusters in this complete
graph are also cliques, we call this problem clique partitioning problem [10].
We consider the complete graph here because problems on a non-complete
graph can be easily converted to a problem on a complete graph with some
zero edge weights. We also only consider the case when ce is nonnegative.
Notice the total number of clusters k is not fixed in the problem, rather the
minimum size for each cluster is given as S. E(Pi) denotes the edges with both
endpoints in Pi.

We can generalize CPPMIN by changing the node weight av to values other
than 1. It is then called Generalized Clique Partition Problem with Minimum
Size Requirement (GCPPMIN). In this paper, we restrict ourselves to CPP-
MIN, but the analysis and algorithm can be readily applied to GCPPMIN.

If we change the minimization into maximization and the lower bound on the
size constraint into an upper bound, we get the opposite problem, min-cut clus-
tering problem [17], also called clustering problem with knapsack constraints
[21] :

max
k∑

i=1

∑

e∈E(Pi)

ce

s.t.
∑

v∈Pi

av ≤ S i = 1, . . . , k (2)

Johnson, Mehrotra and Nemhauser [17] considered this problem with k given,
and solved it using branch-and-price, with the column generation subproblem
solved as an integer programming problem on the boolean quadratic poly-
tope. They discussed some strong valid inequalities for their column generation
subproblem and described their solution strategy with computational results.
Mehrotra and Trick [21] improved upon the results in [17] by using a combina-
torial method to solve the column generation subproblem. This model is used
for a political redistricting problem by Mehrotra, Johnson and Nemhauser
[19]. In this application, the knapsack constraint (2) provides a balance on
the population of each district, and the objective function is set to enforce
compactness of each district.

Their successful application of column generation on this problem inspired
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us to try branch-and-price on CPPMIN. But the differences in these two
problems, i.e., minimization vs maximization in the objective, lower bound
vs upper bound in the constraint, lead to almost opposite properties for the
two problems. Therefore what proved useful in their method, in particular
their efficient combinatorial algorithm for solving the pricing problem, is not
applicable in our CPPMIN here.

Another closely related problem is the k-way equipartition problem, which
solves

min
k∑

i=1

∑

e∈E(Pi)

ce

s.t.
∑

v∈Pi

av = S i = 1, . . . , k (3)

Here each cluster contains exactly S vertices. An integer programming prob-
lem in the framework of branch-and-cut is set up by Mitchell [22]. There, he
discussed the corresponding polyhedral structure, facet-defining constraints
in detail. The resulting algorithm is used to solve the NFL team alignment
problem in [23]. Ji and Mitchell [16] later considered the same problem but
within a branch-and-price framework. In addition to sports team alignment
problems, they also applied it on micro-aggregation problems that arises in
processing public statistical data. This paper is an extension from [16] in the
sense that it is applying the branch-and-price framework on a more general
problem.

When the number of vertices n is not a multiple of k, a k-way equipartition
is not possible. One way to relax the problem is to solve the k-way partition
problem, which requires to divide the graph into no more than k clusters.
Chopra and Rao [7] investigated this problem on a general graph. A recent
application is on the multiple disposal facilities and multiple inventory loca-
tions rollon-rolloff vehicle routing problem by Baldacci, Bodin and Mingozzi[1].
They proposed a very effective exact method based on a bounding procedure
that combines different relaxations of the problem.

The other way to solve the problem when n is not a multiple of k is to relax
the constraint on the size of the clusters and only require that each cluster
size is not smaller than S = bn/kc. This leads to our CPMMIN problem. We
have also investigated the branch-and-cut method for solving the CPPMIN
problem. The result is summarized in [15]. By applying two different methods
on the same problem, we hope to provide a comparison of the two and gain
some insight into the pros and cons for each method.

Column generation is a classic method that was originally used to solve Linear
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Programming problems with large number of variables. Since its adaptation
to integer programming more than a decade ago, it has been reported as a
success on many difficult IP problems, such as the generalized assignment
problem [28] , crew scheduling [30], bin packing and cutting stock problems
[31], edge coloring problems [24], graph coloring problems [20], etc. For a
general introduction, one can refer to Barnhart et al. [3]. Wilhelm [32] gave
a review with emphasis on formulation issues. Lübbecke and Desrosiers [18]
surveyed column generation with emphasis on the dual point of view.

2 An Integer Programming Formulation for Column Generation

Now we give the integer programming formulation of CPPMIN in a form that
is suitable for column generation. We consider CPPMIN on graph G = (V, E)
with minimum size S. A cluster P ⊆ V is feasible if there are at least S
vertices in this cluster, i.e. |P | ≥ S. For each feasible cluster P , we define a
binary variable xP

xP =





1 if cluster P is used in the solution of CPPMIN

0 otherwise

Let wP =
∑

e∈E(P )
we, then CPPMIN can be formulated as the following IP

problem, denoted as (MIP),

min
∑

P

wP xP

s.t.
∑

P :v∈P

xP = 1 ∀v ∈ V

xP ∈ {0, 1}
P ∈ 2V , |P | ≥ S.

Here 2V = {P : P ⊆ V } represents the set of all subsets of V . The equality
constraint says that every node v must be covered in exactly one of the cho-
sen clusters. In this paper, we consider only nonnegative edge weights, so we
automatically have xP ≤ 1. We then relax the integrality constraint, to get
the linear relaxation (MLP):

min
∑

P

wP xP

s.t.
∑

P :v∈P

xP = 1, ∀v ∈ V (4)

xP ≥ 0 (5)

P ∈ 2V ,|P | ≥ S. (6)
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There are
n∑

i=S

(
n
i

)
P s that satisfy (6), thus the same number of variables xP .

But it is not possible, nor necessary to include all these variables in the initial
formulation, since most of them take the value zero in the optimal solution
anyway. Instead, we can start with a subset of clusters, then add in the needed
ones later using a pricing algorithm. This pricing step is also called column
generation since it is similar to the column generation method for solving
LPs with large number of variables. Starting with a subset of feasible clusters
T ⊆ 2V , we solve a restricted (MLP), called (RMLP), where P ∈ T . The
optimal solution of (RMLP) is a feasible solution to MLP. The dual values πv

for each constraint in (RMLP) are used to decide whether we need to expand
T .

We demonstrate how to price in a new variable by a trivial example. A graph of
3 vertices is required to be partitioned into clusters containing no less than two
vertices. There is obviously only one feasible solution to this problem, which
is to put all three vertices in one cluster. But there are four feasible clusters
to consider, P1 = {v1, v2}, P2 = {v2, v3}, P3 = {v1, v3} and P4 = {v1, v2, v3}.
Suppose we have considered three clusters P1, P2 and P3, i.e., T = {P1, P2, P3}.
Now we need to decide if we should expand T into T ′ = {P1, P2, P3, P4}. The
LP relaxation of (MIP) on T ′ can be written as the following:

min w1x1 +w2x2 +w3x3 +w4x4 dual variables

s.t. x1 +x2 +x4 = 1 → π1

+x2 +x3 +x4 = 1 → π2

x1 +x3 +x4 = 1 → π3

xi ≥ 0

(7)

Let πv be the dual variables corresponding to the equality constraint. The
dual problem is

max π1 +π2 +π3 primal variables

s.t. π1 +π3 ≤ w1 → x1

π1 +π2 ≤ w2 → x2

π2 +π3 ≤ w3 → x3

π1 +π2 +π3 ≤ w4 → x4

(8)

Let (x̄1, x̄2, x̄3) and π̄ be the optimal solution to the primal and dual pair,
when x4 was not introduced. (x̄1, x̄2, x̄3, 0) is also a feasible solution to (7).
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Only when the reduced cost of x4, w4− (π̄1 + π̄2 + π̄3), is negative, do we need
to add in cluster P4.

The above example demonstrates that we can decide whether to expand T or
not by solving a minimum node-edge-weighted cluster problem (MINNEWCP)
with minimum size constraints: given a graph G = (V, E) with node weight
−πv and edge weight wij, find a feasible cluster whose total weight (edge
weights and node weights all together) is minimized. If the optimal value is
non-negative, then there exist no improving clusters. Otherwise, any feasi-
ble cluster with a negative objective value provides an improving cluster. A
feasible cluster in the case of CPPMIN needs to satisfy the minimum size
constraint, i.e., it has to have at least S vertices.

This process should be repeated until there are no improving clusters. If the
optimal solution to the final linear relaxation, (MLP), is an integer solution,
then we are done, otherwise we need to use either a cutting plane method or
branching to force integrality.

3 Cutting Planes

The LP relaxation (MLP), however, is not a very good approximation of the
original IP problem (MIP). In fact, whenever the number of vertices n is not
a multiple of S, there exists a fractional solution to (MLP) that has a better
objective value than the optimal integer solution. And the difference is usually
very big, resulting in a bad approximation, consequently a large branch-and-
bound tree, if we only use branching to enforce integrality.

This can be illustrated in the example in Figure 1 - 2. A problem of size
n = 14, S = 4 is shown, the edge weights are the Euclidean distance between
the vertices on the two ends of the edge. The optimal solution is shown in
Fig 1 with an objective value of 628, but the best LP objective value of the
LP relaxation (MLP) is 462, with the corresponding LP solution shown in Fig
2. The huge difference between these two solutions comes from the fractional
value of the clusters in vertices {7, 8, 9, 10, 11, 14}, namely from the factional
value on clusters: x7,8,9,11 = 0.5, x7,9,10,14 = 0.5, x8,10,11,14 = 0.5. This happens
in every cluster with more than S vertices, since it can always be replaced by
a fractional combination of clusters of size S with a lower objective value.

We would like to mention here that a similar gap between the MIP and its
LP relaxation is also present in the case of k-way equipartition, although it
may not happen in every instance as it does here. For an example and more
details on the case of k-way equipartition, see Ji and Mitchell [16].
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Fig. 1. Optimal Solution for a CPPMIN Problem of Type I with n = 14, S = 4
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Fig. 2. (MLP) Solution for a Problem of Type I size n=14, S=4

A weak LP relaxation at the root node seldom leads to a successful branch-
and-bound process, especially in the context of branch-and-price, because one
of the major motivations for considering a formulation with a huge number of
variables lies in the hope that this new formulation gives a tight LP relaxation.

To tighten up the relaxation, we make use of the following observation. The
fractional LP solution in Figure 2 can be easily cut off if we add in the con-
straint

∑
P⊆7,8,9,10,11,14

xP ≤ 1 = b6/4c, which is implied by the requirement that
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each cluster has to contain at least S = 4 vertices. Generalizing this example,
we get the following theorem:

Theorem 1 Given Q ⊆ V, |Q| < qS, inequality (9) is a valid constraint for
(MIP) on Q.

∑

P :P⊆Q

xP ≤ q − 1 (9)

The proof is straight forward since when |Q| < qS, we can partition Q into at
most q − 1 clusters that contain at least S vertices.

This constraint relates to the Pigeon constraint in Ji and Mitchell [15] for the
branch-and-cut formulation of the CPPMIN problem.

To find a violated constraint from a fractional solution, we first observe that a
possible candidate Q must have the following property: Q ⊆ Q̄ = {v| ∃P s.t. v ∈
P and 0 < xp < 1}. This property significantly reduces the searching space for
violated constraints, but it is still inefficient to enumerate and check all pos-
sible subsets of Q̄. In stead, we use a simply heuristic, Algorithm 1, to check
only those subsets generated by combining the corresponding columns of two
fractional variables in the current optimal (MLP) solution. Since the clusters
corresponding to each column are between size S and 2S − 1, the combined
subsets are between size S + 1 and 4S − 2. Therefore our constraint is rela-
tively small. Our empirical results show that this subset of clusters captures
most of the important cutting planes of this type. A much better LP bound
in the root node is achieved with these cutting planes added, so we didn’t try
more sophisticated cutting plane generation methods. When no more cutting
planes can be found, if we still have a fractional optimal solution, we resort
to branching without cutting planes added in the lower nodes.

With these new cutting planes, we write out our restricted (MLP) as (RMLP),

min
∑

P

wP xP

s.t.
∑

P :v∈P

xP = 1 ∀v ∈ V (10)

∑

P

xP ≤ k (11)

∑

P⊆Qi

xP ≤ b|Qi|/Sc i = 1..q (12)

xP ≥ 0 (13)

P ∈ T ⊆ 2V , |P | ≥ S. (14)
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Algorithm 1 Algorithm for finding violated constraints of type (9) for MLP

Input:
xlp - MLP solution

Output:
QSET - subsets of vertices violating constraint (9)

Steps:
QSET = ∅
for each pair of (i, j) s.t. 0 < xlpi < 1 and 0 < xlpj < 1 do

Let P i be the cluster corresponding to xlpi.
Let P j be the cluster corresponding to xlpj.
Let Q = P i ∪ P j.
if (9) is violated on Q then

QSET = {QSET} ∪ {Q}
end if

end for

We separate constraint (11) from (12) because the former is included in the
initial formulation, while the latter is added in dynamically when Qi is iden-
tified using algorithm 1 during the computation. Let πν , σ and σi be the dual
variables corresponding to equations (10) - (12). We write down the corre-
sponding dual problem:

max
n∑

v=1
πv +kσ +

q∑
i=1
b |Qi|

S
cσi

s.t.
∑

v∈P
πv +σ +

∑
i:P⊆Qi

σi ≤ wP for every P ∈ T

σ ≤ 0

σi ≤ 0 i = 1..q

(15)

In general cutting planes are difficult to fit into a column generation framework
without complicating the pricing subproblem too much. But it is possible in
our situation because the empirical results show that we don’t need to add in
a lot of cutting planes to achieve a good approximation of the IP. We have
two issues to consider here. One is how to update affected cutting planes after
adding in new columns. The other is how to generate new columns with these
new cutting planes.

The first can be achieved in the following way. We associate a flag with every
cutting plane added, and mark it on the vertices affected by this cutting plane.
For example, if a subset Qq ⊆ V is associated with the qth cutting plane, then
every vertex in Qq has a mark q. When new columns are added, we take an
intersection of the marks on all the vertices affected by this new column, the
result is the constraints that should include this new column.

The second issue is solved in the following way. In the column generation
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subproblem, we need to either find a cluster P s.t.
∑

v∈P
πv +σ +

∑
i:P⊆Qi

σi > wP ,

to price into the master problem (MLP), or prove that such a cluster doesn’t
exist, therefore we are at optimality. Complication arises with the last term∑
i:P⊆Qi

σi: its value depends on the cluster P we found. If P 6⊆ Qi, ∀i = 1..q,

then
∑

i:P⊆Qi

σi = 0; otherwise,
∑

i:P⊆Qi

σi may be negative.

Accordingly we separate the process into two steps. First we consider the case
when P ⊆ Qi, since Qi is small, we can enumerate all feasible subsets of Qi,
and check if any of them can be priced out into the master problem. If no
such clusters can be found, we continue to the second step: ignore the cutting
planes in the column generation process, and only look at the clusters P that
are not subsets of any Qi and check if wP − ∑

v∈P
πv − σ < 0. Checking this is

the subject of the next section. If no such clusters exist, no columns can be
generated, thus we have proved the optimality of the current best solution.
Otherwise, we have found a cluster to price in. We should emphasize that this
strategy is applicable because in our case, the number of added constraints q
is relatively small, and their sizes are small too, so we can enumerate all the
feasible subsets in Qi, i = 1, . . . , q, fairly quickly.

4 Generate Improving Clusters

In the second step of the previous discussion, we need to solve the follow-
ing pricing subproblem, the Minimum Node-Edge-Weighted Cluster Problem
(MINNEWCP) with minimum size constraints. Finding a fast and good algo-
rithm to solve this problem is an essential part of the branch-and-price scheme.
In this section, we will explain our approach.

4.1 Problem Definition and Quadratic Formulation

The MINNEWCP problem is stated formally as the following: given a graph
G = (V, E), a vertex weight πv associated with each vertex v ∈ V , and an edge
cost cij associated with each edge (i, j) ∈ E. The MINNEWCP problem is to
select a subset of the vertices P ⊆ V that minimize the difference between
the cost of the edges in E(P ) and the weight of the vertices in P . In other
words, the objective is to minimize the quantity

∑
i,j∈P

cij− ∑
v∈P

πv. In our pricing

problem we have an additional cardinality constraint |P | ≥ S.

We can change the objective function in MINNEWCP into maximizing
∑

v∈P
πv−
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∑
i,j∈P

cij. In this equivalent form, the problem is also called the generalized in-

dependent set problem, first defined by Hochbaum and Pathria in [12]. Given
a graph G = (V, E) and a node weight πv associated with each vertex v ∈ V ,
recall the independent set problem is to find a subset of the vertices P ⊆ V
of maximum weight

∑
v∈P

πv, such that no edges e ∈ E has both of its end-

points in P . In the generalized independent set problem, we can regard the
cost on the edges as a penalty for two adjacent vertices to be included in
P . The standard independent set problem has an edge penalty of infinity for
every edge in E, and 0 for edges not in E, while here we have a finite value
for the penalties. When the underlying graph is bipartite, the generalized in-
dependent set problem can be solved efficiently by reducing to a minimum
s − t cut in a network. Hochbaum and Pathria used this property to solve a
forest harvesting optimization problem efficiently in [12]. But in general, the
generalized independent set problem is NP hard, since the independent set
problem is NP-hard and a polynomial algorithm of the generalized indepen-
dent set problem is a polynomial algorithm for the independent set problem.
It is easy to see that the generalized independent set problem with cardinality
constraint |P | ≥ S is also NP hard when S value is nontrivial comparing with
n. So our pricing subproblem, MINNEWCP with cardinality constraints, is an
NP-hard problem.

We start by formulating the problem as a quadratic programming problem.
Define variable yv for each vertex v ∈ V ,

yv =





1 if v ∈ P

0 otherwise

Suppose the current RMLP has πi, i = 1, 2, ...n, and σ as the dual variables
to (10) and (11) respectively. To incorporate the column generation step into
a branch-and-bound framework later, we also suppose each vertex v has a
cardinality av. At the root node, we assume av = 1. We can formulate our
pricing problem as a binary quadratic problem with linear constraints, called
MINNEWCPQP,

min
1

2
yT Cy − πT y

s.t. aT y ≥ S (16)∑

v 6∈Qi

avyv ≥ 1 i = 1, . . . , q (17)

yv ∈ {0, 1} (18)

where each entry cij in C is the edge weight for edge (i, j), and cii = 0 for
i = 1 . . . n. Constraint (16) imposes the size constraint of feasible clusters.
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Constraint (17) is from the discussion in the last section, to enforce that the
selected cluster can not be a subset of any Qi, i = 1 . . . q. As discussed in the
previous section, if the optimal value of this pricing problem is smaller than
σ, then we can generate new columns, otherwise, we have achieved optimality
in the master problem.

Even if we relax the binary constraint y ∈ {0, 1} into a linear constraint
y ∈ [0, 1], the resulting optimization problem with quadratic objective and lin-
ear constraints is still not convex, since the edge cost matrix C in the quadratic
term is not positive semidefinite. Extensive research has been done on con-
strained or unconstrained binary quadratic programming. See for example,
Barahona, Jünger and Reinelt [2], who solve the unconstrained quadratic 0-1
program by converting it to a max-cut problem and solving it using branch-
and-cut. Beasley [4] gives a comparison on heuristic algorithms for uncon-
strained quadratic 0-1 program.

4.2 Related Problems

The pricing problem that Mehrotra and Trick solved in [21] for their knapsack
clustering problem has a similar structure as MINNEWCP. The difference is
that they did a maximization of the same objective function with a knapsack
upper bound constraint while we have a minimization problem with a lower
bound constraint on the size. They proposed an effective combinatorial method
to solve the pricing problem, which leads to the success of the main branch-
and-price scheme. The strength of their method lies in a shifting of weight
from edges to vertices to give a close upper bound. This way they can get
a good upper bound from a combinatorial analysis rather than solving a LP.
Johnson, Mehrotra and Nemhauser [17] worked on the same problem as in [21]:
min-cut clustering with capacity lower bound. They looked at the subproblem
as a integer programming problem and gave some strong valid inequalities for
the subproblem.

Just as the max-cut and min-cut problems differs from NP to P, the change
of the objective from maximization to minimization in our pricing problem
prevented us from using any results from the above literature. In addition,
constraints (16) and (17) impose further difficulties in adopting a combinato-
rial approach.

The pricing problem in [21] and [17] is a special case of Quadratic Knapsack
Problem, (QKP), which has attracted great interest recently, see [8], [5], etc.

12



max yT Ly

s.t. aT y ≤ b

y ∈ {0, 1}n

By the change of z = 1− y, We can formulate the MINNEWCPQP as a QKP
with an additional constraint. But in the formulation, most of the entries in L
would be negative. In the most general form of QKP, the entries in L can be
either positive or negative, but the current QKP research mostly focuses on the
case when the entries in L are nonnegative. We could not find computational
results on QKP with negative entries in the literature.

4.3 IP formulation and Boolean Polytope

We followed the standard “linearization” method in quadratic programming
literature to convert the quadratic programming problem MINNEWCPQP
into an IP problem.

Introduce a new variable zij = yiyj for every edge (i, j) ∈ E.

zij =





1 if (i, j) ∈ E(P )

0 otherwise

We reformulate MINNEWCPQP as the following IP problem, referred to as
MINNEWCPIP,

min −∑

i∈V

πiyi +
∑

(i,j)∈E

cijzij

s.t.
n∑

i=1

aiyi ≥ S (19)

∑

i6∈Qk

aiyi ≥ 1 k = 1..q (20)

zij ≤ yi (21)

zij ≤ yj (22)

zij ≥ yi + yj − 1 (23)

zij ≥ 0 (24)

yi ∈ {0, 1}, zij ∈ {0, 1} (25)

Equations(21) and (22) ensure that zij must be zero if either one of yi or
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yj is zero. Equation (23) ensures that zij is one if both yi and yj are one.
The convex hull of (21), (22),(23), (24) (25) is called the Boolean Quadratic
Polytope, denoted

QP n = conv{(y, z) ∈ Rn(n+1)/2|(y, z) satisfy (21), (22), (23), (24), (25)}

Padberg [26] discussed this boolean quadratic polytope structure and gave
some facet defining constraints. Other variations on this kind of polytope has
also been discussed in the literature, for more details see Ji [14].

Since cij is always nonnegative, we don’t need constraints (21)-(22). Also we
don’t need to require zij to be a binary variable explicitly. Because ai ≥ 1, i =
1, . . . , n, we can drop the ai in constraint (20). So we can reformulate the
problem as the following (PRICEIP),

min −∑

i∈V

πiyi +
∑

(i,j)∈E

cijzij

s.t. zij ≥ yi + yj − 1 (26)
n∑

i=1

aiyi ≥ S (27)

∑

i 6∈Qk

yi ≥ 1 k = 1, . . . , q (28)

zij ≥ 0 (i, j) ∈ E (29)

yv ∈ {0, 1} v ∈ V (30)

4.4 Other Constraints

We can tighten up the linear relaxation of PRICEIP by generating constraints
using the Reformulation-Linearization Technique (RLT) introduced by Sherali
and Adams [29] . They are similar to the constraints generated for the linear
relaxation of Quadratic Knapsack Problem in Caprara, Pisinger and Toth[6].

For i = 1..n, we multiply the size constraint (27) by yi and replace y2
i by yi,

yiyj by zij, getting the following valid constraint:

∑

j 6=i

ajzij ≥ (S − ai)yi i = 1, . . . , n (31)

This is also called the star inequality in Hunting, Faigle and Kern [13].

We can also multiply (27) by 1− yi, and get
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Syi +
∑

j 6=i

ajyj −
∑

j 6=i

ajzij ≥ S i = 1, . . . , n (32)

However, our computational results show that these additional constraints,
as well as the general constraints for QKP mentioned in Padberg [26], do
not improve the speed of the branch-and-bound process in solving the pricing
problems. They do reduce the number of nodes in the branch-and-bound tree,
but the total computation time often increases when these constraints are
included either in the initial formulation or as cutting planes. So we just use a
pure branch-and-bound procedure to solve PRICEIP directly. Since it is not
necessary to generate the column with the most negative reduced cost each
time, we stop solving the IP as soon as a column with a negative reduced cost
is found. But if such a column does not exist, we have to solve the pricing
problem to optimality to make sure.

4.5 Heuristic Algorithms

Since solving the pricing problem as an IP problem is an expensive operation,
we first use some heuristic algorithms to try to generate columns before calling
the IP solver. Algorithms 2-4 give the three heuristics that we employed. They
are applied in the order of 2 to 4. Only when the previous algorithms do not
generate any columns to be priced in, would we try the next algorithm. These
heuristic algorithms are similar to those in Ji and Mitchell [16] for k-way
equipartition problems with minor changes of the size of the cliques we pick.
For completeness, we list them below.

Algorithm 2 Heuristic Pricing Algorithm I: Enumerate from 2S closest ver-
tices

for i = 1 to n do
Find the closest 2S − 1 vertices to vertex i.
Enumerate all clusters of size S to 2S − 1 from these 2S vertices.
Put the violating clusters into a column pool.

end for
Add the 10 most violating columns from the column pool, with no more
than 10 columns on the same vertex added.

Algorithm 3 Heuristic Pricing Algorithm II: Enumerate from constraint clus-
ters

for i = 1 to q do
Enumerate all subsets of Qi between size S and 2S − 1.
Put the violating clusters into a column pool.

end for
Add the 10 most violating columns from the column pool, with no more
than 10 columns on the same vertex added.
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Algorithm 4 Heuristic Pricing Algorithm III: Greedily find a small node-
edge-weighted clique of size at least S
Input:
1: S - minimum cluster size
2: cij - edge weight
3: πi - node weight
4: ai - node capacity

Steps:
5: for i = 1 to N do
6: CLIQ= {i}
7: Find vertex v s.t. w(CLIQ, v) = πv − ∑

e∈δ(v,CLIQ)
ce is minimum for

v 6∈ CLIQ.
8: if |CLIQ| < S or w(CLIQ, v) > 0 then
9: CLIQ = CLIQ + v

10: GOTO 7
11: else
12: GOTO 14
13: end if
14: Check if CLIQ can be put into the violating column pool.
15: Do local search near CLIQ, see if any columns can be put into violating

column pool.
16: end for
17: Add the 10 most violating columns from the column pool, with no more

than 5 columns on the same vertex added.

5 Branching

It is well known that the simple 0-1 branching rule in a branch-and-cut
framework does not work in a branch-and-price algorithm. Therefore we have
adopted the commonly used Ryan-Foster branching rule [27] for set partition
models. In a fractional solution for MLP, we can identify two fractional vari-
able xP1 and xP2 , and two vertices i and j, such that both vertices are in P1

but only one of them is in P2. So we can divide the problem into two branches.
In one, vertex i and vertex j must be covered by the same cluster, which can
be enforced by just collapsing i and j into a single node in the graph. In the
other, vertex i and j must be in different clusters, which can be enforced by
changing the weight on edge (i, j) to a very large value. This way, we can
impose the branching choices on the pricing subproblems directly rather than
adding in additional constraints on the master problem.

This branching strategy actually corresponds to the branching strategy on xij

in the compact branch-and-cut formulation of the problem in Ji and Mitchell
[15]. This conforms with the observation in Lübbecke and Desrosiers [18], “to
branch on meaningful variable sets”. Our most valuable source of informa-
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tion are the original edge variables of the compact formulation; they must be
integer, so these are what we branch on. Similarly, the cutting planes that
we introduced earlier, correspond to the pigeon constraint for the compact
formulation in Ji and Mitchell [15].

After branching, our CPPMIN problem changed into a GCPPMIN problem,
for each combined vertex v now has a vertex weight av bigger than one, rep-
resenting the number of original vertices it corresponds to. Consequently, av

in the pricing subproblem for some vertices are not one any more. So we are
in fact solving a GCPPMIN problem at every branch-and-bound node except
the root node.

Even though we didn’t add cutting planes in the sub-nodes in our compu-
tational results, the constraints can be easily modified to accommodate this
change on the cardinality on the vertices, by changing to the following form:

∑

i:Pi⊆Q

xi ≤ k − 1 (33)

for Q with
∑

j:j∈Q
aj < kS.

6 Stabilization

Another complication arises from the degeneracy of the primal problem. Notice
the primal problem (7) is very degenerate, since there are |V | rows, but in a
feasible integer solution, only |V |/S = k number of x′s would be nonzero.
Primal degeneracy is well known to cause slow convergence, see Gilmore and
Gomory [9]. We are bound to have alternative dual solutions. We need to
pick one out to construct the pricing subproblem. One would like to pick one
to reduce useless oscillations in the dual space. Various methods have been
proposed on this issue, see Lübbecke and Desrosiers [18].

Instead of using those more complicated methods in [18], we simply try to
avoid oscillations by expanding our initial problem to include not only the
columns of a good heuristic solution but also the clusters consisting of the
closest S − 1 and S vertices to each vertex. It also helps to avoid generating
useless columns by checking heuristic algorithms first to search for violated
columns also.
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7 Computational Results

In this part, we are going to give the framework of our algorithm and the
results of our computational experiments. We first use the heuristic algorithm
(Algorithm 4) in Ji and Mitchell [15] to find a good feasible solution. An initial
problem including the clusters in this solution would be a feasible problem.
To improve stability of the dual variable value, we also include the clusters
composed of the closest S and S + 1 vertices to each vertex in the initial
formulation.

The branch-and-price-and-cut code is implemented using MINTO 3.0.2. The
algorithm follows the framework as in MINTO [25] with minor changes. It is
illustrated in Algorithm 5. One major difference from the MINTO framework
is in step 4 and 5. Since step 5, solving the pricing problem as an IP, is time
consuming, we try to generated cutting planes before step 5. It is only when we
can neither generate new columns using other methods, nor generate cutting
planes, would we start solving the pricing problem as an IP.

Algorithm 5 Branch and Price and Cut Framework

1: Initialize.
2: Approximately solve the current LP relaxation using CPLEX.
3: Generate columns using heuristic algorithms, if new columns are found

goto 2.
4: Check if any cutting planes can be generated, if yes, generate cutting

planes and goto 2.
5: Generate columns using an IP solver, if new columns are found goto 2.
6: If the gap between the value of the LP relaxation and the value of the

incumbent integer solution is sufficiently small, STOP with optimality.
7: Try to improve the incumbent solution locally by switching vertices and

move extra vertices around.
8: Check if any cutting planes can be generated, if yes, generate cutting

planes and goto 2.
9: Branching.

7.1 Type I Problems

The data used here are the same types of data used in Ji and Mitchell [15].
Type I data is constructed from uniformly distributed points on a square.
The Euclidean distances between each pair of vertices are taken as the edge
weights.

Table 1 and 3 list the computational results for Type I data with S = 4 and
S = 7 respectively. As one can see from the two tables, although the problem
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is harder in the case of S = 7, and it requires longer time to solve, the trend
and analysis of S = 7 is similar to the case of S = 4. Therefore in the following
discussion, we concentrate on the case of S = 4.

In Table 1, Graph size n ranges from 21 to 103. k = bn/Sc represents the
maximum number of clusters possible. The table is divided into three parts
to represent the performance of the heuristic algorithm, the root node of the
branch-and-price-and-cut algorithm, and the branch-and-price tree. They are
labeled as “Heuristic Alg”, “Root Node” and “B&P” respectively. The first
block gives the gap and time for the heuristic approach. The second block
corresponds to the result at the end of the root node before branching. The
first three rows in this block give the total number of instances, and out of
these many instances, how many are solved to optimality in the root node,
how many get better solutions than the heuristic solution. The rest of the
data in this block are all average performance, including, the gap at the end
of root node, the running time (in seconds), the number of LP’s solved, the
number of cuts added, the total number of columns at the end of the root
node, the number of columns in the initial formulation, the total number of
columns found by solving the pricing problem as an IP, the total time spent
on solving the pricing problem as an IP and finally the time for solving one
pricing problem as an IP.

For problems not solved to optimality, we start branching. No cutting planes
are added any more. The performance is recorded in the third block, including
the total number of instances requiring branching, the number of instances
solved to optimality before reaching an upper bound of 10 for the total number
of nodes. (notice this number does not include the problems that are already
solved at the root node), how many root node solutions get improved during
the branching stage, the final gap between the best IP solution and the LP
lower bound, total running time (including the root node time), the number
of branch and bound nodes, and the overall number of columns generated in
the whole tree.

The experiments are done on a Sun Ultra 10 Workstation, with CPU speed at
440 MHz, system clock 110 MHz and Memory 128 MB. The heuristic algorithm
is coded in FORTRAN. The branch and price algorithm is implemented using
MINTO 3.0.2 in C and C++. The LP solver is CPLEX 6.1.

Table 1 shows the result for Type I data. The small gap at the end of root node
indicates a tight relaxation from the combination of column generation and
row generation. However, note that the time it takes to solve the root node
scales up rather quickly. For problems smaller than 43 vertices, they are solved
to optimality within 20 seconds. But for problems bigger than 60 vertices, the
computation time increases dramatically. This is due to the increasing solution
time for the pricing problem, and the increasing number of pricing problems
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we need to solve. Even though the computation time for solving one pricing
problem as an IP is not very big, considering that these pricing problems are
NP hard problems, solving them repeatedly sums up to a considerable amount
of time.

To compare the branch-and-cut method in Ji and Mitchell [15] with the
branch-and-price-and-cut method presented in this paper, we put together
Table 2 with the data from Table 2 in [15] and Table 1. For comparison con-
venience, we have adjusted the reported time for “B&C run” to represent the
total computation time, i.e. it includes root node time. The “B&C run” time
in Table 2 in [15] does not include the root node time.

By comparing the performance in terms of both gap and time, one can see
that branch-and-price-and-cut outperforms branch-and-cut, on instances with
no more than 43 vertices. As the size of the problems get bigger, branch-and-
cut’s ability to stop at any time with a guaranteed bound duality gap became
more useful, especially when it takes a long time for the branch-and-price to
finish the root node to provide such a gap bound, even though it almost always
returns a gap much smaller than the one provided by branch-and-cut.

Table 3 and 4 shows similar results for the case of S = 7. Compared to the
case of S = 4, these instances are more difficult and takes much longer time to
solve. We only show the result of the root node here. A comparison with the
branch-and-cut gives us table 4, confirming our previous observation regarding
the advantages and disadvantages of branch-and-price vs branch-and-cut on
this problem.

7.2 Type II Problems

In Type II problems, the edge weights are generated directly as uniformly
distributed random numbers between 1 and 100. Table 5 shows the results for
Type II problems. As observed in Ji and Mitchell [15], these are harder parti-
tioning problems. It’s not surprising to see that these problems take a much
longer time to solve than Type I problems in table 1. We also put together
a comparison Table to evaluate against the branch-and-cut results from [15].
From this table, we can see Branch-and-price-and-cut performs much better
than the branch-and-cut method. We think this is because the edge weights
here do not satisfy triangle inequalities, resulting in a large number of triangle
constraints being added in the branch-and-cut method. The branch-and-price
algorithm does not use triangle constraints to enforce feasibility of the solu-
tions, so it does not run into such problems. However this type of problem
is still harder than Type I problems, because the heuristics for generating
columns do not work as well as in Type I problem. A lot more columns are
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n 21-23 41-43 61-63 81-83 101-103

k = bn
S c 5 10 15 20 25

Heuristic Alg.

Gap 5.30% 7.57% 7.46% 9.88% 8.21%

Time 0.0056 0.0114 0.0213 0.0337 0.0490

Root Node

Total Instances 15 15 13 14 4

Solved exactly 11 14 8 5 0

Better Solution 11 14 13 14 4

Gap 0.27% 0.01% 0.98% 1.12% 1.22%

Time 2.41 16.47 188.48 826.04 1791.87

LPs solved 8 15 38 61 72

Total Cuts 2 6 19 35 42

Total Columns 107 200 320 440 528

Initial Columns 65 132 195 260 334

Columns by IP 1 2 8 12 18

Total IP Time 2.27 15.80 184.08 798.43 1718.75

Avg IP Time 1.09 5.14 20.28 62.15 92.91

B &P run

total instances 4 1 5 9 4

Solved exactly 4 1 4 3 0

Better Solution 1 0 3 7 1

Gap 0% 0% 0.18% 0.36% 0.58%

Time 2.90 17.15 273.50 1529.98 4012.68

Nodes 2 1 3 6 10

Final columns 108 200 327 462 560
Table 1
Branch-and-Price Results on CPPMIN Type I Problems for S = 4

generated using IP solver, which is much more time-consuming. Despite this,
we can still conclude that branch-and-price method fits better than branch-
and-cut method for problems that violate a lot of triangle constraints.

We also conducted experiments using data for Micro-aggregation problems.
Again the root node gives a very tight LP approximation for the problem, but
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n 21-23 41-43 61-63 81-83 101-103

k = bn
S c 5 10 15 20 25

B&C root

Gap 1.87% 2.67% 3.02% 3.65% 3.77%

Time 6.99 23.08 58.42 110.58 175.63

B&C run

Gap 0% 0% 0.30% 2.67% 3.47%

Time 10.24 47.15 215.48 514.28 685.76

B&P root

Gap 0.27% 0.01% 0.98% 1.12% 1.22%

Time 2.41 16.47 188.48 826.04 1791.87

B&P run

Gap 0% 0% 0.18% 0.36% 0.58%

Time 2.90 17.15 273.50 1529.98 4012.68
Table 2
Comparison of Branch-and-Cut and Branch-and-Price Results on CPPMIN Type I
Problems for S = 4

it takes a long time to compute. The basic trends and analysis are exactly the
same as those for Type I data. For detailed results, see [14].

8 Conclusions

In this paper, we discussed solving CPPMIN using a branch-and-price scheme.
We demonstrated the necessity of cutting planes in this problem, and sug-
gested an effective way of adding cutting planes in the branch-and-price frame-
work. We solved the pricing subproblem as an integer programming problem.

Our computational results showed that branch-and-price performed well on
small-size instances (within around 40 vertices), but slows down for larger
problems due to the lack of efficient methods for the pricing subproblem.
However, the root algorithm gave a good feasible solution most of the time.
After comparing with the results of the branch-and-cut method on the same
problem in Ji and Mitchell [15], we see a better performance from branch-and-
cut-and-price on all types of data, especially for Type II, where a large number
of edge weights do not satisfy triangle constraints. However, on instances of
large sizes, if an error bound is needed, branch-and-cut would be preferred.
If the user is only interested in looking for a good solution without an error
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n 36-41 71-76

k = bn
S c 5 10

Heuristic Alg.

Gap 1.90% 6.82%

Time 0.003 0.007

Root Node

Total Instances 26 20

Solved exactly 25 16

Better Solution 16 19

Gap 0.03% 0.28%

Time 43.05 842.92

LPs solved 21 36

Total Cuts 0 3.7

Total Columns 375 726

Initial Columns 208 430

Columns by IP 3 3

Total IP Time 38.88 828.70

Avg IP Time 11.54 247.37
Table 3
Branch-and-Price Results on CPPMIN Type I Problems for S = 7

bound guarantee, branch-and-price might give a good solution more quickly.

Future work includes more sophisticated heuristics for generating columns.
This is particularly important for larger values of S in order to control the
time spent in the exact IP column generation subproblem. Preprocessing the
PRICEIP to exploit our knowledge of the structure of the problem may also
be helpful.

We are confident that this method can be extend to GCPPMIN, i.e., parti-
tioning problems with knapsack lower bound constraints, where each vertex is
given a weight, and each cluster in the solution must be bigger than a certain
weight.
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n 36-41 71-76

k = bn
S c 5 10

B&C root

Gap 2.10% 2.32%

Time 67.93 235.65

B&C run

Gap 0.58% 2.04%

Time 150.60 402.68

B&P root

Gap 0.03% 0.28%

Time 43.05 842.92
Table 4
Comparison of Branch-and-Cut and Branch-and-Price Results on CPPMIN Type I
Problems for S = 7
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