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Abstract In this paper we consider methods to determine the best single arc mitigation plan for improving
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method, and comparing the level of confidence achieved to determine a best single arc mitigation plan. We find
that R&S procedures perform as well or better than brute force procedures in all cases, and significantly out-
perform the brute force procedure in almost all cases (five out of six). Having developed a general framework
for determining the best single arc mitigation plan for any network, we conclude with thoughts and challenges
on how this framework can be expanded and applied to different problems.

Keywords ranking and selection · network resilience · mitigation · restoration

The work of these authors was supported in part by the U.S. National Science Foundation under grants number CMMI-1314350
and CMMI-1254258.

Emily A. Heath
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
110 8th St., Troy, NY 12180
Tel.: +1203-379-7622
Fax: +1518-276-4824
E-mail: heathe@rpi.edu

John E. Mitchell
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
110 8th St., Troy, NY 12180

Thomas C. Sharkey
Deparment of Industrial and Systems Engineering
Rensselaer Polytechnic Institute
110 8th St., Troy, NY 12180



2 Emily A. Heath et al.

1 Introduction

Network resilience is an important topic for managers of critical infrastructures and supply chains, and
it is particularly important in light of recent natural disasters, like Hurricane Sandy, that caused catastrophic
damage in New Jersey and New York in the United States. The U.S. Department of Energy Office of Electricity
Delivery & Energy Reliability (2012) reported that as of the morning of November 7, 2012, seven to eight days
after the hurricane hit, 650,416 customers were still without power in the affected states in the mid-Atlantic
and Northeast [14]. The damage also impacted several petroleum and natural gas refineries, whose reduced
operating capacities disrupted the supply of these products to consumers and left 24% of gas stations in the
New York Metropolitan area without gasoline for sale as of November 7, 2012 [14]. Improving the resilience of
these affected networks is an important step not only in restoring services more rapidly, but also in reducing the
impact caused by another natural disaster. In the U.S. Presidential Policy Directive on Critical Infrastructure
Security and Resilience, resilience is defined as “the ability to prepare for and adapt to changing conditions
and withstand and recover rapidly from disruptions. Resilience includes the ability to withstand and recover
from deliberate attacks, accidents, or naturally occurring threats or incidents [37].” This paper considers how
to improve network resilience through long-term mitigation activities and focuses on the rapid recovery of the
network from an event.

For a graphical representation of the resiliency measure used in this work, consider the following graph:

Fig. 1 Resiliency Measures
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In this graph, the event occurs at time 0 and causes a disruption in the services so that full demand can no
longer be met. Full demand is labeled on the vertical axis and marked with the straight line. The immediate drop
in the amount of met demand is labeled with a brace as “impact”, and can be viewed as the immediate impact.
The filled-in portion of the graph labeled “aggregate met demand” indicates the amount of met demand in the
network over time. Improvements in the met demand are made in steps, as restoration activities are performed
that recover parts of the network. Completed restoration activities are the circles, one of which is labeled as
“completed task” for an example. The restoration period is labeled with a brace along the horizontal axis, and
covers the time of the event until a fixed time horizon T . There is a substantial body of research and literature
that focuses on minimizing the immediate impact to the network from a disruption. In the graph, this type of
focus can be interpreted as minimizing the “impact” brace over a variety of scenarios. This type of focus can
help improve the resiliency of the network, but it does not consider all aspects of network resiliency. In this
paper, the focus is on maximizing the met demand in the network over a fixed restoration time period, i.e. until
time T . Note that this restoration period does not necessarily cover the time until full demand is met again.
In Cimellaro et al. (2010), the authors define the recovery time as the time needed to restore the functionality
of the system to a desired level. As the authors point out, many managers may use the recovery time from a
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disruptive event to improve their overall network to obtain higher levels of performance than before the event.
In this work, the restoration time period is designed to capture only the recovery time associated with the
existing network, and not the transition to rebuilding and redesigning the network. This focus corresponds to
maximizing the filled-in area in the graph, which covers this restoration time period. This type of resiliency
measure covers not only the immediate impact of the event but also the evolution of the state of the network
as it recovers from the event. To the best of the authors’ knowledge, this type of resiliency measure, i.e. rapid
recovery, has not been used for network mitigation prior to this paper.

Mitigation refers to activities that are undertaken before a disruption occurs and are designed to reduce
the impact of any expected damage. There are short-term and long-term mitigation activities. An example
of a short-term mitigation activity is the pre-positioning of supplies or work crews to a critical area likely
to be damaged by an event. An example of a long-term mitigation activity is burying a power line in an
electrical network or locating an industrial back-up generator at a production facility or warehouse in a supply
chain. Mitigation decisions contribute to a network’s resilience by improving its ability both to withstand and
recover from disruptions. Short-term mitigation activities will improve the resilience of the network for one
particular event, while long-term mitigation activities will improve the resilience of the network for many
different events. This paper focuses on long-term mitigation decisions, as these decisions involve high costs
that prohibit managers from being able to undertake several long-term activities at once. For example, consider
the decision to bury a power line. The U.S. Energy Information Administration has found that on average,
underground lines can cost five to ten times more than overhead lines, which does not include the cost of
dismantling the system if an existing overhead line is selected to be buried [15]. As a result, utility managers
consider burying an entire power system to be cost prohibitive, but they may be able to select a few key
components to bury. Similarly, locating an industrial generator is also a very expensive long-term mitigation
decision for managers of a supply chain network to make. These generators are expensive themselves, and
they also have maintenance costs that can be very high. In this paper, we consider these types of long-term
mitigation decisions that have very high costs but can contribute to the resilience of the network in a significant
way.

The focus in this paper is on how mitigation can improve the rapid recovery of the network over time, where
recovery is measured through restoration decisions. Restoration decisions are designed to recover a system
from an event by repairing damaged components of a network and bringing services back to affected areas.
Examples of restoration decisions include sending work crews to clear roads with downed trees or to repair
damaged electrical components like downed power lines or impacted substations. In a supply chain network,
examples of restoration decisions include testing and assessing equipment for damage as well as making repairs
on equipment. Restoration decisions contribute to a network’s resilience by improving how rapidly disrupted
services recover. Focusing on mitigation or restoration alone can help to improve the resilience of a network,
but considering these two aspects together can allow managers of critical infrastructures and supply chains to
make better mitigation decisions that impact the restoration process.

Decisions on mitigation affect the restoration by either eliminating the need to restore certain components
of the network, or by improving the speed with which restoration activities take place. A natural question arises:
what mitigation decisions can a manager make that will most improve the restoration of the network over
time? This paper develops a method for determining with statistical significance the best long-term mitigation
decision to completely protect a single component of the network. Statistical significance is established by
evaluating the contribution of the mitigation plans to the restoration of the network over time for a given
damage scenario, and sampling across several different damage scenarios. The mitigation plans are ranked
according to their individual contributions so that the best plan is selected with probability 1−α , where α

is the user-defined level of statistical significance. This paper is novel in its development of a performance
measure and procedure that accomplishes two things not seen in previous work on network mitigation: first, it
determines the impact of mitigation decisions on the large-scale second-stage integer program of the restoration
of the network over time; and second, it selects the best mitigation plan out of several with a given level of
statistical certainty.

The remainder of the paper is organized as follows: Section 2 surveys related literature and discusses how
the work in this paper differs. Section 3 describes the problem formulation and gives the general framework
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used for testing mitigation plans. In Section 4, the data set used in this paper and the implementation details
are described, and results are presented. Section 5 discusses how this framework can be used to consider
sequential mitigation decisions, and presents results for the same data set. The paper concludes with Section
6 with remarks on the performance of the general framework and how it can be improved and expanded for
future work.

2 Literature Review

As such an important issue, improving network resilience by means of mitigation and restoration has been
the subject of much research. Previous work in network restoration points to the use of an integer programming
(IP) formulation and IP algorithms for the problem, see Cavdaroglu et al. (2013), Lee et al. (2007), Matisziw
et al. (2010), and Nurre et al. (2012) for examples. For a recent overview of network restoration literature,
see Nurre and Sharkey (2014). These problems involve determining a schedule for repair tasks and assign-
ing a work crew to complete these tasks. Integer variables are required to capture the scheduling decisions,
work crew assignments, and network operations. These formulations are also frequently time-indexed, with a
restoration time horizon over which these tasks are completed, so the integer variables must be indexed for each
time period to capture the restoration process. These restoration problems are often NP-complete, see Nurre
and Sharkey (2014) for proofs of certain classes. They are, therefore, difficult to solve even for relatively sim-
ple restoration problems. Time-indexed integer restoration models, although difficult to solve, are better able
to accurately capture the restoration process for networks. The restoration models cited in the above papers,
however, are not integrated with mitigation decisions. One contribution of this paper is to integrate restoration
models like the ones discussed with models that also consider mitigation decisions.

A common approach for considering network mitigation or restoration is to use a mathematical model that
considers the services provided by them as flows in the network. For an overview of network flows, the reader
is invited to consider Abuja et al. (1993). With a network flow approach, a two-stage stochastic programming
model is one method used to solve problems in network mitigation. For a review of stochastic programming,
see Birge and Louveaux (1997). Some examples of two-stage stochastic programming applied to problems in
network mitigation can be seen in Barbarosoglu and Arda (2004), Hentenryck et al. (2010), Mete and Zabinsky
(2010), Rawls and Turnquist (2010), Salmon and Apte (2010), and Shen (2013). One feature of these two-stage
stochastic programming approaches is that they consider a relatively simple second-stage problem focused on
the immediate state of the network after the disruption occurs. In reference to Figure 1, these types of ap-
proaches focus on minimizing the brace labeled the “impact.” These approaches determine a mitigation plan
that will allow the network to better withstand a disruption. Additionally, these approaches also have second-
stage decision variables that are typically continuous, which keeps the problem size from increasing to a level
where it is computationally intractable. In contrast, the second-stage problem in this research is to consider the
restoration process of the network over a given time horizon.

The second-stage problem in this work involves many integer variables, and is difficult to solve in a two-
stage stochastic programming model with a large number of scenarios. There has been previous work that
considers how to achieve stochastic convergence, the most popular of which involves Monte Carlo simulation
and the sample average approximation (SAA) technique, see Kleywegt et al. (2002). Unlike the method in this
paper, the SAA approach is unable to provide a statistical guarantee of selecting the best solution from many
candidates (Kleywegt et al. (2002)). The SAA approach is better suited for problems where the first-stage prob-
lem is complicated and the second-stage problem is continuous, see Chang et al. (2007) for an example of its
application to this type of problem. This paper, however, considers a complicated second-stage problem, the
restoration of the network over a given time horizon, and focuses on being able to select the best mitigation
plan from many candidates with statistical certainty.

Additional areas that have considered topics related to mitigation and restoration include work in net-
work interdiction. These problems allow one to test the current resilience of the network against a “smart”
disruptor. In interdiction research, the focus is on selecting the components of the network to damage in order
to disrupt services. Much of the research in interdiction has focused on “maximum flow interdiction,” where
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the interdictor (agent causing damaging to the network) seeks to minimize the maximum possible flow in the
network. Wood (1993) formulates an IP model for the maximum flow interdiction problem, and shows it to
be NP-complete. Cormican et al. (1998) extend this maximum flow interdiction problem to stochastic variants
involving uncertainty in arc capacities. Additional relevant papers on interdiction include Church et al. (2004)
and Losada et al. (2012). Interdiction work is important in understanding the current vulnerabilities of a net-
work, but it is important to note that it is not directly applicable to mitigation on its own. Scaparra and Church
(2008) consider the problem of selecting a subset of facilities to protect in order to minimize an interdiction
strike, and point out that the subset of facilities to protect is not equal to the subset of facilities that would be se-
lected for interdiction alone. Although papers like Scaparra and Church (2008) consider fortifying components
of the network, the primary focus is still on maximum flow interdiction problems and the immediate state of
the network following the attack. To relate these approaches back to Figure 1, they still emphasize minimizing
the “impact” brace. Therefore, these works still do not consider a complicated second-stage problem of the
restoration of the network as the work in this paper considers.

Another related area of research is defender-attacker-defender (DAD) work. For a tutorial on DAD models,
the reader is invited to consider Alderson et al. (2014). In DAD models, a tri-level problem is considered. In
the first stage of the model, the defender selects components of the network to protect. In the second stage of
the model, the attacker observes the fortifications and selects components of the network to damage. In the
third stage of the model, the defender determines how the network will operate based on the damage. The
DAD model is yet another method for determining how to improve the resilience of a network, see Alderson et
al. (2011) for example. However, the approach in DAD models still focuses on a relatively short time horizon
after the attack/disruption, and does not consider the restoration of the network over time as this paper con-
siders. As in other related areas, this focus can be interpreted as minimizing the impact of the event, labeled
with the “impact” brace in Figure 1. Additionally, some DAD work is more concerned with designing a new
network, rather than protecting existing components of the network (see Smith et al. (2006) for an example).
In this paper, the design of a new network or the addition of new components is not considered because the
focus is on determining how the manager can make a single mitigation decision to improve the resilience of
the current network.

One final area of related work to consider is facility location research. The facility location problem is
well-studied, and primarily addresses how to design a new network or place new facilities. Daskin (1995) is a
comprehensive text on the subject, and Owen and Daskin (1998) is a popular comprehensive review paper on
the subject. For more recent reviews on discrete and stochastic facility location work, the reader is directed to
Current et al. (2004) and Snyder (2006) respectively. As mentioned previously, facility location work focuses
on how to improve network resilience through design considerations. While these considerations are relevant
in cases where a manager is planning a new network or seeking to add components to an existing network,
these cases are not the focus of this paper. Instead, this paper is concerned with improving the resilience of a
network by protecting an existing component that will contribute to the rapid recovery after an event.

In light of the differences in focus between these related areas of research and the question this paper
seeks to address, this work utilizes a ranking and selection (R&S) procedure. The use of a R&S procedure is
motivated by the desire to be able to select the best mitigation plan with a given level of statistical certainty. As
described previously, the mitigation plans being considered in this paper are single long-term investments in
the network. These long-term investments come with substantial costs, so it is important that a manager have
confidence in the decision made. R&S procedures offer a statistical guarantee on selecting the best system, and
are well-suited for problems where the number of systems being considered is large. In this paper, the systems
being tested are the mitigation plans for the network, and they are evaluated using a performance measure
constructed to determine the best mitigation plan for increasing the rapid recovery of the network. Evaluating
a system according to a performance measure is referred to as sampling a system, and R&S procedures are
designed to work well when this sampling is computationally expensive. In this work, the performance mea-
sures for mitigation plans will require the solution of large integer programming problems, and is therefore
computationally expensive to compute. R&S procedures have a user-specified guaranteed level of statistical
certainty, meaning they will select the best or a group of the best systems with a given probability. For a broad
overview of R&S procedures and the underlying mathematics, see Kim and Nelson (2006). These procedures
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work generally by first sampling each system a fixed number of times, referred to as the first-stage sample size.
A screening procedure is next used to eliminate some of these competing systems. Typically, a R&S procedure
is a two-stage procedure or a sequential procedure, where the stages refer to the number of times an individual
system may be sampled. If the procedure is two-stage, it will conclude by allocating a second-stage sample size
to remaining systems and using a selection procedure to determine the best or a subset of the best systems. If
the procedure is sequential, sampling and screening may continue over many rounds until a stopping criterion
is met whereby selection of the best can take place. For examples of sequential procedures, see Frazier (2013),
Kim and Nelson (2001), or Pichitlamken et al. (2006). For examples of two-stage procedures, see Kim and
Nelson (2006) or Nelson et al. (2001). The advantage of R&S procedures is that they are designed to minimize
computationally expensive sampling while still ensuring that the best system can be determined with a given
level of statistical certainty. For these reasons, R&S procedures appear to be well-suited to determine the best
mitigation plan for contributing to the rapid recovery of a network with a given statistical guarantee. The next
section outlines the exact procedure used to test and select a best mitigation plan.

3 Problem Formulation and Solution Approaches

This paper addresses how to determine the best mitigation plan for contributing to the rapid recovery of
a network over time. First, it is important to determine the mitigation plans being considered. As mentioned
previously, the focus of this work is on selecting one component of the network to protect, as this protection de-
cision is a long-term investment that has high costs. To model the protection of one component in the network,
the set of possible mitigation plans being considered is an appropriate set of arcs. Here, the term “appropriate”
will refer to any set of components a manager may consider as reasonable choices for protection, which can
include arcs that are not currently part of the network. Additionally, it is important to note that this set of arcs
is not limited to actual arcs in the network but can include arcs that represent nodes as well. Any node can be
modeled as an arc by using a standard network expansion technique that splits the node into one arc and two
nodes (see Nurre et al. (2012)). In the following subsections, we define how we will measure the impact of
using a particular mitigation plan and the R&S procedure used to test mitigation plans.

3.1 Problem Formulation: INDS Framework

Given the set of possible mitigation plans, the term “best” must be defined. In order to prescribe a perfor-
mance measure to a mitigation plan, restoration measures in integrated network design and scheduling (INDS)
problems, as described in Nurre et al. (2012), are considered. Since the focus of this work is on considering how
a mitigation plan contributes to the ability of a network to recover rapidly, the performance measure chosen is
the improvement in the restoration of the network over time given that mitigation plan for a damage scenario.
For a given mitigation plan, a single performance measure is found with the following procedure: First, a dam-
age scenario is generated, which can be done in a problem-specific or application-specific way, by determining
a set of damaged arcs. The arc considered for mitigation is not in the set of damaged arcs, as the set of damaged
arcs is selected from all remaining arcs. Next, the INDS problem is solved twice, with a small change in the
set of the damaged arcs. The INDS problem is first solved with the original set of damaged arcs, where the arc
considered as a mitigation plan is not part of that set. This INDS problem corresponds to having the mitigation
plan in place. It is then solved again, where the arc considered as a mitigation plan is part of the set of damaged
arcs. This INDS problem corresponds to not having the mitigation plan in place. In each solution for the INDS
problem, the objective function value gives the restoration performance from that particular damage scenario.
The performance measure is the difference between these two objective function values, specifically the ob-
jective function value for the INDS problem where the mitigation plan is in place minus the objective function
value for the INDS problem where the mitigation plan is not in place. For illustrative purposes, consider the
following figure:
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Fig. 2 Performance Measure Illustration
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In this illustration, the area enclosed by the top line denotes the objective function value for the INDS
problem with the mitigation plan in place, labeled in part by the brace “Mitigation Plan in Place.” The area
enclosed by the lower line denotes the objective function value for the INDS problem with the mitigation plan
not in place, labeled in part by the brace “Mitigation Plan Not in Place.” The performance measure developed
in this work takes the difference between these two objective function values. In this illustration, this difference
corresponds to the filled-in portion. The objective function value for the INDS problem where the mitigation
plan is in place at least as large as the objective function value for the INDS problem where mitigation plan
is not in place because the set of damaged arcs is otherwise the same. Therefore, the performance measure is
non-negative, and it determines the improvement in the restoration of the network when the mitigation plan
is in place for that damage scenario. A high performance measure indicates that using a particular mitigation
plan has a significant contribution to how well the network can be restored for that damage scenario. In this
illustration, the particular mitigation plan does have a positive contribution to how well the network can be
restored for this damage scenario, so its performance measure is a positive value that corresponds to the filled-
in area. Following the INDS formulation, the performance measure will be made concrete.

Before giving the complete formulation of the INDS problem, we first define the general features of the
problem. Let G = (N,A) denote the original network and any arcs considered for mitigation that may not be
part of the network, where N is the set of nodes and A is the set of all relevant arcs in the network. All arcs in
the network are directed, so an arc (i, j) denotes a connection from node i to node j. Without loss of generality,
we will assume that damage to the network damages arcs only, as it has already been explained that only arcs
are protected and nodes can be represented as arcs using a standard network expansion technique. Let T be the
number of time periods in the horizon, which can be tailored to the specific problem or application. Let S⊆ N
be the set of supply nodes, each with a supply si. Let D ⊆ N be the set of demand nodes, each with a demand
di. Each arc (i, j) has a capacity ui j, which denotes the maximum amount of flow that can be carried from node
i to node j, and a processing time pi j that denotes how long it would take for the arc to be repaired if it were
damaged. In the case of arcs that are not part of the original network, their processing time is longer than the
time horizon of the problem. Each unit of flow to a demand node i ∈ D has weight wi. Let µt be the weight
of the performance of the network at time t. The network flow variable xi jt gives the flow on arc (i, j) at time
period t. The demand met variable vit gives the amount of demand met at node i ∈ D in time period t.

With these general features of the problem, we can now define the features of the problem specific to a
damage scenario. Let S denote a particular damage scenario. Let Ā(S ) ⊆ A denote the set of damaged arcs.
The arcs in Ā(S ) are arcs from the original network that have been damaged in S and are unable to carry
any flow. Ā(S ) will also include all arcs considered for mitigation that are not part of the original network, as
these arcs are not available in the network.To repair damaged arcs, there are K identical work groups, denoted
by the subscript k. A work group can be thought of as any resource that can be deployed to repair arcs in
the network. In this INDS formulation, the travel time for a work group to move from one component of the
network to the next is not explicitly included, see Nurre and Sharkey (2015). The definition of a time period
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in the INDS formulation is problem and application specific, and can therefore implicitly consider travel time.
There are two sets of binary variables that relate the set of arcs in Ā(S ) and the work groups. The first set of
binary variables, denoted by βi jt , are used to indicate whether an arc (i, j) from the set Ā(S ) is available in the
network at time t. A value of 1 indicates that the arc is now available in time period t, and a value of 0 indicates
it is not yet available. The “first” β value of 1 for an arc in Ā(S ) indicates the first time period at which it
becomes available, meaning its first β indicates when its restoration was completed. The second set of binary
variables, denoted by γki jt , are used to indicate whether a work group k has completed an arc (i, j) in Ā(S ) at
time t. A value of 1 indicates the work group number k restored the arc (i, j) in time period t. It is important to
note that these sets of binary variables, β and γ are only defined for arcs in Ā(S ). With these parameters and
variables, the INDS problem formulation is as follows:

φ(Ā(S )) := max
T
∑

t=1
∑

i∈D
µtwivit

s.t. ∑
(i, j)∈A

xi jt − ∑
( j,i)∈A

x jit ≤ si, ∀i ∈ S, t = 1, ...,T (1)

∑
(i, j)∈A

xi jt − ∑
( j,i)∈A

x jit = 0, ∀i ∈ N \{S∪D}, t = 1, ...,T (2)

∑
(i, j)∈A

xi jt − ∑
( j,i)∈A

xi jt =−vit , ∀i ∈ D, t = 1, ...,T (3)

0≤ vit ≤ di ∀i ∈ D, t = 1, ...,T (4)

0≤ xi jt ≤ ui j ∀(i, j) ∈ A, t = 1, ...,T (5)

0≤ xi jt ≤ ui jβi jt ∀(i, j) ∈ Ā(S ), t = 1, ...,T (6)

∑
(i, j)∈Ā(S )

min{T,t+pi j−1}
∑

r=t
γki jr ≤ 1 ∀k = 1, ...,K, t = 1, ...,T (7)

βi jt −
t
∑

r=1

K
∑

k=1
γki jr ≤ 0 ∀(i, j) ∈ Ā(S ), t = 1, ...,T (8)

pi j−1

∑
t=1

βi jt = 0 ∀(i, j) ∈ Ā(S ) (9)

K
∑

k=1

pi j−1

∑
t=1

γki jt = 0 ∀(i, j) ∈ Ā(S ) (10)

αki jt ,βi jt ∈ {0,1} ∀(i, j) ∈ Ā(S ),k = 1, ...,K, t = 1, ...,T (11)

The objective of this INDS problem is to maximize the weighted met demand in the network over the time
horizon, so it captures how restoration efforts improve the state of the network over time. It is based on the
given damage scenario, so it is denoted by φ(Ā(S )). Constraints (1), (2), and (3) are flow balance constraints
for supply, transshipment, and demand nodes respectively. Constraints (4) give the upper bound for the variable
demand met to be no greater than the actual demand at that node. Constraints (5) limit the flow on each arc
in the network to be no greater than its capacity. Constraints (6) are the analog of constraints (5) for the set
of damaged arcs, where the flow must be 0 if the arc is not available and is constrained by its capacity if it
is available. Constraints (7) ensure that no more than one task is being processed by each work group in time
period t. Constraints (8) make sure that an arc is not considered available until after it has been completed by a
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work group. Constraints (9) and (10) are logical constraints that prevent an arc from being available in a time
period earlier than its processing time. Constraints (11) give the binary constraints on the appropriate variables.
Since the objective function in this formulation gives the maximum weighted met demand in the network over
the time horizon, this formulation is used to provide a measure of the restoration performance in the network.

Using the INDS problem formulation, we can now formally give the definition of a performance measure
for an arc considered as a mitigation plan. All relevant arcs in the network are in the set A. Let the arc considered
for mitigation be denoted by a1. In line with the INDS formulation, a particular damage scenario is denoted
by S and the set of damaged arcs is denoted by A′(S ). The original set of damaged arcs will not include a1,
so the damaged arcs are selected from the remaining arcs. Recall also that the set of damaged arcs must also
include any arcs in A that are not part of the original network and not being considered for mitigation. Let the
objective function values for the different solutions to the INDS problem by denoted by φ(A′(S )) = f1 and
φ(A′(S )∪a1) = f2. The performance measure, denoted by PMa1 is given by the following:

Algorithm 1 Performance Measure
1: Generate damage scenario S and select damaged arcs A′(S ), where A′(S )⊆ {A\a1}
2: Solve INDS with A′(S ), obtain objective function value φ(A′(S )) = f1
3: Solve INDS with A′(S )∪a1, obtain objective function value φ(A′(S )∪a1) = f2
4: Performance measure for a1, PMa1 = f1− f2

3.2 Solution Approaches: GSP Framework

Given the description of the performance measure and how it is used with the INDS formulation, we next
discuss the testing procedure used for mitigation plans. This procedure is a R&S procedure from Nelson et
al. (2001), called the Group Screening Procedure (GSP). As GSP is discussed in detail in Nelson et al. (2001),
we will only provide a brief overview of it and give its full steps in Algorithm 2. The first steps of GSP are
to select and determine several parameters, a few of which we will describe here. First, the overall level of
significance α is determined by the user. α must then be split into α0 and α1 such that α0 +α1 = α . α0 is
used to determine the test statistic t, which impacts the overall test statistic in the procedure for two mitigation
plans i and j, denoted by Wi j. The size of α0 therefore impacts Testing in Algorithm 2. α1 is used to determine
the parameter h, which impacts the number of second-stage performance measures that must be computed for
mitigation plans. GSP is a two-stage procedure where all mitigation plans will have a fixed first-stage number of
performance measures computed, but the second-stage performance measures are allocated only to mitigation
plans that survive testing. The number of these second-stage performance measures is determined in part by h.
The size of α1 therefore impacts Sample 2 in Algorithm 2. The split of α to α1 and α0 is one of the aspects of
GSP that can be used to minimize the number of performance measures that must be computed for mitigation
plans, and it is discussed in more detail in Section 4. Along with determining the overall level of significance,
the user also determines the indifference zone (IZ) parameter. The IZ parameter is the user-specified level of
practical significance. It is the amount by which the average performance measure for mitigation plans must
vary in order to be considered different. The final important decision made by the user is to group the mitigation
plans, denoted by G1,G2, .... Mitigation plans can be partitioned into any number of groups, so long as the first
group has at least two members. Empirical results from Nelson et al. (2001) indicate that GSP will minimize
the number of performance measures that must be computed by constructing groups so that the mitigation
plans most likely to be best are in Group 1. Therefore, the user should not randomly select groups. Group
construction is discussed in more detail in Section 4, where we describe how to determine which mitigation
plans to put in Group 1.

With all of the appropriate parameters selected and determined, GSP proceeds in roughly two major steps.
The first step is to allocate to all mitigation plans their first-stage number of performance measures. This first
step is denoted by Sample 1 in Algorithm 2, and it also requires computing the average and sample variance
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of performance measures for all mitigation plans. In Algorithm 2, the average of all performance measures
computed for a particular mitigation plan i is denoted by PMi, and the sample variance is denoted by S2

i .
The second step is to test the mitigation plans in groups, denoted by Testing. Group 1 is tested first, and any
surviving mitigation plans have a second-stage number of performance measures computed. This allocation of
second-stage performance measures is denoted by Sample 2. As with Sample 1, Sample 2 involves updating
the average of performance measures and the sample variance over all performance measures that have been
computed for a mitigation plan (Sample 1 performance measures and Sample 2 performance measures). Once
the surviving mitigation plans from Group 1 have been allocated second-stage performance measures and had
their averages and variances updated, these mitigation plans are added to Group 2. Group 2 is tested, with
its additions. Again, new surviving mitigation plans from Group 2 proceed to Sample 2 while old surviving
mitigation plans from Group 1 will be moved to the next group without any additional performance measures.
This process continues until all groups have been tested. The current group of mitigation plans being tested is
denoted by Inew and the group of surviving mitigation plans from previous groups is denoted by Iold. At the
end, the mitigation plan with the highest average is selected as the best from the final group of survivors. We
now present the steps of GSP in Algorithm 2 as it applies to this work.

Algorithm 2 GSP
1: Select overall level of significance α , and select α0 for testing and α1 for sampling such that α0 +α1 = α .
2: Select the first-stage number of performance measures n0 ≥ 2, and number of mitigation plans p.

3: Set t = t((1−α0)
1

p−1 ,n0−1) where t(β ,ν) denotes the β quantile of the student t distribution with ν degrees of freedom.
4: Set h = h(1−α1,n0, p) where h is Rinott’s constant.
5: Select the IZ parameter δ , the user-specified level of practical significance.
6: Let G1,G2, ...,Gm be groups of systems such that G1∪G2∪ ...∪Gm = {1,2, ..., p},Gi∩G j = /0 for i 6= j, |Gi| ≥ 1 for all i, and
|G1| ≥ 2.

7: Set I0 = /0.
8: Sample 1: Do the following for all systems i:

1. Repeat Algorithm 1 n0 times to obtain n0 performance measures.
2. Compute PMi (the sample average) and S2

i (the sample variance).
3. Set Ñi = n0, where Ñi denotes how many performance measures have been computed for system i.

9: Do the following for round l = 1,2, ...,m:
1. Testing: l is the current round of testing, and Gl is the current group of mitigation plans to be tested.

The test statistic for two mitigation plans i and j is Wi j , where Wi j = t
(

S2
i

Ñi
+

S2
j

Ñ j

) 1
2

.

Ñi = n0 if system i has only received first-stage sampling and Ni if system i has received second-stage sampling.
Inew is the set of newly tested mitigation plans that make it into the next screening, while Iold is the set of previously
retained mitigation plans that survived another round.
Il = Inew ∪ Iold where Inew = {i : i ∈ Gl ,PMi ≥ PM j− (Wi j−δ )+,∀ j ∈ Gl and PMi ≥ PM j− (Wi j−δ )+,∀ j ∈ Il−1}
and Iold = {i : i ∈ Il−1,PMi ≥ PM j− (Wi j−δ )+,∀ j ∈ Gl and PMi ≥ PM j− (Wi j−δ )+,∀ j ∈ Il−1}.

2. Sample 2: Do the following for all i ∈ Inew:
(a) Compute the second-stage sample size Ni based on Rinott’s procedure and using the sample standard deviation Si:

Ni = max

{
n0,

⌈(
hSi

δ

)2
⌉}

.

(b) Repeat Algorithm 1 Ni−n0 times to obtain Ni−n0 additional performance measures.
(c) Update PMi and S2

i for all performance measures obtained.
(d) Set Ñi = Ni.

10: Select as best the mitigation plan i ∈ Im with the largest sample average PMi.

GSP is proven to have a probability of correct selection greater than or equal to 1−α under the condition
that the true mean of the best system is greater than the true mean of the second best system by at least δ , the
IZ parameter. The full proof for this claim is in the appendix of Nelson et al. (2001), so we will provide only
a sketch. The event that the best system survives Testing the first time it is evaluated and is not eliminated by
the first-stage sample means of any systems evaluated after it occurs with probably greater than or equal to
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1−α0. The event that the best system’s sample mean through its second-stage sampling is not eliminated by
any other system’s sample mean through second-stage sampling occurs with probability greater than or equal
to 1−α1 because Rinott’s constant was used to determine the second-stage sample size. The probability of the
joint event is greater than or equal to 1− (α0 +α1). Since we selected α0 and α1 such that the sum of these
two levels of significance is equal to the overall desired level of significance (α0 +α1 = α), we can conclude
that GSP has an overall probability of correct select greater than or equal to 1−α . We will use these general
frameworks for the INDS problem and GSP to build a method for determining the best mitigation plan.

4 Data Set and Implementation

We can now discuss how the general INDS problem formulation applies to our research. In our research, we
examine the power network for an artificial community, described in Nurre and Sharkey (2015). This artificial
community was constructed based on real data, so it falls under the category of “realistic data.” Not only does
it mimic a power network for a real community, it is also similar to a supply chain network in the sense that we
have a ‘high-level’ network of facilities and each demand point is connected to a single facility. For a complete
discussion on how this network is similar to a supply chain network, see Nurre and Sharkey (2015). In the
context of this research, we consider it as a power network. This power network has 74 transmission arcs and
775 distribution arcs. Transmission arcs in a power network connect power plants to electrical substations,
whereas distribution arcs connect substations to customers. As such, transmission lines are considered more
critical to the overall ability of the power network to meet demand. Therefore, the pool of arcs we consider for
mitigation are the transmission arcs, and we do not consider any new arcs for the network for mitigation. The
following two figures display the network used in this paper; in the first figure, the full network is given and in
the second figure, the transmission network is given.

Fig. 3 Full Network
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Fig. 4 Transmission Network

For the parameters of our INDS problem formulation, we use T = 40 time periods. In this setting,
a time period corresponds to six hours, so the time horizon covers 10 days. This time horizon is meant to
capture the majority of the restoration activity occurring after a disruption. As described previously, many
times after a disruptive event, the network will move into a rebuilding phase. Therefore, by setting T = 40,
we are considering only the restoration phase and not the rebuilding phase. We use a weight of one for every
demand node and a performance weight of one for each time period. For our work, we did not consider any
demand nodes to be more important than others, or the performance of the network at any time period to be
more important than at other time periods. However, it is reasonable that under different applications these
weights would not all be equal, and this method would accommodate those changes. There are three work
groups in this work, which was determined based on the size of the network. Every arc has a processing time of
two, which is another simplifying assumption that is not required for this method, as many different processing
times could be considered in this framework. Additionally, this work does not consider any new arcs as arcs
for mitigation plans, so no arcs need to have a processing time larger than 40. As described in the INDS
formulation, the set of damaged arcs Ā(S ) is determined based on each damage scenario.

We can next discuss our method for damage scenario generation. We consider three damage levels in this
work: low (10%), medium (25%), and high (40%). These damage levels are determined based on the immediate
loss in met demand caused by the event. Our damage scenarios are generated randomly based on the percentage
of damaged arcs in the network that corresponds to desired damage level, and are defined by the arcs in Ā(S ).
Transmission arcs and distribution arcs are damaged separately. For example, consider a scenario with 20%
damage in the network. With a 20% damage level in the network, every transmission arc has a 20% chance of
being damaged, and every distribution arc has a 20% chance of being damaged. We round the decimal value
of 20% of the 74 transmission arcs and 20% of the 775 distribution arcs to the nearest integer to determine
the number of each type of arc that is damaged. As stated previously, however, one of the selected arcs to be
damaged cannot be the arc that is currently considered as a mitigation plan. Therefore, this arc is removed from
consideration for Ā(S ). The arcs to be damaged are selected randomly from the remaining arcs in each group
using a Mersenne Twister method. An arc that is selected to be damaged is put in Ā(S ). This arc is considered
to be nonoperational and unable to carry any flow until repaired. At the end, Ā(S ) will consist of all of the
arcs that were selected to be damaged (transmission arcs and distribution arcs), and will not include the arc
considered for mitigation.
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For the implementation of GSP, we used an overall confidence level of 95%, with α = 0.05. As described
previously in Section 3 and Algorithm 2, α is split between the α0, which impacts the t statistic used in Testing
in the procedure, and the α1 statistic, which impacts the h statistic used in Sample 2 in the procedure. If more
of the 0.05 is allocated to α0, then the t test statistic will be smaller and Testing will be tighter. However, at the
cost of this tighter testing, α1 will be smaller and we will have a larger h statistic, which means larger numbers
of second-stage performance measures in Sample 2. Conversely, allocating less of α to α0 will mean a larger
t test statistic and looser Testing, but a larger α1 and a smaller h statistic, which means smaller numbers of
second-stage performance measures in Sample 2. Our primary interest is in reducing the computational effort
required, as measured by the number of IPs that must be solved. Every evaluation of a performance measure
requires solving two IPs, so we wish to find a good split of α that will reduce this effort. To determine a good
split, we first consider GSP with one group, referred to as 1-GSP. In 1-GSP, we perform all of the steps of
GSP as denoted in Algorithm 2, but all of the mitigation plans are in Group 1 and there are no other groups.
We compute n0 performance measures for each mitigation plan, as in Sample 1. For various splits of α to α0
and α1, we first determine the relevant t statistic that impacts Testing and the h statistic that impacts Sample
2. Next, we use this t for Testing with all mitigation plans to determine the number of surviving arcs, and
determine the number of IPs that would be needed in Sample 2 by using h to compute the number of second-
stage performance measures for all surviving arcs. We consider the following splits of α = 0.05 to (α0,α1)
respectively: (0.01,0.04), (0.02,0.03), (0.025, 0.025), (0.03, 0.02), (0.02, 0.03), and (0.01, 0.04). Of the splits
we consider, we select as a good split the one that requires the minimum number of IPs to be solved in Sample
2. We will use this split in our implementation of GSP because its performance in terms of the computational
effort should be at least similar to the results in 1-GSP, which is a result from Nelson et al. (2001).

The remainder of our parameters for our implementation of GSP are as follows: the IZ parameter δ is set
to be 22∗40 = 880 because the smallest level of demand in the power network is 22, and 40 is the number of
time periods we use. We chose this parameter because our performance measure uses the maximum weighted
met demand in the network. The IZ parameter is the user-defined level of practical significance, or the smallest
difference we care about in the performance of our systems. Since our systems are mitigation plans that should
improve the met demand in the network, we define this smallest difference to be between a plan that can meet
even the smallest level of demand in every time period and a plan that cannot meet this level of demand. Our
first-stage sample size n0 is 10, and we have p = 74 mitigation plans being compared. Our t statistic is found
using standard methods, and our h statistic is found using MATLAB code translated from FORTRAN code
found in Bechhofer et al. (1995).

As mentioned previously, the empirical results for GSP in Nelson et al. (2001) indicate that computational
savings are greatest when the best system is in the first group. Therefore, we wish to construct our groups so
that Group 1 contains the arcs that seem most likely to be the best. Previous research by Cavdaroglu (2012)
developed a measure of an arc’s importance called its modified average starting time (MAST). In solving the
INDS problem for a given damage scenario, an optimal schedule is found that determines when damaged arcs
are repaired. Using this schedule, we can determine when a damaged arc (i, j) was scheduled for repair by
finding the minimum time t where βi jt is equal to 1, and subtracting its processing time. The minimum time t
where βi jt is equal to 1 is the first time the arc is operational. It is logical that critical arcs are scheduled to be
repaired early in the time horizon, while less important arcs are scheduled later, and arcs that are insignificant
may not even be scheduled at all. To determine the MAST for the 74 transmission arcs, we randomly generated
1,000 damage scenarios at a particular damage level and solved one INDS problem for each scenario (one IP
per damage scenario). For each damage scenario, we recorded what arcs were damaged. We used the optimal
schedule to find when each damaged arc was scheduled to be repaired, and we used a time of timeHorizon+1 as
the start time for repair for an arc that was damaged but not scheduled to be repaired within the time horizon.
For each of the 74 transmission arcs, we summed all of the arc’s starting times and divided by the number
of times it was damaged over the 1,000 scenarios to find its MAST. After ranking the arcs according to their
MAST from smallest to largest, we formed groups based on roughly similar MASTs. Group 1 contains the arcs
with the lowest MASTs, and so should contain within it the most important arc. We will add the 1,000 IPs that
were solved to find the MAST to our total number of IPs when we are determining the computational effort of
GSP.
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In order to evaluate the computational performance of our approach, we compare results with a brute force
approach. We are interested in comparing how GSP performs with respect to standard statistical methods. In
order to do so, we determine how many performance measures should be computed for each system so that
roughly the same total number of IPs are being solved by each method. For each damage level, we determine
the total number of IPs that must be solved to use GSP. We take this number of IPs, divide it by the number
of mitigation plans, and then divide it by two (since a performance measure requires the solution of two IPs)
and take the ceiling. This number will tell us how many performance measures to compute for each mitigation
plan. We then use Tukey’s Honestly Significant Difference (HSD) Test to determine at what confidence level a
single best mitigation plan is found.

Our general plan for a given damage level is as follows: first, we find each arc’s MAST in order to form
groups. Second, we use 1-GSP to find a good split of α to α0 and α1. Next, we implement GSP with this split
and these groups to find the best single arc mitigation plan. To compare results, we then use the brute force
procedure described in the above paragraph. We compare results between GSP and the brute force procedure
by considering the level of confidence achieved in each procedure in order to find one best single arc mitigation
plan. We follow this general plan for low, medium, and high damage levels, and the results for each damage
level are given in Section 5.

5 Results for Single Arc Mitigation Plans

5.1 10% Damage Results

We first consider what the best single arc mitigation plan is for a low damage level of 10% damage to the
network. The average loss in met demand immediately following an event that constitutes 10% damage to the
network is around 20%. Therefore, 10% damage to the network corresponds to a relatively low damage level.
According to the damage scenario generation method, seven transmission arcs are damaged and 78 distribution
arcs are damaged. With three work groups and a time horizon of 40, roughly 71% of the damaged arcs will be
operational by the end of the time horizon. Each arc’s MAST was computed using 1,000 randomly generated
damage scenarios with 10% damage. The results are given in Table 5.1.

Table 1 10% MAST

Group Number of Arcs MAST Range
1 26 0−7.63
2 26 26.84−33.51
3 19 34.17−37.62
4 3 39

5.1.1 1-GSP Results: Split of α

As mentioned previously, 1-GSP is used next to determine a good split of α = 0.05 to α0 and α1. As
stated previously, α0 impacts the t statistic used for Testing and α1 impacts h used in Sample 2. With 10%
damage, the different splits considered did not impact the number of surviving arcs: three arcs always survived.
Therefore, it is best to make α1 as large as possible to make h as small as possible in order to reduce the
second-stage performance measures. The best split is therefore 0.1 to α0 and 0.4 to α1. The results for the
various splits considered are presented in Table 5.1.1.
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Table 2 10% 1-GSP Results

(α0,α1) (t,h) No. of Survivors IPs in Sample 2
(0.01,0.04) (5.753,5.99) 3 1494
(0.02,0.03) (5.214,6.228) 3 1618

(0.025,0.025) (5.047,6.3809) 3 1702
(0.03,0.02) (4.911,6.5707) 3 1806
(0.04,0.01) (4.701,7.1904) 3 2176

5.1.2 GSP Results

Following the framework given in Section 3, GSP is implemented using the groups formed by the MAST
statistics and the t and h statistics found in 1-GSP. Three arcs survived from Group 1. These three arcs were
given their second-stage performance measures, and added with Group 2 for the next round. In round two of
Testing, only one arc survived, which was a previous surviving arc from Group 1. This arc continued to be the
only surviving arc from the additional rounds of Testing. Thus at the end, this arc 1078 is declared to be the best
single arc mitigation plan. An additional 1,494 IPs needed to be solved due to the second-stage performance
measures allocated to the three surviving arcs. A total of 1,480 IPs were solved in allocating the first-stage
performance measures (10 performance measures for each of the 74 single arc mitigation plans), and 1,000 IPs
were solved to determine the MAST. Therefore, a final total of 3,974 IPs needed to be solved to implement
GSP, and we find one best single arc mitigation plan with 95% confidence. The results from testing in each
group are given in Table 5.1.2. Note that the totals in the last row indicate the overall number of different arcs
that survive in any round, not the sum of the arcs surviving in each round, and the total number of IPs required
as part of Sample 2 in the algorithm. We expect in all cases that the total number of IPs required for Sample
2 will be no larger than the number of IPs in Sample 2 from the row in the 1-GSP results corresponding to
the split of α to α0 and α1 selected. We also expect in all cases that the number of total arcs surviving in
the implementation of GSP will be no larger than the number of arcs that survive in the corresponding results
for 1-GSP. In this case, the results in the last row of Table 5.1.2 exactly match the results indicated by the
corresponding row in Table 5.1.1 of the 1-GSP results.

Table 3 10% GSP Results

Round of Testing, l No. of Survivors IPs in Sample 2
1 3 1494
2 1 0
3 1 0
4 1 0

Total 3 1494

5.1.3 Brute Force Results

For the brute force procedure, we use the total number of IPs required for GSP to determine how many
performance measures to compute for each mitigation plan. GSP required a total of 3,974 IPs to be solved,
which is approximately equal to 27 performance measures per mitigation plan (3,996 IPs). With 27 performance
measures per mitigation plan, Tukey’s HSD Test is unable to distinguish between the top four mitigation plans
with a confidence level of 95%. With a confidence level between 90% and 60%, Tukey’s HSD test is unable to
distinguish between the top two mitigation plans. With a confidence level lower than 60%, Tukey’s HSD Test
is unable to converge. Since we cannot determine the best single arc mitigation plan at the 10% damage level
using Tukey’s HSD Test, we conclude that the brute force procedure failed.
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5.1.4 Conclusions

In comparing our results from GSP and the brute force procedure, we find that we were unable to use the
brute force method with the same number of IPs to achieve the same solution we found in GSP. Using GSP,
we are able to determine the best single arc mitigation plan at the 10% damage level with 95% confidence by
solving 3,974 IPs. With roughly the same number of IPs solved, we were unable to find the best single arc
mitigation plan using the brute force procedure. Specifically, Tukey’s HSD test could not distinguish between
the top four mitigation plans until the confidence level was lowered. Therefore, we find that GSP significantly
outperformed the brute force procedure in this case.

5.2 25% Damage Results

We next consider the best single arc mitigation plan when there is a moderate damage level of 25% damage
to the network using the same procedure. With an event that causes 25% damage to the network, the average loss
in met demand immediately following the event is 43%. Therefore, 25% damage to the network corresponds
to a medium damage level. At this damage level, 18 transmission arcs are damaged and 194 distribution arcs
are damaged, so roughly 28% of these damaged arcs can be repaired in the time horizon. We solved the INDS
problem for 1,000 randomly generated 25% damage scenarios to determine each arc’s MAST and created the
groups given in Table 5.2.

Table 4 25% MAST

Group Number of Arcs MAST Range
1 21 0.03−5.18
2 5 10.74−20.9
3 4 26.66−28.09
4 14 29−32.46
5 13 32.64−34.4
6 14 34.85−37.11
7 3 39

5.2.1 1-GSP Results: Split of α

The split of α = 0.05 to α0 and α1 is considered using 1-GSP. Unlike the 10% damage results when t
and h were changed, changes in t alter the number of arcs that survive testing. The optimal allocation is 0.03
to α0 and 0.02 to α1. At this split, more arcs are eliminated in Testing, so even though individual numbers
of second-stage performance measures are larger, an overall savings in the number of IPs required is achieved
because the number of arcs left is smaller. Increasing the split to α0 beyond this point, however, did not result
in any more savings. Unlike the 10% damage results, the best split is not to make α1 large to reduce h as much
as possible, but instead to tighten the testing procedure. Our results are summarized in Table 5.2.1.

Table 5 25% 1-GSP Results

(α0,α1) (t,h) No. of Survivors IPs in Sample 2
(0.01,0.04) (5.753,5.99) 5 2140
(0.02,0.03) (5.214,6.228) 5 2322
(0.025,0.25) (5.047,6.3809) 5 2442
(0.03,0.02) (4.911,6.5707) 3 1222
(0.04,0.01) (4.701,7.1904) 3 1474
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5.2.2 GSP Results

GSP is implemented using the groups from MAST, and the t and h statistics found in 1-GSP. In Group
1, three arcs survived. These arcs were given their second-stage performance measures and added with Group
2 for the next round of Testing. In the second round of Testing, only one arc (a surviving arc from Group
1) survived. In the remaining rounds, this arc continued to be the only survivor. We can declare this arc, arc
1078, to be the best single arc mitigation plan at the 25% damage level. We had to solve an additional 1,222
IPs in allocating second-stage performance measures in GSP. Including the IPs required to obtain first-stage
performance measures and the 1,000 IPs required to determine MAST, we solved a total of 3,702 IPs in our
implementation of GSP. We found one best single arc mitigation plan with 95% confidence. The results from
testing for each group are presented in the Table 5.2.2. Note that our results from GSP in the last row of Table
5.2.2 are the same as the results indicated by the corresponding row in Table 5.2.1 of our 1-GSP results.

Table 6 25% GSP Results

Round of Testing, l No. of Survivors IPs in Sample 2
1 3 1222
2 1 0
3 1 0
4 1 0
5 1 0
6 1 0
7 1 0

Total 3 1222

5.2.3 Brute Force Results

For the brute force procedure, we use the total number of IPs required for GSP to determine how many
performance measures to take of each mitigation plan. GSP required a total of 3,702 IPs to be solved, which
is roughly equal to 26 performance measures per mitigation plan (3,848 IPs). With 26 performance measures
per mitigation plan, Tukey’s HSD Test is unable to distinguish between the top three mitigation plans with a
confidence level between 95% to 60%. With a confidence level lower than 60%, Tukey’s HSD Test fails to
converge. Since we cannot determine the best single arc mitigation plan at the 25% damage level with Tukey’s
HSD Test, we conclude that the brute force procedure failed.

5.2.4 Conclusions

Comparing our results from GSP and the brute force approach, we find that the brute force procedure
was unable to determine the best single arc mitigation plan using the same number of IPs required for GSP.
With GSP, we solved 3,702 IPs to determine the best single arc mitigation plan at the 25% damage level with
95% confidence. Using the same number of IPs to implement our brute force procedure, we are unable to
replicate this result. With all confidence levels where Tukey’s HSD converged, the brute force procedure could
not do any better than to identify the top three mitigation plans. Therefore, we conclude that GSP significantly
outperformed the brute force procedure in this case.

5.3 40% Damage Results

The final damage level considered is a high damage level of 40%, as this level would be substantial damage
to the network. An event that causes 40% damage results in an average loss of 81% of the met demand in the
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network immediately following the event. At this damage level, 29 transmission arcs are damaged, and 310
distribution arcs are damaged. Just under 18% of these damaged arcs can be repaired in the time horizon.
We solved 1,000 INDS problems for randomly generated damage scenarios to find each arc’s MAST and
determined the following groups given in Table 5.3.

Table 7 40% MAST

Group Number of Arcs MAST Range
1 16 0.358−7.335
2 5 8.769−11.218
3 14 21.194−28.647
4 36 29.47−37.473
5 3 39

5.3.1 1-GSP Results: Split of α

The split of α = 0.05 to α0 and α1 is then considered. The results obtained with these changes are the
same as the results for 25% damage level testing. Allocating 0.03 to α0 and 0.02 to α1 is the best split. With
this split, the fewest total IPs are required and only five arcs survive testing. As with the 25% level results, a
tighter screening process allows for more arcs to be eliminated at the cost of slightly higher individual numbers
of second-stage performance measures. However, allocating more than 0.03 to α0 did not allow us to eliminate
any more arcs so it was not beneficial to tighten testing beyond this point. The results we obtained for the
various splits we examined are given in Table 5.3.1.

Table 8 40% 1-GSP Results

(α0,α1) (t,h) No. of Survivors IPs in Sample 2
(0.01,0.04) (5.753,5.99) 6 7458
(0.02,0.03) (5.214,6.228) 6 8068

(0.025,0.025) (5.047,6.3809) 6 8476
(0.03,0.02) (4.911,6.5707) 2 328
(0.04,0.01) (4.701,7.1904) 2 398

5.3.2 GSP Results

GSP is implemented using the groups formed from MAST and the t and h statistics found in 1-GSP. In
Group 1, two arcs survived. These two arcs were given their second-stage performance measures and added for
Testing with Group 2. In round two of Testing, only one arc, a previous surviving arc from Group 1, survived.
In round three, this same arc survived again along with a new arc from Group 3. The new arc was given its
second-stage performance measures, and both were added with Group 4 for the next round of Testing. In the
fourth round of Testing, two arcs survived: the survivor from Group 1 and a new arc from Group 4. The new
arc had its second-stage performance measures computed, and both arcs were added with Group 5 for another
round of Testing. In round five, only one arc, the previous surviving arc from Group 1, survived. Thus, this
arc, arc 1078, can be declared the best single arc mitigation plan at the 40% damage level. From second-stage
performance measures, GSP required an additional 4,910 IPs to be solved. In addition to the IPs required for
first-stage performance measures and the 1,000 used to determine MAST, we had to solve a total of 7,390 IPs.
We found the best single arc mitigation plan with 95% confidence. The results from each group’s testing are
presented in Table 5.3.2. Note that surviving arcs in later rounds required a substantial number of IPs to be
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solved for their second-stage performance measures. This result is due to their large standard deviations, which
is problematic in eliminating arcs in Testing and in keeping the computational effort low through the number
of performance measures needed. We also note that our results for GSP in the last row of Table 5.3.2 are worse
than the results indicated by the corresponding row in Table 5.3.1 of our 1-GSP results. This result is due to the
fact that additional performance measures for the eventual winning arc, arc 1078, actually lowered its original
average. As a result, arcs that did not survive Testing in 1-GSP were able to survive Testing in GSP.

Table 9 40% GSP Results

Round of Testing, l No. of Survivors IPs in Sample 2
1 2 328
2 1 0
3 2 1670
4 2 2912
5 1 0

Total 4 4910

5.3.3 Brute Force Results

For the brute force procedure, we use the total number of IPs required for GSP to determine how many
performance measures to compute for each mitigation plan. GSP required a total of 7,390 IPs to be solved,
which is approximately equal to 50 performance measures per mitigation plan (7,400 IPs). With 50 performance
measures per mitigation plan, Tukey’s HSD Test is unable to distinguish between the top nine mitigation plans
with a confidence level between 95% and 85%. With a confidence level between 80% and 75%, Tukey’s HSD
Test is unable to distinguish between the top eight mitigation plans.With 70% confidence, Tukey’s HSD Test
is unable to distinguish between the top seven mitigation plans. Tukey’s HSD Test is unable to distinguish
between the top six mitigation plans with a confidence level between 65% and 60%. With a confidence level
lower than 60%, Tukey’s HSD Test is unable to converge. Since we are unable to use Tukey’s HSD Test
to determine the best single arc mitigation plan at the 40% damage level, we conclude that the brute force
procedure failed.

5.3.4 Conclusions

Comparing our results for GSP with our results for the brute force procedure, we find that we were unable
to use the brute force procedure to obtain the same results we obtained for GSP. With GSP, we are able to
find the best single arc mitigation plan at the 40% damage level with 95% confidence by solving 7,390 IPs.
By solving approximately the same number of IPs in our brute force procedure, we are unable to find the best
single arc mitigation plan. Tukey’s HSD test could not distinguish between many of the mitigation plans until
the confidence level was dropped significantly, and it still could not distinguish between the top six mitigation
plans.Therefore, we conclude that GSP significantly outperformed the brute force procedure in this case.

5.4 Overall Conclusions

There are two primary conclusions to draw from these results. First, the brute force procedure failed
in all three cases. In the 10% damage case, it could not distinguish between the top four mitigation plans
until the confidence level was dropped. It could not distinguish between the top three mitigation plans in the
25% damage case. In the 40% damage case, there were nine top mitigation plans until the confidence level
was dropped. It is clear that the brute force procedure could not determine the top mitigation plan with the
same level of confidence as GSP, and GSP significantly outperformed the standard statistical method overall.



20 Emily A. Heath et al.

The second primary conclusion to draw from these results is that the same arc, arc 1078, was selected as
the winner in all three cases. From an application perspective, this result would be reassuring to a network
manager. As we have previously described, this method is for long-term, high-cost mitigation plans. For each
case individually, the winning single arc mitigation plan has a statistical guarantee that it will contribute the
most to the restoration for that damage level. While this statistical guarantee for one case can help reassure a
manager, this confirmation of the same winning single arc mitigation plan in all three cases would make an
even stronger argument to select this arc as a mitigation plan. Because this mitigation plan can contribute the
most to the restoration of the network in low, medium, and high damage levels, it will significantly improve the
resilience of the network for all future events. Therefore, using this method for multiple damage levels would
be a good way for a network manager to select a long-term mitigation plan by seeing if the same mitigation
plan is the winner in all cases considered.

6 Sequential Mitigation Plans

Because of the types of long-term mitigation plans on which this research focuses, it is unlikely that a
manager will have a sufficient budget to make two long-term mitigation decisions at the same time. However,
these managers may be able to determine that in a later time in the future, they will again have a sufficient
budget to make a long-term mitigation decision. Therefore, this section focuses on how a manager could make
a sequential mitigation decision. To return to the results presented previously, it was determined that arc 1078
was the best single arc mitigation plan at all damage levels. The next relevant question that arises is what is
the next best long-term mitigation plan, given that arc 1078 is already protected? Determining a sequential
mitigation decision can help a manager to more efficiently plan for the future. The procedure outlined in this
work can be modified to determine the next sequential mitigation decision. In all damage scenarios, the arc that
has been selected as the first mitigation decision would not be allowed to be one of the damaged arcs and would
always be available. With the results presented, this first mitigation decision corresponds to protecting arc 1078.
In this section, the results for the next best arc to protect, given that arc 1078 is protected, is presented. We
follow the same framework used in the original single arc testing. We use the same MAST groups, perform 1-
GSP to find a good split of α to α0 and α1, and implement GSP with the same parameters as before to determine
the best arc to protect with arc 1078. We also use the same brute force procedure described previously, where
we used the total number of IPs required for GSP at that damage level to determine how many performance
measures of each mitigation plan to take, and use Tukey’s HSD Test to determine a single best mitigation plan.
The results for all of the same damage levels considered previously are given in the next subsections.

6.1 10% Damage Results with Arc 1078 Protected

6.1.1 1-GSP Results: Split of α

For the low level damage of 10%, we first consider changes in the split of α = 0.05 to α0 and α1. Since
there are 73 systems now, the t and h statistics will both be smaller. Unlike the previous results at the 10%
damage level, it is not best to simply make α1 as large as possible to make h as small as possible. Instead, the
ideal split is 0.03 to α0 and 0.02 to α1. With this split, the tighter testing eliminates all but one arc. Even though
this arc individually has a higher number of second-stage performance measures, there are no other arcs that
survive. Clearly, allocating more than 0.03 to α0 would not allow any more arcs to be eliminated, so such a split
would only mean the remaining arc has a higher number of second-stage performance measures. The results
are displayed in the Table 6.1.1.
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Table 10 10% 1078 in 1-GSP Results

(α0,α1) (t,h) No. of Survivors IPs in Sample 2
(0.01,0.04) (5.742,5.9797) 3 608
(0.02,0.03) (5.204,6.2175) 3 662

(0.025,0.025) (5.036,6.3702) 3 700
(0.03,0.02) (4.901,6.5598) 1 96
(0.04,0.01) (4.692,7.1783) 4 120

6.1.2 GSP Results

As previously stated, the same MAST groups from before are used but with arc 1078 removed. The t and
h statistics found in 1-GSP are used to implement GSP with the same MAST groups. In Group 1, one arc
survived. This arc continued to be the only survivor in remaining rounds of Testing. Thus, we can declare this
arc, arc 1076, to be the best single arc mitigation plan at the 10% damage level with arc 1078 protected. We
were required to solve an additional 96 IPs for second-stage performance measures. Adding to this number the
1,000 IPs needed to determine MAST and 1,460 IPs needed to allocate our initial 10 performance measures for
all 73 arc mitigation plans, we needed to solve a total of 2,556 IPs. We found the best arc to protect with arc
1078 with a confidence level of 95%. Our results for testing in each group are presented in Table 6.1.2. Note
that the last row of our results for GSP in Table 6.1.2 are the same as the results indicated by the corresponding
row of Table 6.1.1 of our 1-GSP results.

Table 11 10% 1078 in GSP Results

Round of Testing, l No. of Survivors IPs in Sample 2
1 1 96
2 1 0
3 1 0
4 1 0

Total 1 96

6.1.3 Brute Force Results

For the brute force procedure, we use the total number of IPs required for GSP to determine how many
performance measures to take of each mitigation plan. GSP required a total of 2,556 IPs to be solved, which
is approximately equal to 18 performance measures per mitigation plan (2,628 IPs). With 95% confidence,
Tukey’s HSD Test is able to determine that arc 1076 is the best single arc mitigation plan with arc 1078
protected. This result agrees with the result from GSP. With a confidence level higher than 95%, Tukey’s HSD
Test is unable to distinguish between the top two mitigation plans. Therefore, we conclude that the brute force
procedure is able to determine the best single arc mitigation plan with 95% confidence.

6.1.4 Conclusions

In comparing our results for GSP with our results for the brute force procedure, both GSP and the brute
force procedure were able to determine the best single arc to protect with arc 1078 with 95% confidence.
Tukey’s HSD could not distinguish between the top two mitigation plans with higher confidence level. There-
fore, we conclude that GSP and the brute force procedure performed the same.
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6.2 25% Damage Results with Arc 1078 Protected

6.2.1 1-GSP Results: Allocation of α

For the medium level damage of 25%, we first consider the changes in the allocation of α = 0.05 to
α0 and α1. In line with previous results, the best split is to allocate 0.03 to α0 and 0.02 to α1. The tighter t
statistic from this α0 significantly reduces the number of surviving arcs from 14 to seven. With only seven arcs
receiving second-stage sampling, the number of IPs that must be solved is significantly fewer than the number
required with other splits. Allocating more than 0.03 to α0 does not allow for any more arcs to be eliminated,
so the four surviving arcs would have higher numbers of second-stage performance measures. Therefore, the
best split with respect to number of IPs required to solve is 0.03 to α0 and 0.02 to α1. The results are presented
in Table 6.2.1.

Table 12 25% 1078 in 1-GSP Results

(α0,α1) (t,h) No. of Survivors IPs in Sample 2
(0.01,0.04) (5.742,5.9797) 14 8082
(0.02,0.03) (5.204,6.2175) 14 8760

(0.025,0.025) (5.036,6.3702) 14 9206
(0.03,0.02) (4.901,6.5598) 7 6482
(0.04,0.01) (4.692,7.1783) 7 7788

6.2.2 GSP Results

The same MAST groups formed for regular 25% damage testing, and the t and h statistics found in 1-GSP
are used to implement GSP. In Group 1, four arcs survived. These arcs received their additional second-stage
performance measures, and were added with Group 2 for the next round of Testing. One of these two arcs
survived round two, along with a new arc from Group 2. This new arc was given its second-stage performance
measures, and both arcs were added with Group 3 for another round of Testing. In subsequent rounds of
Testing, only the arc from Group 1 continued to survive. Therefore, we can declare this arc, arc 1076, to be the
best single arc mitigation plan at the 25% damage level with arc 1078 protected. We needed to solve in total
2,532 more IPs as part of Sample 2. Including the 1,000 IPs required to determine MAST and the IPs required
for the first-stage performance measures, we needed to solve a total of 4,992 IPs to implement GSP. We found
the best arc to protect with arc 1078 at the 25% damage level with 95% confidence. Note the results for GSP
given in the last row of Table 6.2.2 are better than the results indicated by the corresponding row of Table 6.2.1,
the 1-GSP results. Also note that the surviving arc from Group 2 had a high standard deviation, as the number
of IPs for Sample 2 required for this single arc are higher than the number required for all four surviving arcs
from Group 1. The results for testing of each group are presented in Table 6.2.2.

Table 13 25% 1078 in GSP Results

Round of Testing, l No. of Survivors IPs in Sample 2
1 4 1218
2 2 1314
3 1 0
4 1 0
5 1 0
6 1 0
7 1 0

Total 5 2532
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6.2.3 Brute Force Results

For the brute force procedure, we use the total number of IPs required for GSP to determine how many
performance measures to take of each mitigation plan. GSP required a total of 4,992 IPs to be solved, which is
approximately equal to 35 performance measures per mitigation plan (5,110 IPs). With 35 performance mea-
sures per mitigation plan, Tukey’s HSD Test is unable to distinguish between the first 13 mitigation plans with
a confidence level between 95%. With a confidence level of 90% Tukey’s HSD Test is unable to distinguish
between the top nine mitigation plans. Tukey’s HSD Test cannot distinguish between the top eight mitigation
plans with a confidence level between 85% and 60%. Tukey’s HSD Test fails to converge with a lower confi-
dence level than 60%. Since we cannot use Tukey’s HSD Test to determine the best single arc mitigation plan
at 25% damage with arc 1078 protected, we conclude that the brute force failed.

6.2.4 Conclusions

In comparing the results from GSP with our results from the brute force approach, we find that we were
unable to use the brute force procedure with the same number of IPs to obtain the same results from GSP. The
brute force procedure can only get as close as determining the top eight mitigation plans, even as the confidence
level falls to 60%. In this case, we conclude that GSP significantly outperformed the brute force method.

6.3 40% Damage Results with Arc 1078 Protected

6.3.1 1-GSP Results: Split of α

Changes in the split of α = 0.05 are considered first. As indicated by previous results, the best split of α

is 0.03 to α0 and 0.02 to α1. By using this split, only six arcs survive, as opposed to 13 surviving arcs using
some of the other splits. The number of IPs required to solve is significantly lower with this split as a result.
Allocating more than 0.3 to α0, however, did not reduce the number of surviving arcs below seven and would
therefore only increase the second-stage performance measures and the number of IPs that must be solved. The
results for the various splits we examined are given in Table 6.3.1.

Table 14 40% 1078 in 1-GSP Results

(α0,α1) (t,h) No. of Survivors IPs in Sample 2
(0.01,0.04) (5.742,5.9797) 13 12390
(0.02,0.03) (5.204,6.2175) 13 13414

(0.025,0.025) (5.036,6.3702) 13 14096
(0.03,0.02) (4.901,6.5598) 6 6944
(0.04,0.01) (4.692,7.1783) 6 8336

6.3.2 GSP Results

To implement GSP, the same groups found in MAST and the t and h statistics found 1-GSP are used.
In Group 1, three arcs survived. These arcs were given their second-stage performance measures and added
with Group 2 for the next round of Testing. In the second round, only a previous surviving arc from Group 1
survived. This arc also survived in round three, along with two other arcs from Group 3. These new arcs were
given their second-stage performance measures and all three arcs were added with Group 4 for round four of
Testing. In the fourth round of Testing, this previous surviving arc from Group 1 survived with a new arc from
Group 4. This new arc was given its second-stage performance measures and both arcs were added to Group 5
for the final round of Testing. In the final round of Testing, the only surviving arc was the original surviving
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arc from Group 1. Thus at the end we can declare this arc, arc 1076, as the best single arc mitigation plan at the
40% damage level with arc 1078 protected. As a result of the performance measures required in Sample 2 for
surviving arcs, we had to solve an additional 6,944 IPs. This number is substantially larger than the number of
additional IPs required at any other damage level. This result is due to large standard deviations, similar with
the results for regular 40% damage testing. Adding to this number the 1,000 IPs required to determine MAST
and the IPs required for first-stage performance measures, implementing GSP required solving 9,404 IPs. We
are able to determine the best arc to protect with arc 1078 at the 40% damage level with 95% confidence. Note
that our results for GSP given in the last row of Table 6.3.2 match the results indicated by the corresponding row
of Table 6.3.1 of our 1-GSP results. The results of testing each group are given in Table 6.3.2, where it is clear
that arcs surviving in later groups had substantially higher numbers of second-stage performance measures.

Table 15 40% 1078 in GSP Results

Round of Testing, l No. of Survivors IPs in Sample 2
1 3 548
2 1 0
3 3 4606
4 2 1790
5 1 0

Total 6 6944

6.3.3 Brute Force Results

For the brute force procedure, we use the total number of IPs required for GSP to determine how many
samples to take of each mitigation plan. GSP required a total of 9,404 IPs to be solved, which is approximately
equal to 65 performance measures per mitigation plan (9,490 IPs). With 65 performance measures per mitiga-
tion plan, Tukey’s HSD Test cannot distinguish between the top 12 mitigation plans with a confidence level of
95%. With a confidence level between 90% and 80%, Tukey’s HSD Test cannot distinguish between the top 11
mitigation plans. For a confidence level between 75% and 60%, Tukey’s HSD cannot distinguish between the
top 10 mitigation plans. Tukey’s HSD Test fails to converge with a lower confidence level. Since Tukey’s HSD
Test cannot find the best single arc mitigation plan at 40% damage with arc 1078 protected, we conclude that
the brute force procedure failed.

6.3.4 Conclusions

Comparing our results for GSP and the brute force procedure, we find that GSP can determine the best
single arc mitigation plan at 40% damage with arc 1078 protected with 95% confidence while the brute force
procedure is unable to determine the best single arc mitigation plan when using the same number of IPs. The
brute force procedure can only do as well as to identify the top 10 mitigation plans, with a low confidence
level between 75% and 60%. In this case, we conclude that GSP significantly outperformed the brute force
procedure.

6.4 Overall Conclusions

In the results for the sequential mitigation plans, there are a few primary conclusions to draw. While the
brute force procedure was able to determine the best single arc mitigation plan when arc 1078 is protected
with 95% confidence in one case, it performed very poorly in the other two cases. In the 10% damage case,
it was able to determine the best single arc mitigation plan, and confirmed the results from GSP. However,
it could not distinguish between the top 13 mitigation plans for the 25% damage case until the confidence
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level was lowered. In the 40% damage case, it could not distinguish between the top 12 mitigation plans until
the confidence level was lowered. Therefore, we conclude in general that GSP significantly outperformed the
method using standard statistical testing. As with the initial results, the same single arc mitigation plan, arc
1076, is selected as the winner in all three damage cases. This result is useful from an application perspective
for a manager seeking to make a sequential long-term mitigation decision. There is a strong argument to select
this arc to use a mitigation plan, given that arc 1078 was selected as the first mitigation decision. With arc 1078
already protected, arc 1076 as a mitigation plan will contribute to the resilience of the network regardless of the
damage level of future events. Therefore, using this method and considering multiple damage levels would be
a good way for a network manager to make a sequential long-term mitigation decision if the same mitigation
plan wins at all levels.

7 Conclusions and Future Work

We have developed a framework for finding the best single arc mitigation plan in a network. We have
shown that R&S procedures like GSP can outperform standard statistical testing approaches in determining
the best single arc mitigation plan. In all but one case, the brute force procedure was unable to determine the
best single arc mitigation plan as it could not distinguish between some of the top mitigation plans. In some
cases, it could not distinguish between more than 10 of the top mitigation plans, until the confidence level was
lowered substantially. Therefore, we can conclude that in general, GSP significantly outperformed the brute
force procedure. The table of results is given in Table 7. Note that the results for the brute force procedure
indicate the smallest number of top mitigation plans between which it was unable to distinguish before being
unable to converge.

Table 16 Summary Results

Case GSP Brute Force
Total IPs Confidence Total IPs Confidence No. of Top Plans

10% Damage 3,974 95% 3,996 < 60% 2
25% Damage 3,702 95% 3,848 < 60% 3
40% Damage 7,390 95% 7,400 < 60% 6

10% Damage, 1078 in 2,556 95% 2,628 95% 1
25% Damage, 1078 in 4,992 95% 5,110 < 60% 3
40% Damage, 1078 in 9,404 95% 9,490 < 60% 10

A primary observation to make from this table is that higher levels of damage generally require more
IPs to be solved. The reason behind this increase in the number of IPs required is related to the large standard
deviations that pose a problem to either approach. However, it appears that this increased variation in the data
is handled better by the R&S procedure GSP rather than through standard statistical testing. In this general
procedure we developed, we have some clear advantages over a traditional stochastic programming approach.
We can consider a complicated second-stage problem without being concerned that the problem size will blow
up with the number of damage scenarios we consider. We have integrated mitigation decisions with restoration
to form a more complete picture of how a mitigation plan will contribute to the resilience of a network. We
have established an application of R&S procedures to the problem of finding the best single arc mitigation plan
with a given level of statistical certainty, and shown it to significantly outperform approaches using standard
statistical tests in all but one case.

For future research, we would like to work on scaling this method for general arc mitigation plans for any
network. Scaling this method will require constructing a method to eliminate some potential mitigation plans
from the beginning. It will also require developing ways to reduce the high standard deviation that was already
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becoming a problem in single arc mitigation plans. We wish to construct a more generalized version of our
method for determining the best mitigation plan that will work for any arc mitigation plans on any network.

References

1. Ahuja, R., Magnanti, T., Orlin, J.: Network flows: Theory, algorithms, and applications. Prentice-Hall, Englewood Cliffs, New
Jersey (1993)

2. Alderson, D., Brown, G., Carlyle, W., Wood, R.: Solving defender-attacker-defender models for infrastructure defense. In:
R. Wood, R. Dell (eds.) Operations Research, Computing, and Homeland Security, pp. 28–49 (2011)

3. Alderson, D.L., Brown, G.G., Carlyle, W.M.: Assessing and Improving Operational Resilience of Critical Infrastructures and
Other Systems, chap. 9, pp. 180–215. INFORMS (2014). DOI 10.1287/educ.2014.0131. URL http://pubsonline.
informs.org/doi/abs/10.1287/educ.2014.0131

4. Barbarosoglu, G., Arda, Y.: A two-stage stochastic programming framework for transportation planning in disaster response.
Journal of the Operational Research Society 55, 43–53 (2004)

5. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer-Verlag, New York, New York (1997)
6. Cavdaroglu, B.: Integrated mitigation, restoration, and scheduling problem for interdependent infrastructure networks. Ph.D.

thesis, Rensselaer Polytechnic Institute (2012)
7. Cavdaroglu, B., Hammel, E., Mitchell, J., Sharkey, T., Wallace, W.: Integrating restoration and scheduling decisions for dis-

rupted interdependent infrastructure systems. Annals of Operations Research 203(1), 279–294 (2013)
8. Chang, M.S., Tseng, Y.L., Chen, J.W.: A scenario planning approach for the flood emergency logistics preparation

problem under uncertainty. Transportation Research Part E: Logistics and Transportation Review 43(6), 737 – 754
(2007). DOI http://dx.doi.org/10.1016/j.tre.2006.10.013. URL http://www.sciencedirect.com/science/article/
pii/S1366554507000178. Challenges of Emergency Logistics Management

9. Church, R.L., Scaparra, M.P., Middleton, R.S.: Identifying critical infrastructure: The median covering facility interdiction
problems. Annals of the Association of American Geographers 94(3), 491–502 (2004)

10. Cimellaro, G.P., Reinhorn, A.M., Bruneau, M.: Framework for analytical quantification of disaster resilience. Engineer-
ing Structures 32(11), 3639 – 3649 (2010). DOI http://dx.doi.org/10.1016/j.engstruct.2010.08.008. URL http://www.
sciencedirect.com/science/article/pii/S014102961000297X

11. Cormican, K., Morton, D., Wood, R.: Stochastic network interdiction. Operations Research 46, 184–197 (1998)
12. Current, J., Daskin, M.S., Schilling, D.: Discrete Network Location Models, chap. 3, pp. 81–118. Springer (2004)
13. Daskin, M.: Network and Discrete Location: Models, Algorithms, and Applications. John Wiley & Sons (1995)
14. U.S. Department of Energy, Office of Electricty Delivery and Energy Reliability: Hurricane sandy situation report 20 (2012).

URL http://www.oe.netl.doe.gov/docs/2012_SitRep20_Sandy_11072012_1000AM.pdf
15. U.S. Energy Information Administration: Power outages often spur questions around burying power lines (2012). URL http:

//www.eia.gov/todayinenergy/detail.cfm?id=7250#
16. Frazier, P.I.: A fully sequential elimination procedure for indifference-zone ranking and selection with tight bounds on proba-

bility of correct selection (2013). Submitted to Operations Research
17. Hentenryck, P.V., Bent, R., Coffrin, C.: Strategic planning for disaster recovery with stochastic last mile distribution. In:

Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 318–333
(2010)

18. Kim, S.H., Nelson, B.: A fully sequential elimination procedure for indifference-zone ranking and selection with tight bounds
on probability of correct selection. ACM Transactions on Modeling and Computer Simulation (TOMACS) 11(3), 251–273
(2001)

19. Kim, S.H., Nelson, B.: Selecting the best system. Handbooks in Operations Research and Management Science 13, 501–534
(2006)

20. Kleywegt, A., Shapiro, A., de mello, T.H.: The sample average approximation method for stochastic discrete optimization.
SIAM Journal on Optimization 12, 479–502 (2002)

21. Lee, E., Mitchell, J., Wallace, W.: Restoration of services in interdependent infrastructure systems: A network flows approach.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(6), 1303–1317 (2007)

22. Losada, C., Scaparra, M.P., Church, R.L., Daskin, M.S.: The stochastic interdiction median problem with disruption intensity
levels. Annals of Operations Research 201, 345–365 (2012)

23. Matisziw, T., Murray, A., Grubesic, T.: Strategic network restoration. Networks and Spatial Economics 10, 345–361 (2010)
24. Mete, H., Zabinsky, Z.: Stochastic optimization of medical supply location and distribution in disaster management. Interna-

tional Journal of Production Economics 126, 76–84 (2010)
25. Nelson, B., Swann, J., Goldsman, D., Song, W.: Simple procedures for selecting the best simulated system when the number

of alternatives is large. Operations Research 49(6), 950–963 (2001)
26. Nurre, S., Cavdaroglu, B., Mitchell, J., Sharkey, T., Wallace, W.: Restoring infrastructure systems: An integrated network

design and scheduling problem. European Journal of Operational Research 223(3), 794–806 (2012)
27. Nurre, S., Sharkey, T.: Integrated network design and scheduling problems with parallel identical machines: Complexity anal-

ysis and dispatching rules. Networks 63(4), 306–326 (2014)
28. Nurre, S., Sharkey, T.: Online integrated network design and scheduling problems with flexible release dates (2015). Rensselaer

Polytechnic Institute



Applying Ranking and Selection Procedures to Long-Term Mitigation for Improved Network Restoration 27

29. Owen, S., Daskin, M.: Strategic facility location: A review. European Journal of Operational Research 111, 423–447 (1998)
30. Pichitlamken, J., Nelson, B., Hong, L.: A sequential procedure for neighborhood selection-of-the-best in optimization via

simulation. European Journal of Operational Research 173(1), 283–298 (2006)
31. Rawls, C., Turnquist, M.: Pre-positioning of emergency supplies for disaster response. Transportation Research Part B: Method-

ological 44, 521–534 (2010)
32. Salmeron, J., Apte, A.: Stochastic optimization for natural disaster asset prepositioning. Production and Operations Manage-

ment 19, 43–53 (2010)
33. Scaparra, M.P., Church, R.L.: A bilevel mixed-integer program for critical infrastructure protection planning. Computers &

Operations Research 35(6), 1905–1923 (2008)
34. Shen, S.: Two-stage models and algorithms for optimizing infrastructure design and recovery operations under stochastic

disruptions. Computers & Operations Research 40(11), 2677–2688 (2013)
35. Smith, J.C., Lim, C., Sudargho, F.: Survivable network design under optimal and heuristic interdiction scenarios. Journal of

Global Optimization 38(2), 181–1999 (2006)
36. Snyder, L., Scaparra, M., Daskin, M., Church, R.: Planning for disruptions in supply chain networks. In: M.P. Johnson,

B. Norman, N. Secomandi (eds.) TutORials 2006, INFORMS Tutorials in O.R. Series, chap. 9. INFORMS (2006). URL
http://www.lehigh.edu/~lvs2/Papers/SSDC_TutORial_final.pdforhttp://www.lehigh.edu/~lvs2/

37. The White House, Office of the Press Secretary: Presidential policy directive–critical infrastructure se-
curity and resilience (2013). URL http://www.whitehouse.gov/the-press-office/2013/02/12/
presidential-policy-directive-critical-infrastructure-security-and-resil

38. Wood, R.: Deterministic network interdiction. Mathematical and Computer Modelling 17, 1–18 (1993)


