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Abstract

We consider restoring multiple interdependent infrastructure networks after a disaster damages com-
ponents in them and disrupts the services provided by them. Our particular focus is on interdependent
infrastructure restoration where both the operations and the restoration of the infrastructures are linked
across systems. We provide new mathematical formulations of restoration interdependencies in order
to incorporate them into an interdepedent integrated network design and scheduling (IINDS) problem.
The interdependent infrastructure restoration efforts resulting from solving this IINDS problem model
a centralized decision-making environment where a single decision-maker controls the resources of all
infrastructures. In reality, individual infrastructures often determine their restoration efforts in an inde-
pendent, decentralized manner with little communication among them. We provide algorithms to model
various levels of decentralization in interdependent infrastructure restoration. These algorithms are ap-
plied to realistic damage scenarios for interdependent infrastructure systems in order to determine the
loss in restoration effectiveness resulting from decentralized decision-making. Our computational tests
demonstrate that this loss can be greatly mitigated by having infrastructures share information about
their planned restoration efforts.

Keywords: OR in societal problem analysis, OR in disaster relief, Interdependent infrastructure restoration

1 Introduction

A disaster is a non-routine event that can have a catastrophic impact on physical, natural, and social sys-
tems. Disasters can cause significant damage to residential and commercial structures as well as resulting
in immediate and prolonged loss of services from critical civil infrastructure systems. A critical civil in-
frastructure (CCI) system is defined as an infrastructure with physical components (e.g., transmission lines,
cables, pipes) that provide key services to a community. Electrical power systems, transportation, telecom-
munications, water supply systems, and wastewater systems are examples of CCI systems. While civil
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infrastructures are typically managed by people, the services in these infrastructures are provided by the
physical components that encompass the infrastructure itself. One of the basic motivations for managers of
infrastructure systems is to enhance the resiliency of communities so that they recover quickly from natural,
technological or willful events that may have disastrous impacts on the CCI systems. For example, Hurri-
cane Sandy, which struck the East Coast of the United States in 2012, caused damage estimated at $65 billion
(Hurricane Sandy Rebuilding Task Force [17]) with repair and cleanup costs for New York alone estimated
to be $33 billion (see Kaplan and Hernandez [19]). It had significant effects on multiple infrastructures in
these areas including, but not limited to, over 4.5 million customers without power in New York and New
Jersey (U.S. Department of Energy, Office of Delivery and Reliability [36]), 57 terminals associated with
fuel distribution closed ([36]), all subway lines closed south of 42nd street in New York City with only 80%
of the subway operational 5 days after (Kaufman et al. [21]), and over 10 billion gallons of spilled sewage
resulting from damage to wastewater treatment plants (Kenward et al. [22]). Therefore, the restoration of
services after Hurricane Sandy required significant efforts across the multiple impacted infrastructures.

One of the most effective ways of limiting the impact of the disaster on society is the timely development
of a plan to restore the services disrupted by the disaster. In recent years, CCI systems have become more
vulnerable to extreme events and the services provided by them are more difficult to restore due to the
increasing number of interdependencies among them. The concept of operational interdependencies occurs
when a component of one infrastructure requires services provided by another infrastructure in order to
function properly and has been well-studied (see, e.g., Rinaldi et al. [38], Little [27], and Wallace et al. [43]).
These operational interdependencies allow disruptions in one system to spread to others and cause cascading
failures across the interdependent infrastructures (see, e.g., McDaniels et al. [31], Lee et al. [24, 25], and
McDaniels et al. [32]). For example, if power to a wastewater treatment plant is disrupted and the plant
does not have a backup generator, then services in the wastewater system will be disrupted. In addition,
the restoration efforts of the different infrastructures are often linked in terms of precedence relationships.
Recently, Sharkey et al. [40] introduced the concept of restoration interdependencies by cataloging incidents
after Hurricane Sandy which linked the restoration efforts of multiple infrastructures. For example, the
clearing of downed trees from a street (in the road infrastructure) may not be able to start until a power crew
inspects and removes downed power lines from the street. This situation represents a precedence relationship
(see Pinedo [37]) between scheduling the restoration tasks in the power and road infrastructures.

Despite these interdependencies, the CCI systems are often controlled and operated independently of
one another by both public and private sector decision-makers. This fact complicates the formulation of
interdependent infrastructure restoration (IIR) efforts after a disaster since the decision-makers in control of
each infrastructure will formulate their individual restoration efforts independently, often with little or no
communication with other infrastructures (see, e.g., Comfort [10], Leavitt and Kiefer [23], and McGuire and
Schneck [33]). The ideal situation for a community is that IIR efforts are formed in a fashion where there is
a centralized decision-maker that determines the restoration efforts of all infrastructures in order to recover
the set of CCI systems. In particular, the centralized efforts will focus on maximizing the total performance
of the CCI systems over the course of the restoration horizon after the disaster. Even though centralized
decision-making seems to be the best managerial strategy for increasing the resilience of communities after
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disasters, it might not always be feasible in practice. Conflicts of interest among infrastructures might be
observed during restoration planning because the priorities of each infrastructure might be different from
one another. For example, a private sector power company might prefer to restore the services for its higher
priority customers first before restoring the power demand of other infrastructures. These conflicts can deter
the managers of some infrastructure systems from considering the performance of the restoration over all
infrastructure systems and persuade them to make independent decisions which maximize the restoration
efforts of their infrastructure. One way of limiting the impact of independent decision-making on restora-
tion of services is governmental interventions. In the hurricane exercises we attended in the Emergency
Operating Center (EOC) of New Hanover County, North Carolina in the United States, we observed that
the decisions of private sector infrastructures, such as telecommunications and power, are facilitated by the
county’s local emergency managers. Even though these local emergency managers do not directly intervene
in the restoration planning decisions, they facilitate communication among the infrastructures, and advise
them on restoration priorities while taking into account the needs of other systems and the community.

Information-sharing during post-disaster restoration planning is an example of collaborative efforts
among interdependent infrastructure systems. In order to make effective restoration decisions, managers
of an infrastructure system need to consider the restoration plans of the infrastructures that they are depen-
dent upon. Even though infrastructure managers prefer independent decision-making, they can share their
restoration plan with the managerial units of the infrastructures that use their services. Sharing information
on restoration plans among interdependent systems not only helps infrastructures to improve their individual
recovery performance, but also makes the community more resilient. In the United States, the National In-
frastructure Coordinating Center (NICC) that operates under the Department of Homeland Security (DHS)
is an example of how various infrastructures are coordinated for information-sharing at the national level
in case of emergencies. The NICC serves as the information and coordination hub of a national network
dedicated to protecting critical infrastructures. The center’s primary function in case of a disaster is inte-
gration and dissemination of information throughout the critical infrastructure partnership network (U.S.
Department of Homeland Security [42]).

The contribution of this paper is to provide an assessment of the improvement in restoration effective-
ness that results from information-sharing in the context of decentralized IIR efforts. Although there have
been studies concerning collaboration and information-sharing in the context of infrastructure and disaster
management (Botterud et al. [6], Dawes [11], Lee and Rao [26], Caruson and MacManus [7], Somers and
Svara [41], and Kapucu and Garayev [20]), this paper is the first to quantify the improvement in the restora-
tion efforts that results from information-sharing and coordination among infrastructures. In particular, this
paper addresses: (i) the impact of fully decentralized decision-making across infrastructures in terms of the
loss of performance of the CCI systems over the restoration horizon, (ii) in a decentralized decision-making
environment, protocols for determining the ‘best’ plan for the restoration efforts of an individual infrastruc-
ture, and (iii) the improvement in terms of restortion effectiveness that results in information-sharing among
infrastructures in decentralized IIR efforts.

The remainder of the paper is organized as follows. Section 2 surveys the relevant literature related
to IIR efforts. Section 3 describes the centralized model for IIR efforts and includes how to incorporate
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the new classes of restoration interdependencies described in Sharkey et al. [40] that link the restoration
efforts of multiple infrastructures. Section 4 discusses how to algorithmically model the different levels
of decentralization and information-sharing among infrastructures in IIR efforts and Section 5 provides a
computational analysis of the impact of these levels on IIR efforts. The paper concludes in Section 6.

2 Background and Previous Work

The focus of this section is to provide the background associated with research on infrastructure restoration
and related topics in order to build appropriate models and algorithms for interdependent infrastructure
restoration (IIR) efforts. Infrastructure restoration efforts are concerned with restoring the disrupted services
resulting from damage to the infrastructure(s) caused by a disaster. Therefore, from a modeling perspective,
it is important to capture the ‘performance’ of an infrastructure given a set of operational components. This
step can be accomplished by modeling the infrastructure as a network where flow in the network correspond
to the services provided by the it (see Ahuja et al. [1] for an overview of network flows). In other words, the
flow into a demand node models the services provided to that point in the infrastructure and unmet demand
can be viewed as a loss of performance.

Lee et al. [24, 25] provide an interdependent layered network model to measure the performance of a
set of interdependent infrastructure systems given the current operational components. In particular, they
capture the flow of services from supply points to demand points in each infrastructure and describe how
to model operational interdependencies between the infrastructures. An important operational interdepen-
dency is an input interdependency where a component in infrastructure B requires the services of infras-
tructure A to function. For example, power is needed for a wastewater treatement plant to ensure proper
operations. The infrastructure A is often referred to as a ‘parent’ and infrastructure B as a ‘child’ for this
particular input interdependency. In order to model an input interdependency, a binary variable is defined
that captures whether the appropriate level of services (i.e., met demand) in infrastructure A is delivered to
the node representing the component for infrastructure B. If this variable is zero, then the flow through the
component (node or arc) in infrastructure B must be zero. We will apply the interdependent layered net-
work model of Lee et al. [24, 25] in order to capture the performance throughout the set of interdependent
infrastructures over the restoration horizon.

The restoration efforts of an infrastructure involve allocating scarce resources, such as work crews, to
repair damaged components or install temporary ones in order to re-establish the disrupted services caused
by the disaster. The infrastructure is determining the schedule of when components will be repaired or
installed or, equivalently, determining the set of operational components in the infrastructure over time. This
fact means that models of restoration efforts have both a network design aspect (i.e., which components in the
network are operational) and a scheduling aspect (i.e., when will components become operational). There
has been recent research on these integrated network design and scheduling (INDS) problems, especially
ones that focus on the cumulative performance of the network over the horizon of the problem.

Nurre and Sharkey [35] provide complexity results and dispatching rules for INDS problems whose
network performance are measured by solving ‘classic’ network optimization problems including maximum
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flow, minimum cost flow, shortest path, and minimum spanning tree problems. This built on the work of
Nurre et al. [34] that focused on INDS models to restore infrastructure systems. Elgindy et al. [12] and
Kalinowski et al. [18] provide complexity analysis and approximation algorithms for special cases of INDS
problems where each component requires a unit processing time to repair or install with the shortest path
and maximum flow performance metrics, respectively. Averbakh [3] and Averbakh and Pereira [4] consider
a problem that focuses on installing arcs into a network to minimize the recovery time of each node, which
is defined as the time where a path exists to that node from a hub. Guha et al. [15], Ang [2], Xu et al.
[44], and Coffrin et al. [9] examine models that help to restore the power infrastructure. Matisziw et al.
[30] examine an INDS model for an infrastructure that is concerned with the connectivity between nodes in
the infrastructure. Cavdaroglu et al. [8] consider a model that focuses on determining the restoration efforts
of infrastructures while being concerned with the input interdependencies that exist among infrastructures
and whose performance focuses on the services in all systems. However, the computational testing of
Cavdaroglu et al. [8] only focuses on damage to a single infrastructure and, therefore, does not consider
the more complicated disruptive events that cause widespread damage across infrastructures. Our research
examines the important issue of how decentralized decision-making impacts restoration of services across
interdependent infrastructures.

This work builds upon the model of Cavdaroglu et al. [8] by modeling how the restoration decisions of
infrastructures are linked across them in a ‘centralized’ planning model (see Section 3) and further consider-
ing damage scenarios that require restoration decisions for all infrastructures. The ‘core’ restoration efforts
of each infrastructure are captured in a similar framework as the one proposed in Nurre et al. [34] for single
infrastructure restoration. However, we incorporate new constraints that link the restoration efforts of multi-
ple infrastructure systems to capture so-called restoration interdependencies. Sharkey et al. [40] introduced
this new concept by reporting on incidents observed after Hurricane Sandy that link the restoration efforts of
multiple infrastructures. From a scheduling perspective, many of these classes of restoration interdependen-
cies are similar to the concept of precedence constraints (see Pinedo [37]) that restrict the processing of task
j until all tasks that have a precedence over j are complete. Table 1 provides an overview of the different
precedence-type classes discussed in Sharkey et al. [40].

Class Definition Example
Traditional Precedence A task in infrastructure A cannot begin until a task

in infrastructure B is complete.
Debris clearance on a road cannot begin until
downed power lines are inspected.

Effectiveness Precedence A task in infrastructure A can be processed more ef-
fectively after a task in infrastructure B is complete.

Floodwaters can be removed quicker from a tunnel
after power is restored to pumps in the tunnel.

Options Precedence A restoration task in an infrastructure can be com-
pleted by finishing a task in one of a set of possible
infrastructures.

The reopening process of a gas station can be com-
pleted by either having power restored to it or bring-
ing a generator to it.

Time-Sensitive Options A restoration task in infrastructure A must be per-
formed if a restoration task in infrastructure B is not
completed by a certain deadline.

A telecommunications work crew must refuel a gen-
erator powering a cell tower if power is not restored
to the tower within a certain timeframe.

Table 1: Classes and examples of restoration interdependencies.
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3 An Interdependent Infrastructure Restoration Model with Restoration
Interdependencies

The purpose of this section is to provide a mixed-integer programming formulation that can help to for-
mulate the restoration efforts of multiple interdependent infrastructures while specifically considering both
their operational and restoration interdependencies. In particular, we discuss and then formulate the interde-
pendent integrated network design and scheduling (IINDS) problem. This problem determines: (1) for each
infrastructure, the set of components that will be repaired or installed in the infrastructure network (i.e., the
design decisions), (2) the assignment of selected components to available work groups and the time each
work group will complete the tasks assigned to them (i.e., the scheduling decisions), and (3) in each time
period, the flow of services through the set of interdependent infrastructure networks based on the current
operational components in the set of networks (i.e., the interdependent flow decisions). Section 3.1 provides
the overview of the model of Cavdaroglu et al. [8] to the problem of determing the restoration efforts in
multiple infrastructures while also providing a general overview of the basic IINDS problem. Section 3.2
then discusses how to extend this core formulation to consider the various classes of restoration interde-
pendencies. This IINDS problem can be viewed as modeling the decision-making in a fully-centralized
environment in responding to the disruptions caused by the disaster.

3.1 The Base IINDS Problem

The focus of this section is to provide the formulation of the IINDS problem similar to the one examined
in Cavdaroglu et al. [8] (where the main difference is the objective function). We provide the details of the
formulation here since we will rely on many of the decision variables in both formulating the constraints for
the restoration interdependencies and in modeling the various decision-making environments. The objective
of this problem is to maximize the level of overall community resilience by restoring the functionality of the
set of interdependent infrastructure systems throughout the planning horizon of the problem. In particular,
the performance of the set of systems is measured as a function of the demand that can be met throughout
the systems at time t = 1, . . . , T and the objective is interested in maximizing the cumulative performance
of the systems over the T time periods in the horizon. Therefore, our objective implicitly seeks to minimize
the services that are disrupted or “down” for long periods of time after an extreme event.

Table 2 provides an overview of the notation, variables, and their definitions for the infrastructure op-
erations at time t in the problem. For ease of presentation, we assume that the each damaged component
within an infrastructure is represented as an arc and do not include details for networks with multiple com-
modities (this would require adding another index on supply, demand, and flow). The first assumption is
without loss of generality since, if a node i was damaged, we can use standard network expansion tech-
niques to represent this node as two nodes, i′ and i′′, and an arc (i′, i′′) where all incoming arcs into i enter
i′ and all outgoing arcs from i leave i′′. We make a similar assumption (without loss of generality) in the
sense that the input interdependencies occur at the nodes of the child infrastructure - if an arc had an input
interdependency, we could split the arc into two arcs with a node in the middle. An input interdependency
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between node i in parent infrastructure m and node j in child infrastructure n means that (i, j) ∈ F (m,n).
The binary variable yn,j,tm,i is then equal to 1 if node i has its demand met in infrastructure m and, therefore,
node j is operational in infrastructure n. Note further that the terms fmDF and fmNR will help to determine
the percentage of disrupted services restored at each time period for infrastructure m and will appear in the
objective function.

Notation for Infrastructure Operations∗
M The set of all infrastructures considered.
Nm The set of all nodes in infrastructure m.
Sm The set of all supply nodes in infrastructure m.
Tm The set of all transshipment nodes in infrastructure m.
Dm The set of all demand nodes in infrastructure m.
Em The set of all arcs in infrastructure m initially available.
Ēm The set of all arcs in infrastructure m that can be installed into the network.
smi The amount of supply available at node i ∈ Sm in infrastructure m.
dmi The amount of demand at node i ∈ Dm in infrastructure m.
wmi The weight associated with meeting one unit of demand at node i ∈ Dm in

infrastructure m.
umi The capacity of node i in infrastructure m.
umij The capacity of arc (i, j) in infrastructure m.

F (m,n) The set of all parent/child node pairs in parent infrastructure m and child infrastructure n.
fmDF The total amount of services met in damage-free infrastructure m where all components

are operational.
fmNR The total amount of services met in infrastructure m with no restoration efforts, i.e.,

immediately after the disruptive event.
∗Note that m and n will be used to denote an infrastructure with n typically used to denote the
child infrastructure in an interdependent relationship.
Variables for Infrastructure Operations
xmijt The amount of flow on arc (i, j) ∈ Em ∪ Ēm in infrastructure m at time t.
vmit The amount of demand met at node i ∈ Dm in infrastructure m at time t.
yn,j,tm,i A binary variable for (i, j) ∈ F (m,n) representing whether sufficient demand is met

at node i in infrastructure m so that node j in infrastructure n is operational in time t.

Table 2: Relevant notation and variables for the infrastructure operations at time t.

Table 3 provides an overview of the notation, variables, and their definitions for the aspects of the
IINDS problem that focus on the allocation of work crews to install arcs into the infrastructure networks.
The formulation of the IINDS problem will ensure that each available work crew is only processing one arc
at a time. The two types of restoration decision variables are those that determine whether an arc was just
completed by a work group in time period t (αmkijt) and those that keep track of whether an arc is available
in t (βmijt) implying that it was completed by a work group at or before t.
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Notation for Restoration Scheduling
T The total number of time periods in the restoration horizon.
ωt The weight (or importance) of the network performance in time period t.
Km The total number of work crews available to install arcs into infrastructure m.
pmij The processing time for arc (i, j) ∈ Ēm in infrastructure m.

Variables for Restoration Scheduling
αmkijt A binary variable that is equal to 1 if arc (i, j) ∈ Ēm in infrastructure m is completed

by work crew k at time t.
βmijt A binary variable that is equal to 1 if arc (i, j) ∈ Ēm in infrastructure m is available at time t.

Table 3: Relevant notation and variables for scheduling the restoration efforts of the infrastructures.

We are now in a position to present the initial IINDS problem (similar to the one presented in Cavdaroglu
et al. [8]). In particular, the formulation is:

maximize
T∑
t=1

ωt
∑
m∈M

∑
i∈Dm

wmi v
m
it − fmNR

fmDF − fmNR

subject to (IINDS)

∑
(i,j)∈Em∪Ēm

xmijt −
∑

(j,i)∈Em∪Ēm

xmjit ≤ smi t = 1, . . . , T, ∀i ∈ Sm, ∀m ∈M (1)

∑
(i,j)∈Em∪Ēm

xmijt −
∑

(j,i)∈Em∪Ēm

xmjit = 0 t = 1, . . . , T, ∀i ∈ Tm, ∀m ∈M (2)

∑
(i,j)∈Em∪Ēm

xmijt −
∑

(j,i)∈Em∪Ēm

xmjit = −vmit t = 1, . . . , T, ∀i ∈ Dm, ∀m ∈M (3)

0 ≤ vmit ≤ dmi t = 1, . . . , T, ∀i ∈ Dm, ∀m ∈M (4)

0 ≤
∑

(j,i)∈Em∪Ēm

xmjit ≤ umi t = 1, . . . , T, ∀i ∈ Tm, ∀m ∈M (5)

0 ≤ xmijt ≤ umij t = 1, . . . , T, ∀m ∈M, ∀(i, j) ∈ Em (6)

0 ≤ xmijt ≤ umijβmijt t = 1, . . . , T, ∀m ∈M, ∀(i, j) ∈ Ēm (7)

dmi − vmit ≤ (1− yn,j,tm,i )(dmi )
t = 1, . . . , T, ∀(i, j) ∈ F (m,n) with

j ∈ Nn and i ∈ Dm
(8)

∑
(j,h)∈Em∪Ēm

xnjht ≤ snj y
n,j,t
m,i

t = 1, . . . , T, ∀(i, j) ∈ F (m,n) with

j ∈ Sn and i ∈ Dm
(9)

∑
(h,j)∈Em∪Ēm

xnhjt ≤ dnj y
n,j,t
m,i

t = 1, . . . , T, ∀(i, j) ∈ F (m,n) with

j ∈ Dn and i ∈ Dm
(10)
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∑
(h,j)∈Em∪Ēm

xnhjt ≤ unj y
n,j,t
m,i

t = 1, . . . , T, ∀(i, j) ∈ F (m,n) with

j ∈ Tn and i ∈ Dm
(11)

∑
(i,j)∈Ēm

min{T,t+pmij−1}∑
s=t

αmkijs ≤ 1 t = 1, . . . , T, ∀m ∈M,k = 1, . . . ,Km (12)

βmijt − βmij(t−1) =

Km∑
k=1

αmkijt t = 2, . . . , T, ∀m ∈M, ∀(i, j) ∈ Ēm (13)

αmkijt, β
m
ijt ∈ {0, 1} t = 1, . . . , T,∀m ∈M,∀(i, j) ∈ Ēm (14)

The objective function of the IINDS problem focuses on the performance of the set of interdependent
infrastructure networks as measured by the average percentage of disrupted services restored across infras-
tructures. For infrastructure m in time period t, the numerator of the term in the objective measures the
current amount of restored (weighted) demand while the denominator provides the best possible amount of
restored (weighted) demand. This objective essentially eliminates different scales and/or units of measure-
ment of the services of an infrastructure (e.g., kW/unit time for power or gallons/unit time for wastewater
and water systems) and thus captures the overall performance across infrastructures. The IINDS problem
then focuses on maximizing the total performance of the infrastructures over the restoration horizon. Con-
straints (1), (2), (3) represent constraints on the flow in and out of supply, transhipment, and demand nodes,
respectively. Constraints (4) ensure that we do not deliver more than the required demand at a node. Con-
straints (5), (6), and (7) are node and arc capacity constraints. Note that constraint (7) enforces that an arc
in Ēm can only have flow on it if it has installed into the network by time t. Constraints (8)-(11) capture
the interdependency of nodes (i, j) ∈ F (m,n). In particular, if the flow into node i is less than the required
demand, then yn,j,tm,i will be zero and no flow will be allowed to enter and/or leave node j in infrastructure
n. Constraints (12) ensure that work crew k is not processing more than one arc at a time. Constraints (13)
ensure that an arc becomes available when a work crew finishes processing it.

Our focus is on analyzing and understanding the impact of the interdependencies that exist between
infrastructures and, therefore, the IINDS problem captures those aspects at the expense of sacrificing some
of the details of the operations of each individual infrastructure. For example, we have assumed a linear
(network flow) representation of each infrastructure where the power infrastructure operates according to
the laws of physics and could be more accurately modeled using a nonlinear formulation (see, for example,
the discussion in Bienstock and Mattia [5] and the work of Hijazi et al. [16]). Despite this limitation, Nurre
et al. [34] observed that this type of linear model does provide a good approximation for determining the
restoration planning decisions. Further, based on observations of Nurre et al. [34], we have represented the
scheduling decisions in the IINDS problem using a time-extended formulation.

It is important to note that once the yn,j,tm,i decisions are fixed for infrastructure n, i.e., we know the
‘outages’ in the network in each time period due to the lack of services in parent infrastructures, then we
can determine the restoration plan for infrastructure n. In other words, the knowledege of the yn,j,tm,i results
in infrastructure n being able to solve a single network version of the IINDS problem (similar to the INDS
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problems studied in Nurre et al. [34] and Nurre and Sharkey [35]) to determine their best possible restoration
plan given their interdependencies. In this problem, the infrastructure seeks to maximize the services it
provides over the restoration horizon. This observation is important since it allows us to model decentralized
decision-making in the IINDS problem, especially problems without any restoration interdependencies.

3.2 The IINDS Problem with Restoration Interdependencies

The purpose of this section is to describe how to model different classes of restoration interdependencies
that were identified by Sharkey et al. [40] within the IINDS problem. For each class, we will provide a
motivating example and then discuss any new notation and/or variables that are necessary to appropriately
capture an incident of that class. In addition, new or modified constraints will be presented that should be
incorporated into the IINDS problem to represent incidents of those restoration interdependencies.

3.2.1 Traditional Precedence

A traditional precedence relationship exists between restoration tasks in two infrastructures when a ‘task’
in infrastructure m must be completed before the task in infrastructure n can start its processing. The term
‘task’ in infrastructure m is used to capture both of the following situations: (i) a specific arc in Ēm must be
restored before the arc in infrastructure n can begin and (ii) services in infrastructure m must be restored to
a node in order to allow for the processing of the arc in infrastructure n. Examples of situation (i) are when
a power crew must inspect a downed power line prior to debris removal on a road and when debris must be
removed from a road prior to repairing a power line running along side of it. An example of situation (ii) is
when power must be restored to a node that feeds a subway line prior to running test trains to test the quality
of the repairs to the subway line. We refer to situation (i) as an arc-based precedence constraint and (ii) as
a node-based precedence constraint. Table 4 provides the new notation and variables necessary to capture
these precedence constraints.

Notation for Traditional Precedence
ATP The set of arc-based precedence constraints. For (((i, j),m), ((a, b), n)) ∈ ATP , arc (i, j) in

infrastructure m must be completed before arc (a, b) in infrastructure n can be processed.
NTP The set of node-based precedence constraints. For ((i,m), ((a, b), n)) ∈ NTP , node i in

infrastructure m must have restoration demand met while arc (a, b) in infrastructure n is
being processed.

µminab The amount of demand required at node i in infrastructure m in a time period for the
purposes of restoring arc (a, b) in infrastructure n.

Variables for Traditional Precedence
νminabt The amount of demand met in time t at node i in infrastructure m for the purposes of restoring

arc (a, b) in infrastructure n.
ξminabt A binary variable that is equal to 1 if node i in infrastructure m at time t has sufficient demand

met for the restoration of arc (a, b) in infrastructure n.

Table 4: Relevant notation and variables for the two classes of traditional precedence constraints.
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Traditional precedence relations are modeled in constraints (15)-(18). The arc-based precedence con-
straints are modeled by ensuring that task (i, j) is completed at least pnab (i.e., the processing time of arc
(a, b) in infrastructure n) units before arc (a, b) (see constraints (15)). The node-based precedence con-
straints require us to replace constraints (3) with constraints (16) which include the restoration demands of
tasks that have a traditional precedence relationship with node i. Constraints (17) ensure that the restoration
demand is met at node i for task (a, b) if the binary variable ξminabt is equal to 1. Constraints (18) then ensure
that the restoration demand for task (a, b) is met during each time period it is being processed.

K∑
k=1

αnkabt ≤ βmij,t−pnab
t = pnab + 1, . . . , T,

(((i, j),m), ((a, b), n)) ∈ ATP
(15)

∑
(i,j)∈Em∪Ēm

xmijt −
∑

(j,i)∈Em∪Ēm

xmijt = −vmit −
∑

((i,m),((a,b),n))
∈NTP

νminabt
t = 1, . . . , T, ∀i ∈ Dm,

∀m ∈M
(16)

ξnimabt ≤
1

µminab
νminabt

t = 1, . . . , T,

∀((i,m), ((a, b), n)) ∈ NTP
(17)

Kn∑
k=1

αnkabt ≤
1

pnab

t∑
s=t−pnab+1

ξminabs
t = pnab, . . . , T,

∀((i,m), ((a, b), n)) ∈ NTP
(18)

3.2.2 Effectiveness Precedence

An effectiveness precedence relationship exists between restoration tasks in two infrastructures if the fail-
ure to complete a ‘task’ in infrastructure m before a task in infrastructure n starts its processing results
in the task in n being processed at a slower rate than normal. An example of such a relationship would
be a situation in which if power is not restored to pumps near a road, then clearing floodwater would re-
quire a longer time. We again distinguish the situations between arc-based and node-based effectiveness
precedence relationships. Table 5 provides the relevant definitions and notation for this class of restoration
interdependency.

In order to capture the effectiveness precedence relationships, we need to modify constraints (12)-(13) in
order to incorporate the possibility that arc (i, j) may become operational by being processed at its extended
speed if it is a part of a relationship in AEP or NEP . Constraints (19)-(20) present this modification. The
key in modeling the effectiveness precedence relationships is to realize that the ‘normal speed’ processing
task of arc (a, b) has a traditional precedence constraint with the task in the other infrastructure. For arc-
based effectiveness precedence relationships, similar constraints as constraints (15) are incorporated. For
node-based effectiveness precedence relationships, we need to include the νminabt into the right hand side of
node i’s flow balance constraint, which is similar to what was done for NTP in constraints (16). We then
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Notation for Effectiveness Precedence
AEP Set of arc-based effectiveness precedence relationships. For (((i, j),m), ((a, b), n))) ∈ AEP ,

arc (i, j) in infrastructure m must be completed prior to processing (a, b) in infrastructure n
at its normal speed.

NTP Set of node-based effectiveness precedence relationships. For ((i,m), ((a, b), n)) ∈ NEP ,
node i in infrastructure m must have restoration demand met while arc (a, b) in infrastructure
n is being processed at its normal speed.

enab The extended processing time for arc (a, b) in infrastructure n.
Variables for Effectiveness Precedence
αnekabt A binary variable that is equal to 1 if arc (a, b) ∈ Ēn in infrastructure n is completed

by work crew k at time t while being processed at its extended processing time.
νminabt The amount of demand met in time t at node i in infrastructure m for the purpose of restoring

arc (a, b) in infrastructure n at its normal speed.
ξmimabt A binary variable that is equal to 1 if node i in infrastructure m at time t has sufficient demand

met for the restoration of arc (a, b) at its normal speed in infrastructure n.

Table 5: Relevant notation and variables for the two classes of effectiveness precedence constraints.

include constraints similar to constraints (17)-(18) to relate the normal processing speed of arc (a, b) with
meeting the restoration demand at node i in infrastructure m.

∑
(a,b)∈Ēn

min{T,t+pnab−1}∑
s=t

αnkabs

+
∑

((i,j),m),((a,b),n))∈AEP,
((i,m),((a,b),n))∈NEP

min{T,t+enab−1}∑
s=t

αnekabs ≤ 1

k = 1, . . . ,Kn, t = 1, . . . , T,

∀n ∈M
(19)

βnabt − βnab(t−1) =
Kn∑
k=1

αnkabt +
Kn∑
k=1

αnekabt
t = 2, . . . , T, ∀n ∈M,

∀(a, b) ∈ Ēn
(20)

3.2.3 Options Precedence

An options precedence relationship exists for restoration task (a, b) in infrastructure n if there is a set of
restoration tasks for which one task from this set must be completed prior to the processing of arc (a, b).
In other words, for task (a, b) ∈ Ēn, there is an arc set ((i, j),m) ∈ Eabn and a node set (i,m) ∈ Nabn

that represents the set of precedence options and at least one of these options (across both sets) must be
completed prior to the processing of arc (a, b). As an example, the reopening process of a gas station (or
grocery store) can begin after either power is restored to the station or a portable generator is brought in and
installed at the station. In order to capture an options precedence relationship, we need to capture that some
option was completed prior to starting task (a, b). For example, if all of the options precedence relationships
for (a, b) were arc-based (so Nabn = ∅), constraints (21) establish this connection. For nodes in Nabn, we
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can introduce a new binary variable at time t that captures whether they have sufficient demand met for the
processing of task (i, j) for its processing time (which essentially captures the right hand side of constraints
(18)) and then alter constraints (21) to sum over the β variables for the arc-based options and the new
variables for the node-based options. We omit the detailed mathematical formulation of this combination
since our computational testing does not contain options precedence relationships.

Kn∑
k=1

αnkabt ≤
∑

((i,j),m)∈Eabn

βmij,t−pnab
t = pnab + 1, . . . , T (21)

3.2.4 Time-Sensitive Options

A time-sensitive options relationship exists between two restoration tasks in different infrastructures when
one task must be completed before a certain deadline or the other task must be completed. Examples of
time-sensitive options relationships include: (i) when power must be restored to a wastewater treatment
plant by a certain point or a clean-up task must be done at the plant and (ii) when power must be restored
to a cell tower prior to its back-up generator running out of fuel or a refueling task must be accomplished.
The approach to modeling time-senstitive options relationships is to include binary variables (or leverage
existing ones) to determine whether the initial task is completed by its deadline and, if it is not, then force
the other restoration task to be completed should the associated component be operational in its network.
We focus on presenting the modeling approaches for the time-sensitive clean-up tasks and time-sensitive
refueling tasks. Table 6 presents the relevant notation and variables for this class of interdependencies.

Notation for Time-Sensitive Options Relationships
CLN The set of time-sensitive clean-up tasks. For ((a,m), ((i, j), n)) ∈ CLN , node a in

infrastructure m must have its demand met before some deadline or a clean-up task must be
performed on (i, j).

REF The set of time-sensitive refueling tasks. For (j, n) ∈ REF , node j in infrastructure n may be
operational through the use of a generator rather than having its demand met in the
power infrastructure.

θnij The last period in which node a in infrastructure m can have its demand met before its
associated clean-up task (i, j) in infrastructure n must be completed.

ψnj The number of time periods node j in infrastructure n with a generator can function before
needing to be refueled.

Variables for Time-Sensitive Options Relationships
onjt A binary variable indicating whether node j in infrastructure n has its power demand met

with an operational generator at time t.
ρnkjt A binary variable indicating whether node j in infrastructure n with a generator has

been refueled by work crew k in time t.

Table 6: Relevant notation and variables for the two classes of time-sensitive options relationships.
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We first describe the necessary modifications to capture the clean-up tasks. Note that we have assumed
that for ((a,m), ((i, j), n)) ∈ CLN that (a, i) ∈ F (m,n), i.e., node a is the node in the parent infrastructure
m in order to have node i operational in the child infrastructure n. Recall that we will apply an expansion
technique so that all flow through i will travel on arc (i, j). We replace constraints (7) with constraints (22)-
(23). Constraints (22) ensure that that arc (i, j) is operational only if node i is operational in infrastructure
m up until the restoration deadline for services to node i (or, equivalently, parent node a). Constraints (23)
then imply that arc (i, j) is operational beyond the deadline if either the clean-up task is complete (βnijt = 1)

or power was restored by the deadline (y
n,j,θmij
m,a = 1). Constraints (24)-(25) ensure that clean-up tasks cannot

begin until after the deadline and after power is restored.

0 ≤ xnijt ≤ unijyn,i,tm,a t = 1, . . . , θnij , ∀((a,m), ((i, j), n)) ∈ CLN (22)

0 ≤ xnijt ≤ unij(βnijt + y
n,j,θnij
m,a ) t = θnij + 1, . . . , T,∀((a,m), ((i, j), n)) ∈ CLN (23)

αnijt = 0 ∀((a,m), ((i, j), n)) ∈ CLN, t = 1, . . . , pnij + θnij (24)

βnijt ≤ y
n,j,(t−pnij)
m,a t = θnij + pnij , . . . , T, ((a,m), ((i, j), n)) ∈ CLN (25)

The modifications to capture refueling tasks include utilizing a binary variable to determine whether
node j in infrastructure n is operational (onjt), either through having its power met at node i in infrastructure
m or having an operational generator. We then replace yn,j,tm,i in the appropriate constraint describing the
operations of node j in infrastructure n, i.e., constraints (9)-(11), with onjt. The relationship between this
binary variable and the interdependency and refueling decisions is captured in constraints (26) where, in
order for onjt = 1, power demand needs to be met at node i in infrastructure m or the generator needs to
have been refueled recently. Constraints (27) would then extend constraints (12) by including the potential
to allocate work group k to processing a refueling task.

onjt ≤ y
n,j,t
m,i +

Km∑
k=1

t∑
s=max{0,t−ψn

j +1}
ρnkjt t = 1, . . . , T, k = 1, . . . ,Kn,∀(j, n) ∈ REF (26)

∑
i∈Nn

(j,n)∈REF

ρnkjt +
∑

(i,j)∈Ēn

min{T,t+pnij−1}∑
s=t

αnkijs ≤ 1 t = 1, . . . , T, ∀n ∈M,k = 1, . . . ,Kn (27)
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4 Modeling the Different Decision-Making Environments of Interdependent
Infrastructure Restoration

The purpose of this section is to describe and model three distinct decision-making environments that may
arise during interdependent infrastructure restoration. The resulting models and algorithms capturing each
of the decision-making environments will then be tested to determine the level of effectiveness of them. In
particular, we consider centralized, decentralized, and information-sharing decision-making environments.

4.1 Centralized Decision-Making Environment

The centralized decision-making environment is the ‘ideal’ situation for the IINDS problem in the sense that
there is a single centralized authority that plans the restoration efforts of all infrastructures to maximize the
overall restoration effectiveness. This environment can be captured by directly solving the IINDS problem
(which would include the base model and any additional constraints required to capture the restoration
interdependencies). The centralized environment, therefore, represents the best possible solution to the
IINDS problem and will serve as a benchmark for the other environments. From a practical perspective, this
environment would arise when there is a local emergency management team that includes representatives
from all responding parties and whom have all agreed to fully cooperate with one another for the benefit of
the area (potentially at the sacrifice of their own organization’s objective).

4.2 Decentralized Decision-Making Environment

The decentralized decision-making environment represents a situation in which no information or cooper-
ation exists between the infrastructure networks in responding to the disaster. This situation then implies
that each infrastructure will form its restoration efforts independently of one another. From a computational
perspective, this decision-making environment can be modeled by having infrastructure n solve a version of
the IINDS problem where we have ‘isolated’ n by fixing the binary interdependency variables yn,j,tm,i and then
focus on maximizing the services in the infrastructure. The infrastructure further assumes that they cannot
process any tasks that are the ‘child’ of a traditional precedence relationship in planning their restoration
efforts since they do not communicate with the other infrastructures (although the infrastructure can dynami-
cally change their remaining restoration activities when new information is obtained about the completion of
the parent precedence task). Essentially, in this scenario an infrastructure n makes assumptions about which
components with interdependencies (both operational and restoration) will be available over the restoration
horizon and then optimizes its restoration plan based on these assumptions. We explore both optimistic and
pessimistic assumptions about the availability of these interdependent components.

We note that it is possible for infrastructure n to restore all services in its network without repairing all
components in Ēn. This situation arises due to potential redundancies in the system. In reality, however, the
infrastructure would still continue to install arcs (or make repairs) over the restoration horizon. Therefore, in
the decentralized decision-making environment, we assume that the infrastructure optimizes its restoration
plans and then applies another decision rule to ‘fill in’ the activities of its work groups for the remainder
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of the horizon. In particular, we assume that the infrastructure will install (of those that are not already
scheduled) arcs in the order of how close they are to supply points in the network. This assumption is
consistent with the restoration guidelines of certain power companies (see, for example, Nurre et al. [34]).
This step becomes especially important since certain infrastructures may not have an incentive (in terms of
their IINDS problem) to process tasks that have precedence relationships with tasks in other infrastructures
but we need to model the fact that, in reality, the infrastructure would continue to process tasks.

An infrastructure n is optimistic in terms of planning their restoration activities if they assume that the
only reason components in their infrastructure will not be operational at time t is due to damage to the com-
ponent itself. In other words, infrastructure n optimistically assumes that services in all other infrastructures
will be restored immediately after the disaster so that yn,j,tm,i = 1 for all nodes j in infrastructure n and all
time periods t. It is interesting to observe that the restoration plan of infrastructure n will not change over
the restoration horizon for infrastructures with only operational interdependencies even if new observations
are made about the availability of components with interdependencies. For instance, if some pump stations
in the wastewater infrastructure are without power initially, an optimistic wastewater restoration plan would
assume that these pump stations have power starting at time t = 1. If the manager of the wastewater system
observed these pump stations were without power at time t = 5 and remained optimistic, there would be no
incentive to change the restoration plan since the plan for the remainder of the horizon is optimal given the
implemented restoration decisions from time t = 1 to t = 5. However, for an infrastructure with restoration
interdependencies coming into its tasks (for example, a task in a different infrastructure must be completed
prior to starting a task in the infrastructure), then there may be an incentive to change at time t = 5 since the
new information may indicate that an unscheduled task can now be processed.

An infrastructure n is pessimistic in terms of planning their restoration activities if they assume that
disrupted services from other infrastructures into the infrastructure will never be restored. In other words,
in determining the restoration activities for the entire horizon initially, we assume that yn,j,tm,i = yn,j,0m,i for all
nodes j in infrastructure n and time periods t. For instance, if a pump station in the wastewater infrastructure
is without power initially, a pessimistic wastewater restoration plan will assume power is disrupted to this
pump station for the entire horizon. In this situation, it is important to note that the restoration plan of
infrastructure n may change when new observations are made about the availability of components with
interdependencies. If the manager of the wastewater system observed that at time t = 0 a pump station was
without power but it had power at time t = 5, then we should update the restoration plan over the remainder
of the horizon where we assume that the interdependency variable for that pump station is now ‘on’ from
time t = 5 to T .

In terms of modeling the decentralized decision-making environment, it is necessary to capture the fact
that the restoration plan for the remainder of the horizon may change when new information about other
infrastructures’ restoration activites is obtained. In particular, we assume that each infrastructure n can
observe at time t: (1) the set of completed tasks of all other infrastructures by t (so we observe βmijs for
s ≤ t for all (i, j) ∈ Ēm and m ∈M ) and the set of current interdependency variables into infrastructure n
or (2) the set of started tasks of of all other infrastructures and the set of current interdependency variables.
We refer to situation (1) as the infrastructure receiving information at the end of processing restoration tasks
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and situation (2) as them receiving information at the start of processing restoration tasks. At this point, the
infrastructure updates its restoration plan by solving the IINDS problem for the remainder of the horizon
where any restoration decision implemented before t cannot be altered. In other words, we are in a non-
preemptive environment in which the infrastructure must finish any task it had begun processing before t.
This means that, if we have current restoration decisions αm′kijs and are updating our restoration plan at time
t, we enforce that αmkijs = αm′kijs for s = 1, . . . , t + pmij − 1. This captures that if we started processing arc
(i, j) at or before time period t, we must complete it.

In order to determine the decentralized IIR plan (either under the optimistic or pessimistic settings),
we would first determine the restoration plans for each individual infrastructure n ∈ M by solving the
reduced IINDS problem for just that infrastructure where we have fixed the yn,j,tm,i variables according to the
assumed settings. This determines the scheduling decision variables for each infrastructure n (the αnkijt and
βnijt) for the restoration horizon. We then begin to increase t and allow for the updating of the scheduling
decision variables over the remainder of the horizon for each t when new information is obtained about
the restoration efforts of the other infrastructures. When t reaches the end of the horizon, then we have
determined the implemented restoration plan for each infrastructure n (we now know the αnkijt and βnijt for
all t). We then view these scheduling decision variables as fixed in the IINDS problem and apply the IINDS
problem to evaluate the cumulative network performance of this plan.

4.3 Information-Sharing Decision-Making Environment

The information-sharing decision-making environment represents a situation in which infrastructures ac-
tively share their planned restoration efforts (and the operations within their own network) but do not nec-
essarily coordinate or cooperate with one another. This environment is appropriate for situations when there
is an emergency manager in the area that faciltates discussions among the decision-makers in the interde-
pendent infrastructures but does not influence their decisions. In this environment, the restoration planning
decisions are made at the beginning of the horizon (based on the announced plans of the other infrastruc-
tures) and there is no reason to alter these decisions since the known information will remain the same over
the horizon of the problem.

The framework for this environment is that all infrastructures initially determine their restoration plans
independently and then announce their plans to the other infrastructures. Each infrastructure n now has
an updated view of the other infrastructures’ activities over the restoration horizon and can update their
planned restoration activities by solving another IINDS problem. However, at the same time, the other
infrastructures are updating their planned restoration activities. Therefore, the information upon which the
restoration activities of infrastructure n are based do not necessarily represent the true restoration plans of
the other infrastructures. The announcement of the current restoration plans and then the updating of them
based on the newly announced plans can continue for any number of ‘rounds.’ Therefore, we experiment
with the number of times which infrastructures will announce their plans and update them to determine if
the restoration plans tend to converge to a stable solution (i.e., one where no infrastructure has any incentive
to change their planned restoration activities).
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From a modeling perspective, each infrastructure n can plan their restoration efforts in a similar way as
was done for the decentralized decision-making environment (i.e., we isolate the decisions of the infrastruc-
ture by fixing the interdependency variables and scheduling variables of all other infrastructures and solving
the IINDS problem) but we now have that the yn,j,tm,i will vary over t during the time horizon. We further note
that infrastructure n will ‘fill in’ the activities of their work groups in a similar fashion as the decentralized
environment should they reach a point where there are unscheduled tasks and idle work groups. The inter-
esting aspect of the information-sharing environment is that the infrastructures may continue to adapt their
restoration plans based on any changes to other infrastructures’ restoration plans.

5 Computational Results: The Price of Independent Decision-Making and
the Value of Information-Sharing

This section presents a computational analysis to determine the empirical price of independent decision-
making in the context of interdependent infrastructure restoration and the resulting improvement (or value)
of information-sharing. This price is related to the concept of the price of anarchy (see, for example, Rough-
garden [39]) but does not necessarily force the resulting restoration plans of the independent infrastructures
to form stable solutions. Instead, we assume that the independent decision-makers determine their restora-
tion plan according to the protocols described in Section 4.2. This computational analysis will be done by
examining realistic data sets of infrastructure systems in New Hanover County, North Carolina in the United
States (Section 5.1) and infrastructure systems of a realistically-constructed artificial community (Section
5.2). The former data set does not contain any restoration interdependencies in the damage scenario and,
further, only has operational interdependencies from the power infrastructure to other infrastructures. This
means that one can view the power system as the ‘lead’ infrastructure since the only uncertainty faced by
other infrastructures in their restoration efforts is when components in their systems will have power re-
stored. The CustomizabLe ARtificial Community (CLARC) county data set (see Loggins et al. [28]) is
more general in the sense that there is no longer a ‘lead’ infrastructure since power has restoration inter-
dependencies both coming from it and going into it from other infrastructures. All tests were conducted
on a laptop computer using IBM ILOG CPLEX Optimization Studio 12.2 to implement the algorithms and
integer programming models discussed in Section 4. Although not the focus of this paper, we do note that
all integer programs required less than 30 minutes of computational time to determine the optimal solution
to the respective problem.

5.1 New Hanover County Analysis: Value of Information-Sharing with a Lead Infrastruc-
ture

The focus of this section is on examining the value of information-sharing and price of decentralized
decision-making for the data set associated with New Hanover County, North Carolina in the United States.
New Hanover County is a coastal county in southern North Carolina that includes the city of Wilmington
and the Cape Fear beaches. Nurre et al. [34] use this data set in their work on single infrastructure restoration
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efforts. This data set includes four main infrastructures: (i) the power infrastructure, (ii) the landline and
mobile telecommunications infrastructures, (iii) the wastewater infrastructure, and (iv) the (potable) water
infrastructure. Further, the data on each of these infrastructures was gathered through extensive collabora-
tions with the managers of the infrastructure systems and the emergency manager of the county.

Table 7 provides the characteristics of each of these four infrastructures. It is important to note that the
power network is composed of the transmission network and coarsely modeled distribution networks. In
particular, the transmission network is composed of 39 nodes and 46 arcs while each demand node has an
arc directly connecting a substation node in the transmission network to it (so we essentially have modeled
the distribution network to this demand node with a single arc). Therefore, there is more redundancy in
the transmission network than appears in the summary statistics. The telecommunications network is multi-
commodity and contains a commodity for each origin/destination pair. The water infrastructure focuses
on moving potable water from treatment facilities to demand points. There is, typically, no redundancy in
a wastewater infrastructure and that is captured in this data set by the fact that the network is composed
of five trees, one for each treatment plant in the infrastructure. Note that, in reality, flow moves from
customers to treatment plants; however, for modeling purposes we view each customer as ‘demand’ and the
treatment plants as supply points. This allows the model to capture which customers receive services in the
infrastructure and appropriately weigh these services based on the customers.

Infrastructure Nodes Arcs Supply Nodes Demand Nodes
Power 472 489 8 443
Telecommunications 73 344 38 38
Water 305 398 58 206
Wastewater 543 538 5 322

Table 7: Data describing the infrastructures of New Hanover County.

Table 8 provides an overview of the operational interdependencies present in the data set. It should
be noted that we only have input interdependencies from power to the other infrastructures, i.e., there are
nodes and arcs in each of the three other infrastructures who need power in order to function in their own
infrastructure. Given that these are the only interdependencies (including restoration interdependencies) in
the damage scenario considered for this data set, we are in a situation where the power infrastructure can
be viewed as the ‘lead’ infrastructure. In other words, the only situation linking the restoration efforts of
these infrastructures is that certain components of the other three infrastructures need power to function and,
therefore, once the power restoration plan is known, the decision-making can occur independently across the
other three systems without sacrificing restoration effectiveness. Essentially, for the centralized decision-
making situation, the optimal restoration efforts can be determined by solving the base IINDS model from
Section 3.1.

We consider a damage scenario based upon a Category 3 hurricane that causes up to 120 miles per
hour gust speed through the region (referred to as Cat-3 Scenario) and whose damage was determined using
HAZUS (see the United States Federal Emergency Management Agency [13, 14]). The purpose of focusing
on this type of scenario is that the damage is realistic in the sense that it is based on the vulnerability
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Infrastructure Telecommunications Water Wastewater
Power 35 49 153

Table 8: Size of F (m,n), i.e., the number of input (operational) interdependences by pair of infrastructures
where m = Power.

of different components within the infrastructure to an event that can hit the county as opposed to simply
randomly generating damage scenarios. Therefore, the conclusions from the computational testing are based
on a damage scenario that is realistic and could be faced by decision-makers. Table 9 provides an overview
of the damage scenario.

Infrastructure Damaged Nodes Damaged Arcs Ēm

Power 0 19 19
Telecommunications 13 0 13
Water 12 0 12
Wastewater 25 0 25

Table 9: Data describing the Cat-3 Scenario for New Hanover County.

We are now in position to describe the computational analysis performed on the New Hanover County
infrastructures and damage scenarios. The purpose of our testing is to determine the impact of decentralized
decision-making in the context of the IINDS problem and how to reduce this impact by implementing
the information-sharing mechanisms. In addition, we are interested in determining for the decentralized
situation whether the optimistic or pessimistic planning assumptions result in stronger performance. Based
on the objective function of the IINDS problem, each infrastructure’s restoration efforts are essentially
‘rated’ on a scale of zero to one where this rating provides the comparison of the actual restoration efforts
with the ideal upper bound on the restoration efforts (i.e., we restore all services instaneously and operate
the network at ‘peak’ performance for the entire horizon). To be precise, we examine problems where the
rating is equal to the percentage of restored services delivered over the restoration horizon compared to this
best possible total of restored services. Therefore, our objective function of the IINDS problem will be the
sum of these four ratings (one per infrastructure) and vary from zero to four.

The centralized decision-making environment is captured by solving the IINDS problem directly and
represents the best situation for the recovery of the set of infrastructure systems from the disruptive event.
For the decentralized decision-making environment, we consider both the optimistic view in creating infras-
tructure restoration efforts (Optimistic) and the pessimistic view (Pessimistic - End) where the activities of
the other infrastructures are not known until they are completed (so, we do not know which arcs the other
infrastructures are currently processing). For the pessimistic view, we also consider the impact of infrastruc-
tures sharing which tasks they are currently processing, which is equivalent to them announcing that they
are processing an arc once it is started (we refer to this situation as Pessimistic - Start). For the information-
sharing environment, recall that the only interdependencies linking the infrastructures and their restoration
efforts are situations where an infrastructure component requires power to function properly. This situ-
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ation means the information-sharing environment is essentially accomplished by the power infrastructure
announcing their restoration plan. Once the power infrastructure determines and announces their restoration
plan, each of the three other infrastructures can optimize their own restoration efforts independently of one
another.

Table 10 provides the percentage sacrifice in restoration effectiveness resulting from each decision-
making environment for this damage scenario. We consider this damage scenario with Km = 2 work
groups available to process restoration tasks per infrastructure and T = 30 time periods. This number of
time periods is meant to represent approximately one week, where each time period represents a six-hour
interval. The percentage sacrifice is defined essentially as the optimality gap of the decisions that result from
each environment for that instance, i.e., it is calculated as

Obj(Central) - Obj(Env)
Obj(Central)

and thus provides a measure of the performance of that decision-making environment. For the decentralized
decision-making environment, it is clear that formulating the restoration efforts under the optimistic as-
sumption is better than the pessimistic restoration efforts, although the difference is small should the power
infrastructure be willing to share information when it begins processing tasks. However, there is a signif-
icant improvement (decreases sacrifice in restoration effectiveness from 15.24% to 9.47% or a savings of
over 37%) in moving from a decentralized decision-making environment to an information-sharing envi-
ronment. This improvement demonstrates the need for emergency managers to facilitate discussions among
infrastructure managers in restoration efforts after an event causing wide-spread damage.

Scenario Centralized Optimistic Pessimistic-End Pessimistic-Start Info-Sharing
Cat-3 Scenario 0% 15.24% 19.72% 16.61% 9.47%

Table 10: The percentage sacrifice, in terms of restoration effectiveness, from the centralized decision-
making environment for the Cat-3 damage scenario in New Hanover County.

5.2 CLARC County: Value of Information-Sharing with Restoration Interdependencies

The CustomizabLe ARtificial Community (CLARC) county was created to mimic a coastal county with a
population of approximately 500,000 people. It was designed based on protocols observed in the infras-
tructure systems of New Hanover County, North Carolina and can be publicly shared, upon request, since it
does not contain any sensitive information (see Loggins et al. [28]). The damage scenarios considered for
CLARC county contain restoration interdependencies and, therefore, do not contain a ‘lead’ infrastructure
like the scenario considered for New Hanover County.

Table 11 provides an overview of the power, telecommunications, transportation, and wastewater in-
frastructures of CLARC county. Similar to New Hanover County, the power network is composed of the
transmission network and coarsely modeled distribution networks. In particular, the transmission network
is composed of 62 nodes and 73 arcs while each demand node has an arc directly connecting a substation
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node in the transmission network to it. The telecommunications network is multi-commodity and contains
a commodity for each origin/destination pair. The transportation network focuses on ensuring that emer-
gency services can move from their supply points (police stations, fire stations, and hospitals) and arrive
at demand nodes representing population centers. There is no redundancy in the wastewater infrastructure
of CLARC county - it is composed of eight trees, one for each treatment plant in the infrastructure. Table
12 provides the number of operational input interdependencies between each pair of infrastructures in the
CLARC county data set.

Infrastructure Nodes Arcs Supply Nodes Demand Nodes
Power 838 849 4 776
Telecommunications 29 72 19 10
Transportation 698 1317 94 367
Wastewater 718 710 8 345

Table 11: Data describing the infrastructures of CLARC county.

Infrastructure Telecommunications Transportation Wastewater
Power 29 373 224

Table 12: Size of F (m,n), i.e., the number of input (operational) interdependences by pair of infrastructures
where m = Power.

We consider two distinct damage scenarios to the infrastructures of CLARC county in our computational
testing. The damage to the components of the infrastructures was created using a vulernability analysis based
on HAZUS (see Loggins and Wallace [29]). We refer to the first damage scenario as ‘medium-scale’ and
the second damage scenario as ‘large-scale’ based on the number of damaged components in each scenario
compared to the expected number. Table 13 provides a breakdown on the number of damaged nodes and arcs
in each damage scenario. Note that these are a subset of the nodes and arcs in the infrastructure and adding
them together yields the number of arcs in Ēm (since we use a network expansion technique to translate a
damaged node to a damaged arc). Therefore, for each damage scenario, the number of arcs in ‘Em’ for the
scenario is less than the amount listed in Table 11 since we remove the arcs in Ēm.

Table 14 discusses the number of restoration interdependencies for each damage scenario. The tradi-
tional precedence relationships for the power and transportation infrastructures were created by examining
whether damaged arcs in the power and tranportation infrastructures were close to each other (in particular,
whether the power line was next to the road). For a pair of damaged arcs in the power and transportation
infrastructures that were close to each other, we assumed that this represented a situation in which trees and
other debris brought down a power line. Therefore, a power crew must inspect the line to make sure it is
not ‘live’ (a task in the power infrastructure) before the trees and debris can be removed from the road (a
task in the transportation infrastructure). This represents the (Transportation, Power) entries in Table 14.
Further, the trees and debris must be cleared prior to repairing the power line, which represents the entries
of (Power, Transportation). For the time-sensitive relationships, we note that these relationships are not
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necessarily a function of the damage of an infrastructure because they have more to do with how long ser-
vices are disrupted. For example, a cell tower’s generator will need to be refueled if the tower was without
traditional power for a certain number of time periods. This is a function of both the damage done to the
power infrastructure and its restoration process. Therefore, the number of relationships is constant across
damage scenarios.

Medium-Scale Scenario Large-Scale Scenario
Infrastructure Damaged Nodes Damaged Arcs Ēm Damaged Nodes Damaged Arcs Ēm

Power 5 3 8 14 14 28
Telecommunications 3 0 3 7 0 7
Transportation 0 183 183 0 276 276
Wastewater 41 0 41 76 0 76

Table 13: Data describing the damage scenarios for CLARC County.

Type Infrastructures Medium-Scale Large-Scale

Traditional Precedence Relationships
Power, Transportation 1 10
Transportation, Power 1 10

Time-Sensitive Cleanup Relationships Power, Wastewater 52 52
Time-Sensitive Refueling Relationships Power, Telecommunications 19 19

Table 14: Number of restoration interdependencies by type and infrastructures.

We are now in position to provide a computational analysis for the CLARC County data set and dam-
age scenarios with restoration interdependencies similar to what we did for the New Hanover County data
set and damage scenario. The main difference in terms of our analysis pertains to the information-sharing
environment since each infrastructure (including power) has restoration interdependencies or operational in-
terdependencies coming into it. As noted in Section 4.3, each infrastructure will adapt their restoration plans
based on the announced restoration plans of other infrastructures. A round of information-sharing would
involve each infrastructure announcing their restoration plan and then adapting it based on the restoration
plans of the other infrastructures. In our testing, we will consider different number of information-sharing
rounds, where InfoS(`) refers to the restoration efforts after ` rounds.

Table 15 provides the percentage sacrifice in restoration effectiveness resulting from each decision-
making environment. We consider both damage scenarios under 2 and 3 work groups available to process
restoration tasks per infrastructure and T = 30 time periods in the restoration horizon. For the decentral-
ized decision-making environment, it is clear that the best strategy is to have each infrastructure formulate
optimistic restoration efforts. In each instance, the optimistic decentralized environment is better than the
pessimistic decentralized environment (even when you have more information about when tasks are started).
The information-sharing environment improves, somewhat significantly, upon the optimistic decentralized
environment (in 3 of the cases, decreasing the sacrifice by over 40%). This observation is important in the
sense that each infrastructure is still autonomous (i.e., it still makes its final restoration plan) but moves
towards the centralized solution.
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Scenario Km Centralized Optimistic Pessimistic-End Pessimistic-Start InfoS(1) InfoS(5)

Medium-Scale
2 0% 10.50% 15.98% 15.72% 3.13% 3.07%
3 0% 14.20% 16.97% 16.95% 3.03% 2.91%

Large-Scale
2 0% 27.85% 55.81% 27.86% 17.71% 16.34%
3 0% 29.41% 54.37% 31.36% 15.32% 16.81%

Table 15: The percentage sacrifice, in terms of restoration effectiveness, from the centralized decision-
making environment for each damage scenario and number of work groups.

Recall that the information-sharing environment allows the infrastructures to announce their restoration
plans and then adapt them based on the announced plans of the other infrastructures. We can allow any
number of ‘rounds’ of this process but the interest lies in whether we have reached a stable solution, i.e.,
no infrastructure changes their solution between rounds. It turns out that only one of the four considered
instances reaches a stable solution in 7 rounds. Table 16 provides the evolution of the percentage sacrifice
of the information-sharing environment as a function of the number of rounds. It is clear that, while the
individual restoration plans of an infrastructure may improve their objective by adapting to the announced
plans, the fact that the other plans are changing too may result in a worse overall objective function. For
the case of Km = 2 and the medium-scale damage scenario, the restoration plans essentially stabilize after
3 rounds of information-sharing. Typically, infrastructure restoration efforts will need to be determined
quickly after the disruptive event and, therefore, the number of information-sharing rounds will typically be
small. Therefore, the traditional ‘stopping rule’ for the information-sharing environment will be determined
by the number of rounds in IIR efforts. The results in Table 16 demonstrate that a small number of rounds
does not necessarily imply that a stable solution across infrastructures in their restoration plans will be
reached. An alternative stopping rule could be when a stable solution has been reached (which can be
guaranteed if no infrastructure adapts their restoration plans between two consecutive rounds) or when the
number of rounds reaches its limit.

Scenario Km InfoS(1) InfoS(2) InfoS(3) InfoS(4) InfoS(5) InfoS(6) InfoS(7)

Medium-Scale
2 3.13% 3.10% 3.07% 3.07% 3.07% 3.07% 3.07%
3 3.03% 3.00% 2.84% 2.82% 2.91% 2.93% 2.84%

Large-Scale
2 17.71% 17.72% 18.31% 17.91% 16.34% 16.45% 17.23%
3 15.32% 19.44% 14.82% 15.97% 16.81% 14.81% 18.03%

Table 16: The percentage sacrifice, in terms of restoration effectiveness, across the number of rounds in an
information-sharing environment

6 Conclusions

This paper focuses on examining the issues of decentralized decision-making and information-sharing in
the restoration of interdependent networks after a disaster damages components and disrupts services in
them. We present the interdependent integrated network design and scheduling (IINDS) problem that is
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based on the work of Cavdaroglu et al. [8] and extend it to incorporate the new concept of restoration
interdependencies that link the restoration efforts of multiple infrastructure networks. These restoration
interdependencies are especially important in the context of interdependent infrastructure restoration since
their impact may prevent scheduled work to begin at its planned time. Therefore, their impact in terms of
restoration effectiveness may be greater in decentralized decision-making environments. We propose several
algorithmic models to capture different decision-making environments and apply them to realistic damage
scenarios for the case studies of New Hanover County and the artificial CLARC county. We found that the
empirical ‘price’ (in terms of restoration effectiveness) of decentralized decision-making is high (at least
10% in all cases but upwards of 30% for many cases) and significant gains (cutting the loss in restoration
effectiveness by 30-50%) can be made by having infrastructures simply share their planned restoration
efforts with one another. The information-sharing environment is desirable since it allows the independent
infrastructures to remain autonomous but allows them to gain more information about other infrastructures’
restoration efforts.

In terms of future research, it would be interesting to investigate how to measure the theoretical price of
anarchy (see, for example, Roughgarden [39]) for interdependent network restoration. In this setting, each
infrastructure would be viewed as an independent decision-maker in forming their restoration efforts. We
would be interested in examining the ratio of the restoration effectiveness of any stable solution (or Nash
equilibrium, i.e., a solution where no infrastructure has an incentive to change their restoration efforts) and
the optimal restoration effectiveness resulting from centralized restoration efforts.
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