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Abstract Interior point methods have proven very successful at solving linear programming
problems. When an explicit linear programming formulation is either not available or
is too large to employ directly, a column generation approach can be used. Examples of
column generation approaches include cutting plane methods for integer programming
and decomposition methods for many classes of optimization problems. We discuss
the use of interior point methods in a column generation scheme.

Semidefinite programming relaxations of combinatorial optimization problems are
often tighter than linear programming relaxations. We describe some research in
using SDP relaxations to find exact solutions to combinatorial optimization problems.
Semidefinite programs are expensive to solve directly, so we also consider cutting
surface approaches to solving them.

Finally, we look at recent smoothing techniques for solving nonsmooth optimization
problems using a subgradient approach; these methods have some links to cutting
surface approaches.

Keywords interior point column generation, cutting planes, cutting surfaces, semidefinite pro-
gramming, subgradients

1. Introduction
In the 25 years since the publication of Karmarkar’s seminal paper [71], interior point algo-
rithms have become the method of choice for large scale linear programming problems. They
have also had a great impact beyond linear programming: the extension of the theory of
interior point methods for linear programming to more general conic programming [109]
has led to the explosion of interest in semidefinite programming and also second-order cone
programming. Further, many packages for general nonlinear programming use interior point
methods. For example, the package cvx [55] exploits interior point theory to solve convex
optimization problems in an accessible matlab framework.

Many optimization problems require a possibly very large number of constraints or vari-
ables. For example, there has been great success solving integer programming problems in
recent years with cutting plane and branch-and-cut methods, methods which work with
linear programming relaxations of the integer program. In these methods, the number of
potential cutting planes is typically at least exponential in the size of the problem, so writing
out all of the constraints explicitly as a giant linear program is not a tractable approach,
even with fast interior point LP solvers available. As another example, consider optimizing
the Lagrangian dual function of an integer program or nonlinear program. The Lagrangian
dual function is convex, and piecewise linear in certain cases such as integer programming, so
it can in principle be converted into a linear program by using subgradients to the function
at each point. But explicitly writing out this linear program is not a practical approach. As
a third example, decomposition approaches are also not amenable to explicit formulation
as linear programs. In all of these cases, an initial linear program is constructed to approx-
imate the problem of interest, and this linear programming approximation is refined as the
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algorithm proceeds. The refinement typically requires the addition of a set of constraints
or a set of variables, and we refer to such methods as cutting plane or column generation
approaches, depending on context.

In order to exploit the success of interior point methods for linear programming, it is desir-
able to use interior point methods in column generation algorithms. This is the topic of §2.
Of course, the classical simplex method is used widely in column generation algorithms,
because it is easy to warm start and to reoptimize when just a few columns are added at
a time. We argue in §2 that interior point methods can compete with the simplex method
when many constraints are added at once, or when it is necessary to stabilize the column
generation process. Interior point column generation methods also have theoretical perfor-
mance guarantees, unlike the corresponding simplex methods. It is also useful to combine
interior point and simplex cutting plane methods: the interior point method is used in the
initial stages, when stabilization is important and many variables may be added at a time,
and simplex is used for the later stages once the process is reasonably close to optimality
and just a few variables are added at a time.

Many combinatorial optimization problems have a semidefinite programming relaxation
that is tighter than the linear programming relaxation (see, for example, [45, 82, 85]). The
strength of the relaxation makes a cutting plane or branch-and-cut approach using the
semidefinite programming relaxation attractive. Recently, there has been some computa-
tional interest in such approaches, and some of this work is discussed in §3.

Semidefinite programs can be solved by primal-dual interior point methods. However,
these methods have notable linear algebra requirements, which makes them slow for larger
scale problems. Alternative approaches based on decompositions or relaxations are being
developed and these methods can be especially attractive when it is not necessary to solve
the semidefinite program (SDP) to a high level of accuracy; such is the case when employing
an SDP relaxation within a cutting plane approach. These decomposition approaches to
solving semidefinite programs and other conic programs are the topic of §4.

Column generation methods can be used to optimize a convex nonsmooth function, with a
piecewise linear underestimator to the function of interest refined as the algorithm proceeds.
A subgradient algorithm to minimize such a function is analogous to a steepest descent
approach for smooth functions. Recently, Nesterov [105] has proposed a smoothing approach
for certain classes of nonsmooth functions, and then using a sophisticated subgradient algo-
rithm to minimize the smoothed function. The optimal solution to the smoothed function
is provably close to being an optimal solution to the nonsmooth function. This research is
described in §5 and it can be used to develop an approach for semidefinite programming,
along with other classes of problems.

We construct a single primal-dual pair of linear programming problems to illustrate both
column generation and cutting plane methods:

minx cT x maxy,s bT y
subject to Ax = b (P ) subject to AT y + s = c (D)

x ≥ 0 s ≥ 0.

The primal problem (P ) is the model used in a column generation approach: additional
variables are added to this problem. Conversely, the dual problem (D) is the model used in
a cutting plane method, with additional constraints added as needed to (D). The parameter
c and the variables x and s are all rational n-vectors, the parameter b and the variable y
are rational m-vectors, and the rational matrix A is m×n.

Interior point methods for linear programming can be motivated by using a barrier primal
objective function of cT x−µ

∑n
i=1 ln xi, where µ is a positive parameter. The parameter µ is

decreased as the algorithm iterates. The optimality conditions for the barrier problem consist
of feasibility in (P ) and (D) together with a shifted complementary slackness relation:

xisi = µ, i = 1, . . . , n. (1)
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For each µ > 0 there is a unique solution to the barrier problem and the set of these solutions
constitute the central path or central trajectory. Neighborhoods of the central path can be
defined by looking at norms of the violation of (1). In practice, interior point methods work
best if they are started close to the central trajectory and if the iterates remain in some
neighborhood of the central trajectory.

Proximity to the central trajectory can also be measured using potential functions: the
dual potential function is

φ(s) := −
n∑

i=1

ln si (2)

and the primal-dual potential function is

Φρ(x, s) := ρ ln xT s −
n∑

i=1

ln (xisi), (3)

where ρ > n is a fixed parameter, typically equal to n +
√

n. Minimizing Φρ(x, s) leads to
an optimal solution to (P ) and (D). If ρ = n then the minimizers of Φρ(x, s) are the points
on the central trajectory. These potential functions are used in the complexity analysis of
interior point column generation algorithms, as discussed in §2.3. Far more information on
interior point methods for linear programming can be found in the books [126, 137, 138, 140].

Nesterov and Nemirovski [109] showed that interior point methods could also be used to
solve more general conic programs, including semidefinite programs. The ideas of a central
trajectory, neighborhoods, and potential functions carry over to the more general setting.
Speed of convergence, in both theory and practice, depends on how closely centrality is
observed. Renegar [125] gives a textbook exposition of interior point methods for conic
programming.

There are several recent surveys that discuss topics of interest in this paper. Krishnan
and Terlaky [80] consider semidefinite and interior point methods for solving combinatorial
optimization problems. Goffin and Vial [48] and Mitchell [94] examine interior point cutting
plane methods. Lübbecke and Desrosiers [88] describe column generation approaches, with
a discussion of the importance of stabilization.

2. Interior point column generation for linear and integer program-
ming

Column generation and cutting plane methods can be regarded as duals of each other.
A column generation method is used when it is impractical to consider all the variables
at once. For example, the variables may be generated only as needed, as in airline crew
scheduling [10]: each variable corresponds to a pairing or schedule for a crew and there is a
huge number of possible pairings, so useful pairings are constructed based on consideration
of reduced costs.

Cutting plane methods are used when a relaxation of the problem is solved and this
relaxation is gradually tightened through the addition of constraints, or cutting planes. For
example, expressing the traveling salesman problem as an integer programming problem
requires subtour elimination constraints; however, there is an exponential number of these
constraints, so they are added only as needed [5, 6].

Problems (P ) and (D) are approximations to the true problems we wish to solve, which
are expressed as (P̂ ) and (D̂):

minx̂ ĉT x̂ maxy,ŝ bT y

subject to Âx̂ = b (P̂ ) subject to ÂT y + ŝ = ĉ (D̂)
x̂ ≥ 0 ŝ ≥ 0.
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Here the parameter ĉ and the variables x̂ and ŝ are all rational n̂-vectors, the parameter b
and the variable y are rational m-vectors, and the rational matrix Â is m× n̂. The underlying
assumption, and indeed rationale for using a cutting plane approach, is that we can work
with problems (P ) and (D) with n << n̂. The problem (D) is a relaxation of (D̂), since
some of the constraints have been omitted. The problem (P ) is a constrained version of (P̂ ),
since the missing variables are in effect forced to take the value zero.

If the optimal solution (x∗, y∗, s∗) to the primal-dual pair (P ) and (D) is not optimal to
the underlying problem then there must be additional dual constraints AT

0 y ≤ c0 that are
violated by y∗. Here c0 is a rational p-vector and the rational matrix A0 is m×p, with p≥ 1.
The determination of a set of cutting planes may require solution of a subproblem; this is
referred to as a call to an oracle. Adding these constraints to (D) results in the following
primal-dual pair of linear programs:

minx,x0 cT x maxy,s,s0 bT y
subject to Ax + A0x0 = b (P0) subject to AT y + s = c (D0)

x,x0 ≥ 0 AT
0 y + s0 = c0

s, s0 ≥ 0

where the variables x0 and s0 are rational p-vectors. This modified pair is then solved and
the whole process repeated as necessary.

The identification of the cutting planes AT
0 y ≤ c0 does not require an optimal solution

y∗ to (D). An approximate solution may well be sufficient for the cutting plane generation
routine. As we argue below in §2.1, an approximate solution may even result in stronger
cutting planes. For example, Huisman et al. [68, page 255] state that

“Bixby et al. [16] [and] Barnhart et al. [10] note that in case of alternative dual solutions,
column generation algorithms seem to work better with dual variables produced by interior
point methods than with dual variables computed with simplex algorithms. The latter
give a vertex of the face of solutions whereas interior point algorithms give a point in the
center of the face, providing a better representation of it.”

The desired accuracy of the solution to the current relaxation can be adjusted as the algo-
rithm proceeds. Typically, later LPs will be solved to a tighter tolerance than earlier ones.
The conceptual framework of a cutting plane algorithm is given below:

0. Initialize: Choose the initial parameters A, b, and c. Choose a tolerance ε
for the overall algorithm. Choose a tolerance τ for the desired accuracy of the
LP relaxations.
1. Approximately solve the LP: Solve the current primal-dual linear program-
ming pair to a relative accuracy of τ in the duality gap. Obtain a primal-dual
pair (x̃, ỹ, s̃).
2. Find cuts: Determine if ỹ violates any additional dual constraints.
(a) If no constraints are found and τ ≤ ε then STOP with a solution to the
underlying problem.
(b) If no constraints are found and τ > ε then reduce τ and return to Step 1.
(c) If constraints are found, add a subset of the constraints to the LP relax-
ation, modify τ if desired, and return to Step 1.

Algorithm 1: Solving the LP pair (P̂ ) and (D̂).

The point (x̃, ỹ, s̃) provides a warm start after the linear programming problem is modified
in Step 2(c). The simplex method can exploit this warm start by solving the modified
problem using the dual simplex method. It is not so straightforward to exploit a warm start
when using an interior point method, but various techniques have been suggested and they
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do reduce the number of interior point iterations. These techniques are discussed in §2.2.
Theoretical properties of interior point cutting plane methods are described in §2.3. The
final subsection §2.4 discusses the related problem of warm starting when the constraint
matrix A is modified.

2.1. Practical benefits of an interior point cutting plane algorithm
The dual simplex algorithm can exploit an optimal solution to (P ) and (D) to find an optimal
solution to (P0) and (D0) in just a few pivots when one or just a handful of constraints are
added at a time. When large numbers of constraints are added at once, the dual simplex
method is not so effective. The optimal solution to (P ) and (D) returned by the simplex
method is an extreme point of the feasible region, so the generated cutting planes may not
cut off much more than this extreme point.

Thus there are two areas where it can be advantageous to use an interior point cutting
plane method: when many cuts are added at once, and when the problem (D) has a large
optimal face or a large set of near-optimal solutions. In the former situation, an interior
point method can reoptimize more quickly than simplex, especially if the LP is reasonably
large. In the latter situation, the cuts generated from an interior point can be stronger than
those generated from a basic feasible solution.

One especially effective approach is to combine interior point and simplex cutting plane
algorithms. In early iterations, many constraints are added at once and it is not necessary
to solve the relaxations to high accuracy in order to find strong cuts. In later iterations,
once the relaxations become good approximations to the underlying problem in the region
of the optimal solution, only a few constraints are added at a time and a higher accuracy
LP solution can lead to better cuts. Therefore, the first few stages can be solved using an
interior point method and the later stages solved with the simplex method. Bixby et al [16]
implemented such a method for solving very large scale linear programs arising from LP
relaxations of airline crew scheduling problems. Columns were only included in the con-
strained version (P ) as necessary. They showed that the combined approach outperformed
either a pure interior point method or a pure simplex method. Mitchell and Borchers [97]
solved linear ordering problems using a cutting plane approach. The linear ordering prob-
lem can be formulated as an integer programming problem. For their instances, a combined
approach was up to 10 times faster than using either a pure simplex cutting plane approach
or a pure interior point cutting plane approach.

Solving (P ) and (D) using the simplex method leads to an extreme point solution of
each problem. The dual solution y∗ is used to generate new columns for (P ). In situations
where there are multiple optimal dual solutions or where there are many near-optimal dual
extreme points, it may be restrictive to look at only one dual extreme point. It may be useful
to look at a broader selection of dual points and hence obtain a richer set of new columns.
The validity of this observation has been shown in a number of papers, as we discuss in the
rest of this subsection. This phenomenon is illustrated in Figure 1.

Just using an extreme point solution leads to Kelley’s cutting plane algorithm [72]. A
lack of stability in this algorithm has been noted for a long time, with the dual solutions
possibly moving dramatically after adding cutting planes. The method can also be very slow:
Nemirovski and Yudin [104] constructed an example which requires O((1/ε)m/2) calls to the
oracle to get within ε of optimality. Briant et al. [21] compared simplex cutting plane methods
and bundle methods experimentally. In a bundle method, only “important” columns of A
are kept in the problem and typically a quadratic proximity term is included in the dual
objective in order to prevent the dual solution from changing drastically. This is an attempt
to stabilize the sequence of iterates and [21] includes a survey of different stabilization
techniques. The use of bundle methods for stabilization is discussed by Hiriart-Urruty and
Lemarechal [66, 67]. An interior point cutting plane method uses central dual solutions so it



Mitchell: Cutting Plane Methods and Subgradient Methods
6 INFORMS—New Orleans 2005, c© 2005 INFORMS

Simplex

H
HHH

�
�

�
�

�
��

��

�����

tOptimal vertex
found by simplex

@

@

@

Added cutting plane
when using simplex

Interior point

H
HHH

�
�

�
�

�
��

��

�����

Optimal face
Central
trajectory

tInterior point iterate

AA

AA

AA

AA

AA

Added cutting plane
when using
interior point method

Figure 1. Comparing the strength of simplex and interior point cutting planes

can also be regarded as a stabilization technique. Briant et al. showed experimentally that
the bundle method appears far more robust for larger instances than Kelley’s method.

Goffin et al. used decomposition approaches to attack nonlinear multicommodity net-
work flow problems [46] and stochastic programming problems [9]. These problems were
then solved using an analytic center cutting plane method. More recently, Elhedhli and
Goffin [36] solved bin packing and capacitated facility location problems using a branch-
and-price approach. This method solves a Lagrangian dual problem at each node of the
tree, using an analytic center cutting plane method. Interior point warm starting was also
used when branching. The interior point method outperformed the contemporary version of
CPLEX on the bin packing problems.

Fragnière at al. [40] formulated and solved large scale linear programs arising in stochastic
programming and asset management. These problems have a structure that is amenable to
decomposition. They used an interior point column generation algorithm to solve the linear
programs and they were able to warm start successfully. Gondzio and Kouwenberg [53]
extended this method to solve a linear program with over 24 million variables. They had to
disable the warm start features in the code for this large instance, because of the memory
requirements to store the warm start point. Nonetheless, they could solve the problem in a
few hours on a multiprocessor computer. Colombo et al. [28] developed a warm start interior
point cutting plane method to solve stochastic programming problems and showed that their
method led to faster solution times than a direct method or a cold-started interior point
method for a standard class of stochastic programming problems available online.

Gondzio and Vial [54] and Gondzio and Grothey [51] solved several different classes of
block-angular linear programs using a primal-dual interior point cutting plane method with
two warm starting approaches. Both warm starting approaches led to a significant reduction
in the number of iterations and enabled the solution of large problems.

Pages et al. [116, 115] solved quadratic programming problems with an exponential num-
ber of linear constraints. These problems arise in power planning. They used a modification
of a method in [51] to warm start an interior point column generation algorithm. Their
method was able to solve problems that could not be solved directly.

Interior point cutting plane algorithms for integer programming problems were the subject
of [98, 96, 92]. These papers discussed matching problems, linear ordering problems, and
maxcut problems. The maxcut problems arose from Ising spin glass problems in statistical
physics and were defined on a grid. The nodes correspond to spins that can be either up
or down, and the edges to pairwise interactions between neighboring spins. The instances
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solved in [92] were on 2-dimensional grids with edge interactions equal to ±1. For these
problems, the interior point cutting plane method was far faster than a comparable simplex
cutting plane method [34]. The simplex cutting plane solver has been updated and can now
be accessed online [83].

Mehrotra and Özevin [89] have proposed an interior point decomposition scheme for two-
stage stochastic programming problems, where the underlying cones can be as general as
SDP cones. This was extended by Chen and Mehrotra [26] to multistage stochastic convex
optimization problems. Their decomposition scheme exploits self-concordance results.

Rousseau et al. [127, 128] have proposed an interior point stabilization approach. In
this approach, the problems (P ) and (D) are still solved using the simplex method, but
multiple dual optimal solutions are determined and then a point in the convex hull of these
solutions is chosen. This point is then used in the generation of columns. They solved vehicle
routing problems with time windows using a column generation approach, with the columns
corresponding to different possible routes. In their applications, not many cutting planes are
generated at a time, so the linear programming problems do not change much, and so they
did not report results with using an interior point method to solve the linear programming
problems. They showed that the interior point stabilization approach worked very well,
better than other types of dual stabilization for their instances of vehicle routing problems.

Much of the recent success with branch-and-cut algorithms for integer programming is
due to the successful incorporation of classical Gomory cutting planes and lift-and-project
cutting planes, along with other classes of cutting planes [17]. Mitchell [91] showed that
Gomory cutting planes can even be derived at an interior primal-dual point. Lift-and-project
cuts can also be derived when using an interior point method: these cuts are found by
constructing and solving a linear programming problem, designed to determine a constraint
that separates the convex hull of feasible points from the current iterate. There is no need
for the current iterate to be an extreme point, so lift-and-project cuts can readily be found
when using an interior point cutting plane method.

2.2. Warm starting
The linear programming pair (P ) and (D) is approximately solved, resulting in a triple
(x̃, ỹ, s̃), and cutting planes are added, giving the modified pair (P0) and (D0). The triple is
approximately centered in (P ) and (D), which means that x̃is̃i ≈ µ for each component i =
1, . . . , n, where nµ is the current duality gap. If the problem has not been modified too much
then the point (x̃, ỹ, s̃) should be somewhat close to a solution to the new problem, and it
is desirable to try to exploit this warm start. In what follows, we assume the point (x̃, ỹ, s̃)
is feasible in (P ) and (D), which implies that x = x̃, x0 = 0 is feasible in (P0), but y = ỹ is
not feasible in (D0). In order to use a primal-dual interior point method, we need points
with x, x0, s, and s0 all strictly positive. Primal-dual interior point methods work best if
the initial iterate in (P0) and (D0) is approximately centered.

If just one column is added to (P0), so p = 1, then a strictly feasible solution to (P0) can
be regained by increasing x0 and compensating by modifying the components of x. We let
a0 denote the single column of A0. There are many possible ways to modify x and Mitchell
and Todd [98] proposed one using the Dikin ellipsoid. In this approach, the components of
x are rescaled and then the least squares solution is found. The resulting direction can be
expressed as

∆x = −D2AT (AD2AT )−1a0, (4)

where D is a diagonal scaling matrix, for example the primal variables.
The Dikin ellipsoid for the problem (P ) at a strictly feasible point x̄ is the set of points

EP (x̄) := {x∈ IRn : (x− x̄)T D−2(x− x̄)≤ 1} (5)
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where again D is a diagonal scaling matrix. If D is taken to be the primal scaling matrix
with Dii = x̄i for i = 1, . . . , n then EP is contained within the positive orthant. The direction
∆x is the optimal solution d for the problem

maxt,d t
subject to Ad + ta0 = 0

x̄+ d ∈ EP (x̄).
(6)

Points in the Dikin ellipsoid have potential function value close to that of x̄; potential
functions can be used to measure centrality, and for more on potential functions see §2.3.
Thus, the subproblem (6) balances the desire to move the incoming variable x0 away from
the boundary with the desire to keep x reasonably well centered. This method is the basis
for most restart techniques proposed subsequently in the literature.

One simple method proposed in [98] to find a strictly feasible solution to (P0) when p > 1
is to sum the columns A0 into a column a0, then use (6) to determine a direction d, and set
the direction for each component of x0 equal to the optimal value of t. This method has been
generalized subsequently to take a0 to be any positive combination of the columns of A0;
see, for example, [49, 50, 35]. This choice can be further refined by considering potential
functions.

The loss of feasibility makes it considerably harder to find a good interior point warm
start in the dual problem (D0) than in the primal problem (P0). One common method is
to determine a feasible solution by exploiting the structure of the problem. For example,
earlier dual iterates can be stored and it may be that one of those is feasible. Alternatively,
in the case of cutting plane methods for integer programming problems, a feasible restart
point can be found by taking a convex combination of integer feasible points [92]. Given a
point y̌ in the interior, a minimum ratio test can be used to find the convex combination of
ȳ and y̌ that is on the boundary of the feasible region of (D0), and then a line search can
be used to find an interior feasible point that works well with the primal feasible point.

Gondzio [49] proposed restarting from an approximate analytic center that has been cal-
culated on the way to an approximate solution to (P ) and (D). In particular, if the tolerance
τ is, say, 10−6, once the solution is within 10−3 of optimality an approximate analytic center
meeting this accuracy requirement is calculated. Even if this stored approximate analytic
center violates the new constraints, he found that feasibility could usually be recovered
quickly by using a target following approach [69, 126].

An added constraint that is satisfied at equality by ȳ is called a central cut. If the constraint
is violated by ȳ then it is a deep cut. If the cut is satisfied strictly by ȳ then it is a shallow cut.
In practice, the added cuts are deep. Most of the theoretical convergence results discussed
in §2.3 shift the constraint so that the current point ȳ is feasible, either strictly interior or
on the boundary. When p = 1 and the point is on the boundary, a direction analogous to (4)
can be used to find a strictly feasible point. This direction can be motivated by considering a
subproblem of maximizing the increase in the slack s0 while keeping y in the Dikin ellipsoid
given by

ED(ȳ, s̄) := {y ∈ IRm : AT y + s = c, (s− s̄)T D2(s− s̄)≤ 1}, (7)

where D is an appropriate scaling matrix. Hence, the subproblem is to solve

maxd,t aT
0 d

subject to AT d + t = 0
ȳ + d ∈ ED(ȳ, s̄)

(8)

where t∈ IRn and d∈ IRm. This gives the direction

∆y = (AD2AT )−1a0, (9)

after scaling. This direction is illustrated in Figure 2.



Mitchell: Cutting Plane Methods and Subgradient Methods
INFORMS—New Orleans 2005, c© 2005 INFORMS 9
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!!!!!!!!!*
d

Figure 2. The dual restart direction is found by moving as far off the added constraint as possible
while staying within the Dikin ellipsoid so as to maintain centrality in the original constraints.

When the set of added constraints determines a cone, it is harder to find an initial strictly
feasible dual solution, even if the constraints are central. In this case, one remedy is to
minimize an appropriate penalty function of the new dual slack variables, subject to remain-
ing in the dual ellipsoid given by the original set of constraints [47]. The direction finding
subproblem has the form

mind,t,t0 f0(t0)
subject to AT d + t = 0

AT
0 d + t0 = 0

s̄+ t ∈ ED(ȳ, s̄)

(10)

where t0 is the vector of slacks in the added dual constraints and f0(t0) is the penalty
function. This situation is illustrated in Figure 3. Ramaswamy and Mitchell [120] proposed a
selective orthonormalization procedure to make it straightforward to find a new dual feasible
solution. In this approach, some of the constraints are weakened if necessary, to ensure that
the inner products between the normals of all the added constraints are nonnegative in a
rescaled space. In this situation, a strictly interior dual feasible point can be found by taking
a positive sum of the scaled normals of the added constraints.

Finally in this section we discuss shifted barrier methods. These methods were pro-
posed by Polyak [119] and investigated further by Freund [41] and Mitchell [90]. Renegar’s
method [124] can also be regarded as a shifted barrier approach. They have also recently
been implemented by Engau et al. [37, 38]. In this approach, the nonnegativity requirements
are relaxed, or shifted, and then these requirements are gradually tightened as the algorithm
proceeds. In this way, centrality is achieved very easily, at a cost of possible infeasibility.
Feasibility is gradually recovered as the barriers are returned to their original positions.

2.3. Theoretical convergence
In the worst case, a cutting plane algorithm that uses the simplex algorithm to solve the LP
relaxations can require time that is exponential in m, even if violated cutting planes can be
determined in polynomial time. One of the consequences of the theoretical development of
the ellipsoid algorithm was a proof that if violated constraints can be found in polynomial
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ȳ

AT
0 y ≤ AT

0 ȳ
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Figure 3. The dual restart direction is found by minimizing the penalty function of the new
slack variables while staying within the Dikin ellipsoid so as to maintain centrality in the original
constraints.

time then the problems (P̂ ) can (D̂) can be solved in time polynomial in m [73, 18, 57].
Thus, the separation problem and the optimization problem are polynomially equivalent.

Different interior point cutting plane algorithms have been proposed. Simpler interior
point cutting plane algorithms have been shown to converge in fully polynomial time; that
is, they get within ε of optimality in time polynomial in 1/ε and m. These methods are
surveyed by Goffin and Vial [48]. More complicated interior point cutting plane algorithms
have been shown to be polynomial, requiring time polynomial in both m and ln( 1

ε ); see the
survey paper by Mitchell [94].

Convergence results for interior point cutting plane methods are typically stated in terms
of solving the convex feasibility problem to a tolerance ε. Thus, instead of solving prob-
lem (D̂), we solve the problem

Convex feasibility problem: Given a convex set C ⊆ IRm, either prove C is empty or
find a point y ∈ IRm such that the Euclidean distance from y to C is no greater than ε.

A polyhedral outer approximation to C is constructed and refined and a trial point ȳ is
chosen that is an approximate center of this outer approximation. These algorithms can be
outlined as follows:

0. Initialize: Choose a polyhedral outer approximation {y ∈ IRm : AT y ≤ c}
to C and a tolerance ε.
1. Find an approximate center of the outer approximation. Obtain a point ỹ.
2. Check feasibility: If ỹ is within ε of C, STOP with feasibility.
3. Check infeasibility: If sufficiently many iterations have occurred, STOP with
the conclusion that C does not contain a ball of radius ε.
4. Modify the polyhedral description: Add one or more constraints to the poly-
hedral outer approximation, or drop a constraint.
5. Loop: Return to Step 1.

Algorithm 2: Solving the convex feasibility problem
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Note that this framework is general enough to include the ellipsoid algorithm: we can
regard the ellipsoid as a further outer approximation to the polyhedral outer approximation,
and then the “approximate center” in Step 1 is the center of the ellipsoid.

Goffin and Vial [47] showed that such an algorithm converges in a fully polynomial number
of outer iterations when the “approximate center” is an approximate analytic center and no
constraints are dropped.

Theorem 1. [47] If C contains a ball of radius ε then an interior point variant of Algo-
rithm 2 stops with feasibility after adding no more than O(m2p2

ε2 ) cutting planes, where at
most p cutting planes are added in each call to Step 4, constraints are never dropped, and
an approximate analytic center is found in Step 1. Further, each call to Step 1 requires at
most O(p lnp) Newton steps.

The proof of this result examines a dual potential function −
∑n

i=1 lnsi. An upper bound
on this dual potential function can be constructed from the requirement that C contain
a ball of radius ε. A lower bound can be obtained from the required change in the dual
potential function when a constraint is added through the current approximate analytic
center. The upper bound increases as constraints are added, but it increases less quickly
than the lower bound; hence, an upper bound can be placed on the number of iterations.

Atkinson and Vaidya [8] developed a version of Algorithm 1 that both adds constraints
and drops unimportant constraints. They also used the approximate analytic center. They
shifted their cuts to make them weak so that a new approximate analytic center could
be recovered in O(1) Newton steps. They were able to prove that their algorithm requires
polynomial time.

Theorem 2. [8] If C contains a ball of radius ε then an interior point variant of Algo-
rithm 2 stops with feasibility after adding no more than O(m ln( 1

ε )2) iterations, when extra
conditions are used to determine constraints to add and drop, and an approximate analytic
center is found in Step 1.

Also of interest are volumetric center cutting plane algorithms, first proposed by
Vaidya [136] and subsequently refined by Anstreicher [1, 2]. If y is strictly feasible in the
current outer approximation to C with slacks s, then the volumetric barrier function is given
as

V (y) :=
1
2

lndet(AS−2AT ). (11)

The matrix AS−2AT is the Hessian of the dual potential function at y. The volumetric
center is the point that maximizes this function.

Theorem 3. [136] If C contains a ball of radius ε then an interior point variant of
Algorithm 2 stops in O(m ln( 1

ε )) calls to the oracle and either O(m ln( 1
ε )) or O(m1.5 ln( 1

ε ))
approximate Newton steps, depending on the choice of parameters, if the center is an approx-
imate volumetric center, and a single cut is added or dropped at each call to Step 4.

Like Theorem 1, the results in Theorems 2 and 3 follow from developing upper and lower
bounds on an appropriate potential function. Both bounds grow as cuts are added, but the
lower bound grows more quickly.

2.4. Warm starting when the constraint matrix is modified
Warm starting is not only needed when constraints are added to the problem. For example,
in finding the efficient frontier of a portfolio optimization problem, a sequence of closely
related quadratic programs is solved. The only difference between these quadratic programs
is in the objective function. Thus, the solution process used for one quadratic program
should give a warm start for a nearby quadratic program.
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Yildirim and Wright [141] proposed methods for regaining starting points that are within
neighborhoods of the central trajectory. Their methods require backing up along the central
path for the unmodified problem, in order to make the complementarity products xisi large
enough. Then after the problem is modified, the point can be modified to ensure that the
new iterate is still reasonably well centered. John and Yildirim [70] implemented techniques
for warm starting, showing that these techniques could dramatically reduce the required
number of Newton steps.

The method proposed in [49] was extended by Gondzio and Vial [54] to solve linear
programs where only the objective function was changed. They observed that the warm
starting technique required only about one third as many interior point iterations as using
a cold start.

Gondzio and Grothey [52] developed an unblocking scheme for warm starting an interior
point approach to linear and convex quadratic programs. They looked at problems where
the data of the problem are modified, but the problem size is not changed. This approach
involves taking the Newton restart direction, determining which components are leading to
a short steplength, and trying to modify the direction using sensitivity analysis.

Benson and Shanno [13, 14] have investigated interior point warm starting techniques for
nonlinear programming problems. They use regularization and relaxation techniques to aid
in warm starting the algorithm.

3. Tightening SDP relaxations of combinatorial optimization prob-
lems

Semidefinite programming formulations provide strong relaxations for many combinatorial
optimization problems. Typically these relaxations are stronger than LP relaxations. The
Lovasz θ number [85] relaxation for maximum stable set, node packing and maximum clique
problems was the first illustration of the power of an SDP relaxation. For these problems,
there is an upper bound available from looking at an appropriate coloring. The strength of
the SDP relaxation is illustrated by the fact that it gives a bound that is at least as good
as that obtained from the coloring upper bound. If the graph is perfect [15, 27] then the
value of the SDP relaxation gives the optimal value of both the stable set problem and the
coloring problem. In general, there is no polynomial time approximation algorithm for the
stable set problem, unless P=NP [7]. Perhaps the best known SDP relaxation is Goemans
and Williamson’s celebrated method for the MaxCut problem [45], which guarantees a solu-
tion with value at least 0.878 of the optimal value. Relaxations of the traveling salesman
problem are discussed by de Klerk et al. [33]. Laurent and Rendl [82] give an excellent
survey of SDP relaxations of integer programs; this paper also includes discussion of the
relationship between lifting methods for integer programming constraints and relaxations
arising from semidefinite programming. For more details on these relationships, see Goe-
mans and Tunçel [44]. Structure-exploiting techniques that are applicable when solving SDP
relaxations of combinatorial optimization problems are surveyed by de Klerk [32].

In principle, an SDP relaxation can be exploited in the same way as an LP relaxation
to solve the underlying combinatorial optimization problem. In particular, these relaxations
can be embedded within branch-and-cut procedures. The strength of the SDP relaxations
should lead to a considerable reduction in the number of relaxations that must be solved
when compared to the use of LP relaxations. The principal practical difficulty with this
approach is that the SDP relaxations are far harder to solve than LP relaxations. Thus,
there is a tradeoff between the number of relaxations and the difficulty of the relaxations.

A semidefinite programming problem and its dual can be written as follows:

minX C •X maxy,S bT y
subject to Ai •X = bi ∀i (SDP ) subject to

∑m
i=1 yiAi + S = C (SDD)

X � 0 S � 0.
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Here, there are m matrices Ai that are each n×n, X and C are also n×n matrices, y and
b are m vectors, • denotes the Frobenius inner product between two matrices, and X � 0
indicates that X must be symmetric and positive semidefinite. Many of these relaxations
give exact representations of the underlying combinatorial optimization problem if addi-
tional conditions are imposed on the rank of X. For example, the SDP relaxations of node
packing [85] and MaxCut [45] each relax the requirement that the rank of X should be one.
In such a situation, if the optimal solution to the relaxation has the correct rank then this
solution solves the underlying problem.

Helmberg and Rendl [64] experimented with using cutting planes and branch-and-bound
in an SDP approach. They solved quadratic 0-1 problems, which are equivalent to MaxCut
problems. The cutting planes have the form

±Xij ±Xik ±Xjk ≥ −1 (12)

for any three distinct indices i, j, and k, where an odd number of terms have positive sign.
For smaller instances (n≤ 50), they found that it was unnecessary to branch. Other cutting
planes can be derived based on the fact that a cycle and a cut must intersect in an even
number of edges.

The branching routine in [64] was designed so as to reduce the dimension of the matrix X
at each branching step. Mitchell [93] showed how the solution process can be warm-started
after branching, with a new interior point recovered efficiently. Helmberg [59] developed a
technique for exploiting an analogue of reduced costs to fix variables. Helmberg [60, 62]
strengthened the computational ability of SDP branch-and-cut algorithms by exploiting
the spectral bundle method [65] to solve the SDP relaxations, which allowed the relax-
ations to be solved approximately and the process to be warm-started effectively. Krishnan
and Mitchell [79] developed an SDP branch-and-cut-and-price algorithm to solve MaxCut
problems, where the SDP relaxations were solved approximately using an LP cutting plane
approach.

Cutting plane or branch-and-cut algorithms with SDP relaxations have been implemented
for several classes of problems in recent years. Problems that have been solved include max-
cut and equipartition problems [39, 121, 122], stable set problems [58], minimum k-partition
problems, possibly with restrictions on the sizes of the clusters [84, 43], and quadratic linear
ordering problems [22].

Anstreicher et al. [4] solved quadratic assignment problems (QAP) using a branch-and-
bound method on a computational grid. There exist LP and SDP relaxations for the QAP
(see, for example, Rendl and Sotirov [123]), but the LP relaxation is too weak for hard
instances and the SDP relaxation is too hard to solve repeatedly. Therefore, they used a
convex quadratic programming bound based on a projected eigenvalue bound [3]. This gives
a better bound than the LP relaxation and at less cost than determining the SDP bound.
They were able to solve instances of the QAP that had been open problems for 30 years. Peng
et al. [99, 118] developed novel SDP relaxations of the QAP that can be solved effectively
and that are stronger than the quadratic programming bound of [4]. Their approach uses a
matrix splitting approach, driven by the eigenvalue spectrum of one of the matrices in the
problem definition. They also show how their relaxation can be enhanced through the use
of cutting planes, and their relaxation may well be effective in a branch-and-cut algorithm.

Theoretical results for interior point cutting plane methods for semidefinite programming
problems were derived by Sun et al. [133, 134]. Their algorithm solves a convex feasibility
problem, where the initial relaxation is defined by a semidefiniteness constraint, and lin-
ear constraints are added as cutting planes. They showed that their algorithm converges
in a number of iterations that is polynomial in m, ε, and the maximum number of con-
straints added at each iteration, under various assumptions. Generalizations of this result
are considered in §4.
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4. Interior point cutting surface methods
A primal-dual interior point algorithm can be used to solve (SDP ) and (SDD), and several
versions of such an algorithm have been implemented [20, 132, 135, 139]. These methods
enjoy excellent theoretical convergence properties and are surveyed in [100] and elsewhere.
However, they are computationally expensive; for example, problems where the dimension of
X is a few thousand require several hours even on a machine with four processors [20]. The
development of algorithms for solving large-scale semidefinite programming problems is an
active area of research. Various approaches are discussed in, for example, [25, 24, 23, 75, 142],
and some of these methods are surveyed in [100, 80].

In this section, we discuss an alternative class of approaches where relaxed versions of
(SDD) are constructed and the relaxations tightened through the addition of cutting sur-
faces. Given an n× p matrix P , a primal-dual pair of SDPs that are a constrained version
of (SDP ) and a relaxed version of (SDD) can be written as

minV C •PV PT maxy,S bT y
subject to Ai •PV PT = bi ∀i (SDPP ) subject to

∑m
i=1 yiAi + S = C (SDDP )

V � 0 PT SP � 0,

where V is a p× p variable matrix [78]. If rank(P ) = n then this pair of problems is equiva-
lent to (SDP ) and (SDD). This formulation can be extended further by relaxing the dual
semidefiniteness constraint and imposing corresponding restrictions on the primal matrix V .
For example, requiring that V be diagonal results in a dual problem where the semidefi-
niteness constraints just requires the diagonal entries of PT SP to be nonnegative [76, 77].
Similarly, it is possible to require that V have a block-diagonal structure, which leads to a
dual requirement that only the corresponding blocks of PT SP be positive semidefinite [110].

In order to simplify the presentation, we make two assumptions about the problem (SDP ).

Assumption 1. The matrices Ai, i = 1, . . . ,m, are linearly independent in the space of
symmetric n×n matrices.

Assumption 2. Both (SDP ) and (SDD) have strictly feasible solutions, with X and S
positive definite.

One consequence of these assumptions is that the optimal values of (SDP ) and (SDD)
agree.

A solution (y,S) to (SDDP ) is optimal for (SDD) if S � 0. If this is not the case then S
has at least one eigenvector u with negative eigenvalue. Let λmin(S) denote the minimum
eigenvalue of S. Requiring that S be positive semidefinite is equivalent to imposing the
convex nonsmooth constraint that λmin(S)≥ 0. For a given matrix S̄, let d(S̄) denote the
degree of the minimum eigenvalue of S̄, and let u1(S̄), . . . , ud(S̄)(S̄) be an eigenbasis for the
corresponding eigenspace. The subdifferential of the convex function −λmin(S) at S̄ is then
the following convex set of symmetric positive semidefinite matrices:

∂(−λmin(S̄)) = {
d(S̄)∑
i=1

τiuiu
T
i : τi ≥ 0, i = 1, . . . , d(S̄),

d(S̄)∑
i=1

τi = 1}.

Thus, adding the constraint uT
i Sui ≥ 0 to (SDDP ) corresponds to adding a subgradient

inequality. If we let U denote the n×d(S̄) matrix whose columns are the vectors u1, . . . , ud(S̄),
then the whole subdifferential can be imposed through the addition of the constraint

UT SU � 0. (13)

This constraint is valid for any matrix U , of course. In practice, it is not necessary that the
columns of U all correspond to the same eigenvalue, so a tolerance can be used to select
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an appropriate set of columns, with each of the columns corresponding to some negative
eigenvalue of S̄. These columns can be added to P , with an appropriate modification of the
structure of the dual semidefiniteness constraint in (SDDP ). If U has just one column then
(13) is a linear constraint.

Different algorithms can be defined by using different methods to update P and by choos-
ing varying relaxations of the dual semidefiniteness constraint. This leads to a class of
algorithms of the following form:

0. Initialize: Choose the initial matrix P . Choose a tolerance ε for the overall
algorithm. Choose a tolerance τ for the desired accuracy of the SDP relaxations.
Choose a structure for the relaxation of the dual semidefiniteness constraint.
1. Approximately solve the SDP relaxation: Solve (SDPP ) and (SDDP ) to a
relative accuracy of τ in the duality gap. Obtain a primal-dual pair (X̃, ỹ, S̃).
2. Modify P : Check whether S̃ � 0.
(a) If S̃ � 0 and τ ≤ ε then STOP with a solution to the underlying problem.
(b) If S̃ � 0 and τ > ε then reduce τ and return to Step 1.
(c) If S̃ has one or more eigenvectors with negative eigenvalue, add a subset of
the eigenvectors to P , drop or aggregate some of the columns of P if desired,
modify τ if desired, choose a structure for the updated dual semidefiniteness
constraint, and return to Step 1.

Algorithm 3: Cutting surface algorithms for (SDP ) and (SDD).

Krishnan and Mitchell [77] proposed a linear programming version of Algorithm 3. They
only required the diagonal elements of PT SP to be nonnegative, which is equivalent to the
linear constraints

m∑
i=1

(pT
j Aipj)yi ≤ pT

j Cpj (14)

for each column pj of P . The linear programming dual of the corresponding (SDDP ) gives
problem (SDPP ), with V required to be diagonal. This means that the primal matrix
X = PV PT =

∑
j vjpjp

T
j ; that is, X is a nonnegative sum of outer products of the columns

of P . Several columns can be added to P at once, if S has multiple negative eigenvalues,
with each of these columns leading to an additional linear constraint. Because this is a linear
programming problem, the techniques discussed in §2.2 can be used to speed up solution.
In practice, this algorithm needs to add a large number of columns to P . It can get close
to optimality in a reasonable amount of time, but it is difficult to get close to optimality
in time competitive with primal-dual interior point methods for the smaller problems in
SDPLIB [19]. The algorithm is more competitive for larger problems when m is not too
large compared to n. For another version of a similar LP approach to semidefinite programs,
see Sherali and Fraticelli [129].

4.1. Theoretical convergence results
It is common in the framework of Algorithm 3 that the matrix S has multiple negative
eigenvalues. Oskoorouchi and Goffin [110] proposed adding a low-dimensional semidefinite
constraint to (SDDP ) corresponding to the set of corresponding eigenspaces. In particular,
if the columns of the matrix P̄ give a linearly independent set in the union of the eigenspaces
of S with negative eigenvalue, a constraint P̄T SP̄ � 0 can be added to (SDDP ). This
results in extra flexibility in X, with the addition of a term P̄ V̄ P̄T , with V̄ � 0. This added
constraint is a cutting surface and is stronger than adding linear constraints of the form (14).
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The cutting surface has the form (13) in terms of the dual slack variables, and the following
equivalent form as a constraint on the dual variables y:

m∑
i=1

(PT AiP )yi � PT CP. (15)

Thus, the problems (SDPP ) and (SDDP ) are semidefinite programs, with block-diagonal
restrictions on V and on the positive semidefiniteness of PT SP . The original semidefiniteness
constraint S � 0 has been approximated by a number of lower dimensional semidefiniteness
constraints. The algorithm can be initialized either using linear bound constraints on y or by
imposing a second order cone constraint on y restricting its Euclidean norm. The resulting
algorithm was shown to be fully polynomial. Computational results are described in [112].

A cutting surface method with q added cuts of the form (14) and r added cuts of the
form (15) leads to versions of (SDPP ) and (SDDP ) of the following form:

minX,V k,vj
C •X maxy,S bT y

subject to Ai •X = bi ∀i subject to
∑m

i=1 yiAi + S = C∑q
j=1 vjpjp

T
j +

∑r
k=1 PkV kPT

k = X PT
k SPk � 0 ∀k

V k � 0 ∀k pT
j Spj ≥ 0 ∀j

vj ≥ 0 ∀j

One aim is to make this problem easier to solve than the original (SDP ) by keeping the
sizes of the blocks V k small. The linear constraints can be regarded as SDP blocks of size 1.

Computationally, second order cone (SOC) constraints are a lot easier to use than semidef-
initeness constraints. Therefore, Oskoorouchi and Goffin [111] proposed restricting the size
of the blocks to be no larger than 2. A semidefiniteness constraint of size 2 is equivalent
to an SOC constraint. Oskoorouchi and Mitchell [113] extended the algorithm to allow the
simultaneous addition of multiple SOC constraints. If the number of negative eigenvalues
of S is large, then the semidefiniteness constraint P̄T SP̄ � 0 is approximated by several
SOC constraints. Thus, (SDPP ) and (SDDP ) are a primal-dual pair of second order cone
programs. Again, the resulting algorithm was shown to be fully polynomial. Computational
experiments with this algorithm can be found in [113]. The algorithm works very well when
m is not large compared to n.

The theoretical convergence results in [110, 111] are for the convex feasibility problem
when a separation oracle returns a cutting surface corresponding to a positive semidefinite-
ness constraint. Basescu and Mitchell [11] generalized the algorithms in [76, 77, 110, 111] by
allowing the cutting surfaces to correspond to general self-scaled cones. They were able to
show that the resulting algorithm was fully polynomial, with the general complexity result
reducing to the ones obtained in [110, 111] when the cutting surfaces are restricted to be
semidefinite cones or second order cones.

The theoretical algorithm in [110] is warm-started by using a method analogous to (10). in
particular, the cutting surface is shifted so that it is central, and then the potential function
of the added constraint is minimized, subject to remaining in an appropriate Dikin ellipsoid.
The primal problem can also be restarted in a similar manner. It was shown in [110] that
a new approximate analytic center could then be recovered in O(p) Newton steps, where
p is the number of columns in P̄ . This method was extended in [113, 11], with analogous
complexity results. Practical warm starting procedures are described in [112, 113].

All of these convergence results include a condition number in the complexity. It is needed
in order to get a tractable upper bound on the dual potential function. The upper bound
used in the convergence analysis uses the assumption that the feasible region contains a ball
of radius ε if it is nonempty. The condition number relates the dual potential function based
on the slack variables in an added dual constraint to the norm of the dual variables y. This
vector of slack variables is required to be in a cone K0, expressed as s �K0 0. A cutting
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surface can be denoted by A∗0y�K0 c0, where A∗0y is an appropriate linear function of y. If
K0 is a set of positive semidefinite matrices then the corresponding dual potential function
for a matrix S of dual slack variables is φ(S) = − lndet(S). Each dual potential function
f∗K0

(s) has a parameter ϑf which relates f∗K0
(s) to f∗K0

(αs) for positive scalars α, with
f∗K0

(αs) = f∗K0
(s)−ϑf ln t. In particular, ϑf = p for either a cone K of positive semidefinite

matrices of size p×p, or K = IRp
+. If we assume the feasible region contains a ball of radius ε

centered at an iterate ȳ, it follows that c0−A∗0(ȳ + εd)�K0 0 for any vector d with ||d||= 1.
Hence,

f∗K0
(c0−A∗0ȳ)≤f∗K0

(εA∗0d) = f∗K0
(A∗0d)−ϑfK0

ln ε,

since the potential function is logarithmically homogeneous, so this gives an upper bound.
A condition number µK0 can be defined as

lnµK0 := inf{f∗K(A∗0d) :A∗0d�K0 0, ||d||= 1}.

The smaller the value of µK0 , the better the upper bound on f∗K0
(c−A∗ȳ). For an example

of an SDP cutting surface with a poor condition number, consider the following:

Example 1. Let

A1 =
[

1 0
0 δ

]
, A2 =

[
0 1
1 δ

]
, A3 =

[
1 0
0 0

]
, A4 =

[
1 1
1 0

]
, and A∗(d) =

4∑
i=1

diAi.

If ||d||= 1 then det(A∗(d)) is at most O(δ). Thus, for small δ and for any choice
of direction, it is necessary to take a step of length O(1/δ) in order to get a
negative potential function value.

Mitchell and Basescu [95] removed this condition number by allowing the constraint to be
weakened using a selective orthonormalization procedure, an extension of the LP procedure
in [120].

4.2. A Lagrangian dual function and eigenvalue minimization
The problem (SDD) can be derived through consideration of Lagrangian duality. Rather
than deriving this in the general case, we consider imposing an additional assumption.
The Lagrangian dual problem can then be stated naturally as an eigenvalue optimization
problem.

If the primal problem (SDP ) has a bounded feasible region then it can be rescaled and
a constraint I •X = 1 imposed, possibly after adding a slack variable [60]. This constraint
is already included in the Lovasz θ relaxation of the stable set problem, and most SDP
relaxations of combinatorial optimization problem in the literature already imply I •X = a
for some appropriate constant a. We make the following assumption:

Assumption 3. Every feasible solution to (SDP ) satisfies I •X = 1.

Under Assumption 3, a Lagrangian relaxation of (SDP ) can be formulated as

Θ(y) := minX bT y +(C −
∑m

i=1 yiAi) •X
subject to I •X = 1 (SDPLR(y))

X � 0.

Let λmin(C −
∑m

i=1 yiAi) denote the minimum eigenvalue of C −
∑m

i=1 yiAi, which may be
negative, and let u1 be a corresponding eigenvector. The optimal solution to (SDPLR(y))
is to take X = uuT , with value Θ(y) = bT y + λmin(C −

∑m
i=1 yiAi). Thus, the Lagrangian

dual problem can be stated as the unconstrained optimization problem

max
y

bT y +λmin(C −
m∑

i=1

yiAi). (SDPLD)
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Under Assumptions 1 and 2, the optimal values of (SDP ), (SDD), and (SDPLD) all agree.
Since Lagrangian dual functions are concave, the problem (SDPLD) can be solved using a
cutting surface approach. This is the approach followed by Sivaramakrishnan et al. [131].

4.3. Developing a practical algorithm
Computational results are contained in the previously mentioned [112, 113, 131], along with
discussion of practical techniques. In this subsection, we look at some of the practical issues.

A primal feasible point is immediately available by setting the added block of variables
Vk equal to zero. A strictly feasible warm-start point can be found using Dikin ellipsoids, as
discussed in §4.1. Oskoorouchi et al. [112, 113] used a primal interior point method. Such a
method converges to an approximate analytic center, at which point a dual feasible solution
to (SDDP ) can be determined.

Upper bounds are available from any X that is feasible in (SDP ). Hence, any feasible
solution to (SDPP ) will give an upper bound, since (SDPP ) is a constrained version of
(SDP ). One advantage of Assumption 3 and the resulting formulation (SDPLD) is that it
is straightforward to find a lower bound on the optimal value. In particular, because of the
presence of the implicit primal constraint I •X = 1, the identity matrix is a combination of
the constraint matrices Ai. We write this explicitly as

m∑
i=1

βiAi = I

for appropriate multipliers β. Given a dual vector ȳ, the vector

ỹi = ȳi +βiλmin(C −
m∑

i=1

ȳiAi) (16)

is feasible in (SDD). In particular, each eigenvalue of C −
∑m

i=1 ỹiAi is −λmin(C −∑m
i=1 ȳiAi) larger than the corresponding eigenvalue of C−

∑m
i=1 ȳiAi, so C−

∑m
i=1 ỹiAi is

positive semidefinite. Hence, we obtain a lower bound of

LB = bT ȳ + bT β λmin(C −
m∑

i=1

ȳiAi).

Note that −β is a ray in (SDD), so we must have bT β ≥ 0 if (SDP ) is feasible.
Because it is easy to find a feasible solution to (SDDP ) under the condition of Assump-

tion 3, it is also easy to warm-start the dual problem after adding cutting surfaces at a
point ȳ. The modification given in (16) gives a feasible solution, and a strictly feasible dual
solution can be found by making a slightly larger change to ȳ. Because of the availability of
a dual warm start point, Sivaramakrishnan et al. [131] used the primal-dual interior point
implementation SDPT3 [135] to solve (SDPP ) and (SDDP ). This implementation also
allows control of the optimality tolerance; in addition the Dikin ellipsoid direction finding
subproblem can also be solved using SDPT3.

Sivaramakrishnan [130] developed a parallel decomposition approach for block-angular
semidefinite programming problems. The primal matrix in these problems is comprised of r
smaller diagonal blocks, each with its own set of linear constraints. Further, there are linear
constraints linking the blocks together. Let ni denote the dimension of the ith diagonal
block, let m denote the number of linking constraints, and let mi denote the number of
linear constraints on the ith block. The primal and dual problems have the form

minXi

∑r
i=1 Ci •Xi maxy,wi bT y +

∑r
i=1 dT

i wi

subject to
∑r

i=1Ai(Xi) = b subject to AT
i y + BT

i wi � Ci, i = 1, . . . , r
Bi(Xi) = di, i = 1, . . . , r

Xi � 0, i = 1, . . . , r
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where b and y are m-vectors, di and wi are mi-vectors and Ci is an ni × ni matrix for
i = 1, . . . , r, Ai(Xi) denotes an m-vector whose jth component is Aij •Xi with Aij an ni×ni

matrix, AT
i y =

∑
j yjAij , and the linear operators Bi(Xi) and BT

i wi are defined similarly. A
Lagrangian dual function Θ(y) can be constructed as

Θ(y) = bT y +
r∑

i=1

min{(Ci−AT
i y) •X : Ai(Xi) = b, Xi � 0} (17)

=: bT y +
r∑

i=1

Θi(y). (18)

Maximizing this function gives the optimal value of the original problem, under Assumptions
1 and 2. Sivaramakrishan constructs piecewise linear approximations to each Θi(y) by solving
the r disaggregated semidefinite programming subproblems

Θi(y) = min{(Ci−AT
i y) •X : Ai(Xi) = b, Xi � 0}

for different choices of y arising as solutions of a master problem. These subproblems are
solved in parallel. The master problem is solved using a stabilized column generation pro-
cedure. The solutions Xi to the subproblems lead to the subgradients −Ai(Xi) of Θi(y).

The decomposition algorithm in [130] is applied to general semidefinite programs by
exploiting chordal extensions [32]. In this approach, a graph is constructed for problem
(SDP ) with nodes corresponding to the rows of the matrix X. There is an edge between
nodes j and k if there is a nonzero entry in position (j, k) in one of the data matrices C or
{Ai : i = 1, . . . ,m}. If the graph is chordal then the matrix can be decomposed into blocks
corresponding to the maximal cliques in this graph. If each of the blocks is positive semidef-
inite then appropriate entries for the remainder of X can be determined to ensure that the
whole matrix X is positive semidefinite [56]. This strong result can be used as the basis for
a decomposition algorithm: smaller semidefinite programs are constructed for each of the
maximal cliques, and linking constraints are imposed to ensure that the solutions to the sub-
problems agree with one another. If the graph is not chordal then a chordal extension can be
constructed: additional edges are added until the graph is chordal [42]. The decomposition
approach can then be used.

Impressive computational results are contained in [130] for SDP relaxations of large com-
binatorial optimization problems. In some of these problems, n is as large as 14000. The
memory requirements of this algorithm are considerably smaller than for primal-dual inte-
rior point methods, so the algorithm is able to find solutions to 2 or 3 digits of accuracy for
problems that cannot be solved by other approaches.

One useful technique for speeding up cutting plane and cutting surface methods for
semidefinite programs is to aggregate unimportant constraints [74, 60, 65, 76, 77, 131, 130].
For any symmetric positive semidefinite matrix W , the constraint

W • (C −AT y) ≥ 0

is valid. Initially, W can be taken to be the zero matrix. When it is determined that a
constraint PT

k (C−AT y)Pk � 0 is no longer important, it could be dropped in order to shrink
the size of the problem. Alternatively, it can be merged into W , so W is updated as

W ← W + αPkPT
k (19)

for some positive scalar α. One advantage of this approach for handling unimportant con-
straints is that it makes it easier to restart in the primal problem: if instead the dual con-
straint is dropped then primal variables are dropped, making the current solution infeasible.
With an aggregation of the dual constraints, the primal variables can also be aggregated,
leading to retention of primal feasibility.
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4.4. The spectral bundle method
The spectral bundle method was introduced in [65] and developed further in [63, 60, 61].
It was developed for semidefinite programs satisfying Assumptions 1, 2, and 3. It deter-
mines a solution to (SDPLD) by developing a semidefinite programming approximation to
the Lagrangian dual function Θ(y) given in (SDPLR(y)). Computational results with the
SBmethod implementation of this algorithm are very impressive [61], and a variant of it has
been used in deriving the computational results in, for example, [39, 121, 122, 58, 84, 22].
Further computational results are contained in [102] and a parallel implementation is pre-
sented in [101]. For a second-order spectral bundle method, see [114].

The spectral bundle method constructs problems of the form (SDPP ) and (SDDP ), with
V and PT SP general symmetric positive semidefinite matrices. The number of columns in
P is controlled: once this number reaches a threshold, the addition of extra columns results
in old columns being merged into an aggregated matrix, as in (19). A proximal bundle term
is added to the dual relaxation, so it has the form

max bT y + u
2 ||y− ȳ||2

subject to AT y + S = C (QSDDP )
PT SP � 0
W •S ≥ 0

where ȳ is the current iterate and u is a positive parameter that is adjusted dynamically
based on the progress of the algorithm. This semidefinite program with a quadratic objective
can be solved efficiently using a primal-dual interior point method. In a bundle method, null
steps are taken if progress is insufficient. In such a step, the matrices P and W are updated
but ȳ is not changed. Progress can be insufficient because (QSDDP ) is an approximation
to (SDD) and it may not be accurate enough. The value of a possible new dual point can be
measured using the expression for Θ(y) contained in the objective function of (SDPLD),
namely bT y + λmin(C −

∑m
i=1 yiAi). If the solution to (QSDDP ) results in a value of Θ(y)

that is not close to the value predicted by the cutting surface approximation then a null
step is taken; otherwise, a serious step is taken and ȳ is updated along with P and W .

Helmberg [60] proves that the spectral bundle method converges under various assump-
tions. The algorithm has been extended to situations where the dual variables have
bounds [63]. It was shown in Pataki [117] that there is an optimal solution to (SDP ) with
rank no greater than O(m0.5), which gives a theoretical justification to bounding the number
of columns in P . The flexibility provided by the aggregate matrix W enables the algorithm
to approach an optimal solution even when the number of columns in P is restricted to be
smaller than the bound in [117].

5. Recent subgradient methods
The interior point cutting plane and surface methods discussed in sections 2 and 4 are not
the only methods for solving convex conic programming problems. For problems where the
computational requirements of these algorithms are daunting, subgradient approaches can
be used. There has been renewed interest in these approaches recently, spurred in part by
Nesterov’s smoothing technique [105]. The article [108] gives a survey of these results, and
discusses their relationship to other subgradient techniques. Subgradient methods can be
used to solve nonsmooth convex optimization problems of the form

min
x
{f(x) : x∈Q}

where Q is assumed to be a bounded closed convex set and f(x) is a continuous convex
function on Q. Given a feasible iterate x̄, a subgradient ξ of f(.) at x̄ is determined and the
iterate is updated to x̄− αξ for some appropriate steplength τ . Such a method is known
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to converge under certain conditions on τ (see [12, 67], for example). The work required at
each iteration of a subgradient scheme can be broken into two parts: (i) the determination
of a function value and subgradient, which can be considered to be provided by an oracle,
and (ii) the update of the iterate. The advantage of a subgradient approach lies in the low
cost of (ii). The disadvantage is that the number of iterations may be large.

The complexity of the subgradient algorithms discussed in this section is measured in
terms of ε, which is the desired absolute accuracy in objective function value. The complexity
estimates are bounds on the number of iterations of the subgradient scheme. The work per
iteration depends on the dimension of the variables. Nemirovski and Yudin [104] showed that
every subgradient scheme that makes no assumptions about the structure of the function f
needs at least O(1/ε2) iterations in the worst case.

When the function f(x) is smooth and the set Q has an appropriate structure, subgradient
methods have a better worst case complexity. This provides the motivation for the smoothing
technique: develop a smooth approximation to a nonsmooth function and then apply an
optimal subgradient approach to the smooth function. It is necessary to exploit the structure
of the nonsmooth function in order to construct such an approximation, so this smoothing
technique cannot be used when the nonsmooth function is just given by an oracle. As long
as sufficient information is available about the function, and as long as it satisfies certain
assumptions, a smooth approximation can be constructed.

Nesterov [105] shows that for certain classes of problems a smooth approximation fµ(x)
can be constructed where the smooth function is Lipschitz continuous with constant Lµ.
Solving the smooth function with a subgradient scheme can be accomplished in O(

√
Lµ/ε)

steps. This approximation is such that Lµ = O(1/ε), so the overall complexity becomes
O(1/ε) subgradient steps. Each subgradient step requires solving two quadratic programs,
where the quadratic term is a norm in one problem and a simple strongly convex function
of Q in the other, and it is assumed that the structure of Q makes these subproblems simple
to solve. For example, if Q is a box of the form {x ∈ IRn : l ≤ x ≤ u} then the quadratic
programs can be constructed to be separable. The subproblems are also easy to solve if
Q = {x∈ IRn : ||x− a||22 ≤ r} for a vector a∈ IRn and a positive scalar r. In one quadratic
program, the linear term is a subgradient approximation to fµ(x); in the other, it is a cutting
plane model of fµ(x) constructed from all of the earlier subgradients, with more recent
subgradients weighted more heavily. The new iterate is chosen to be a convex combination
of the solutions to these two subproblems.

Classes of problems that have been attacked with smoothing techniques are certain
Lagrangian dual problems [105, 106], variational inequalities [103], semidefinite program-
ming [107, 87, 31, 29, 30], and conic programming [81, 86]. For the Lagrangian dual problems,
a strictly convex function is added to the primal problem which has the effect of smoothing
the dual. The smoothed function fµ(X) for a semidefinite program is the function

fµ(X) = µ ln
n∑

i=1

eλi(X)/µ

where {λi(X) : i = 1, . . . , n} denote the eigenvalues of X. Calculating the gradient of fµ(X)
requires calculating a matrix exponential function. D’Aspremont [29] showed that this can
be approximated using just a few of the eigenvalues of the matrix, which makes the algorithm
more practical. There are relationships between the smoothing method for SDP and the
methods considered in §4.

6. Summary
Interior point methods provide an excellent choice for stabilizing a column generation
approach. The strength of interior point methods for linear programming means that these
column generation approaches scale well, with theoretical polynomial or fully polynomial
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convergence depending on the variant. In practice, combining interior point and simplex
column generation methods has proven especially effective, with the interior point methods
used early on and the simplex method used later. In this way, the speed of an interior point
method for large scale LPs and its stabilization properties while getting to the location of
the optimal solution can be combined with the simplex method’s reoptimization speed when
just a few constraints are added. The development of methods that automatically combine
the two linear programming approaches would be useful, and theoretical development of a
more intuitive polynomial interior point cutting plane algorithm is desirable.

Research in cutting surface and subgradient methods for quickly finding good solutions
to semidefinite programming problems is an active area. The links between the various
approaches in §4 and §5 can be developed further. Complexity results for cutting surface
methods have been developed, but can probably be improved further. These methods have
been developed for conic problems where the cones are self-dual, and it would be interesting
to extend the methods and results to more general classes of conic optimization problems.
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