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FOR LINEAR PROGRAMS WITH LINEAR COMPLEMENTARITY
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Abstract. A solution of the standard formulation of a linear program with linear complemen-
tarity constraints (LPCC) does not satisfy a constraint qualification. A family of relaxations of an
LPCC, associated with a probability-one homotopy map, proposed here is shown to have several
desirable properties. The homotopy map is nonlinear, replacing all the constraints with nonlinear
relaxations of NCP functions. Under mild existence and rank assumptions, (1) the LPCC relax-
ations RLPCC(λ) have a solution for 0 ≤ λ ≤ 1; (2) RLPCC(1) is equivalent to LPCC; (3) the
Kuhn–Tucker constraint qualification is satisfied at every local or global solution of RLPCC(λ) for
almost all 0 ≤ λ < 1; (4) a point is a local solution of RLPCC(1) (and LPCC) if and only if it is a
Kuhn–Tucker point for RLPCC(1); and (5) a homotopy algorithm can find a Kuhn–Tucker point for
RLPCC(1). Since the homotopy map is a globally convergent probability-one homotopy, robust and
efficient numerical algorithms exist to find solutions of RLPCC(1). Numerical results are included
for some small problems.
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1. Introduction. Problems in diverse areas can be formulated as mathematical
programs with complementarity constraints (MPCCs). The recent paper by Pang [39]
describes applications in deregulated electricity markets, mechanical systems with fric-
tional contacts, genetic regulatory networks in cell biology, control theory, and bilevel
optimization. The complementarity constraints result in disjunctive mathematical
programs, with feasible regions that may consist of many disjoint pieces. Linear
programs with complementarity constraints (LPCCs) play an analogous role in dis-
junctive programming to that of linear programs in nonlinear programming. The
LPCC has many applications of its own, as surveyed by Hu, Mitchell, and Pang [23].

Complementarity constraints arise naturally in bilevel optimization, through the
use of the Kuhn–Tucker conditions to express the requirement that a feasible point
must solve the lower level problem. If the upper level problem is linear and if the
lower level problem is either a linear program or a convex quadratic program, then
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the bilevel optimization problem is equivalent to an LPCC [12]. Surveys of bilevel
optimization include [10] and [11], and a natural application is in the solution of
Stackelberg games. Other related work on bilevel optimization includes [8], [21], and
[38]. Inverse convex quadratic optimization problems can be cast as bilevel programs,
when it is desired to choose the linear part of the objective and the right-hand side
of the quadratic program so that they and the solution to the quadratic program are
close to target values. If proximity is measured using a linear norm, then the problem
is equivalent to an LPCC. Algorithms for inverse quadratic programs are given in [62]
and [65]. Parameter estimation problems also lead to LPCCs in certain situations,
such as in cross-validated support vector regression problems [28]. Other applications
of LPCCs include quantile minimization such as chance constrained programming [43]
and minimization of value-at-risk [41] and nonconvex quadratic programming [7, 22].

MPCCs and even LPCCs are nonlinear programs that do not satisfy most of the
standard constraint qualifications [16, 32, 40, 45], which poses challenges in the devel-
opment of algorithms and in proofs of their convergence. Various concepts of different
types of stationary points have been developed and optimality conditions have been
derived [32, 63, 64]. Typically the aim is to show that an algorithm converges to
a stationary point of a certain type under certain conditions. Standard nonlinear
programming algorithms can be applied, provided the complementarity condition is
either penalized or initially relaxed and then gradually tightened. Regularization [46]
and penalty [25] methods have been applied, and Anitescu, Tseng, and Wright [3]
showed that an elastic mode approach converges to a strongly stationary point under
boundedness assumptions and a constraint qualification. Fukushima and Tseng [19]
showed that an ε-active set method converges to a strongly stationary point under a
constraint qualification. It was shown computationally [17] that an SQP method can
be very effective at solving MPCCs, leading to theoretical analysis of SQP approaches.
Local convergence to a strongly stationary point is proved in [18], and Jiang and Ralph
[26] show that a smoothed SQP method converges globally under certain assumptions
(including strict complementarity for one variant) and investigate convergence of a
quasi-Newton variant of an SQP approach [27]. An interior point method using shifted
barriers was shown to have fast local convergence under certain assumptions in [37].
The analysis of interior point approaches to MPCCs was refined by Leyffer, Lopéz-
Calva, and Nocedal [30], who showed global convergence to a strongly stationary point
under standard assumptions. Other related work on MPCCs includes [14] and [31].

The homotopy method presented here uses nonlinear complementarity problem
(NCP) functions. Leyffer [29] has proposed the use of NCP functions to solve MPCCs
and has shown that the set of stationary points is unchanged with the use of certain
NCP functions. He also proves local convergence to strongly stationary points and
uses a filter SQP method to achieve global convergence in practice. Fang, Leyffer,
and Munson [15] have recently proposed a pivoting method for LPCCs, generalizing
the simplex method for LP. Hu et al. [24] have described a logical Benders decompo-
sition method for determining a global optimal solution to an LPCC and for verifying
infeasibility or unboundedness if appropriate.

The application of simplicial methods, a discrete version of continuous homo-
topy methods [2], to complementarity problems dates to the 1970s [13, 36, 44]. The
first application of the modern probability-one homotopy theory [9, 49] to comple-
mentarity problems was in 1979 [50] and to optimization in general in 1980 [51].
Since then the development of homotopy methods (and interior point methods, which
can be viewed as a variant of homotopy methods) in optimization has blossomed—
[20, 42, 47, 48, 53, 54, 55, 58], just to mention a few homotopy references. The
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application of classical continuation, homotopy algorithms, and probability-one ho-
motopy algorithms (see [20] or [55] for a discussion of the distinction between these
three) to linear complementarity problems was thoroughly explored in [57], based on
the theory in [52, 56].

The probability-one homotopy theory and algorithms in [61] have recently been
successfully applied to general mixed complementarity problems [1, 4, 5, 6]. The present
work is an outgrowth of that mixed complementarity work and the LPCC work in [24].

After defining the notation and terminology in section 2, the proposed relaxation
and homotopy map are presented in section 3, followed by the convergence theory in
section 4. Section 5 gives a few numerical results on very small problems, just as a
sanity check. The conclusion addresses an alternative formulation, some issues not
considered, and future directions.

2. Notation. Let En denote real n-dimensional Euclidean space and Em×n the
set of real m × n matrices. For subsets I ⊂ {1, . . ., m}, J ⊂ {1, . . ., n}, a matrix
A ∈ Em×n and vector x ∈ En, AI· denotes the rows of A indexed by I, A·J is the
columns ofA indexed by J , AIJ is the submatrix of A with row indices in I and column
indices in J , and xJ is the subvector of x indexed by J . xi denotes components of
x ∈ En, x > 0 means all xi > 0, x >

= 0 means all xi >= 0, and x ≥ 0 means x >
= 0 and

x �= 0. For x, y ∈ En, x ⊥ y means the inner product xty =
∑n
i=1 xiyi = 0.

2.1. Stationarity conditions for LPCCs. Let c ∈ En, d ∈ Em, A ∈ Ek×n,
B ∈ Ek×m, f ∈ Ek, q ∈ Em, N ∈ Em×n, M ∈ Em×m. The problem under
consideration is to find x ∈ En, y ∈ Em that solve

min ctx+ dty

subject to Ax+By >= f,(LPCC)

0 <= y ⊥ (q +Nx+My) >= 0.

In general, (LPCC) can be (i) infeasible, (ii) feasible with ctx+dty unbounded below,
or (iii) feasible with ctx+ dty bounded below.

Many different stationarity concepts have been proposed for general MPCCs.
The two that are most relevant for LPCCs are strong stationarity and Bouligand
stationarity [15]. Let w := q + Nx +My, so the complementarity condition can be
represented as yiwi = 0 for i = 1, . . ., m. Given a feasible point (x, y, w), say that
the ith complementarity relationship is satisfied strictly if yi + wi > 0; otherwise, it
is degenerate. Let D(x, y, w) denote the set of degenerate indices.

Definition 1. A feasible point (x, y, w) is strongly stationary if there exist dual
multipliers π ∈ Ek, ρ ∈ Em, and μ ∈ Em satisfying

c−ATπ −NTμ = 0,

d−BTπ −MTμ− ρ = 0,

0 <= Ax+By − f ⊥ π >
= 0,

wi > 0 ⇒ μi = 0, i = 1, . . . ,m,

yi > 0 ⇒ ρi = 0, i = 1, . . . ,m,

μi >= 0, ρi >= 0, i ∈ D(x, y, w).

It should be noted that the dual multipliers for the complementarity terms are
restricted to be nonnegative for only the degenerate indices. Any local minimizer of
(LPCC) is a strongly stationary point, but the converse is not necessarily true. The
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set of local minimizers is equivalent to the set of Bouligand stationary points, defined
next. The conditions for Bouligand stationarity involve looking at all the pieces of
(LPCC) corresponding to a feasible point (x, y, w), where a piece is given by imposing
either yi = 0 or wi = 0 for i = 1, . . ., m. Each piece is a linear program.

Given a feasible point (x, y, w), let P ⊆ D(x, y, w). In the piece defined by P ,
let yi = 0 for i ∈ P and wi = 0 for i ∈ D(x, y, w) \ P . For i �∈ D(x, y, w), the
complementarity restriction is chosen to agree with (x, y, w). The point is optimal in
the piece defined by P if there exist dual multipliers π ∈ Ek, ρ ∈ Em, and μ ∈ Em

satisfying

c−ATπ −NTμ = 0,

d−BTπ −MTμ− ρ = 0,

0 <= Ax +By − f ⊥ π >
= 0,

wi > 0 ⇒ μi = 0, i = 1, . . . ,m, i �∈ D(x, y, w),

yi > 0 ⇒ ρi = 0, i = 1, . . . ,m, i �∈ D(x, y, w),

ρi >= 0, i ∈ P,

μi >= 0, i ∈ D(x, y, w) \ P.

Definition 2. The point (x, y, w) is Bouligand stationary if it is optimal in each
piece corresponding to some P ⊆ D(x, y, w).

Strongly stationary points are Bouligand stationary points. Further, the two con-
cepts coincide for nondegenerate points. A degenerate Bouligand stationary point
may not be strongly stationary. Kuhn–Tucker points can be defined for the nonlinear
programming formulation of (LPCC) given by imposing the complementarity relation-
ship through the constraints yiwi = 0 for i = 1, . . ., m; the Kuhn–Tucker points are
then the strongly stationary points. The set of nondegenerate Kuhn–Tucker points
is equivalent to the set of nondegenerate Bouligand stationary points and the set of
nondegenerate local minimizers of (LPCC).

The complementarity relationship can be represented using a positively oriented
NCP function.

Definition 3. A continuous function ψ̂ : E ×E → E is called an NCP function
if ψ̂(a, b) = 0 ⇐⇒ 0 <

= a ⊥ b >= 0; it is positively oriented if ψ̂(a, b) >= 0 ⇐⇒ a >
= 0

and b >= 0.
In [50], a family of smooth positively oriented NCP functions based on [34] is

defined by

(ψ̂(k)) ψ̂(k) (a, b) := − |a− b|k + ak + bk, k > 0, k odd.

Observe that this function is Ck−1; moreover, for b > 0, ψ̂(k)(·, b) is monotone strictly
increasing and is onto E for odd k >

= 3.
For any positively oriented NCP function ψ̂, problem (LPCC) is equivalent to the

problem

min ctx+ dty

subject to Ax+By >= f,

w − (q +Nx+My) = 0,

y >= 0,

w >
= 0,

ψ̂(yi, wi) <= 0, i = 1, . . . ,m.

(ψ̂LPCC)
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It was shown by Leyffer [29] that the set of Kuhn–Tucker points for formulations
of MPCCs using positively oriented NCP functions coincide with the set of strongly
stationary points provided the gradients of the NCP functions satisfy three criteria:

(ψ1) ∂ψ̂
∂a = ∂ψ̂

∂b = 0 if a = b = 0;

(ψ2) ∂ψ̂
∂a > 0 and ∂ψ̂

∂b = 0 if a = 0 and b > 0;

(ψ3) ∂ψ̂
∂a = 0 and ∂ψ̂

∂b > 0 if a > 0 and b = 0.

It is easily verified that ψ̂(k) satisfies these criteria for odd k >
= 3. Thus, the

sets of strongly stationary points for (LPCC) and Kuhn–Tucker points for (ψ̂LPCC)
coincide. The homotopy algorithm proposed here, under mild existence and rank
assumptions, obtains a nondegenerate Kuhn–Tucker point for (ψ̂LPCC), so this is a
strongly stationary point and a local minimizer for (LPCC).

2.2. Probability-one homotopy theory. Let F : En → En be a C2 function.
The main idea of a probability-one homotopy method for solving F (x) = 0 is to
embed F in a homotopy map ρa : [0, 1) × En → En such that ρa(1, x) = F (x) and
ρa(0, ·) has a known zero x0. The algorithm works by tracking a zero curve γ of ρa
emanating from (0, x0) until reaching an accumulation point (1, x̄) of γ, which then
yields a solution x̄ to F (x) = 0. The theoretical foundation of all probability-one
homotopy methods is the following differential geometry definition and theorem.

Definition 4. Let U ⊂ Em and V ⊂ En be nonempty open sets, and let
ρ : U × [0, 1) × V → En be a C2 map. ρ is said to be transversal to zero if the
Jacobian matrix ∇ρ has full rank on ρ−1(0).

Parametrized Sard’s Theorem (see [9]). If ρ(a, λ, x) is transversal to zero,
then for almost all a ∈ U , the map

ρa(λ, x) = ρ(a, λ, x)

is also transversal to zero; i.e., with probability one, the Jacobian matrix ∇ρa(λ, x)
has full rank on ρ−1

a (0).
The importance of this theorem is that for almost all a ∈ U , the zero set ρ−1

a (0)
consists of smooth, nonintersecting curves in [0, 1)×V . These curves either are closed
loops or have endpoints in {0} × V or {1} × V or go to infinity. Another important
consequence is that these curves have finite arc length on any compact subset of
[0, 1)× V .

As a rule, ρa should be constructed such that there is a unique zero (0, x0) at
λ = 0 and such that rank ∇xρa(0, x

0) = n. This latter requirement ensures that the
zero curve γ emanating from (0, x0) is not a closed loop. Thus, the curve must either
approach λ = 1 or wander off to infinity.

The following section defines a homotopy map for solving the Kuhn–Tucker con-
ditions of a reformulation of (LPCC).

3. Probability-one homotopy map. A family of relaxations of (LPCC) is
defined for 0 <= λ <

= 1 by

min ctx+ dty

subject to Ax+By − f + (1− λ)f0 >
= 0,

ψ
(
λ, x, y, q0, g0

)
= 0,

(RLPCC)

where given an initial guess x0 and y0 > 0, f0 > 0 is chosen so Ax0+By0−f+f0 > 0,
and

ψi
(
λ, x, y, q0, g0

)
= ψ̂(5)

((
(1− λ)q0 + q +Nx+My

)
i
, yi

)
− (1 − λ)g0i , i = 1, . . . ,m,
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in which g0 > 0, and q0 is chosen such that ψ
(
0, x0, y0, q0, g0

)
= 0. Note that

q0 is uniquely determined; this follows because y0i > 0, so ψ̂(5)(·, y0i ) is monotone
strictly increasing and onto E for each i. With f0, g0, and q0 so chosen,

(
x0, y0

)
is a strictly feasible (the feasible set has a nonempty relative interior) point for the

problem (RLPCC) with λ = 0. Moreover, since ψ̂(5) is positively oriented and g0 > 0,
it follows that for any feasible point (x, y) of (RLPCC) with 0 <

= λ < 1, y > 0 and(
(1 − λ)q0 + q +Nx +My

)
> 0. Observe that the problem (RLPCC) with λ = 1 is

equivalent to (LPCC).
For 0 <= λ <

= 1 define

Ωλ =
{
(x, y) | Ax+By − f + (1− λ)f0 >

= 0
}
.

Assume (LPCC) has a solution and the set Ω1 �= ∅ is bounded. (The boundedness
assumption is a sufficient, but not necessary, condition for the results proved in this
paper. When x and y are physical quantities, it is reasonable to assume they are
bounded, so explicit bound constraints can be added if necessary. Unbounded models
can occur during the modeling process and can often indicate that aspects of the
system have been overlooked in the model. Proper selection of the bounds may
require an iterative approach.) Note that

Ω0 ⊃ Ωλ1 ⊃ Ωλ2 ⊃ Ω1 �= ∅ for 0 < λ1 < λ2 < 1,

all the sets Ωλ are bounded, and the interior int (Ωλ) �= ∅ for 0 <= λ < 1.
Looking ahead, it will be shown that

(C1) (RLPCC) has a solution for 0 <= λ < 1;
(C2) for almost all f0 > 0 and g0 > 0 chosen as above, the Kuhn–Tucker constraint

qualification is satisfied at a solution of (RLPCC) for almost all 0 <= λ < 1;
(C3) a nondegenerate local solution (x̄, ȳ) of (RLPCC) at λ = 1 together with

some ū >
= 0 and v̄ satisfies the Kuhn–Tucker conditions;

(C4) a globally convergent, probability-one homotopy algorithm can find a Kuhn–
Tucker point (x̄, ȳ, ū, v̄) of (RLPCC) at λ = 1, which is a Kuhn–Tucker point
for a reformulation of (LPCC).

The Kuhn–Tucker conditions for the constraint Ax + By − f + (1 − λ)f0 >
= 0

become

Ax+By − f + (1− λ)f0 >
= 0,

u >
= 0,

ut
(
Ax+By − f + (1− λ)f0

)
= 0,

which are replaced by φ
(
λ, x, y, u, f0, h0

)
= 0, where Ek � h0 > 0 and

φi
(
λ, x, y, u, f0, h0

)
= ψ̂(3)

((
Ax+By − f + (1 − λ)f0

)
i
, ui

)
− (1− λ)h0i ,

i = 1, . . . , k. Note that the definitions of ψ and φ involve different members of the
ψ̂(k) family of NCP functions. The choice of k in each case is dictated by the need
to make the homotopy map C2, which is required to apply the parametrized Sard’s
theorem. Choosing k = 3 suffices for φ, but k = 5 is needed for ψ since ∇ψ is used in
the definition of the homotopy map.

Let a =
(
x0, y0, f0, g0, h0

)
, from which q0 is uniquely determined as noted previ-

ously. Similarly φi
(
0, x0, y0, u, f0, h0

)
= 0 uniquely determines ui = u0i > 0.
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The proposed probability-one homotopy map is

ρa(λ, x, y, u, v) = ρ(a, λ, x, y, u, v)

=

⎡
⎢⎢⎢⎢⎣
λ

[(
c
d

)
−

(
At

Bt

)
u+

(
∇(x,y)ψ

)t
v

]
+ (1− λ)

(
x− x0

y − y0

)
φ
(
λ, x, y, u, f0, h0

)
ψ
(
λ, x, y, q0, g0

)
+
(
1− tanh

(
60λ
1−λ

)) (
v − v0

)

⎤
⎥⎥⎥⎥⎦ .

Choose v0 in the above homotopy map as the minimum norm least squares solution
to (

c
d

)
−

(
At

Bt

)
u0 +

(
∇(x,y)ψ

(
0, x0, y0, q0, g0

))t
v = 0.

Some observations on this homotopy map ρa follow. Let En++ denote the positive
orthant in n-dimensional Euclidean space En. For brevity, write w = (x, y, u, v).

(O1) ρ(a, λ, x, y, u, v) is C2 and transversal to zero. To see this, observe that the
columns of∇ρ corresponding to x0, y0, h0, and g0 form an (n+2m+k)×(n+
2m+ k) diagonal matrix with λ − 1 on the diagonal. Thus, ∇ρ has full row
rank for λ ∈ [0, 1), so ρ is transversal to zero. Therefore, by the parametrized
Sard’s theorem, for almost all

a =
(
x0, y0, f0, g0, h0

)
∈ En × Em++ × Ek++ × Em++ × Ek++

the map ρa : [0, 1)× En+2m+k → En+2m+k is also transversal to zero.
(O2) The term (v−v0) is necessary to force a unique solution to ρa(λ, x, y, u, v) = 0

at λ = 0. ψ
(
0, x0, y0, q0, g0

)
= 0 by construction. From a theoretical

perspective, any strictly decreasing C2 function ζ : [0, 1] → E satisfying
ζ(0) = 1 and ζ(λ) = o(1 − λ) as λ→ 1 can be used in place of the function(
1− tanh( 60λ

1−λ)
)
. The choice given here has proved to be very effective in

practice since it is approximately zero for λ >
= 0.1. This forces the last com-

ponent of ρa to essentially be ψ for λ >
= 0.1, modeling the complementarity

constraint better for intermediate λ.
(O3) By construction ρa(0, x, y, u, v) = 0 has the unique solution w0 =

(
x0, y0, u0,

v0
)
, and the (square) Jacobian matrix Dwρa

(
0, x0, y0, u0, v0

)
is invertible.

(To see this, observe that ∂
∂ui

φi(0, x
0, y0, u0, v0) > 0, since u0 > 0. Thus,

Dwρa
(
0, x0, y0, u0, v0

)
is a lower triangular matrix with nonzero diagonal el-

ements.) The invertibility of Dwρa
(
0, x0, y0, u0, v0

)
ensures that the zero set

of ρa intersects λ = 0 transversally, i.e., the zero set is not tangent to the
hyperplane λ = 0.

(O4) From (O1) and (O3), the probability-one homotopy theory (derived from the
parametrized Sard’s theorem) says that for almost all vectors a described in
(O1), there exists a C1 zero curve γ of ρa, emanating from

(
0, x0, y0, u0, v0

)
,

along which the Jacobian matrix Dρa has full rank. γ does not return to
λ = 0, does not intersect itself, is disjoint from any other zeros of ρa, can-
not just stop at some point with λ < 1, and has finite arc length in every
compact subset of [0, 1) × En+2m+k. γ either wanders off to infinity or has
an accumulation point (1, x̄, ȳ, ū, v̄) at λ = 1, which is then a Kuhn–Tucker
point for (RLPCC) with λ = 1.
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(O5) If γ is bounded, then a globally convergent homotopy algorithm consists of
tracking γ from

(
0, x0, y0, u0, v0

)
at λ = 0 to (1, x̄, ȳ, ū, v̄) at λ = 1, and this

is guaranteed to work almost surely (for almost all choices of a). Note further
than λ need not increase monotonically along γ; thus tracking γ is not simple
continuation in λ from 0 to 1.

(O6) If γ is not bounded, it may still lead to a Kuhn–Tucker point of (RLPCC) at
λ = 1. First observe that (λ, x, y) along γ is bounded, since 0 <

= λ <
= 1 and

φ = 0 along γ implies that (x, y) ∈ Ωλ ⊂ Ω0, which is bounded. The shifted
NCP map φ used here for linear constraints is exactly the same as that used
in [54], where under the same assumption that Ωλ is nonempty and bounded
for all 0 <

= λ <
= 1, but without the v and ψ terms in ρa, it is proven that

either x, y, and u remain bounded along γ, or (λ, x, y) along γ accumulate
at (1, x̄, ȳ) and there exists ū such that (1, x̄, ȳ, ū) is a zero of the homotopy
map and (x̄, ȳ) solves the nonlinear program. In this sense, γ is said to reach
the point (1, x̄, ȳ, ū). In the following section, similar results are established
under the assumption that either u or v is bounded along γ.

4. Convergence theorems. Homotopy convergence theorems simultaneously
prove the existence of a solution; hence it is not necessary to assume (LPCC) has
a solution. The standing assumption that Ω1 is nonempty and bounded, however,
cannot be easily dispensed with. By (O5) and (O6), the goal is to show that either γ
is bounded or there exists a point (x̄, ȳ, ū, v̄) such that ρa(1, x̄, ȳ, ū, v̄) = 0.

Lemma 0. Assume Ω1 �= ∅ is bounded. For any λ̃ ∈ [0, 1), γ is bounded for
0 <= λ <

= λ̃.
Proof. Suppose v is not bounded along γ for 0 <

= λ <
= λ̃. Then there exists a

sequence
{(
λk, x

k, yk, uk, vk
)}

⊂ γ for which {vk} has no accumulation point and

λk <= λ̃ for all k. By (O6) λ, x, and y are bounded on γ, so it may be assumed, after
passing to a subsequence, that

{(
λk, x

k, yk
)}

converges to an accumulation point (λ̄,

x̄, ȳ). Note that λ̄ <
= λ̃ < 1, so by the third component of ρa,

lim
k→∞

vk = v0 − ψ
(
λ̄, x̄, ȳ, q0, g0

) / (
1− tanh(60λ̄/(1− λ̄))

)
,

contradicting the unboundedness of {vk}. Therefore, v must be bounded along γ.
Since λ, x, y, and v are bounded along γ for 0 <

= λ <
= λ̃, every term in the first

component of ρa is bounded except possibly the term containing u. Now the argument
(passing to an accumulation point of (λ, x, y, v) along γ, observe that u unbounded
implies the component φ of ρa = 0 on γ is also unbounded) used in the proof of
Theorem 5.1 of [54] for λ̄ < 1 to prove u is also bounded applies in this context (the
component of ρa involving ψ plays no role in this proof). Therefore u along γ is also
bounded for 0 <= λ <

= λ̃.
Lemma 1. Assume Ω1 �= ∅ is bounded and u is bounded along γ. v is bounded

along γ if ∇(x,y)ψ always has full row rank along γ for 0 <= λ <
= 1.

Proof. Suppose v is not bounded along γ. Then there exists a sequence
{(
λk, x

k,

yk, uk, vk
)}

⊂ γ for which {vk} has no accumulation point. Since λ, x, y, and u are

bounded on γ, the sequence
{(
λk, x

k, yk, uk
)}

has an accumulation point, which by
Lemma 0 must be at λ = 1. By passing to a subsequence, it may be assumed that{(
λk, x

k, yk, uk
)}

converges to (1, x̄, ȳ, ū). By assumption,
(
∇(x,y)ψ

)t
always has

full column rank, so vk is the unique solution to

(L1) Mkv = −1− λk
λk

(
xk − x0

yk − y0

)
−
(
c
d

)
+

(
At

Bt

)
uk,
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where Mk =
(
∇(x,y)ψ

(
λk, x

k, yk, q0, g0
))t

. The right-hand side is bounded (since
λk → 1).

Let σk denote the smallest singular value of Mk. Since {vk} is unbounded, {σk}
must converge to zero. {Mk} converges to M =

(
∇(x,y)ψ

(
1, x̄, ȳ, q0, g0

))t
, which

therefore has zero as a singular value, contradicting the assumption that (∇(x,y)ψ)
t

always has full column rank. Hence v must be bounded along γ.

To understand the full rank assumption for ∇(x,y)ψ along γ, ∇(x,y)ψ must be

studied in detail. By Lemma 0 and (O4), regardless of rank ∇(x,y)ψ, for any λ̃ < 1,

γ must eventually leave [0, λ̃] × En+2m+k and reach points with λ > λ̃. The term
v− v0 in ρa is both a blessing and a curse. v− v0, or something similar, is required to
uniquely determine v at λ = 0 and also to prevent γ from asymptotically approaching
λ = 0 with ‖vk‖ → ∞. The curse is that for points

(
λk, x

k, yk, uk, vk
)
along γ,

lim
λk→1

(
1− tanh

(
60λk
1− λk

))(
vk − v0

)
= −ψ

(
1, x̄, ȳ, q0, g0

)
�= 0

is possible when ‖vk‖ → ∞, so the point (x̄, ȳ) does not satisfy complementarity
conditions, and ∇(x,y)ψ

(
1, x̄, ȳ, q0, g0

)
could be rank deficient. Ideally, as λk → 1,

ψ
(
λk, x

k, yk, q0, g0
)
= o(1− λk),

and it is worthwhile to analyze the situation when ψ = 0 for 0 � λ̃ <
= λ < 1, where

both (1 − λ)q0 + q + Nx +My > 0 and y > 0 along γ. Examining all the cases for
sgn

((
(1− λ)q0 + q +Nx+My

)
i
− yi

)
yields that

∇(x,y)ψ
(
λ, x, y, q0, g0

)
=

(
ΣN, ΣM +Δ

)
,

where Σ = Σ
(
λ, x, y, q0

)
, Δ = Δ

(
λ, x, y, q0

)
∈ Em×m are diagonal matrices with

positive diagonal elements for (λ, x, y) along γ (λ < 1). Explicit expressions for Σ
and Δ are given later in the proof of Lemma 4. Now at λ = 1, assume also that the
complementarity solution (x, y) is nondegenerate: q+Nx+My+ y > 0. In this case

yi = 0 =⇒ Σii = 0, Δii > 0;

yi > 0 =⇒ Σii > 0, Δii = 0.

Observe that if the complementarity solution is degenerate, say, (q+Nx+My)i+yi =
0, then the ith row of ∇(x,y)ψ is zero.

Summarizing the preceding discussion, if ψ
(
λ, x, y, q0, g0

)
= o(1 − λ) along γ as

λ→ 1 and the limit point (1, x̄, ȳ) is a nondegenerate complementarity solution, then
a sufficient condition that ∇(x,y)ψ have full rank along γ for 0 � λ̃ < λ <

= 1 is that

(A1) rank
(
ΣN, ΣM +Δ

)
= m

for all nonnegative diagonal matrices Σ, Δ ∈ Em×m satisfying Σii + Δii > 0 for
i = 1, . . ., m. There are numerous ways this condition could be satisfied, e.g.,
(RA1) rank N = m,
(RA2) M is a P -matrix (all principal minors are positive),
(RA3) M is positive definite,
(RA4) M is strictly diagonally dominant with positive diagonal elements.
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Conversely, if v is bounded along γ, then

ψ
(
λk, x

k, yk, q0, g0
)
= −

(
1− tanh

(
60λk
1− λk

))(
vk − v0

)
= o(1− λk)

as λk → 1 along γ. There is no obvious simple weak assumption to guarantee that v
remains bounded along γ.

Lemma 2. Assume Ω1 �= ∅ is bounded and u is bounded along γ. v is bounded
along γ if

rank ∇(x,y)ψ
(
1, x, y, q0, g0

)
= m

over Ω1.
Proof. Suppose v is unbounded along γ . Using arguments similar to the proof of

Lemma 1, there exists a sequence
{(
λk, x

k, yk, uk, vk
)}

⊂ γ for which
{(
λk, x

k, yk,

uk
)}

converges to (1, x̄, ȳ, ū) and {vk} is unbounded. Observe that (x̄, ȳ) ∈ Ω1 since

φ
(
λk, x

k, yk, uk, f0, h0
)
→ φ

(
1, x̄, ȳ, ū, f0, h0

)
= 0. Let Mk =

(
∇(x,y)ψ

(
λk, x

k, yk,

q0, g0
))t

and note that {Mk} converges to M =
(
∇(x,y)ψ

(
1, x̄, ȳ, q0, g0

))t
, which

has rank m since (x̄, ȳ) ∈ Ω1. By continuity, Mk has full rank for k sufficiently large;
so for large k, by the first component of ρa, v

k is the unique solution to (L1). Since
the right-hand side of (L1) is bounded and {vk} is unbounded, the smallest singular
values of {Mk} must converge to zero, contradicting the assumption that M has full
rank.

The preceding observations (O1)–(O6) and lemmas prove the following theorem.
Theorem 1. Let the set Ω1 = {(x, y) | Ax+By >= f} be nonempty and bounded,

and let

rank ∇(x,y)ψ
(
1, x, y, q0, g0

)
= m

over the set Ω1. Then for almost all

a =
(
x0, y0, f0, g0, h0

)
∈ En × Em++ × Ek++ × Em++ × Ek++

there exists a C1 zero curve γ of ρa, emanating from
(
0, x0, y0, u0, v0

)
, along which

the Jacobian matrix Dρa has full rank. γ does not return to λ = 0, does not intersect
itself, is disjoint from any other zeros of ρa, and has finite arc length in every compact
subset of [0, 1)×En+2m+k. If either u or v is bounded along γ, then γ reaches a point
(1, x̄, ȳ, ū, v̄) (in the sense of (O6)) at λ = 1, and (x̄, ȳ, ū, v̄) is a Kuhn–Tucker
point for (RLPCC) with λ = 1.

Proof. By (O1), ρ is transversal to zero, so by the parametrized Sard’s theorem,
for almost all specified a, ρa is also transversal to zero. That is, ∇ρa has full rank on
the zero set ρ−1

a (0). Therefore, the zero set consists of smooth, nonintersecting curves
in [0, 1)×En ×Em×Ek ×Em. Let γ be the component of ρ−1

a (0) containing (0, x0,
y0, u0, v0). By (O4), γ either wanders off to infinity or has an accumulation point at
λ = 1. If u is bounded along γ, then by Lemma 2, γ is bounded, so it reaches a point
(1, x̄, ȳ, ū, v̄), which is a Kuhn–Tucker point for (RLPCC) with λ = 1.

Suppose u is unbounded and v is bounded along γ. Then there exists a sequence{(
λk, x

k, yk, uk, vk
)}

⊂ γ for which
{(
λk, x

k, yk, vk
)}

converges to (1, x̄, ȳ, v̄) and
{uk} is unbounded. Then(

c
d

)
−
(
At

Bt

)
uk +

(
∇(x,y)ψ

(
1, x̄, ȳ, q0, g0

))t
v̄ → 0

and ū can be constructed from uk such that ρa(1, x̄, ȳ, ū, v̄) = 0.
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The conclusion of Theorem 1 includes the conjecture (C4) mentioned earlier. Con-
jectures (C1)–(C3) concern the relationship between solutions of (LPCC), (RLPCC),
and the Kuhn–Tucker point of Theorem 1. A proof of conjecture (C1) will be taken
up next, using the machinery and results developed so far.

Due to technical requirements on the homotopy map ρa involving transversality
and a unique solution at λ = 0, ρa could not simply have ψ, like φ, as a component.
The import of this is that ψ is not zero everywhere along γ (unlike φ), and thus
points along γ are not generally feasible points for the relaxed problems (RLPCC). Let
(RLPCC(λ)) denote the problem (RLPCC) for a particular fixed λ. Fix λ̃, 0 <= λ̃ < 1,
and let (MRLPCC(λ)) denote the family of problems obtained from (RLPCC) by
replacing (1−λ) by (1−λ)+λ(1− λ̃) or, equivalently, λ by λλ̃. Then (MRLPCC(1))
is the same as (RLPCC(λ̃)), and the feasible set Ωλ for (MRLPCC(λ)) matches up
with Ωλλ̃ for (RLPCC(λλ̃)). Define ψ̃(λ, ·) = ψ(λλ̃, ·), φ̃(λ, ·) = φ(λλ̃, ·), and define

ρ̃a the same as ρa, except with ψ̃ and φ̃ in lieu of ψ and φ. Let γ(λ̃) denote the zero
curve of ρ̃a emanating from (0, x0, y0, u0, v0).

Theorem C1. Assume Ω1 �= ∅ is bounded. If rank ∇(x,y)ψ(λ, ·) = m over Ωλ
for 0 <= λ < 1, and either u or v is bounded along γ(λ̃) for 0 <= λ̃ < 1, then the problem
(RLPCC(λ)) has a solution for 0 <= λ < 1.

Proof. Fix λ̃, 0 <
= λ̃ < 1. Since (MRLPCC(λ)) has exactly the same structure

as (RLPCC(λ)), all the earlier discussion and results apply to the homotopy map ρ̃a,
which has the same (unique) zero at λ = 0 as ρa. So assuming

rank ∇(x,y)ψ̃(1, ·) = rank ∇(x,y)ψ(λ̃, ·) = m

over Ωλ̃ (with respect to (RLPCC)), and either u or v is bounded along γ(λ̃) for

0 <= λ̃ < 1, Theorem 1 applies to ρ̃a. Then ρ̃a(1, x̄, ȳ, ū, v̄) = 0 means⎡
⎢⎢⎢⎣
(
c
d

)
−
(
At

Bt

)
ū+

(
∇(x,y)ψ̃

(
1, x̄, ȳ, q0, g0

))t
v̄

φ̃
(
1, x̄, ȳ, ū, f0, h0

)
ψ̃
(
1, x̄, ȳ, q0, g0

)

⎤
⎥⎥⎥⎦ = 0,

which implies Ax̄ + Bȳ − f + (1 − λ̃)f0 >
= 0 and ψ

(
λ̃, x̄, ȳ, q0, g0

)
= 0, so (x̄, ȳ) is

a feasible point for (RLPCC(λ̃)). Therefore (RLPCC(λ̃)) has a solution, since its
feasible set is nonempty and compact.

Observe that ρ̃a(1, x̃, ỹ, ũ, ṽ) = 0 implies ψ̃(1, x̃, ỹ, ·) = ψ(λ̃, x̃, ỹ, ·) = 0 and
φ̃(1, x̃, ỹ, ·) = φ(λ̃, x̃, ỹ, ·) = 0, and the latter implies (because φ involves a positively
oriented NCP function) Ax̃+Bỹ−f +(1− λ̃)f0 > 0. Hence the proof of Theorem C1
gives the following corollary.

Corollary C1. Under the assumptions for Theorem C1, there exists a point
(x̃, ỹ) ∈ int Ωλ̃ satisfying ψ(λ̃, x̃, ỹ, ·) = 0 for 0 <

= λ̃ < 1, i.e., (RLPCC(λ̃)) has a

strictly feasible point for 0 <= λ̃ < 1.
Theorem C2. Assume Ω1 �= ∅ is bounded. If rank ∇(x,y)ψ(λ, ·) = m over Ωλ for

0 <= λ < 1, and either u or v is bounded along γ(λ̃) for 0 <= λ̃ < 1, then for almost all

a =
(
x0, y0, f0, g0, h0

)
∈ En × Em++ × Ek++ × Em++ × Ek++

satisfying Ax0 + By0 − f + f0 > 0, and for each λ in 0 <
= λ < 1, the Kuhn–

Tucker constraint qualification (7.3.3 of [33]) is satisfied at some local solution (x̄, ȳ)
of (RLPCC(λ)).
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Proof. Fix λ̃, 0 <
= λ̃ < 1. By Theorem C1, the problem (RLPCC(λ̃)) has a

solution, and by Corollary C1 there is a strictly feasible point (x̃, ỹ) ∈ int Ωλ̃. From

the rank assumption on ∇(x,y)ψ, the set M = {(x, y) | ψ(λ̃, x, y, ·) = 0} is an n-
dimensional manifold in a neighborhood of Ωλ̃. Let Γ be the (closed) connected
component of M∩Ωλ̃ containing (x̃, ỹ) ∈ int Ωλ̃, and let (x̄, ȳ) ∈ Γ be a local solution

of (RLPCC(λ̃)), which exists since Γ is compact. Write the linear constraints as

g(x, y) = f − (1− λ̃)f0 −Ax −By <= 0

and let I = {i | gi(x̄, ȳ) = 0}. M has the n-dimensional tangent space T = {z |
∇(x,y)ψ(λ̃, x̄, ȳ, ·)z = 0} at (x̄, ȳ). With respect to Ωλ̃, the feasible directions at

(x̄, ȳ) are F =
{
z
∣∣ ∇gI(x̄, ȳ)z <

= 0
}
, and the directions of interest for the constraint

qualification are F ∩ T .
Let 0 �= d ∈ F ∩ T be a feasible direction. Since ψ is C4, by the implicit

function theorem, the connected set Γ is also path connected: there is a differentiable
vector function e(τ) starting at e(0) = (x̄, ȳ), lying in Γ ⊂ M ∩ Ωλ̃, and ending at
e(1) = (x̃, ỹ). Furthermore, since Ωλ̃ is convex, int Ωλ̃ �= ∅, and the curve e([0, 1]) lies
entirely in Γ ⊂ M ∩ Ωλ̃, e(τ) can be chosen such that e′(0) = αd for some α > 0,
which is the Kuhn–Tucker constraint qualification.

Theorem C2 provides sufficient conditions such that, for each λ, there exists a local
solution of (RLPCC(λ)) that satisfies the Kuhn–Tucker constraint qualification, but it
provides no guarantee that the constraint qualification is satisfied at a particular local
solution. The following corollary provides sufficient conditions such that, for almost
all λ, the constraint qualification will be satisfied at any local solution, provided that
no more than n of the linear constraints are active at that solution.

Corollary C2. Under the assumptions of Theorem C2, for almost all λ ∈
[0, 1), any solution (x̄, ȳ) of (RLPCC(λ)) will satisfy the Kuhn–Tucker constraint
qualification, provided no more than n of the linear constraints f−(1−λ)f0−Ax−By <=
0 are active.

Proof. Let λ be fixed, and let (x̄, ȳ) be a local solution of (RLPCC(λ)) with no
more than n of the linear constraints active. Let I denote the indices of the active
linear constraints, that is, I = {i | (f − (1− λ)f0 −Ax̄−Bȳ)i = 0}. By assumption,
|I| <= n.

Define

g
(
λ, x, y, f0

)
= f − (1− λ)f0 −Ax −By, F

(
λ, x, y, f0, g0

)
=

(
gI
(
λ, x, y, f0

)
ψ
(
λ, x, y, q0, g0

)) .
Note that F is transversal to zero since the columns of ∇F

(
λ, x̄, ȳ, f0, g0

)
cor-

responding to f0
I and g0 form a multiple of the identity matrix. Therefore, by the

parametrized Sard’s theorem, for almost all b =
(
λ, f0, g0

)
, Fb(x, y) = F

(
λ, x, y, f0,

g0
)
is also transversal to zero. Thus

rank ∇(x,y)Fb(x̄, ȳ) = rank

( ∇(x,y)gI
(
λ, x̄, ȳ, f0

)
∇(x,y)ψ

(
λ, x̄, ȳ, q0, g0

)) = m+ |I| <= m+ n.

Since the columns of ∇Fb(x̄, ȳ) span Em+|I|, there exists z ∈ Em+n such that

rl∇(x,y)gI
(
λ, x̄, ȳ, f0

)
z < 0,

∇(x,y)ψ
(
λ, x̄, ȳ, q0, g0

)
z = 0,
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or equivalently, z ∈ T ∩ int F , where T = {z | ∇(x,y)ψ(λ, x̄, ȳ, ·)z = 0} and F = {z
∣∣

∇gI(x̄, ȳ)z <
= 0}. The existence of such a (strictly) feasible direction z implies that

M∩ int Ωλ ∩B
(
(x̄, ȳ), δ

)
�= ∅ for every open ball B

(
(x̄, ȳ) of radius δ > 0 centered at

(x̄, ȳ), i.e., there exist strictly feasible points (x̃, ỹ) arbitrarily close to (x̄, ȳ). Thus for
δ sufficiently small, (x̃, ỹ) and (x̄, ȳ) lie in the same (closed) connected component Γ of
M∩Ωλ, and the proof of Theorem C2 applies for the satisfaction of the Kuhn–Tucker
constraint qualification at (x̄, ȳ), except now the conclusion is for almost all λ rather
than each λ, 0 <= λ < 1.

The restriction on rank ∇(x,y)ψ in Theorems 1, C1, and C2 is not so severe as
it might seem, since the rank assumption holds generically (with probability one).
To see this, fix q0 defined by ψ

(
0, x0, y0, q0, g0

)
= 0, let 0 <

= λ < 1, b = (λ, g0),
and define

ψb(x, y) = ψ
(
λ, x, y, q0, g0

)
.

Observe that, with respect to the variables
(
λ, x, y, g0

)
, ψ is transversal to zero.

Therefore, by the parametrized Sard’s theorem [9], for almost all g0 > 0 (and q0

determined by g0) and almost all λ, 0 <
= λ < 1, ψb : E

n+m → Em is also transversal
to zero. This proves the following lemma.

Lemma 3. Let q0 be defined by ψ
(
0, x0, y0, q0, g0

)
= 0. Then for almost all

g0 > 0 and almost all λ, 0 <= λ < 1,

rank ∇(x,y)ψb(x, y) = rank ∇(x,y)ψ
(
λ, x, y, q0, g0

)
= m

on the set ψ−1
b (0).

As λ → 1 along the zero curve γ of ρa, ψb = ψ ≈ 0, and Lemma 3 says that
rank ∇(x,y)ψ = m along γ as λ→ 1, almost surely. Thus the assumption of Lemma 2
(where Ω1 could be replaced by the projection of γ onto Ω1) is rather mild and is
tantamount to assuming a nondegenerate complementarity solution (x̄, ȳ) at λ = 1.

Lemma 4. Let
{(
λk, x

k, yk, uk, vk
)}∞
k=1

⊂ γ. Then

∇(x,y)ψ
(
λk, x

k, yk, q0, g0
)
=

(
ΣkN, ΣkM +Δk

)
,

where Σk and Δk are diagonal matrices with entries

Σkii =

{
−5(ski − yki )

4 + 5(ski )
4 if ski

>
= yki ,

5(ski − yki )
4 + 5(ski )

4 if ski < yki ,

Δk
ii =

{
5(ski − yki )

4 + 5(yki )
4 if ski

>
= yki ,

−5(ski − yki )
4 + 5(yki )

4 if ski < yki ,

where ski =
(
Nxk+Myk+q+(1−λk)q0

)
i
. Additionally, if ψ(λ, x, y, q0, g0) = o(1−λ)

along γ as λ→ 1, then for sufficiently large k, sk > 0, yk > 0, and the diagonal entries
of Σk and Δk are positive.

Proof. The formula for ∇(x,y)ψ
(
λk, x

k, yk, q0, g0
)
follows from the chain rule

and the definition of ψ̂(5). If ψ(λ, x, y, q0, g0) = o(1 − λ) along γ as λ→ 1, then for

k sufficiently large, ψ̂(5)(ski , y
k
i ) = ψi

(
λk, x

k, yk, q0, g0
)
+ (1− λk)g

0
i >

(1−λk)
2 g0i > 0

(since ψi
(
λk, x

k, yk, q0, g0
)
= o(1 − λk)). This implies that ski > 0 and yki > 0 for

sufficiently large k, which ensures that Σkii > 0 and Δk
ii > 0.
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Lemma 5. Suppose that ψ(λ, x, y, q0, g0) = o(1 − λ) along γ as λ → 1 and the
limit point (1, x̄, ȳ) is a nondegenerate solution. Then ∇(x,y)ψ has full rank along γ

for 0 � λ̃ < λ <
= 1 if

rank

(
NJ· MJ·
0 IK·

)
= m

for all partitions of {1, . . . ,m} into disjoint subsets J , K.
Proof. Let

{(
λk, x

k, yk, uk, vk
)}∞
k=1

⊂ γ and
(
λk, x

k, yk
)
converge to (1, x̄, ȳ).

Define ski =
(
Nxk + Myk + q + (1 − λk)q

0
)
i
. By continuity, {ski } converges to

s̄i =
(
Nx̄+Mȳ + q

)
i
. By Lemma 4,

∇(x,y)ψ
(
λk, x

k, yk, q0, g0
)
=

(
ΣkN, ΣkM +Δk

)
,

where Σk and Δk are the diagonal matrices defined in Lemma 4. Suppose that
ȳi = 0. By nondegeneracy, for k sufficiently large, ski > s̄i/2 > yki > 0, where
the last inequality is from Lemma 4. Thus, Σkii = −5(ski − yki )

4 + 5(ski )
4 → 0, and

Δk
ii = 5(ski − yki )

4 + 5(yki )
4 → 5s̄4i > 0.

Similarly, if ȳi > 0, then Σkii = 5(ski − yki )
4 + 5(ski )

4 → 5ȳ4i > 0 and Δk
ii =

−5(ski − yki )
4 + 5(yki )

4 → 0. Let Υk be the diagonal matrix with entries

Υkii =

{
1
/(

5(ski )
4
)

if ȳi = 0,

1
/(

5(yki )
4
)

if ȳi > 0.

Then

lim
k→∞

Υk
(
ΣkN, ΣkM +Δk

)
= P

(
NJ· MJ·
0 IK·

)
,

where P is a permutation matrix, J := {i | ȳi > 0}, K := {i | ȳi = 0}. It follows that
for k sufficiently large,

rank ∇(x,y)ψ
(
λk, x

k, yk, q0, g0
)
= rank

(
NJ· MJ·
0 IK·

)
.

The result follows immediately.
Lemma 6. Suppose (A1) holds for all nonnegative diagonal matrices Σ, Δ ∈

Em×m satisfying Σii + Δii > 0 for all i and that ψ(λ, x, y, q0, g0) = o(1 − λ) along
γ as λ → 1. Suppose that

{(
λk, x

k, yk, uk, vk
)}

⊂ γ is such that
(
λk, x

k, yk, uk
)
→

(1, x̄, ȳ, ū). Let D denote the degenerate indices of the complementarity constraints at
(x̄, ȳ). If vkD

<
= 0 for all k sufficiently large, then (x̄, ȳ) is a local optimum point of

(LPCC).
Proof. Let J and K denote the nondegenerate indices with ȳJ > 0 and ȳK = 0.

By Lemma 4,

∇(x,y)ψ
(
λk, x

k, yk, q0, g0
)
=

(
ΣkN, ΣkM +Δk

)
,

where Σk and Δk are diagonal matrices with positive diagonal entries for sufficiently
large k. Let Υk = (Σk + Δk)−1. Then Υk∇ψ(λk, xk, yk, q0, g0) = Λk(N,M) +
(I − Λk)(0, I), where Λk is a diagonal matrix with diagonal entries between zero and
one. Let

gk = −1− λk
λk

(
xk − x0

yk − y0

)
−
(
c
d

)
+

(
At

Bt

)
uk,
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and note that {gk} is bounded. By passing to a subsequence, it may be assumed that
both gk → ḡ and ΛkDD → Λ̄. By the definition of ρa,

gk =
(
∇ψ

(
λk, x

k, yk, q0, g0
))t

vk =

(
N tΛk

M tΛk + I − Λk

)
wk = Gkwk,

where wk =
(
Υk

)−1
vk. The matrix Gk converges to

(
(NJ·)t 0 (ND·)tΛ̄
(MJ·)t I·K

(
(MD·)tΛ̄ + I·D − I·DΛ̄

)) P,

where P is a permutation matrix and Λ̄ is a |D|×|D| diagonal matrix with nonnegative
entries less than or equal to one. By assumption (A1), this matrix has full column
rank, so for k sufficiently large, the matrix Gk also has full column rank and the
smallest singular value is bounded away from zero. Since {gk} is bounded, it follows
that {wk} is bounded with an accumulation point w̄. Let ξ = Λ̄w̄D, and ζ = (I −
Λ̄)w̄D. Then equating the two expressions for ḡ gives

(
c
d

)
−
(
At

Bt

)
ū+

(
N t

·J 0 N t
·D 0

M t
·J I·K M t

·D I·D

)⎛
⎜⎜⎝
w̄J
w̄K
ξ
ζ

⎞
⎟⎟⎠ = 0.

Observe also that ξ <
= 0, ζ <

= 0. Therefore, (x̄, ȳ, ū, w̄) is a Kuhn–Tucker point (so
(x̄, ȳ) is an optimal solution) for the following linear program:

min ctx+ dty

subject to Ax+By >= f,

qJ +NJ·x+MJ·y = 0,

yK = 0,

qD +ND·x+MD·y >= 0,

yD >
= 0.

(RLP)

Since φ(1, x̄, ȳ, ū, ·) = 0 and ψ(1, x̄, ȳ, ·) = 0, the point (x̄, ȳ) is feasible for (LPCC);
so, within a neighborhood of (x̄, ȳ), the feasible set of (LPCC) is contained in the
feasible region of (RLP). Thus, (x̄, ȳ) is a locally optimal solution for (LPCC).

Theorem C3. Suppose that (x̄, ȳ) is feasible for (LPCC) and is nondegenerate
with respect to the complementarity constraints. Then (x̄, ȳ) is locally optimal for
(LPCC) if and only if (x̄, ȳ, ū, v̄), for some ū >

= 0 and v̄, is a Kuhn–Tucker point for
(RLPCC) at λ = 1.

Proof. Let J = {i | ȳi > 0} and K = {i | ȳi = 0}. Since (x̄, ȳ) satisfies
the complementarity constraints and is nondegenerate, qJ + NJ·x̄ +MJ·ȳ = 0 and
qK + NK·x̄ +MK·ȳ > 0. Thus, in a neighborhood of (x̄, ȳ), the feasible region of
(LPCC) coincides with the feasible region for the following linear program:

min ctx+ dty

subject to Ax+By >= f,

qJ +NJ·x+MJ·y = 0,

yK = 0.
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The Kuhn–Tucker conditions for this linear program are(
c
d

)
−
(
At

Bt

)
u+

(
N t

·J 0

M t
·J I·K

)
w = 0,

Ax+By − f >
= 0,

u >
= 0,

ut(Ax +By − f) = 0,

qJ +NJ·x+MJ·y = 0,

yK = 0.

By arguments similar to those in the proof of Lemma 5,

∇(x,y)ψ
(
1, x̄, ȳ, q0, g0

)
=

(
Σ̄N, Σ̄M + Δ̄

)
,

where Σ̄ and Δ̄ are diagonal matrices satisfying Σ̄ii > 0, Δ̄ii = 0 for i ∈ J , and
Σ̄ii = 0, Δ̄ii > 0 for i ∈ K. Thus, for a permutation matrix P ,

∇(x,y)ψ
(
1, x̄, ȳ, q0, g0

)t
=

(
N t

·J 0

M t
·J I·K

)(
Σ̄JJ 0
0 Δ̄KK

)
P.

It follows that (x̄, ȳ, ū, w̄) satisfies the Kuhn–Tucker conditions for the linear program
if and only if (x̄, ȳ, ū, v̄) satisfies the Kuhn–Tucker conditions for (RLPCC) at λ = 1

with v̄ = P t
(
diag(Σ̄JJ , Δ̄KK)

)−1
w̄. Therefore, (x̄, ȳ) is a local optimum point of

(LPCC) if and only if (x̄, ȳ, ū, v̄) is a Kuhn–Tucker point for (RLPCC) at λ = 1.

5. Numerical results. Two small, difficult examples (one degenerate, the other
a manifold of solutions) are used here to illustrate several aspects of homotopy algo-
rithms. An important observation is that probability-one homotopy methods, similar
to Monte Carlo methods, are rather insensitive to dimension but more sensitive to
the nonlinearity of the problem. (This has been widely observed in structural me-
chanics [58], analogue circuit design [35], discretizations of boundary value problems
[59, 60], and nonlinear complementarity problems [1], to mention just a few areas.)
The point is that for problem classes of similar nonlinearity (like LPCCs), the nature
of the homotopy curves (arc length, number of turning points, maximum curvature,
sensitivity to starting point, etc.) will be qualitatively similar independent of the
dimension. Thus nothing qualitatively new would be learned from solving a few large
LPCCs beyond the small difficult ones here. The tanh term is used for technical rea-
sons on large scale realistic problems and is not pertinent here, so tanh(60λ/(1− λ))
is replaced by just λ. Just as the standard homotopy map

λF (x) + (1− λ)(x − a),

while theoretically adequate for a large class of nonlinear systems F (x) = 0, is often
not a good choice in practice [55], so the (theoretically correct) homotopy map ρa
used here may not be a computationally efficient choice for LPCCs. A homotopy
map ρa more intimately connected to the structure of an LPCC is desirable, but the
development of such (as in [54] or [55], e.g.), and accompanying theory, is a topic for
future work.

The subroutine FIXPNF in the package HOMPACK90 [61] is used here for the
homotopy zero curve tracking. The first example is given by k = 11, m = 3, n = 2,
c = (1, 0)t, d = (2, 0,−1)t,
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A =

(
1 1 0 −1 0 0 0 0 0 0 0
1 0 1 0 −1 0 0 0 0 0 0

)t
,

B =

⎛
⎝ 0 0 0 0 0 −1 0 0 1 0 0

0 0 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 1

⎞
⎠
t

,

f = (5, 0, 0,−7,−0.5,−0.5,−0.5,−0.5, 0, 0, 0)t,

N =

⎛
⎝0 1
1 0
1 1

⎞
⎠ , M =

⎛
⎝0 0 −1
1 1 0
0 −1 0

⎞
⎠ , q = (1, 0, 2)t.

This problem has a ray x̄ = (x1, 0), ȳ = 0 of nondegenerate solutions with 7 >= x1 >= 5,
and the homotopy curve converges to some point along this ray. Note also that
assumption (A1) is satisfied. The initial (arbitrarily chosen, infeasible) data is given
by

x0 = (1 · 10−3, 1 · 10−3)t, y0 = (1 · 10−3, 1 · 10−3, 1 · 10−3)t,

f0 = (1.000, 1.001, 1.001, 1.001, 1.001, 1.001, 1.001, 1.001, 1.001, 1.001, 1.001)t,

g0 = (0.3, 0.25, 6.25 · 10−2)t, h0 = (0.1, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5)t,

u0 =
(
5.77, 1.34 · 10−2, 0.80, 4.21 · 10−2, 0.5, 0.64, 0.79, 0.93, 1.54, 1.62, 1.69

)t
,

v0 =
(
−3.65 · 10−3, 3.36 · 10−3, 1.42 · 10−2

)t
, q0 = (1.78,−1.34,−3.76)t,

where u0, v0, and q0 are computed from the other initial data as described earlier.

Figure 5.1 shows the homotopy zero curve γ for this initial data. The dashed
line in Figure 5.1 shows γ for the starting point x0 = (4.0, 1 · 10−3)t, y0 = (1 · 10−3,
1 · 10−3, 1 · 10−3)t, with f0, g0, h0 unchanged, and u0, v0, q0 computed accordingly.
The shape of γ is very sensitive to the initial data, due to the nature of ρa, as shown in
Figure 5.2, which corresponds to starting point x0 = (1·10−3, 1·10−3)t, y0 = (1·10−3,
0.3, 1 · 10−3)t, with everything else as before. γ remains bounded and will eventually
reach a solution at λ = 1 but has a long arc length and many sharp turns. The
functions ψ̂(k), especially for k = 5, suffer from numerical truncation error for large
arguments, making curve tracking difficult.

0.2 0.4 0.6 0.8 1.0
0.1

0.1

0.2

0.3

0.4

0.5
x2

Fig. 5.1. Plot of x2 along the homotopy zero curve γ (solid line). The dashed line shows γ for
a different starting point (x0, y0).
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0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8
x2

Fig. 5.2. Plot of x2 along the homotopy zero curve γ for a third starting point (x0, y0), showing
the sensitivity of γ to the parameter vector a. γ eventually reaches the solution, after many sharp
turns and a long arc length.

The second example is given by k = 6, m = 2, n = 2, c = (−2, 1)t, d = (−1, 0)t,

A =

(
−2 −2 −1 0 1 0
0 0 0 0 0 1

)t
, B =

(
1 −1 −2 −1 0 0
0 0 0 1 0 0

)t
,

f = (−4,−6,−6,−2, 0, 0)t,

N =

(
3 0
3 1

)
, M =

(
−2 0
6 0

)
, q = (2,−14)t.

This problem has the degenerate solution x̄ = (2/3, 0), ȳ = (2, 0) with value −10/3.
Because of this degeneracy, regardless of the choice of a, the equation ρa(1, x̄, ȳ, u,
v) = 0 has no solution for u, v. Therefore no homotopy zero curve γ can reach this
degenerate solution at λ = 1.

Consider the initial data given by

x0 = (0.5, 1 · 10−3)t, y0 = (1.5, 1 · 10−3)t,

f0 =
(
1 · 10−3, 1 · 10−3, 1 · 10−3, 1 · 10−3, 1 · 10−3, 1 · 10−3

)t
,

g0 = (0.3, 0.25)t, h0 = (0.1, 1.0, 1.5, 2.0, 2.5, 3.0)
t
,

u0 =
(
1.646 · 10−3, 2.741 · 10−2, 8.260 · 10−2, 1.357, 1.499, 22.362

)t
,

v0 =
(
3.538 · 10−2, 5.615 · 10−3

)t
, q0 = (−0.488, 6.159)t,

where u0, v0, and q0 are computed from the other initial data as described earlier.

For this data, Figure 5.3 (solid line) shows the homotopy zero curve γ, which
approaches the hyperplane λ = 1 asymptotically without ever reaching a Kuhn–
Tucker point. Along γ, v2 → +∞ and (x, y) accumulates at the degenerate solution
(x̄, ȳ), but this happens very slowly. The figure shows y2 accumulating at ȳ2 = 0
as λ ↑ 1. The dashed line in Figure 5.3 shows γ for the initial data x0 = (1 · 10−3,
1 ·10−3)t, y0 = (1 ·10−3, 1 ·10−3)t reaching a nondegenerate local solution x̃ = (2, 8)t,
ỹ = (0, 0.781)t with value 4. As before, f0, g0, h0 are unchanged, with u0, v0, q0

computed accordingly. Figure 5.4 again shows the sensitivity of γ to the parameter
vector a, with the curve shown corresponding to x0 = (1 · 10−3, 1 · 10−3)t, y0 = (0.2,
1 · 10−3)t.
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0.2 0.4 0.6 0.8 1.00.2

0.0

0.2

0.4

0.6

0.8

1.0
y2

Fig. 5.3. Plot of y2 along the homotopy zero curve γ (solid line). The dashed line shows γ for
a different starting point (x0, y0). Note that γ is C2, but the plotted projections may have cusps.

5. 10 6 0.000015

0.25

0.3

0.35

0.4

y2

Fig. 5.4. Plot of x2 along the homotopy zero curve γ for a third starting point (x0, y0), showing
the sensitivity of γ to the parameter vector a. γ eventually reaches a solution, after many sharp
turns and a long arc length.

6. Conclusions. A reformulation of (LPCC) with a simpler complementarity
constraint is

min ctx+ dty

subject to Ax+By >= f,

w − (q +Nx+My) = 0,

0 <= y ⊥ w >
= 0.

(LPCCw)

Using this simpler form (LPCCw) of an LPCC would have simplified all the proofs
but at the expense of losing the explicit dependence of the results on the properties
of the matrices M and N . Since the goal of applicable homotopy theory is to develop
theory based on verifiable assumptions stated directly in terms of the quantities nat-
urally arising in applications, a conscious decision was made to maintain the explicit
dependence on M and N .

An important issue not explored here (beyond Lemma 6) is the extent to which
the nondegeneracy assumptions can be relaxed. Many of the cited references ad-
dress degeneracy, and it seems likely that the results here can be extended to cover
some form of degeneracy. By construction, the probability-one homotopy algorithms
involve nondegenerate and well-conditioned problems until λ ≈ 1, and in practice
the homotopy zero curve γ reaches degenerate solutions despite a lack of supporting
theory. A careful examination of degeneracy should be a high priority for future work.
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Based on the convergence theory for probability-one homotopy algorithms applied
to nonlinear programs, the present results for LPCCs should be extensible to MPECs
with pseudoconvex objective function and quasi-convex inequality constraints, as well
as certain classes of general MPECs. Working out the details of these extensions is
another fruitful avenue for future work.

Finally, as mentioned in the previous section, it is desirable that a homotopy map
ρa, rather than being based on a direct relaxation of the Kuhn–Tucker conditions, be
based on the structure of an LPCC; such a map ρa should have less meandering zero
curves, if experience with many other applications [53] is any guide. The structure of
such a “tailored” map would have the form λF (λ, x)+(1−λ)G(λ, x), where F (1, x) = 0
corresponds to the given LPCC, and G(0, x) = 0 is an LPCC similar to the given one,
but with a unique, easily found solution. The technical challenge is to guarantee a
solution for all 0 < λ < 1 and to ensure the zero curves are bounded.

In summary, this paper showed that under existence and nondegeneracy assump-
tions, probability-one homotopies can be used to solve LPCCs and that the homotopy
reformulation has certain advantages (e.g., satisfies a constraint qualification).
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