
Branch and Cut∗

John E. Mitchell†

May 12, 2010

Combinatorial optimization problems can often be formulated as mixed integer linear

programming problems, as discussed in Section 1.4.1.1 in this encyclopedia. They can then

be solved using branch-and-cut, which is an exact algorithm combining branch-and-bound

(see Section 1.4.1.2 of this encyclopedia) and cutting planes (see Section 1.4.3 of this ency-

clopedia). The basic idea is to take a linear programming relaxation of the problem, solve

the relaxation, and then either improve the relaxation by adding additional valid constraints,

or split the problem into two or more subproblems and repeat the process.

Gomory first proposed strengthening linear programming relaxations of integer program-

ming problems by incorporating extra constraints (or cutting planes) in the 1950’s [28]. These

cutting planes are derived from the optimal simplex tableau, so they are broadly applicable.

However, they fell into disfavor for many years because they seemed to get stuck and run out

of power. The cuts are now used in more sophisticated ways and are incorporated into the

major commercial packages for integer programming. These packages also include several

other families of general cutting planes. General cutting planes are discussed in section 1 of

this entry and also in the entries in section 1.4.3 of the Encyclopedia.

Land and Doig [42] proposed a branch-and-bound approach in 1960. In branch-and-

bound, the linear programming relaxation of the integer program is solved. If the solution is
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fractional then the problem is split into two subproblems and the process repeated, creating

a tree of subproblems. The value of the linear programming relaxation gives a lower bound

on the optimal value of the integer program at the corresponding node of the tree, for

a minimization problem. If this lower bound is greater than the value of a known feasible

solution then the node can be pruned, which greatly reduces the total size of the tree. Branch-

and-bound became more popular than cutting plane methods for many years, because of the

computational difficulties with the latter.

Interest in cutting planes resurfaced in the 1980’s. Crowder et al. [18] showed the strength

of general cuts obtained by regarding a single row of an integer program as a knapsack prob-

lem. In addition, the polyhedral theory of many classes of problems was derived, and this

led to problem-specific cutting planes that were very successful, leading to great speed-ups

in computational time when compared to using branch-and-bound. For many classes of

problems (for example, the traveling salesman problem), an initial integer programming for-

mulation contains a large number of constraints, possibly even an exponential number. In

such a situation, it is not computationally attractive to explicitly include all of these con-

straints in the LP relaxation, and they can be added selectively as cutting planes. Problem

specific cutting planes are the subject of section 2 of this entry, and polyhedral theory is the

topic of section 1.4.3.1 of the Encyclopedia.

In theory, pure cutting plane methods can be used to solve integer programs, without

the need to employ branching. In practice, cutting plane methods appear to tail-off, and so

it becomes faster to combine together the two approaches. Initially, cutting planes were em-

ployed only at the root node the tree, in an approach now called cut-and-branch. Examples

include [18] as well as work on the traveling salesman problem [19]. The set of cuts generated

at the root node is not exhaustive, so it is possible that the subsequent branch-and-bound

approach leads to an integer solution that is not actually feasible in the integer program. In

such a situation, it is then necessary to add additional cuts and restart the process.

Later in the 1980’s, cutting planes were employed throughout the tree. The best known

of these results is for the traveling salesman problem, starting with the work of Padberg and
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Rinaldi [61]; an excellent discussion of this problem is contained in the book by Applegate

et al. [2]. Other notable early work includes the research of Grötschel, Jünger, and Reinelt

on the linear ordering problem [32] and on the maximum cut problem [33]. In the 1990’s, it

was discovered that general cutting planes can actually be very effective in branch-and-cut

approaches to integer programming problems, thanks to the work of Balas et al. [5, 6]. The

integration of cutting planes with branch-and-bound is discussed in more detail in section 3

of this entry.

Refinements and extensions are discussed in section 4. For example, it is possible to

generalize the branch-and-cut approach to solve mixed integer nonlinear programming prob-

lems and even nonlinear programs without integrality constraints. Also in this section, we

consider exploitation of parallel computational hardware. In addition to parallel computers,

it is common for problems to be solved on clusters of computers (including cloud computers)

or on the multicore processors now frequent in desktop and even laptop computers. Branch-

and-cut algorithms can be parallelized by solving different nodes of the tree on different

processors.

The Lanchester Prize winning book by Nemhauser and Wolsey[58] contains an excellent

discussion of polyhedral theory, integer programming, and branch-and-cut. Other very good

and relevant books are those by Wolsey [69] and Lee [43]. The three-volume text by Schri-

jver [65] is also an excellent reference. Various surveys of branch-and-cut have appeared over

the years, including [14, 39, 48, 53]. The aforementioned text on the traveling salesman prob-

lem by Applegate et al. [2] provides a very accessible development of integer programming,

including branch-and-cut.
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1 General cutting planes

Our standard form integer programming problem is the following:

min cT x

subject to Ax ≥ b (ILP )

x ≥ 0

xi integer ∀i ∈ I

where x and c are n-vectors, b is an m-vector, A is an m × n matrix, and I is a subset of

the indices {1, . . . , n}. Any upper bound constraints on the variables are included in the

inequality constraints Ax ≥ b. The optimal value of (ILP ) is denoted by z∗. Any feasible

solution x̄ to (ILP ) provides an upper bound cT x̄ on the optimal value z∗ of the problem.

A lower bound can be obtained by solving a relaxation of (ILP ). In this entry, we are

concerned with linear programming (LP) relaxations, which are obtained by relaxing the

integrality restriction.

The lower bound provided by the LP relaxation can be improved by tightening up the

relaxation through the addition of valid linear constraints. Typically, these constraints are

satisfied by all feasible solutions to (ILP ) but violated by the optimal solution to the LP

relaxation. The LP relaxation can be solved again after the addition of the constraints, and

the process repeated.

Cutting planes are discussed in detail in entry 1.4.3 of this encyclopedia, and its suben-

tries. In this section, we summarize some of the cutting planes that have been used to solve

general integer programming problems, and which are now included in commercial integer

programming packages (see, for example, Bixby and Rothberg [12] and Ashford [3]).

Gomory cuts are derived from a row of the optimal simplex tableau for the LP relax-

ation [29]. These were generalized by Chvátal [17], giving Chvátal-Gomory cuts, which

can be derived from any nonnegative linear combination of the linear constraints of (ILP ).

For simplicity, we consider the case where all the variables are required to be integer. In

particular, if u ∈ IRm is nonnegative then the constraint

uT Ax ≥ uT b
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is valid for the LP relaxation of (ILP ). Since x ≥ 0, this constraint can be weakened to

duT Aex ≥ uT b

where duT Ae is the n-dimensional row vector obtained by rounding up each entry of the row

vector uT A. Since each entry of x is nonnegative, the left-hand side of this inequality must

be integral for any feasible solution to (ILP ). Hence, we can round up the right hand side

to obtain the valid constraint

duT Aex ≥ duT be,

a Chvátal-Gomory cutting plane. Chvátal showed that any valid inequality for (ILP ) can

be obtained by repeatedly applying this rounding procedure [17].

Gomory cutting planes fell out of favor for many years, but computational results in the

1990’s [6, 15] showed that they could be very helpful. According to [12], they are the most

useful of the general cutting planes. Fischetti and Lodi [25] showed that just one round of

generating every possible inequality from the original constraints Ax ≥ b can give a very good

approximation to the convex hull of the set of feasible solutions. Letchford [44] described

a method for generating deep Chvátal-Gomory cutting planes. One of the problems with

Gomory cutting planes is that eventually dual degeneracy is encountered, which can lead to

a basis matrix with a large condition number, if care is not taken in the generation of the

cuts. Zanette et al. [71] demonstrated that employing lexicographic cut generation rules can

lead to a set of Gomory cutting planes that interact well with one another and allow a pure

cutting plane method to work effectively; see also the related paper [7]. Gomory cutting

planes can also be derived for mixed integer programs; see Marchand and Wolsey [49] for

some computational results. Chvátal-Gomory cutting planes are considered in far more

detail in entry 1.4.3.5 of this Encyclopedia.

Cover inequalities are inequalities that are valid for knapsack problems. Crowder et

al. [18] considered each row of an integer program as a separate knapsack problem, and

then generated cover inequalities for the individual rows. They showed that this powerful

technique could be employed in a cut-and-branch algorithm to solve general integer program-

ming problems. Their approach has been considerably refined in recent years, becoming a
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standard part of branch-and-cut implementations. These inequalities are discussed in detail

in entry 1.4.3.2 of this Encyclopedia.

The theory of disjunctive inequalities [4] gives a methodology for generating general

cutting planes that can be powerful on certain hard integer programs [5, 16]. The theory was

originally developed for binary variables and has been extended. Given a binary variable xi,

the process is to find the convex hull of two sets: the set of feasible points in the LP relaxation

with xi = 0, and the set of feasible points in the LP relaxation with xi = 1. The process

is then iterated over all the binary variables. The theory gives a method to systematically

construct the convex hull of the set of feasible solutions to an integer program. Generation of

a cut may require solution of a linear program, so in practice this method is used selectively.

There are methods for generating disjunctive cuts using the optimal simplex tableau for the

relaxation; see for example Balas and Perregaard [8, 63]. For more information see entries

1.4.3.8 and 1.4.4.1 of this encyclopedia.

Recently there has been interest in deriving cuts using two rows of the simplex tableau,

which potentially could be stronger than cuts derived from just a single row. These methods

use ideas from lattice theory and group theory. For more details see Andersen et al. [1] and

also the survey article by Dey and Tramontani [22].

Computational experience with different classes of general cutting planes is detailed by

Bixby and Rothberg [12]. One point the authors make is that different families of cutting

planes can interact with each other, so the benefit of using all of several different families of

cuts is not necessarily equal to the product of the benefits of using each family individually.

2 Problem specific cutting planes

Many combinatorial optimization problems can only be expressed as integer linear program-

ming problems with an exponential number of constraints. For example, a standard formu-

lation of the traveling salesman problem uses degree constraints to ensure each city is visited

exactly once. It also requires the inclusion of subtour elimination constraints to ensure that

any integral solution corresponds to a tour that connects all the cities, and the number of
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subtour elimination constraints is exponential in the number of cities. Thus, it is impractical

to include all of these constraints in the integer programming formulation, and they should

be added as cutting planes. The first demonstration of the strength of this cutting plane

approach was by Dantzig et al. [20], who showed that a problem with 42 cities could be

solved to optimality by adding just a limited number of subtour elimination constraints, and

some other cutting planes. Cutting plane methods for the traveling salesman problem were

revisited in the 1980’s [31, 62], and subsequently the work of Applegate et al. [2] has realized

an algorithm that can find provably optimal solutions to problems with as many as 85,900

cities. Their code Concorde is freely available.

The convex hull of the set of feasible integer solutions to a combinatorial optimization

problem is a polyhedron. (See entry 1.4.3.1 on Basic Polyhedral Theory for more details.) If

a linear programming description of this polyhedron is known then the problem can be solved

effectively. However, the number of facets of the polyhedron is large (often exponential) for

interesting combinatorial optimization problems. Thus, it is necessary to add the constraints

selectively. The strongest cutting planes correspond to facets, and families of facets have been

determined for many different problems. For example, the subtour elimination constraints

mentioned earlier define facets.

Other problems for which cutting plane methods have been developed include the linear

ordering problems [32, 34] with triangle inequalities and other classes of facet defining in-

equalities, the maxcut problem [33, 9, 10, 11, 21, 45, 52] with cycle-odd subset inequalities,

matching problems [23, 30], clique and coloring problems [38, 51], fixed charge network flow

problems [59], vehicle routing problems [36, 47, 56], and facility location problems [41].

Knowledge of a strong family of cutting planes is only useful in practice if effective

separation routines are also developed, which can find violated constraints in the family

efficiently. These separation routines can be simple or involved, even for the same class of

constraints. For example, cycle-odd subset inequalities for maxcut problems can be checked

by enumeration for all short cycles, but in order to guarantee that any violated inequality

can be found it is necessary to use a max-flow algorithm for a graph derived from the original
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one [11]. Violated subtour elimination constraints for the traveling salesman problem can be

found by searching for connected components in the solution to the LP relaxation, but this

may not find all violated constraints, so more expensive routines have also been developed [2].

Let X be a feasibility integer program and let x be a point. The separation problem for

X and x is to find a cutting plane that separates x from the convex hull of X, or determine

that x is in this convex hull. If the separation problem for any point x can be solved in time

no greater than g(X), then problem X itself can be solved in time polynomial in g(X) using

the ellipsoid algorithm. This observation can be generalized as the equivalence of separation

and optimization problems [35]. It follows that for an NP-Complete problem, it will not

be possible to find a cutting plane for each point not in the convex hull in polynomial time

(unless P=NP).

3 The Branch-and-Cut Algorithm

A branch-and-cut algorithm is outlined in Figure 3. The set of active nodes in the branch-

and-cut tree is denoted by L. The value of the best known feasible point for (ILP ) is stored

as z̄, and provides an upper bound on the optimal value of the integer program. This point

is called the incumbent solution. We use zl to denote a lower bound on the optimal value of

the current subproblem l under consideration. This lower bound is initialized to the value of

the parent node, and is then updated to the value of the LP relaxation of the subproblem.

Without the inclusion of Step 6, this becomes a branch-and-bound algorithm. A crucial

point with branch-and-bound is that a subproblem l can be discarded once zl ≥ z̄, since it

is then known that no feasible solution to the subproblem can be better than the incumbent

solution. The other method for fathoming in Step 7 is when the optimal solution to the LP

relaxation of the subproblem is feasible in the integer program, since this LP solution then

solves the subproblem. We refer the reader to entry 1.4.1.2 of this encyclopedia for far more

discussion of branch-and-bound, including preprocessing, options for branching, and reduced

cost fixing and its exploitation.

The particular procedure employed in Step 5 can be a generic rounding procedure, or it
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1. Initialization: Denote the initial integer programming problem by ILP 0 and define the

set of active nodes to be L = {ILP 0}. Let z̄ = +∞. Set zl = −∞ for the initial

problem l ∈ L.

2. Termination: If L = ∅, then STOP. If z̄ =∞ then (ILP ) is infeasible; else, the solution

x∗ which yielded the incumbent objective value z̄ in Step 7(b) or Step 5 is optimal.

3. Problem selection: Select and delete a problem ILPl from L.

4. Relaxation: Solve the LP relaxation of ILPl. If the relaxation is infeasible, set zl = +∞

and go to Step 7. If the relaxation is unbounded set zl = −∞. If the relaxation has a

finite optimal value let xlR be an optimal solution and set zl = cT xlR.

5. Heuristic Rounding: If xlR is not integral, and if desired, use a rounding approach

or a heuristic approach to construct a feasible integral solution xlH . Update z̄ =

min{cT xlH , z̄}.

6. Add cutting planes: If desired, search for cutting planes that are violated by xlR; if any

are found, add them to the relaxation and return to Step 4.

7. Fathoming and Pruning:

(a) Fathom by bounds or infeasibility: If zl ≥ z̄ go to Step 2.

(b) Fathom by integrality: If zl < z̄ and xlR is integral feasible, update z̄ = zl, delete

from L all problems with zl ≥ z̄, and go to Step 2.

8. Partitioning: Let {Slj}j=1,...,k be a partition of the constraint set Sl of problem ILPl.

Add problems {ILPlj}j=1,...,k to L, where ILPlj is ILPl with feasible region restricted

to Slj, and set zlj = zl for j = 1, . . . , k. Return to Step 2.

Figure 1: A general branch-and-cut algorithm
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can be a rounding procedure modified to exploit the particular structure of the problem, or

it can be a heuristic initiated either at the point xlR or at a rounded version of this point.

For more on heuristics see entry 1.4.1.8 of this encyclopedia.

The Step 6 decision of when to add cutting planes and when to branch can probably only

be resolved through computational experimentation. The conclusion is dependent on the

particular class of integer program, and on the types of cutting planes considered. Different

types of cutting planes interact with each other, so care is needed in experimentation in

order to determine reproducible benefits.

Cutting planes generated at one node of the tree may not be valid at another node.

One option is to treat the cuts as local, and only use them for descendants of the node

where they are generated. The disadvantage of this approach is that it becomes necessary

to store several different sets of constraints, for different parts of the tree. Alternatively,

the constraints can be modified to make them valid throughout the tree, using a process

called lifting. In lifting, the value of the slack in the constraint is checked in the remainder

of the tree, either by solving integer programs to get strong liftings or LP relaxations to

get somewhat weaker lifted inequalities. Lifting is a general process for strengthening and

modifying constraints and is discussed in entry 1.4.3.3 of this enclyclopedia.

One important aspect of a general integer programming code is preprocessing. One aspect

of preprocessing is to tighten bounds on the variables and constraints by logical arguments

and possibly solving LPs. This may lead to variable fixing or constraint elimination, and

can have a dramatic impact on runtime (an average improvement of a factor of ten for the

problems considered in [12]). Far more about preprocessing can be found in section 1.4.1.2

of this encyclopedia.

4 Refinements and extensions

Computational implementations of branch-and-cut are now very sophisticated and include

many ideas from the research literature of the last 30 years. Commercial codes include

CPLEX and GuRoBi [12], and XPRESS-MP [3]. Recent high-quality free software in-
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cludes the COIN-OR branch-and-cut package Cbc [70], and the packages ABaCuS [40] and

MINTO [57]. In this section, we consider some possible enhancements to current integer

programming solvers.

Before discussing enhancements, we note that the computing environment is becoming

ever more parallel. There have been sophisticated parallel computers for many years, and

these have become more widespread, with local machines with at least 100 processors avail-

able to many users. In addition, there are now clusters of homogeneneous or heterogeneous

processors linked together using software, there is the availability of cloud computing, and

multicore processors are common in desktop and even laptop computers. This is an environ-

ment that must be exploited for a branch-and-cut implementation to remain competitive.

Fortunately, the branching aspect of these algorithms leads to a natural way to parallelize:

different subproblems in the tree are solved in different processors of the machine. Load

balancing requires careful consideration, but in principle branch-and-cut algorithms should

flourish in a world of parallel computers. For more concrete discussion of these issues, see [70].

A standard model for the traveling salesman problem is to use one variable for each edge,

so if the graph has n vertices then there are O(n2) variables. Based just on the objective

function coefficients, it is clear that the great majority of the variables can be (at least

temporarily) fixed at zero. Thus, we can work with integer and linear programs where the

number of variables is O(n). Before fathoming any node of the tree, the eliminated edges

can be checked using reduced costs, to see if they would have been helpful. This pricing

step may lead to the introduction of variables, and the resulting algorithm is a form of

branch-and-price-and-cut. For more on algorithms of this type, see entry 1.4.1.6 of this

encyclopedia.

Many integer programming formulations possess a natural symmetry. For example, when

scheduling jobs on several identical machines, the important decision is determining which set

of jobs go together on a particular machine and then sequencing those jobs. Which machine

performs which particular set of jobs doesn’t matter. This poses difficulties for a standard

branch-and-cut approach, because many variables have to be fixed in the branching tree
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before the symmetry is broken. There has been research on methods for breaking symmetry,

using ideas from group theory and algebra [50, 60]. See entry 1.4.5.1 in this encyclopedia for

more information.

Classically, cutting planes are satisfied by all feasible solutions. Cuts could potentially be

strengthened by requiring only that all optimal solutions satisfy them. A similar possibility

is noted in dual stabilization of column generation algorithms, see [46] for example.

Fischetti et al [27] note that it is possible to use sophisticated mixed integer programming

techniques within a branch-and-cut solver. For example, the separation problems for some

classes of cutting planes are themselves hard integer programs and so it is beneficial to use

whatever MIP techniques are available in order to find strong cutting planes; see [38] for

example. Construction of an initial feasible solution can also be performed by using integer

programming techniques such as local branching [26].

It is superior to use interior point methods instead of the simplex method for some

problems, at least in certain parts of the branch-and-cut process. Interior point methods have

two potential advantages: first, cuts are generated from a more central solution, which leads

to deeper cuts; secondly, interior point methods can solve large problems more quickly than

simplex, and when many cuts are added at once the warm-start benefit enjoyed by simplex

is no longer so advantageous. See [54] for a survey, and [52, 55] for computational results.

Branch-and-cut can also be integrated with convex relaxations of the integer program, such

as semidefinite relaxations; see [24, 37, 54, 64] for example.

Branch-and-cut algorithms have also been developed for mixed integer nonlinear pro-

gramming problems. The cuts used in these approaches are typically disjunctive cuts. See

for example Bonami et al. [13], which describes several different possible branch-and-cut

approaches.

Branch-and-cut can even be used for problems without integrality restrictions. For ex-

ample, Tawarmalani and Sahinidis [66, 67] describe an approach for global optimization

of general nonlinear programs, and Vandenbussche and Nemhauser [68] show how branch-

and-cut can be used to solve a nonconvex quadratic program by exploiting the optimality
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conditions.

5 Conclusions

The performance of branch-and-bound methods for integer programming has been dramat-

ically improved by the inclusion of cutting planes, leading to branch-and-cut. The resulting

exact methods have been successfully implemented in powerful general purpose solvers for

mixed integer programs, and they are the method of choice for solving hard integer pro-

grams to optimality. The software has improved by several orders of magnitude in the last

few years. Branch-and-cut solvers have also been developed for specific problems such as

the traveling salesman problem, with such a code currently able to solve larger problems to

optimality than any other approach. Branch-and-cut methods are still the subject of active

research, with various ideas showing promise. The methods have also been extended to solve

mixed integer nonlinear programs, and other classes of optimization problems.
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[40] M. Jünger and S. Thienel. Introduction to ABACUS — A Branch-And-CUt System.

Operations Research Letters, 22:83–95, 1998.
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