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Abstract

Our goal is to optimize the efficacy of reinforcing an existing flow network to prevent un-
met demand from imminent disruptions. Estimates for the probabilities of failures for edges in
the network are refined as the disaster draws nearer, and we are asked to find edges which will
best provide durability to the network post-event. The problem is formulated as an approxi-
mate dynamic program (ADP). We derive several innovative adaptations from reinforcement
learning concepts. We compare the performance of the policy resulting from the ADP against
traditional two-stage stochastic programs with recourse utilizing a sample average approxi-
mation model. We provide empirical evidence which corroborates with basic theorems of
convergence for more simplistic forms of the reinforcement learning process. The material
presented here is developed in the context of preparing urban infrastructures against damages
caused by disasters, however it is applicable to any flow network.
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1 Introduction
Disasters, whether natural, biological, accidental, or terrorist, can cause major damage and cost
great sums of money to restore an area to standard working conditions. Restoring service infras-
tructures is especially costly, and finding better, more economical ways of restoring these systems
is of great interest to many. Likewise, finding the best ways to prevent such damage altogether has
received much attention. A normally functioning system describes flow of goods and/or services
from those entities which provide them to those that require them, connected through a network
of intermediaries. During a disaster, these entities or connections will be subject to disruptions
which prevent the system from functioning normally; that is, the flow of goods or services from
supplier to consumer is halted or diminished. An example of where this might be employed, and
an application to which this work is applied, is restoring various (notably power) infrastructures
from disruptions caused by hurricanes [20].

Previous investigations into repairing known, post-event damage as quickly as possible [6, 8,
9, 18, 29, 30, 38] motivate work that might minimize unmet demand by preventing it altogether,
and in this work we focus on mitigation. One hope is to avoid unnecessary costs incurred due to
unmet demand by reinforcing and installing edges into the pre-event network. Now consider the
case when we know a disaster is imminent, but there is enough time to weigh our options. We
likely have more resources at hand at the early stages, and certainly more time to be able to make
several reinforcements if we need to. However, installation costs may not be negligible, and we
wish to avoid installing an edge that later on turns out to be a worthless investment due to changes
in the nature of the disaster. For example, hurricane forecasts give a general direction of the path
of the hurricane, but are limited in their accuracy by a cone of uncertainty. The hurricane has a not
insignificant chance to move anywhere within this cone as it travels along the forecasted path, and
it may either increase or decrease in intensity. In these cases of high variability in predictions, it
behooves the user to wait for further updates to the forecast rather than install edges right away.
The question we then seek to answer is: which edges can we install that will once again allow the
supplier to provide its service to those who need it, and when do we install them?

At any given time, the network can be described by its set of edges and their capacities, includ-
ing any previously installed edges. We refer to this set of information together with the current
forecast of the event as the state of the network, and all possible configurations of the network
are contained within the state space. For any given state, the action space is the set of edges we
might install. Once an action is performed at a state, the state changes. Our goal in this paper is
to generate a sequence of installation decisions to minimize unmet demand induced by changing
outage forecasts. The purpose of constructing this model is to describe the system dynamics so
that we can estimate losses and project state transitions for use in a process that learns to make
better installation decisions.

Network analysis focused on addressing disruptions and uncertainties is a broad topic that has
been approached in many different ways. The most basic treatment involves disaster modeling
from logistical or socioeconomic matters [7], but can also be approached from a purely mathe-
matical standpoint, analysis which has existed for quite a while [47], but which has become in-
creasingly sophisticated over time [22, 23]. Perhaps the most popular trait addressed is network
performance in the presence of uncertain supply and demand [1, 11, 14, 16, 34, 35, 40, 46, 48].

2



Another less popular system dynamic that has been addressed, and the area which we investigate,
is actual damage to the network. However, whereas we look at edge capacity failures, it is node
failures that have received more attention [3, 39]

The popular method for optimizing under uncertainty is the large field known as Stochastic Pro-
gramming (SP) [19, 37]. Stochastic programming does have some disadvantages, however. First,
the optimal solution depends on a probability distribution of outages which may not be known
exactly. Second, the sample set for this distribution can be intractably large or infinite, making
calculating the expectation impossible. These drawbacks can be addressed by taking sample out-
comes, which inherently introduces error into the solution. The first stage objective is estimated
using a weighted average over a number of samples, known as the Sample Average Approximation
(SAA) method.

Our model will have two levels of uncertainty. We have a forecast timeline of outage probabil-
ities, with this forecast evolving. Thus, the probability that a particular infrastructure component
is damaged depends on the outage probabilities, and the outage probabilities are themselves evolv-
ing in a stochastic manner. The outage probabilities can be regarded as a representation of the
forecast of the characteristics of the impending disaster; sample scenarios of the surviving system
will be the original network without the amalgam of edges randomly selected to have failed, each
according to their outage probability. Du and Peeta [12] also look at planning for disasters when
the outage probabilities are evolving. In order to account for the evolving outage probabilities and
the dynamic nature of our installation decisions, we will model our problem in an approximate
dynamic programming framework.

1.1 Approximate Dynamic Programming
Reinforcement Learning (RL) [4, 41, 42] is a general term used to describe one particular mode of
machine learning: to improve an artificial agent’s choices in some context so as to minimize an ex-
pected loss. A key aspect of RL is that we are making decisions in an environment without perfect
information. The agent is able to describe some aspects of the current state of its environment, but
there are other aspects hidden to it. When it comes time for it to make a decision, it must weigh
what it has learned from previous state transitions and the associated loss of the transition’s action
with the newly encountered state and its current valuation of loss for actions taken at that state.
Once the agent has made its decision, it is only capable of evaluating whether it was a good choice
or a bad one.

Our model will have multiple stages, so the solution approach we consider is approximate
dynamic programming, or ADP [31], the method of choice for implementing a solution to RL
problems in the operations research community. The linkages between stochastic programming,
approximate dynamic programming, and reinforcement learning are explored in [32]. Combina-
tions of installable edges increase exponentially with the number of edges available. The use of
ADP is an attempt to overcome the three curses of dimensionality: evaluation of state space, action
space, and uncertainty.

The value of being in a state is approximated using a dynamically updated value function ap-
proximation (VFA). One way to address the curses of dimensionality is to parametrize the VFA
to be some linear combination of basis functions whose coordinates are the so-called VFA coeffi-
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cients. A basis function is simply some quantity calculable from numeric data acquired from the
state. The general approximation is

Ṽ(S ) =
∑
f∈F

θ fφ f (S ), (1)

where φ are the set of basis functions, θ are the set of coefficients to be determined, and F is
a set of features. This VFA form effectively condenses down the need for storing every state’s
value individually and replaces them with storing only a unique combination of coefficients to
describe all states. This formulation of the VFA is known as a linear-in-the-parameters model.
This terminology does not preclude the basis functions from being nonlinear; in fact, the basis
functions for our model are nonlinear.

Given a sampled scenario, an iteration of the basic ADP method occurs in three steps. First,
the best policy is found for the current state by taking the action that will minimize long-term
cost. Long-term cost is defined as the VFA evaluated for the expected state by taking a particular
allowable action plus any cost incurred as a direct result of taking that action. Second, the next
state is determined by taking the chosen action and applying any exogenous factors. Once this
state is determined, its VFA evaluation is used in the third step to refine the VFA by modifying the
coefficients of the basis functions to better capture the performance of the policy. These three parts
of an iteration are known as the control step, transfer function evaluation, and the prediction step,
respectively. Specifics of each step are presented in Section 2 and later.

The process of evaluating and improving policy on states in an arbitrary (yet complete) fashion
is called asynchronous policy iteration. This method can also be shown to converge to an optimal
value:

Theorem 1 (Theorem 4 in [4]). Asynchronous policy iteration convergence: Consider the algo-
rithm that starts with an arbitrary initial value function V0 and at the nth iteration, chooses a state
sn, replaces the snth component of the current value function with T (Vn(sn)), and leaves all other
components of Vn unchanged; that is,

Vn+1(s) =

{
T (Vn(s)) , s = sn

Vn(s), otherwise

with

T (V) = min
a

∑
s′
Pa

ss′R
a
ss′ +

∑
s′
Pa

ss′V

 , (2)

with a state transition probability

Pa
ss′ = Pr

[
S t+1 = s′ | S t = s, at = a

]
(3)

and a corresponding one-step expected return

Ra
ss′ = E

[
lt+1 | S t = s, at = a, S t+1 = s′

]
(4)
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where lt+1 denotes the loss at time t + 1. Assume that all states are chosen for iteration infinitely
often. Then

lim
n→∞

Vn = V∗,

where V∗ is the optimum satisfying Bellman’s optimality equation.

Topaloglu and Powell [44] have worked on an ADP algorithm in a time-expanded multicom-
modity flow network. Like us, they employ a linear form (as well as a piecewise linear form) for
the VFA, however other facets of their work differ. The simplest difference is that they consider
the network under demand uncertainty. It is mainly this research and the research presented in
[5, 10, 13, 15, 21, 27, 28, 33, 34, 36, 43] along with the seminal works [2, 4, 31, 37, 42] that
provide the tools and motivation for our work.

1.2 Present material and contributions
The problem to which we ascribe all of the above methods is motivated by disaster mitigation.

The predictive model is time-expanded with a “first-tier” or scenario level stochastic process
representing the forecast timeline of outage probabilities (not the sampled hypothetical outages),
which is a constrained Dirichlet process. Thus there are two layers of uncertainty present in the
model: uncertainty of what the outage forecast will look like, and uncertainty for which sample
outcomes will be under consideration for that time period’s forecast. We will refer to the latter as
the “second-tier” or outcome level outages, and this is a Bernoulli process whose random variables
are the sampled outcomes of the Dirichlet process. In the context of planning for an impending
hurricane, the predicted path and associated probabilities of damage are updated as the event ap-
proaches and they constitute the Dirichlet process, while the actual outages are drawn from the
Bernoulli process. Our state space includes both the sampled deterministic forecast data and the
set of hypothetically damaged edges for a given time step along with any installed edges from
previous time periods. State transitions are performed by adding edges one chose to install in the
current time step, taking new samples from the first-tier random process to obtain forecast data,
then sampling from second-tier random variables constructed with this data.

The model starts with the basic linear-in-the-parameters VFA described earlier. One of the
innovative aspects of our work is that these basis functions use only the forecast data, and thus
can be considered to map from the first-tier Dirichlet process. Having the basis functions depend
only on the Dirichlet process opens up the potential for using basis functions that use a variety of
statistical calculations. We introduce a basis function based on a shortest path heuristic for each
installable edge. The shortest path heuristic provides the probability that at least one edge will fail
in the path most likely to remain intact. This basis function is later refined using a multiplicative
factor based on the amount of flow that can pass through this shortest path relative to the bandwidth
of the network, and we conduct a study on the efficacy of various values of this factor.

The bulk of the contribution lies in the field of ADP. There has been little study with flow
network resiliency using ADP methods or any other predictive methods, and this work expands
upon it. Because of our two-tiered model, all state transitions can occur at the scenario level rather
than the outcome level. This means the basis functions more accurately represent the fact that
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unique combinations of VFA coefficients correspond to a whole family of states. Further, we in-
troduce the idea of using varying and unknown probability distributions over time, where previous
work has only employed static, standard distributions [44]. ADP models have also only concerned
themselves with unknown demand and/or diminished node storage capacity in facility location
problems, whereas our model changes the very nature of the network by adding and removing
connections, which in turn changes the size of the state space. We incorporate sample averages in
the prediction step in possibly a novel manner.

The remainder of the document is laid out as follows: Section 2 describes the ADP algorithm,
including the definition of the basis functions and the control step. The prediction step is the
subject of Section 3. The ADP model is compared with two two-stage stochastic programming
approximations to our multi-stage model, described in Section 4. Initial computational results
appear in Section 5. A refinement to the basis functions is the subject of Section 6 and conclusions
and suggested avenues of future study are contained in Section 7.

A word on notation: we use undecorated variables to represent the target or “true” depictions of
quantities, while using hats for random quantities and tildes for estimated quantities or calculated
constants.

2 The ADP algorithm

2.1 ADP formulation from Bellman’s equation
Our model has two levels of complexity: sampling a forecast scenario from a Monte Carlo (MC)
simulation and performing an ADP algorithm by sampling outcomes from that forecast. The first-
tier random process is denoted Ψ̂, with deterministic forecast data ψ sampled from this process.
Thus, ψt is the MC simulated forecast, a deterministic realization, at time t from the random vari-
able Ψ̂t. In this way, Ψ̂ maps “forecasts” to probabilities of occurrence. The forecasts evolve over
time, so Ψt depends on the previous realization ψt−1. This realization ψt consists of the probabili-
ties that each original edge will be damaged. The second tier random variables are drawn from the
Bernoulli random variables specified by ψt and they comprise a vector ut of edge capacities, each
of which is equal to its original capacity or 0.

The state S t at time t consists of the deterministic forecast data ψt−1 sampled at time t − 1, the
network’s edge capacities as modified by ψt−1, and a list of the installation decisions performed
at prior times at−1. The set of all states at time t is denoted St. By taking a set Ωt ⊆ Ψt(ψt−1) of
samples, we can construct a sample average approximation that we can use to obtain a form of
Bellman’s equation given by

Ṽt (S t) = min
at

C (S t, at) +
∑

ψt∈Ωt⊆Ψt(ψt−1)

PΩt

[
ψt

]
Ṽt+1 (S t+1 (at, ψt)) ∀S t ∈ St, (5)

where C(S t, at) is the one-step cost. The set of feasible states St+1 available at time t + 1 depends
on the actions at we take at time t and on the forecast scenario ψt. We use the tilde notation on V
to emphasize that since we are only looking at a subset of samples from the distribution, we are
now only approximating the actual value of being in a state. It is still a valid estimation because if
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Figure 1: Work crews are assigned to mitigation tasks before the event at time T .

we sample many times, the sample average approaches the actual expectation over Ψ̂t by the Law
of Large Numbers. Currently, although we do not take more than one sample per iteration, we
perform this procedure over many iterations, achieving the same effect.

We are looking to perform installation decisions prior to an event at time T . These installation
decisions may require the allocation of work crews, as illustrated in Figure 1. Installation decisions
are made at times t = 0, . . . ,T − 1 based on the forecast scenario ψt−1 available at that time. It
may be optimal to employ a wait-and-see strategy at certain times, as illustrated in the figure. It is
possible that an installed edge is parallel to an existing edge, which would correspond to increasing
the capacity of the existing edge. In our computational testing, we assume that an installed edge
will survive the event, but the model could be extended to allow failure of an installed edge with
some probability. For the computational results in this paper, we assume that installation of an
edge takes one time step.

2.2 Basis functions and the control step
The basis function value assigned to an installable edge is a function of the current sample ψt of
the scenario level stochastic process, but does not depend on a particular realization of the outcome
level outages. It is the probability that at least one edge will fail in the path most likely to remain
intact, with the path constructed from the original edges A. For a given installable edge i, let
F(i) ⊆ A be the set of edges in this path. Thus the basis function φi is the probability of failure of
at least one edge in the path:

φi (ψt) := π (F(i)) = 1 −
∏

kl∈F(i)

(1 − ψtkl) = 1 −
∏
kl∈A

(1 − ψtkl)xkl (6)

where the binary variable xkl indicates whether edge (k, l) ∈ F(i) and ψtkl is the forecast outage
datum for edge (k, l) in the original network. The set F(i) can be determined by solving a shortest
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Figure 2: Two paths between nodes a and b. P(path adh jb fails) ≈ 0.151, P(path acpb
fails) ≈ 0.106

path linear program:

F(i) := arg min
kl∈A

−
∑
kl∈A

ln (1 − ψtkl) xkl (7a)

s.t.
∑

l

(xkl − xlk) =


1, if k = σ

−1, if k = τ

0, otherwise
, (7b)

x ≥ 0. (7c)

The value function approximation at time t+1 consists of a simple linear dependence on the actions
at time t. We let Z denote the set of installation decisions at time t. The basis functions do not
depend on the capacities of the edges, so we will describe a refinement to them in Section 6. An
illustration of path length calculation using logs can be found in Figures 2 and 3.

Now that we have closed and explicit forms for all entities in the objective, we are ready to write
the full control step. The set of origin nodes is denoted O with the supply available denoted b, the
set of demand nodes is denoted D with demand denoted d, and the set of transshipment nodes is
denoted T . The capacities of the original edgesA are denoted u and those of the installable edges
A′ by u′, with flows on these two classes of edges denoted by x and y respectively. Installation
decisions are captured using the binary variables ζ. We assume both demand and supply nodes are
outgoing-terminal and incoming-terminal, respectively, and that all measurable quantities (flows,
capacities, etc.) shall be non-negative. In this discussion, we allow for reinforcement of existing
edges and we have an installation budget of Λ at each time t, and there are no installable nodes.

The one step cost C(S t, at) is approximated using a sample average approximation of the unmet
demand z when no additional edges are installed over K outage outcomes, with different scenarios
indicated through the use of the subscript k. The VFA coefficients θ are adjusted over time, and we
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Figure 3: Path length calculation using logs of probabilities. Path adh jb length 16.2, path
acpb length 11.2

represent the iterations of this process using the superscript n. We interpret the terms in the VFA to
represent the reduction in expected unmet demand that is attributable to the installation of edges,
with a base cost that represents the expected cost if no installations are performed. Thus, we split
the control step into two subproblems, resulting in a disjoint control step:

ζ̃n
t := arg min

ζt∈B|A
′|

−

|Z|∑
q=1

θn
qtφq

(
ψn

t
)
ζqt (8a)

s.t. ζt ≥ ζ̃
n
t−1, (8b)∑

i′ j′∈A′

(
ζti′ j′ − ζ̃

n
t−1,i′ j′

)
≤ Λ (8c)

νn
Ct := min

xt ,yt ,zt

1
K

K∑
k=1

|D|∑
j=1

ztk j (8d)

s.t. xtk ≤ un
tk ∀k = 1, . . . ,K (8e)

yt ≤ u′Tζ̃n
t−1 ∀k = 1, . . . ,K (8f)∑

i j∈A
i j′∈A′

(
xtki j + yti j′

)
≤ bi ∀i ∈ O, k = 1, . . . ,K (8g)

∑
i j∈A

i′ j∈A′

(
xtki j + yti′ j

)
+ ztk j = d j ∀ j ∈ D, k = 1, . . . ,K (8h)

∑
il, l j∈A

i′l, l j′∈A′

(
xtkil + yti′l − xtkl j − ytl j′

)
= 0 ∀l ∈ T , k = 1, . . . ,K (8i)

x, y, z ≥ 0 (8j)
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The base cost νn
Ct for the current time step is calculated by solving a linear program (LP) when

no additional edges are installed in (8d)–(8j), and a discount (the objective value for the solution
ζ̃n

t in (8a)) is determined by edge selection. We shall call the sum of the two objectives (8a) and
(8d) the discounted cost of unmet demand for installing edges dictated by the current policy. The
VFA coefficients are restricted to be nonnegative, since the installation of any edge can only reduce
the expected unmet demand; nonnegativity is maintained in the prediction step, using the methods
outlined in Section 3.2.

2.3 The overall algorithm
At each iteration n, the algorithm takes a control step, performs a policy evaluation, and takes
a prediction step to update the values of θ. We initialize the VFA by assigning values to the
coefficients θ0

it ∀t = 0, . . . ,T , given by

θ0
it =


∑|D|

j=1 d j

2|Z| , t = 0, . . . ,T − 1
0, t = T,

(9)

the rationale here being that we want coefficients to take on values commensurate with potential
cost values. The coefficients are zero at time T because there is no future installations to process.

At each iteration n, we sample a forecast scenario ψn
t from Ψ̂ that will dictate our stochastically

determined outage outcomes. Once we have this, we can evaluate our basis functions (6). At time
0, there are no installed edges, so we are ready to proceed.

We now run the control step as described in Section 2.2, proceeding forward through time T .
This system is linear-in-the-parameters, linear-in-the-resource, and “separable-in-the-parameters”.
The overall algorithm is given by Algorithm 1.

The transfer function δ in Step 1.4.3 indicates that we may employ an off-policy heuristic.
We used a soft on-policy ε-greedy heuristic, which took the form of installing each chosen edge
with probability 1 − ε or instead installing an entirely random edge or no edge with probability ε.
This is to ensure diversification in the exploration of the state space, so all states are visited with
probability one if the process is continued for long enough.

The target value and the prediction step are discussed in the next section.

3 The prediction step
We identify six distinct components involved in determining θn+1

t : the previous VFA coefficient
values, a target value function, a direction, a step size parameter, the VFA for the current control
step evaluation, and the vector of basis functions of future states as functions of the actions made
in the current control step. The target value function is discussed in Section 3.1, possible directions
in Sections 3.2 and 3.3, and the step size parameter in Section 3.4.
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0. Initialize VFA coefficients θ f t ∀ f ∈ F , t = 0, . . . ,T

1. For n in 1, . . . ,N:

1.1. Sample ψt from Ψ̂t ∀t = −1, . . . ,T − 1.

1.2. Set S 0 having taken no actions.

1.3. Calculate φ f t ∀ f ∈ F , t = 0, . . . ,T − 1.

1.4. For t in 0, . . . ,T :

1.4.1. Control step: Calculate actions ζ̃t by solving the disjoint control step (8).
1.4.2. Set Ṽt =

∑
f∈F θ f tφ f tζ̃ f t

1.4.3. Advance to S t+1 = δ
(
S t, ζ̃t, ut+1

)
1.4.4. t = t + 1; If t ≤ T , go to 1.4.1.

1.5. For t in 0, . . . ,T :

1.5.1. Calculate target value Vπ(S n
t ) and corresponding target actions ζ t.

1.5.2. Prediction step θ f t = U
(
θt, φt, ζ̃t, ζ t,C

(
S t, ζ̃t

)
, Ṽt,Vπ(S n

t )
)
∀ f ∈ F

1.5.3. t = t + 1; if t ≤ T , go to 1.5.1.

1.6. n = n + 1; If n ≤ N, go to 1.1

Algorithm 1: An ADP algorithm for determining installation decisions
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3.1 Target value considerations
The target value is a desirable quantity that accurately reflects the value for being in a particular
state. In traditional RL applications, this value is directly observable by the system after the event
is resolved. In our case, this is not possible because we do not know what the actual outages will be
as our problem lies entirely pre-event. We therefore must consider a way to gauge an installation’s
value as accurately as we can. We use an SAA method to get a more accurate value for the expected
behavior. In this model, an optimal installation decision is calculated for a sample of scenarios at
time T , given the installation decisions made up to time t − 1. In order to create a scenario, we
need to sample the forecast and then, from the forecast at time T , we sample the damage. The
corresponding installation decisions are denoted ζ̄ in Step 1.5.1 of Algorithm 1.

Vπ(S n
t ) := min

ζt ,xt ,yt ,zt

1
K

K∑
k=1

|D|∑
j=1

ztk j (10a)

s.t. xtk ≤ un
Tk ∀k = 1, . . . ,K, (10b)

yt ≤ u′Tζt, (10c)
ζt ≥ ζ̃

n
t−1, (10d)∑

i j∈A
i j′∈A′

(
xtki j + yti j′

)
≤ bi ∀i ∈ O, ∀k = 1, . . . ,K, (10e)

∑
i j∈A

i′ j∈A′

(
xtki j + yti′ j

)
+ ztk j = d j ∀ j ∈ D, ∀k = 1, . . . ,K, (10f)

∑
il, l j∈A

i′l, l j′∈A′

(
xtkil + yti′l − xtkl j − ytl j′

)
= 0 ∀l ∈ T , ∀k = 1, . . . ,K, (10g)

∑
i′ j′∈A′

(
ζti′ j′ − ζ̃

n
t−1,i′ j′

)
≤ Λ, (10h)

x, y, z ≥ 0, ζ ∈ B|A
′ |. (10i)

3.2 Descent directions
We consider minimizing the mean-squared error (MSE)

MS E(θt) =
∑
s∈S t

(
Vπ(s) − Ṽt(s)

)2
(11)

to determine a descent direction via gradient descent, with the goal of converging to the target
value. In the disjoint control step, the total discount and the discounted cost must be nonnegative
since the alternatives are nonsensical in the physical world. This leads to the following modified
prediction step equation:

θn+1
t = θn

t − αn

Vπ(S n
t ) −max

νn
Ct −max

 |Z|∑
i=1

θn
itφi

(
ψn

t
)
ζ̃n

it, 0

 , 0


 φ (

ψn
t
)
ζ̃n

it, (12)
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where αn is a step size parameter and Vπ(S n
t ) is the target value function. Here θ and φ without the

subscript f are respectively the vector of coefficients and basis functions of length F .
For the disjoint control step, the recursive least-squares formula for updating θ is given by

θn+1
t = θn

t − Hnφ
n
S t
ε̂t, (13)

where

Hn =
Bn−1

γn
, (14a)

γn = λ +
(
φn

S t

)T
Bnφ

n
S t
, (14b)

Bn =
1
λ

(
Bn−1 −

1
γn−1

Bn−1φ
n
S t

(
φn

S t

)T
Bn−1

)
, (14c)

ε̂t = max

νn
Ct −max

∑
f∈F

θn
f tφ f ,S t+1(ζ̃

n
t ), 0

 , 0

 − Vπ(S n
t ). (14d)

and λ is a discount factor to discount older observations (those already incorporated into the re-
gression matrix Bn). The dependence on actions of the basis functions were suppressed above for
the sake of clarity. It has been shown that it is effective to relate the discount factor to the step size
for the gradient descent method, at least for the case of a constant basis function φ = 1, so we use
the following formula:

λn = αn−1
1 − αn

αn
. (15)

3.3 Incorporating target decision variables into prediction
As we have already established, selecting an edge for installation means that its corresponding
VFA coefficient will change. Using the disjoint control step, higher coefficient values indicate a
larger discount and thus a more desirable edge to install. Whether or not a coefficient’s value goes
up or down depends on the relative behavior of the target value function and the value function
approximation, however.

Let us describe the desired behavior first and derive a new descent direction from it. Say an
edge is chosen for installation by the VFA but it is not chosen in the target value determination.
We should then consider decreasing the coefficient’s value since more importance has been placed
in the policy’s installation decision than is physically appropriate. If the discounted cost is higher
than the target value then this increased importance is erroneous and so the coefficient’s value
should definitely decrease. If however the discounted cost is lower than the target value then the
increased importance is justified, realistically or not, and so the coefficient value should increase.
After all, the eventual aim is to find the optimal policy, not just to converge to the target value.
Similar motivation can be made in other situations.

Using the overline and tilde notation of Algorithm 1 for the target value quantities and the basis
function notation and the disjoint calculations of Section 2.2, we can now algorithmically describe
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our modified prediction step:

θn+1
it = θn

it − αn

Vπ(S n
t ) −max

νn
Ct −max

 |Z|∑
i=1

θn
itφi

(
ψn

t
)
ζ̃n

it, 0

 , 0


 φ (

ψn
t
) (

2ζ
n
it − ζ̃

n
it

)
. (16)

The descent direction is now dictated by both the target installation decisions ζ
n
tk and the control

step decisions ζ̃n
tk rather than just the latter. The determination and calculation of the discount term

remains the same. In other words, the control step uses the original basis function description
φk,q

(
ψn

t
)
ζn

tk in its formulation and the discount term in the prediction step is calculated only with
its solution. This is a significant departure from the traditional RL procedure, as basis functions
are open to interpretation by the designer, but the descent direction is directly derived from its
structure. This method proposes to use a particular basis function structure but alter it to suit a
different descent direction in the prediction step. As we will see in Section 5, the improvement in
performance is notable. Developing the theory for its efficacy as well as empirically gauging the
performance of a generalized descent direction alteration (such as experimenting with the numeric
coefficients to ζ

n
tk and ζ̃n

tk) could both potentially be deep and rewarding areas of further research.

3.4 Step size considerations
Step size is an issue of exploration versus exploitation versus convergence. Convergence to an
optimal value of the standard RL model is guaranteed only for step sizes that satisfy the conditions
specified in [42]; that is, the step size must satisfy

∞∑
n=1

αn = ∞, and
∞∑

n=1

α2
n < ∞. (17)

These conditions may be too restrictive: if the step size diminishes too rapidly, the contributions
of future iterations might induce insufficient exploration to find better states. Previous work has
shown that theoretical convergence is not strictly required for the process to settle on a solu-
tion [45]. Based on extensive experimentation, we selected a McClain step size of the form

αn =
αn−1

1 + αn−1 − α
, (18)

where α ∈ [0, 1) is some constant. For the beginning iterations, the McClain step size emulates a
harmonic progression, and as n → ∞, αn → α. Further, the closer α is to 0, the longer αn takes to
flatten out to the constant. This step size is also used when determining the discount factor λ in the
recursive least-squares method.

4 Two stochastic programming models
Our model is a multi-stage stochastic programming problem. In order to evaluate the performance
of our ADP model, we compare it to two two-stage stochastic programming approximations. In
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the first approximation, we assume we can delay installation decisions until the final set of outage
probabilities are known, see Section 4.1. This is not practicable, since we would not have time to
carry out the installation decisions, so the optimal value of this stochastic program would provide
a lower bound on the expected unmet demand for the full stochastic program. The second approx-
imation in Section 4.2 takes the opposite approach: we assume all installation decisions are based
on the initial forecast of outage probabilities, so we do not use the additional information avail-
able as the event draws closer. Ideally, the ADP approach should result in lower expected unmet
demand than that returned by this second stochastic programming approximation. The stochas-
tic program models use a set of M timelines, with N outage scenarios drawn for each timeline.
These timelines and scenarios are our “testing” timelines and scenarios, so they are not used in the
training of the ADP approach.

4.1 Scaled-up optimality and run time performance testing
Given perfect information about a timeline, we can calculate optimal installation decisions for
sampled outage outcomes. Thus, we assume perfect information about the Dirichlet process and
then sample from the Bernoulli process to create an SAA. The mean of these M optima is then
taken to be the ideal lower bound on cost for the purposes of this study. This lower bound is
unrealizable because the installation decisions are optimized separately for each timeline, so they
violate nonanticipativity.

Ṽm
IP@T := min

xm
T ,y

m
T ,z

m
T

1
N

N∑
n=1

|D|∑
j=1

zm
Tn j (19a)

s.t. xm
Tn ≤ um

Tn ∀n = 1, . . . ,N, (19b)

ym
T ≤ u′Tζm

T , (19c)∑
i j∈A

i j′∈A′

(
xm

Tni j + ym
Ti j′

)
≤ bi ∀i ∈ O, n = 1, . . . ,N, (19d)

∑
i j∈A

i′ j∈A′

(
xm

Tni j + ym
Ti′ j

)
+ zm

Tn j = d j ∀ j ∈ D, n = 1, . . . ,N, (19e)

∑
il, l j∈A

i′l, l j′∈A′

(
xm

Tnil + ym
Ti′l − xm

Tnl j − ym
Tl j′

)
= 0 ∀l ∈ T , n = 1, . . . ,N, (19f)

∑
i′ j′∈A′

ζm
Ti′ j′ ≤ TΛ, (19g)

x, y, z ≥ 0, ζ ∈ B|A
′ |. (19h)
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4.2 A stochastic approximation using the initial information
These tests present an additional useful basis of comparison: integer program (IP) SAAs for each
forecast timeline subject to the outage outcomes sampled at time 0. In other words, it is exactly
like the problem given by equations (19) except with the slight subscript specification here:

Ṽm
IP@0 := min

ζm
0 ,x

m
0 ,y

m
0 ,z

m
0

1
N

N∑
n=1

|D|∑
j=1

zm
0n j (20a)

s.t. xm
0n ≤ um

0n ∀n = 1, . . . ,N, (20b)

ym
0 ≤ u′Tζm

0 , (20c)∑
i j∈A

i j′∈A′

(
xm

0ni j + ym
0i j′

)
≤ bi ∀i ∈ O, n = 1, . . . ,N, (20d)

∑
i j∈A

i′ j∈A′

(
xm

0ni j + ym
0i′ j

)
+ zm

0n j = d j ∀ j ∈ D, n = 1, . . . ,N, (20e)

∑
il, l j∈A

i′l, l j′∈A′

(
xm

0nil + ym
0i′l − xm

0nl j − ym
0l j′

)
= 0 ∀l ∈ T , n = 1, . . . ,N, (20f)

∑
i′ j′∈A′

ζm
0i′ j′ ≤ TΛ, (20g)

x, y, z ≥ 0, ζ ∈ B|A
′ |. (20h)

Note that it is still allowed to make the cumulative number of decisions.

5 Experiments on variations and adaptations

5.1 Random network generation
The generated network is a generalized and modified hub-and-spoke design. There are four types
of nodes in the graph and correspondingly four types of edges. Supply nodes have nothing but
outgoing supply lines, hubs have both outgoing and incoming main lines to other hubs, and termini
(the demand nodes) have nothing but incoming feed lines. The fourth type of node/edge pair is
somewhat different, and is what distinguishes the graph from a standard hub-and-spoke graph:
relay nodes and switch paths. Relay nodes are intermediary, or transshipment, nodes that indirectly
connect one hub to another through switch path lines. They also may have feed lines to demand
nodes and supply lines from supply nodes. Balancing the demand takes the sum of supply amounts
from all supply nodes and distributes them evenly across all demand nodes. Hubs connect to all
termini within a specified radius. Next the algorithm creates switch paths. The algorithm finds
the shortest distances between any hub and relay, connects them, then connects relays to relays
in nearest-neighbor fashion until the path length is reached. The algorithm then connects the
final relay to the closest hub. The edge placement procedure wraps up by connecting supply and
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Figure 4: Large-scale randomly generated network. Supply nodes are green, demand nodes
are red, hubs are cyan, and the remaining nodes are relay nodes. Edges are directed

towards the thicker end.

demand nodes to the established network. Once node and edge placement are finished, the network
generator does some final tests to ensure connectedness and feasibility.

A similar temporary network is built for the model, representing the set of installable edges.
The network is comprised of 200 nodes, only 71 of which are demands and 5 are suppliers.

There are 317 edges, but only 128 installable edges. A map of the network is given in Figure 4.
Since there is more than 1 hub, there are main lines which are colored cyan.

5.2 Monte Carlo forecast timeline simulation
Generating a forecast for a single time period is straightforward: given an epicenter, a set of radii,
and an upper and lower bound for each radius, the MC simulation assigns to every edge a random
outage probability between the bounds for the smallest concentric circle centered at the epicenter
to which it “belongs”. An edge belongs to a circle if a user-specified percent of the edge lies within
its borders.

There are five parameters involved in the dynamics of evolving the forecast from one time step
to the next. The epicenter moves randomly, biased toward reaching the edge, as the new node’s
distance away from the current epicenter is sampled from a triangular distribution. This encourages
greater variability in an otherwise restricted system. In addition to the shift radius, the four other
parameters that change the forecast are multipliers that geometrically increase or decrease the next
innermost region of effect, the upper and lower bounds of outage percentages, and the shift radius.
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The radial means by which the probabilities are placed are perhaps less likely to model a
hurricane’s path and are more reminiscent of e.g. a targeted terrorist attack. To provide a more
accurate model for a hurricane, one might implement a “bar” based probability assignment scheme,
where probabilities are placed corresponding to concentric strips. By whichever means, these are
all possible, as any user may easily substitute his or her own procedures for generating these
components of the model. However, for the forecast simulator it is important to maintain an aspect
of refinement, that as time progresses the failure chances have smaller and smaller ranges to some
extent. It would appear to be desirable to have a Dirichlet process that is not memoryless for the
approximate dynamic programming approach to converge to an optimal solution.

5.3 Computational results
The following tests gauge solution quality only. While introducing one or more of the variations
of §3 can slow down run time greatly, it is not of central concern since we recognize that the train-
ing algorithm may be run off-line; that is, well before the event and therefore with plenty of time
to spare. These experiments are executed on a currently high performance computer, but not a
supercomputer-level machine, so speeds should remain roughly similar to any further use of the
program. It uses the Ubuntu server OS version 10.10 with two six-core processors and 64 GB
RAM. The slowest run time for a variant configuration is approximately 7 hours for training and
18 hours for testing 300 iterations, and so even if one wanted to run the training algorithm on-line,
it would not be unreasonable to do so. In the context of planning for an impending hurricane, pre-
dictions occur starting about 3–5 days before the event and we would probably want an installation
plan for each day.

There are several factors to which all tests adhere. All of the tests on the random network are
run with 3 time steps and an installation budget of 7 making for 21 edges possible to install over
the course of the trials. Based on preliminary testing [17], we chose to use ε = 0.03 in the transfer
function of Step 1.4.3. In a preliminary comparison of constant, harmonic, and McClain step sizes,
the McClain step sizes were superior, so we henceforth use the McClain step size with α = 0.03.
When employing the disjoint control step, we set the number of outcomes for the base cost at
K = 10. All tests which use the target value calculations given in Section 3.1 similarly specify the
SAA parameter as K = 10.

For the random network, we have
M∑

m=1

Ṽm
IP@T ≈ 6, 200 and

M∑
m=1

Ṽm
IP@0 ≈ 15, 100.

It is obvious to see that the true stochastic optimum lies somewhere between these two values, and
so we can calculate a crude optimality gap to measure the algorithm’s performance:

opt_gap :=
1
M

M∑
m=1

 Ṽm
LP − Ṽm

IP@T

Ṽm
IP@0 − Ṽm

IP@T

 , (21)

where Ṽm
LP denotes the value of the application of the policy derived from our training scenarios

to each of the M test scenarios. Hopefully Ṽm
LP < Ṽm

IP@0 (i.e. it lies in the gap), but as we will see
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this is not necessarily the case. If the LP value is greater than the IP value at time 0, this indicates
that our algorithm is unable to make proper decisions given the description of the network that
we provide. This is a big motivator behind why we experiment with the different modifications
presented in section 3.

To get a better feel for the performance of the algorithm, it was tested against a portion of
the power infrastructure of New Hanover County in North Carolina. The network consists of 290
nodes, 261 of which are demand nodes, and 8 are suppliers. The network has 292 edges and its
installable network is comprised of the same edges. This configuration is quite different in terms of
demand nodes as a percentage of all nodes and the edge-to-node ratio than the network previously
used. This causes some interesting behavior. For this run, 8 edges were allowed to be installed
per time step, to account for the increase in total number of edges. Because run time is a function
of the number of installable edges, only the first 80 iterations of training were considered, and the
tests evaluated on even numbered iterations (run time performance will be discussed later). The
following tests were performed across 20 forecast timelines with the LP and IP SAAs optimizing
over 50 scenarios for each. The LP SAA is the calculation of the base cost as given in equations
(8d)–(8j).

We apply some of our tests to a new network. This network, which we shall call the CLARC
county network (or simply CLARC), is a subset of a network specifically designed to represent
an interdependent services infrastructure, developed in part by Loggins [24] (see also [26, 25]).
CLARC is even bigger and more complex than the NHC network, consisting of 545 edges among
535 nodes, of which 477 are demand nodes and 4 are supply nodes. The set of installable edges is
the same as the edges of the original network. The network, while artificial, was designed to closely
model a conglomeration of interdependent service networks: power, water, communications, and
vital roads.

Among the different cases, the same forecast timeline scenarios and outage outcomes are used
in training the policy, and likewise a single separate set of scenarios and outcomes is used in
calculating the LP and IP test values.

In the disjoint control step edges are selected based off of their discount ζ̃n
t alone. Therefore,

we impart some influence of the network’s characteristics into the decision by incorporating both
the base cost νn

Ct and the target’s installation decisions – decisions that are subject to network
constraints – into the prediction step.

Early experiments [17] using the gradient descent direction of equation (12), showed an opt_gap
of about 50%. The earlier results are not included in this paper, because implementing prediction
with equation (16) showed a drastic improvement of performance. Figures 5(a) and 5(b) show
the performance for the random network. At its best, it shows a 44.5% opt_gap reduction from
the disjoint method with the gradient descent direction. Convergence to steady-state occurs at ap-
proximately iteration 125 after which we do see a noticeable jump up in the graph. These jumps
can never entirely be ruled out due to the random nature of scenario and outage selection, epsilon-
greedy exploration, and a non-convergent step size in the prediction step. Luckily these factors do
not hinder the algorithm’s ability to converge to a solution.

The performance of the same configuration using the NHC network was not as strong. Con-
vergence occurred roughly at iteration 80, with some noisy intermittently increasing performance
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(a) Objective value with target decisions (b) Improvement in gap with target decisions

(c) Improvement in gap with recursive least squares

Figure 5: Results on randomly generated network. (a) Performance of disjoint control with
gradient descent prediction including target decisions. (b) opt_gap performance with
configuration of Figure 5(a). (c) Random network opt_gap performance: recursive

least-squares prediction.
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Figure 6: CLARC network opt_gap performance: standard basis, recursive least-squares
prediction

thereafter. However, the algorithm actually performs worse than the IP at time 0. In the next sec-
tion we show how we can improve upon this by using the bottleneck capacity ratio. Between these
and the results of the random network so far, we are inclined to say that one should train the policy
for no longer than 150 iterations to achieve the best performance, but this of course must depend
on the structure of the network, scenario distributions, etc.

Results with the recursive least-squares prediction method for the random network are in Fig-
ure 5(c) and for CLARC in Figure 6. In more extensive testing, we found that in general recursive
least-squares is better than the gradient descent method. It is intuitive that recursive least-squares
performs at least as well as the gradient descent method, since both are addressing the same goal in
the same manner. The only difference is that the recursive least-squares method can alter VFA co-
efficients individually based on the system’s response in an iteration whereas the gradient method
crudely changes all installed edges’ coefficients uniformly.

6 Bottleneck capacity ratio
For each edge i ∈ A′, the basis function calculation in (6) and (7) involves only the probability of
failure of the shortest path between the two endpoints of the edge. In order to take into account
the capacity of this path and to better capture the existence of alternative paths, we introduced a
bottleneck capacity ratio. We calculate the ratio of the capacities of the lowest capacity edge in F(i)
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(a) Full-scale (b) Zoomed in

Figure 7: Scaling factor performances of random network using disjoint control and
least-squares prediction. (a) Full vertical scale. (b) Zoomed in

to the highest capacity edge inA′, giving:

ρni :=
mink∈F(i) un

tk

maxl∈A′ un
tl

. (22)

The importance of this term is weighted by a parameter σ ∈ [0, 1]. The modified basis function is

ϕi
(
ψn

t
)

= π (F(i)) (1 − σ (1 − ρni)) , (23)

where π(F(i)) is defined in (6). Figures 7(a) and 7(b) show the relative performances for the ran-
dom network and Figure 8 that of the NHC network for varying values of the scale factor σ. Both
were run using the disjoint control method and recursive least-squares prediction. For NHC, incor-
porating 60% of the bottleneck capacity ratio is best (using 100% was actually the worst!), while
for the random network the differences were rather insignificant. The mere fact that there was a
larger variation in solution performance for various scaling factors in the NHC network than for the
random network suggests that there is some aspect of NHC’s network that influences the policy’s
decision making process. Figure 9 shows the performance on CLARC with the incorporation of
the bottleneck capacity ratio, with σ = 1. The standard basis function calculation works best for
the random network but using the bottleneck capacity ratio in its calculations is better for the NHC
network; in CLARC we see roughly the same results between the two functions. We speculate
that different basis functions yield better results for the networks because of the network structures
themselves: the random network has much more redundancy (a higher edge-to-node ratio) and a
lower demand density (ratio of demand nodes to the total number of nodes). Changing the basis
function specifically by using the bottleneck capacity ratio causes the basis functions to place more
emphasis on the flow the installable edge can provide, further imposing elements of the network
dynamics into the prediction calculation.
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Figure 8: Scaling factor performances of NHC network with configuration of Figure 7(a)

Figure 9: CLARC network opt_gap performance: bottleneck capacity ratio basis, recursive
least-squares prediction
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7 Conclusions and future work
We experimented on three different infrastructure networks: a randomly generated network, a
network based on New Hanover County in North Carolina, and a larger-scale realistic network
denoted as CLARC county. Our approach allows the modification of an installation plan as the
event draws closer. In each case, we improved dramatically over the strategy of determining all in-
stallation decisions based on an initial forecast. In particular, for the random network and CLARC
county, our approach was able to close 80% or more of the gap between a plan based on just the
initial information and a plan based on perfect information (which would not be implementable
in practice); the corresponding figure for New Hanover County was around 50%, which is still
notable. Further, our solution is within 10–30% of the idealistic plan based on perfect information.

Our approach used approximate dynamic programming. We tackled preventing unmet demand
in anticipation of network disruptions rather than minimizing costs after the fact. We furthermore
extended the problem to a multistage model to weigh the concerns of resource availability against
installation effectiveness. The former issue was handled by considering an installation budget per
time step, and the latter by having an evolving distribution of uncertainty over time. Our work
stands out within the reinforcement learning community because our model changes over time. In
a typical network application, node demand is considered uncertain according to a fixed probability
distribution over time. This amounts to altering the constants in the constraints of the control step.
In our problem, the constraints themselves change over time, since installed edges become incor-
porated into flow constraints and different existing edges get removed depending on the changing
probability distribution. The changing forecasts over time represent a merging of the two fields:
the distributions themselves are uncertain and are sampled from a Monte Carlo simulation, then
these forecasts provide actual sample outcomes when considering policy improvement.

With the problem statement formulated and the model constructed, we applied approximate
dynamic programming to arrive at a solution, using a linear-in-the-parameters value function ap-
proximation. The basis functions correspond to the individual VFA coefficients, which in turn cor-
respond to individual installation decisions. The basis function calculation is a complex product
of an amalgamation of network data rather than using state data element-by-element. We further
embellished this calculation to include static network data (such as edge capacities).

We also examined several options in the second stage of the reinforcement learning process:
policy evaluation. We tried adaptations of gradient descent and recursive least-squares updates.
For the gradient descent and recursive least-squares methods, we altered the descent direction
(essentially redefining the basis function calculation) to include solution decisions of the target
value.

Finally, we have developed various tests to gauge performance for these methods. For pseudo-
random and real-world networks, we evaluated performance by making several comparisons to
alternate solution methods using varying levels of perfect information; that is, we gauged perfor-
mance relative to stochastic programs that were with respect to forecast distributions at different
time steps or with respect to different forecast distributions within the same time step. We also
measured the changes to VFA coefficient values and runtime efficiency over iterations. With these
tests, we were able to corroborate convergence with theorems proving convergence for more sim-
plistic algorithms.
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Further algorithmic study mainly pertains to basis functions, policy evaluation (the prediction
step), and policy improvement (the control step). There is much variability in performance relative
to different forms of basis functions. With regards to the prediction step, another potential exten-
sion to our work involves finding a generalization for establishing a descent direction. One way
to do this is to investigate different weightings between the target value decisions and the control
step decisions (rather than using values 2 and 1 for ζ and ζ̃ in equation (16), respectively), but of
course other combinations could be considered. As with prediction, one can work toward refining
the present variations or adapting other traditional methods to the given control methods outlined
here.
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